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Abstract

Deformation quantization on varieties with singularitiéfers perspectives
that are not found on manifolds. The Harrison component afhsohild co-
homology, vanishing on smooth manifolds, reflects infoioraibout singu-
larities. The Harrison 2—cochains are symmetric and ae¥pnéted in terms
of abelianx—products. This paper begins a study of abelian quantizatio
plane curves ovet, being algebraic varieties of the for@? /R, whereR is a
polynomial in two variables; that is, abelian deformatiofhe coordinate al-
gebraC[x,y]/(R). To understand the connection between the singularifias o
variety and cohomology we determine the algebraic Hocls{tn-)homology
and its Barr—Gerstenhaber—Schack decomposition. Homadoilpe same for
all plane curve€[x,y]/R, but the cohomology depends on the local algebra of
the singularity oR at the origin.

Keywords: Quantization, Deformation, Harrison Cohomology, Sing@arves
Mathematics Subject Classifications (2000)53D55, 14A22, 16E40, 16S60, 81S10

1 Introduction.

Deformation quantization is a term coined by Moshe Flatop wtiggested that any
nontrivial associative deformation of an algebra of funies should be interpreted
as a kind of “quantization”. Deformation quantization[i} {2e study of associative
«—products of the fornf xg= fg+ ¥,.oh"Cn(f,9), wherehis a formal parameter.
This concept has gained wide currency and has been intgndireeloped in recent
years, but almost exclusively in the context of smooth Rwisaanifolds (4| 14, 15].

In that case it is natural to consider deformations “in theection of the Poisson
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bracket” (Drinfel'd); that is, takindzy(f,g) = {f,g}, which is of course antisym-
metric. But even if more general deformations were to beidensd, independent
of the symplectic structure, antisymmetry ©f entails no essential loss of gener-
ality for quantization on a smooth (finite dimensional) nfialci. A famous result
of Hochschild, Kostant and Rosenbergl[13] implies that angroduct on a regu-
lar, commutative algebra is equivalent to one with antiswtrimC,. For a related
‘smooth’ result, see [23].

It would seem, therefore, that the time has come to studyraieftion quantiza-
tion on varieties with singularities. The cohomologicalpiination of singularities
should be interesting.

The Hochschild complex of any commutative algebra decoepaso smaller
complexes; in the case of an algelfrgenerated byN generators, intdtN subcom-
plexes|[1[ 5[ I1]. The topology of a smooth manifold is reddtethe restriction of the
Hochschild complex to alternating map$ — A, dual to simplicial homology, and
the only component with non-vanishing cohomology. But ometges with singulari-
ties other components of the Hochschild complex come irag, pYhich suggests the
use of cohomological methods for the study of singularities

Examples of quantization on singular varieties had beenvknio connection
with geometric quantization (and-quantization) on coadjoint orbits of Lie algebras,
but the cohomological implications had not been recogniz&ke [2] 5/17].) The
connection between singularities and cohomology wasestialy Harrison[[12], who
was the first to describe the component of Hochschild cohogyolhat has become
known, if not widely known, as Harrison cohomology. The Zftains of this com-
plex are symmetric. On a commutative algebra every exachstdild 2—cochain
is symmetric, so that triviality is not an issueGf is antisymmetric. But it is an
important consideration in the case of abekaproducts.

The BGS idempotents.
The p—chains of the Hochschild homology complex of a commutadigebraA
are thep-tuplesa=y a1 ® - -- ® ap € A®P, and the differential is defined by

da=a@®a® @y~ 4 ®adg@ay - @ap+- -+ (—)Par® - ap2®ap-1ap.
The p—cochains are maps®P — A, and the differential is
5C(alv e >ap+1) = alC(a27 e 7ap*1) _C(da) - (_)pC(alv e 7ap)ap+1-

After the pioneering work of Harriso [12] and Balri [1], theneplete decomposition
of the Hochschild cohomology of a commutative algebra wasddy Gerstenhaber
and Schack[]11]. The Hochschild cochain complex splits amoinfinite sum of
direct summands. (If the algebra is generatedNllyenerators then there are oy
nonzero summands.) The decomposition is based on the aft#§ron n—cochains,
and on the existence ofidempotentse,(k), k=1,---n, in CS,, Sxen(k) = 1, with
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the property thad o e, (k) = en11(k) 0 8. Thus we have HoGgh= $_; Hnk, HocH' =
SR H™ with H, ; =Harr, andH™ = Har".
A generating function was found by Gardia [8],

|
n: o

i Xen (k) = 1 %(x—da)(x—daJrl)m(x— ds +n—1)sgno)a,
=]

whered, is the number of descentgg (i) > a(i+1), ina(1---n). ! The simplest
idempotents are
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The Hochschild chains decompose in the same way, avite, (k) = e,_1(k) o d.

Summary.

Section 2 is concerned with abeliarproducts on an arbitrary plane curve. The
space of equivalence classes of first order abelian defamnsatf the algebra of
polynomials onCIx,y]/(R) is isomorphic to the local algebra of the singularity of
Ratx=y=0. The Harrison component Hare= H3! of Hoch® vanishes, which
implies that there are no obstructions to continuing a firdepabelian—product to
higher orders. In this paper the strategy that leads to tlailegion of Hochschild
cohomology calls for a preparatory investigation of a hargamal complex that is
not strictly Hochschild, but rather its restrictidn— A, to the non-unital subalgebra
A. of positive degree; this has no effect on the cohomology.

In Section 3 the Hochschild homology is calculated for theeaaf a plane curve,
with its BGS decomposition. In Section 4 the Hochschild cobtogy is investi-
gated; the result in Theorem 4.9. Section 5 contains a ddtedlculation of the BGS
decomposition for the singularity af = 0 atx = 0.

The Appendix, by Maxim Kontsevich, explains in modern mathécal lan-
guage a way to calculate Hochschild and Harrison cohomafpgyips for algebras
of functions on singular planar curves etc. based on Kogadlutions.

1Example:o(1234) = 3142 has one descent, from 2 to 3.



2 Associativex—products and cohomology.

2.1 Formalx—products.A formal, abelian—product on a commutative algebias
a commutative, associative product on the space of formakpseries in a formal
parameteh with coefficients inA, given by a formal series

fxg=fg+ ;ﬁ”Cn(f,g). (2.1)
n>

Associativity is the condition that = (g=«h) = (f xg) «h, or

k
> W (Col.Calg ) - CulGr(1.9)1) ) =0 22)

m,n=0
whereCy(f,g) = fg. This must be interpreted as an identityhirthus

k
Z 6m+n7k<cm(facn(gah))_Cm(Cn(f7g)’h))> =0, k:1727"' . (23)

m,n=0

The formalx—product (2.1) is associative to ordeif Eq(2.3) holds fork=1,--- p.
A first order abeliarx—product is a product

associative to first order i, which is the requirement th@y be closed,
5Cl(f>gv h) = fCl(97 h) _Cl(fg7 h) +C1(f>gh) _Cl(fvg)h =0.

Suppose that a formalproduct is associative to ordgr> 1; this statement
involvesCy,---,Cp only, and we suppose these cochains fixed. Then the condition
that must be satisfied b@,,1, in order that thex—product be associative to order
p+1,is

P
(Cm(f,Cn(g, h)) —Cm(Cn(f,0), h))) = —0Cpy1(f,0,h). (2.5)

mh=1
mH-n=p+1
The left hand side is closed, and thus it is seen that the wahistns to promote
associativity from ordep to orderp+ 1 are in Hoch.

There is an important difference between the two cases ofrgtric and anti-
symmetricCy. If Cy,---,Cy are symmetric, then the left hand side of (2.5) has the
symmetry of the idempoter(1) (a Harrison cochain) and it is the symmetric part
of Cp11 that is relevant, while the antisymmetric part@f, ; must simply be closed.
Symmetry of thex—product can therefore be maintained to all ordersZ,; Ifs anti-
symmetric, ancg = 1, then the left hand side has the symmetregil) 4+ e3(3). The

4



first part must be balanced on the right hand side by means @ytmmetric part of
C,; the second part must vanish, and this condition is the Jaaeitity for C;.

The obstructions against continuing a formal, first ordéglian «—product to
higher orders are in Hoéhmore precisely, they are 3! = Har}(A A).

A formal x—product is trivial if there is an invertible mdp: A — A, in the form
of a formal serie€(f) = f + ¥,.0M"En(f) such thaE(f xg) = E(f)E(g). A first
order, abelian—product is trivial if there is a 1—-cochakfy such that

Ci(f,9) = OE1(f,g) = fE1(g) — Ea(fg) +E1(f)g.

2.2. Deformations on a curvdn view of the theorem of Hochschild, Kostant and
Rosenberg[[13] cited earlier, there can be no nontriviagliab x—products on a
smooth manifold. It is natural to turn to varieties with giteyities, and especially
algebraic varieties. It is the aim of this paper to exploeghenomena, with elemen-
tary methods of calculation, in the case of plane curves Gy&f = C? /R, whereR

is aC—polynomial. The algebras of interest are the coordinaelab

A=ClxY/(R), (2.6)

with generatorsc,y and a single polynomial relatioR. The polynomialR can be
transformed, by a linear change of variables, to either effthmsR = x™ — P(x,y)
or R=y"— Q(x,y), where the polynomiaP is of order less tham in x and the
polynomial Q is of order less than in y. Either form gives rise to a Poincaré-Witt
basis forA, for examplexy!,i=0,1,---0, j =0,1,---,n— 1.

The deformed algebra has a Poincaré—Witt basis of the same fLetW be
the map that takes-a-monomial of this basis to the same ordinary monomial of the
original basis. LeRy:= W(R*) and letMp := C?/Rs. Then, morally, the—product
is trivial if there is a bijectiorE : My — M such thatRs — R. However, sincd is a
formal parameter, the following definition is preferred.

2.3. Definition. A«—product, as defined in this section, is trivial if there is apping
by a formal power series i, E = Id + ¥ ,.1 A"Ey, such that R— R.

2.4. First orders—product on a curveConsider a first order, associative and abelian
+—product on the algebra (2.6), with the polynonfrin the formR = y'—Q(XxY).
A change of variables ensures tifigty!) + (xXy') = X&yl+! for j+1 < nand

Yy =Q(xy) +AQi(xy), 1<i<n-1, (27)

The first order deformation (2.7) is trivial if there is a dation E such that
Q1 = E(R). See Subsection 4.6.



2.5. ExampleLet A=R[x,y]/(R), R=y?> —x?—r2 r2 ¢ C, decomposd < A as
f=1f,.+yf, fL € R[x], and define a—product orA by settingf xg= fg+hf_g_.
ThenQ; = 1 and we seeE such thatE (x? +r? —y?) = 1. The general solution to
this equation is B = = (xdx + ydy) + a (Yo, + Xdy), with a € A.

Of course, this breaks down if = 0, and the simple reason why there is no
solution in this case is that there is no differential op@r&tsuch that the polynomial
E(x? —y?) contains a constant term.

2.6. Proposition.Let X be the space of polynomials in x and y, of degree lessrthan
iny, and let DR be the gradient ideal of R. As vector spacesjiXcites with A and
DR consists of all differentials of R. The space of equivaderiasses of essential,
first order +—products on A is the space/RR, Har?(A,A) = X/DR.

2.7. ExampleLet M = C2, R=y?—x3. A full set of representatives of /DR is
a+bx abe C. The deformed algebras afg = C[x,y]/Ry with Ry = y? — x3 —
h(ax+b). Expandf(x,y) = f.(x) +yf_(x). Thenfxg= fg+hCy(f,g), where
Ci(f,9) = (ax+b)f_g_.

3 Homology.

This section deals with the homology of a modified Hochscbddhplex. The strat-
egy that is used in this paper, to calculate the Hochschiidewlogy ofA, begins by
a determination of the homology of the algebBra, the subalgebra with positive de-
gree ofA. Then—chains of this homology &, aren—tuplesa=a1Ra®---an, g €

A, i=1--N.

3.1. 2—chainsEvery ‘Hochschild’ 2—chain is homologous to a 2—chain of fitren
Xx®a+y®hb. It will be convenient to re-label the generatorsy — X1,%», then
aryXx®a,a Ay, i=12. Itisclosed ify xig = 0. We shall suppose th&
has no constant term and no linear terms, théas the representation

2
arx 'y % @x;eb+ Zixi®Ric,
i=

wheree'l = —¢ll £12=1 xR = Rand whereb,c are in the unital augmentation
Aof A.. The first term is exact ib € A, the second term is exactdfe A, and (a
section of)H, = Z»/B; is spanned (ovet) by the chainsq Ax; and 3 x ®R;. The
second one is homologous to a symmetric chain that is a bask$ain = Ho ;.

3.2. Example.lf R=y? —x", then Harp has dimension 1 and every symmetric,
closed 2—chain is homologous t@amultiple ofx® X" 1+ xX" 1o x—2y®y.



3.3. 3—chainsEvery 3—chain is homologous to one of the foams 3 x @ bj @ c'l.
If ais closed it takes the form~ 3 x @ x;elb@ b/ + x @ Rc® ¢, b,c € Awhich
is homologous t@ ~ 5 x ®@ xj&'l ® bl + % ® R @ cc, with xbb + Ricc = 0 and
—x;bb' + Rycd = 0. A simple case-by-case study shows that we then have:

bt = aR; + BRy, ¢ = —axa+ Bxi,
with a, 8 in A. Thus any closed 3—chain is homologous to one of the form

<(X1/\X2)®R101—2Xi ®Ri®X201> — ((Xl/\X2)®R202+in®R5®X102>-

(3.1)
The first (second) term is exact unleggcy) is in C. Adding an exact, alternating
3—cycle we get an alternative sectionZf/Bs with a basis that consists of the two
chains (the GS idempotents were defined in the introduction)

a, = 63(2)(X1®X2®R1—X2®R1®X1—X2®X1®R1—X2®R2®X2),
a = &Q2)eduOR- AR - X RXOR - X @RI®X). (3.2)

Thus Hoch = H3 > has dimension 2 and Hare 0.

Another way to reach this conclusion is to differentiatel}3. The result is
(C1x2 + Cox1) AR, which is inZ; > and which implies that (3.1§ Z3».

3.4. Example.lIf R=y?—x%, setu=x+Y, v=x—YV. The basis (3.2) is then
{ue vl ®u, v@ {u® v} and the dimension of Hoghis 2. More precisely, diniiz
is0,2,0fork=1,2,3.

3.5. Examplelf R=y? —x3, then the chains (3.2) become
YOXDY—XQYRY—YRYRX+XD XD X

and
82 (XRYRX —yIXRX— X IXRY+YRYRY).

It is straightforward to prove the following.
3.6. Proposition.Let Pt = {x;,x}, P™1 = P"@ M, and
(R —x (1 x

Then for n> 1 every closed n—chain is homologous to an n—chain in the dispan
of the two linearly independent polynomials ii. P



3.7. Examplelf R=y? —x?, setu = x+Y, v=x—Y. The dimension of Hoghis 2;
the basis iJu@veu---, VOURVRU:---}.

3.8. Theorem.Hochy = Hakk + Hak k+1, €ach component one-dimensional oGgr
andHochy_1 = Hy_1k, two-dimensional ove€, k=1,2, ... .

Proof. Fork=1,...,p— 1, PP*? = PK@ My ® M1 ® ... ® Mp and thus

p—1
dPP = P'M1 @My ® .. @ Mp+ 3 (=) P* @ MiMi;1 @ ... @ M,
k=1

We haveMMy.1 = Rtimes the unit matrix an®M; ® M, = R® P!; consequently
dP! =0, dP? = {R,0} anddPP™! = RghPP~1, p> 2. Ifa€ Cpy, thendae Cp 1,
andR&ha is homologous to somi € Cpi1k:+1. Hence ifPP~1 € C,_1, thenPPFL

is homologous to &;,,1x+1 chain.The action of these maps between spaces with
cohomology is shown in the diagram.

Con Coxk
VRN / N
Ci1 Csz2 - Cox-1k Cokr1k+1 (3.4)
NS N /
Cop Cok ki1

A southeast arrow represents the naap> Rsha; a southwest arrow is the action of
the differential. The projections qﬂﬂz"*l}i:m form a basis foHo1 k1 and the
projections ofPZ (resp.P2) are bases foHok (resp.Hakk1)-

4 Cohomology.

4.1. The reduction processlhe chains considered in this section are restricted to
positive degree. The cochains are valued.if\ p—cochain is closed if

oC(ay,---,apr1) = aC(ap,---,apr1) —C(da) — (—)PC(ay - --,ap)apr1 =0. (4.1)

One may attempt to interpret this relation as fixing the val(@a), recursively in the
degree of the argument. The obstruction to thidds- 0, but ifais exact then (4.1) is
satisfied automatically by virtue of its being true for argnts of lower degree. (One
can show that, in this context, &is exact then there i8 of the same degree such
thata=db.) It is enough, therefore, to verify closure for a basis pfesentatives of

Hochy, 1.



A closedp—cochainC is a coboundary if there is (@ — 1)—cochainE such that
C(a) = aE(ap, - -,ap) —E(da)+ (—)PE(aq, - -ap_1)ap. (4.2)

This relation can be solved f&r(da), recursively by increasing degree, except for the
obstruction presented lsla= 0. But if a= dbthenC(a) is determined byC(b) = 0.
So itis enough to examine (4.2) for a complete set of reptatiees of Hocl.

The most useful interpretation is this. Given any clogedochain a “gauge
transformation” is the addition of an exgetcochainC — C+ AC, with

AC(ay...ap) = a1E(a_) + (—)PapE(a;) — E(da). (4.3)
The space Hodhis the spac of closed, gauge-invarignicochains.

If any BGS componentgt of Hoch, vanishes then the corresponding component
HPK of HocH is zero. There are no obstructions to continuing a first graeelian
x—product to higher orders.

4.2. Closure for p= 1. The 2—homology is spanned By A x; andx ® R;. We shall
replace the latter bR = 3 Aijjx; @x5, R= 3 AjX;x5. The relationdC(x; Axp) = 0
is trivial. The formuladC(x; @ xb) = X|C(x}) +x,C(x;) — C(x,x}) tells us that, ifC
is closed, then for any polynomidl C(f) = C(x)d; f. Hence (this is the result 2.6)

SC(P?) =C(x)dR, 8C(P?)=0. (4.4)

For the algebreC[x,y], Z! is the space of vector fields with coefficients in the
unital augmentation of the same algebra, butfer C[x,y]/R, Z! is the algebra of
vector fields that annihilatR (the algebra of vector fields tangential to the curve).

4.3. Closure for p= 2. For homology we use the basis (3.3); it is enough to examine
one of the two,
PP =R®x1+X1 A X @ Ry,

SC(P?) = x1C(Ry AX1) + X2C(Ra AX1) — ReC(X1 A Xz).

The first two arguments are exact; a certain amount of cdloualé needed to verify
that these terms are of the same form as the third one. We heddllowing simple
formula, satisfied by closed 2—cochair(x; A f) = C(xa AX1)01f, f € A. Now it
follows easily thatdC(P¥) = —C(x1 A X2) 2R, 8C(PS) = C(x1 A X2)d1R. Therefore,
we can interpret the conditiodC(a) = 0 as fixing the valué€(da), provided only
thatC(P2)dR=0,i = 1,2. (That is satisfied iR = x2y3, C(xAy) = Xy.)

4.4. Theorem.Closure of a p—cochain C implies that its values for exacuargnts
are given recursively in the polynomial degree as in (4.19n¥&rsely, (4.1) can be
solved recursively for all @a), if and only if the following conditions hold

Cezk1 - C(PXAR=0,i=1,2

9



Ce ZZk+l7k+1 : Zc(PiZk-‘rl)&l R= 0’
Cez%k always

4.5. Gauge invariance for & 1. Trivial, all 1-cochains are gauge invariahitt = z2.

4.6. Gauge invariance for p- 2. We must examine evaluations on the homology
basis. To begin withAC(x, AXz) = 0, so that the evaluatioB(x, A Xz) is gauge
invariant. To examine the supplementary homology spadeR sezA,,xlxz, R=

s AjX; ®x2. Then we have
iz 1Ky =
Z Au (ACOq @) +><12><5AC (e@X} )% 5 AC(x X1 @)
K=0
=E(x)dR

Hence, in a gauge whe@vanishes on arguments of lower degre¥3(R) € DR
and we have recovered Proposition 2.6.

4.7. Gauge invariance for g 3. We have
5C(Pf) = AC(Q@ X1 +X1 AXo® Rz)
= XlE(Rl/\Xl)—|—X2E(R2/\X1))—R2E(X1/\X2) (4.5)
1 1
- ZEAiJ'{XlE(Xll 1xé/\x1)+x2E(x1x2 A1)} — RoE (X1 AXp).
With the help of the identity
i—1 _ . o
Y X{AC(xa @xy < Wd @x1) =X E(AX) —xE S Ax), j> 1,
and another one, similar, we can reduce (4.5) to

i1 i .
AC(P])+ 3 ApAC(a @ X K I @x) + 5 Aped tAC(a @ X % @ x)
k=1 k=1

= Z Aij {xilE(xi AXq) + xilE(xi_1 AX1)} — RoE (X1 A Xo).
A similar, further reduction leads to the result thatd@ vanishes on arguments of
lower ordersAC(P}) + ... = —(R)E(x1 A X2), AC(P3) + ... = (B1IR)E (X1 A X2). We
recall thatAC(a) = dE(a;) and remember from Subsection 4.3 tha = 0 implies

that RE(x; Ax2) = 0. The above result is thus natural; the calculation is ntede
only to fix the numerical coefficients.

10



4.8. Proposition. If the gauge is fixed by the condition th@t)G= 0 for arguments a
of lower degree, then the remaining gauge transformatiake the following form,

AC(PY) = 0, AC(P}) =Y EdR
AC(P¥) = 0, AC(PX1)=EdR, k>0.

Proof (outline). (a) The statement reflects the structure of (3.4). The dimens
of HPX, over the local algebra, more or less, coincides with theedision ofHp .
‘More or less’ comes from the existence of homologies of loarglers, as the com-
plete calculation in Subsection 4.7 shows.

(b) We have

AC(PE) = YRE(PH )+ 3 XEQ)+....
AC(RXY) = S & REPF YT Y XE(S),
AC(RY) = SXE(T).

The chaing;, S;, T are closed and, unle&; or R, is linear, exact. The reduction
exemplified in (4.4) and in (4.5) is then available. The remsul

AC(PH) + ... =E(P* 1)aR, ACP*Y) 4. =E(P*1)g;9R AC(PX) =0.

(c) The last casd:fk € Cx+1) is simpler than the others and we give the details
in that case only. Let € S, be the reversing permutation. Garsia’s formula tells us
that the chain€, correspond to the character— (—)X, so the projectiorey(k +
1)P¢ hast — (—)**1. NowAC(P¥) = 2 ; % E(a), with & € Cy_1 closed and with
the same symmetryt — (—)*1. The symmetry 0€o—1k (Where the homology is)
is (—)¥; thereforea; anda, are exact. The reduction process encounters no homology
and leads to zero.

Putting it all together we get the following result (for nbas, see Propositions
2.6 and 4.8).

4.9. Theorem.Let \k be the space of vector fields, with values in A, that annidilat
R. Then as vector spaces,

HY = W,
H&k = A/DR,
H2K1 — fae A, adR=adR=0},

H 2k+1k+1

Vr/{AdR}, k> 0.
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5 Deformation of X" = 0.

Here we complete the calculation of Hochschild cohomolofyhe algebraA =
C[x]/X", n> 2. This purely algebraic problem, though not associated aiturve, is
nevertheless very similar to that posed by curves. In théegoof singularity theory
it is one of the standard forms. The chains are restrictedbsitipe degree. This
subalgebra of is denotedA .

5.1. HomologyFor conveniencexxX... shall stand for eithex@ Xx@ x2... or x, X, X2, ... .
The spacesi, are one-dimensional fgo > 1 and representative elementsZyfare
X, XL, 1., or (xxX* 1)K for p = 2k and (x¥"1)kx for p= 2k + 1.

5.2. Closed cochain®\ p—cochainC is closed if
3C(ay...ap1) := a1C(a_) + (—)Pap,1C(a; ) —C(da) = 0, (5.1)

with a_ = a...apy1, a; = a;...a,. We interpret this relation, in the first place, as
a recursion relation that determines the coclaion exact arguments, in terms of
its values on arguments of lower degree. For example, if wodhainC is closed,
thenC(x¥) = kX" 1C(x), k= 2,...,n. HenceC(x¥) is determined fok=2,....n—1
by C(x), andC(x) € A, (thus restricted to positive degree).

The obstruction to this interpretation of (5.1)da = 0; in this case closure re-
quires the relation

5C(a) = aC(a )+ (—)Ptap1C(a,) = 0. (5.2)
But if a= db, then this last relation is automatic, since
5C(db) = bib,C(bs...) —1C(db_) 4 (—)P" by, 2C(dby ) — by 10p, 2C(by...bp)
= byby,C(bs...)— by <b2C(b3...) + (—)p+1bp+2c:(b2...bp+1)>

= 0.
The real obstruction is thus the presence of homology. Véhexx™1x... , then
(5.2) reduces to
p=2k: xCX"l.x—x.xX"1H =0, (5.3)
p=2k—1: xC(x"1..x""1) X" IC(x...x) = 0. (5.4)
5.3. Proposition. The obstructions to interpreting thestige condition (5.1) as
recursively fixing the value of(@a) in terms of values of C on arguments of lower

degrees are?
p=2k:none p=2k—1: xX"C(x...,x). (5.5)

2From now on dots indicate a sequence in whiandx"1 alternate.
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Homology selects the argument here also. The truth of thpdBition is obvious
except for the possibility of accidental cancellations.réjaevertheless, is a direct
proof.

Proof of Proposition 5.3, case § 2k. Forp=2kandm=1,2,...,a, a =k(n—
2)+1, let
"= > XXPLXXP2Z . xxPe . (5.6)
1<pg,.,pk<m

pr+..+pk=k+m-1
It may be shown by induction that

n—1

de? t=x"1 x—x.x"1 dg"=¢g™ @™ m<a-1

PosingdC(¢™) = 0 for m< a, we find that the left hand side of (5.3)vanishes iden-
tically:

XCOX" L x— % X" = xC(@ — ¢%) =xC(dg” ) =x*C(¢* @) = ...

lteration ends with"C(a? ™" — a2 ™1™ ") = 0.

Proof of Proposition 5.3, casep 2k— 1. Form=1,2,...a = k(h—2) + 1, set

Y= Z XxXPLP2 P (5.7)
1<py...,;k<m
pr+..+pk=k+m-1

Thendy? 1 =x"1. x1 =% and form< a —1, dy™= g™ — ™1 and
KyShey! ' =x"tee"? " 1=01..n-2 (5.8)
If 8C(¢™) =0, m< a, then the left hand side of (5.4) is

xCX LX)+ XIC(x..x)

— Xc(dwafl_i_xnflc((pOHern)

= XC(Yr hH 42 Ic(pt 2 = ..
anlc(wg+27n) + (n_ 1)anlc((pa+27n)
Xn—lc(dwa+1—n + (pa+2n) + (n _ l)xn—lc((pa+2—n)
= " IC(x...x).

The proof of Proposition 5.3 is complete. The implicatiorthiat, if a(2k — 1)—
cochainC is closed, thel©(x...x) € A,.

5.4. Exact cochaing=xactp—cochains have the form

C(ay...ap) =aE(a_)+ (—)PayE(as) — E(da). (5.9)
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The obstruction to interpreting this relation as a recursiation to determine the
E(da) isda= 0. Here too, the real obstruction, wheénis closed, is the existence
of homology. The most useful interpretation is this. Giveny alosedp—cochain a
“gauge transformation” is the addition of an exaetochainC — C+ AC, with

AC(ay...ap) = a1E(a_) + (—)PapE(a;) — E(da). (5.10)

The spaceH® is the space of gauge invariant evaluations of clgsecbchains.
To illustrate, here is the situation for 2—cochains, when3. Closure,

SC(xxX) = C(x¥) —C(x*x) =0, SC(x¥x) = XC(x?x — x»¢) =
Gauge transformation
AC(xx) = 2XE(X) —E(X?), AC(x¥) = XE(x?) + X2E(X) = AC(x°X),

By means of gauge transformations we can, for example, esd(xx) to zero. Co-
homology is the existence of the gauge invariant ob@et?) + xC(xx) Mod x2.

5.5. Theorem. The space of the gauge-equivalent evalsataond the associated
cohomology spaces onp@, A) are as follows

p=0 : A
HO(A A) = spar{1,x,...,.x"" 1}, dim. = 1;
p=1 : C(x)

HY(AA) = spar{x,...,x" 1}, dim. =n—1;
2
p=2k—1 : ZXC e (k>1)

3

H2k YA A) =spafx,...,x" 1}, dim. =n—1;
p=2k : ZXC ") Mod Cx"1

HZk(A A) =sparf1,x,...x"2}, dim.=n—1.

Proof. By a direct and straightforward calculation we obtain, for= 2k,
X AC(Ya) = X 1E(x...x), and forp = 2k— 1, $2 (X AC(¢?1) = 0.

5.6. Proposition. The BG&lecomposition’ for k> 1 is
Haw = Hakk, Hoakr1 = Hakra ke

14



Proof. The elemenk...x"~1 € Zy lifted to Zy(C[x],C[x]), is

dod 1)K = X" ehxx )L

If (xx*"1)k=1is of type Hx_2x_1, then the right hand side is of typex 1k, and
(XK is of type Hxk. Sincexx™ ! is indeed of typeH the result follows by
induction. Similarly,d(x¥"1)*x = x" éh(xx¥"~1)k~1x, and the same argument applies
mutatis mutandi

Appendix
Hochschild and Harrison cohomology of complete interseatins

| will explain here a way to calculate Hochschild and Hamissohomology
groups for algebras of functions on singular planar curtestased on Koszul reso-
lutions. This calculation is standard and definitely knowspecialists.

Al. Reminder on complete intersections and Koszul resolutin

Results of this section can be found e.g. in the classict#boek [18].
Suppose that we are given a system of polynomial equati@ys @ser the field
of complex numberg&, one can replace it by an arbitrary field):

fi(z,...,z0) =0,..., fm(za,...,27) =0

Denote byA the quotient algebr®/(f1,..., fn) whereP denotes the ring of
polynomialsClz,...,z).

We say that we have a complete intersection if the dimendidheoset of solu-
tions of the system above is— m. A sufficient condition for this is thafy,..., f
form a regular sequence i i.e. for anyk < n elementfy is not a divisor of zero in
the quotient oP by the ideal generated Wiy, ..., fx_1.

Theorem 1 Assume (in the previous notations) the condition of the det@pnter-
section. Let us considet<g—graded supercommutative superalgebra

.....

where subalgebra P is in degr€and generatorsxj are in degree-1, endowed with
differential
7}
d; == ; f; a—or,-'

Then cohomology of this differential is zero in negativereleg and isomorphic to
P/(f1,..., fm) in degree0.
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In the above theorem one can repld&e- C[z,...,z,| by the algebra of func-
tions on arbitrary smooth—dimensonal affine algebraic variety. Comp(ef)gdA)
is called the Koszul resolution @& Slightly abusing notations we will Writd =
Cla,...,zy;01,...,0m] meaning thaia;) are fermionic (odd) variables. Here and
later variables denoted by Latin (resp. Greek) letters ega éresp. odd).

A2. Generalities on Hochschild and Harrison cohomologicatomplexes for dif-
ferential graded algebras

In what follows all complexes will b&—graded with the differential of degree
+1. A morphism of complexes is called a quasi-isomorphisnit ifiduces an iso-
morphism of cohomology groups. A vector space can be comzidas a complex
concentrated in degree 0 and endowed with zero differential

Definitions of homological and cohomological Hochschildngexes extend im-
mediately to the case of differential graded algebras (dgaort), the same for Har-
rison (co-)homological complexes in the graded commuwtatise. The underlying
Z—graded space for the cohomological Hochschild complexafdgaF with co-
effcients in a dg bimodulé/ is defined as the infinite product (in the category of
Z—graded spaces)

C*(F,M):= |'LH0m(F[1]®”,M)
n>
whereHomis inner Hom—space in tensor categoryZefgraded spaces,

(HomU,V))*:= |1 Hom(U™, V™)

andF[1] denotes the complex obtained frdfnby the shift of the gradingF[1]* :=
Fk+1, The formula for the differential i€*(F,M) is the sum of a super-version of
the formula for the differential in the an ordinary algebiadegree 0), and a term
arising from the differential irF itself (see e.g. section 5.3 fromn_|17] for a similar
case of the homological Hochschild complex).

Lemmal If ¢: F—F is a quasi-isomorphism between two dgNa’si, then the corre-
sponding cohomological Hochschild complexesFCF) and C(F,F) are quasi-
isomorphic.

Proof: An algebraF can be considered as a differential graded bimodule Bwéa
the homomorphisng : F—F. Let us consider three complexes and natural homo-
morphisms between them:

C*(F,F)—C*(F,F)—C*(F,F)
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All three complexes carry complete decreasing filtrationth whe associated quo-
tients (and maps between them)

Hom(F[1]°,F)—Hom(F[1]*,F)—Hom(F [1]*,F)

We see that associated quotients are quasi-isomorphicapplging spectral se-
quences we conclude that(F,F) andC*(F,F) are quasi-isomorphicQ.E.D.

For a graded supercommutatifeone can define the Hodge decomposition for
Hochschild cochains, and Harrison cohomology in the sameasan the usual non-
graded case. In the above lemma the quasi-isomorphism &etiwechschild co-
homology of the resolution and of algebra itself is manifesbmpatible with the
Hodge decomposition.

A3. Calculation of Hochschild and Harrison cohomology for @mplete intersec-
tions

The cohomological Hochschild—Kostant—Rosenberg thesaga that the Hochschild
cohomology of the algebr#&y of functions on an algebraic affine manifoXl is
the aIgebraT)E’OIy of polyvector fields onX. Moreover, there is a canonical quasi-
isomorphismT,”°Y—.C* (0, %) mapping polyvector field vo A ... A v, wheref €
Ox, (Vi)i=1n are derivations oy, to the polylinear operator

a®...0a— Y signo) Ve (@)
) i

gc

The super-version of this theorem is also true, e.g. forsoaeifoldY = C"™,
we havedy = Clz,...,z,;01,...,0y| and its Hochschild cohomology is the algebra
TYPOIy: C[Zla'"7Zn;r’1a'"7r’n;al7"'7am;b17"'7bm]a
degz) =0degni) =+1, degaj) = -1, degb;) =+2

Here the new variables;, b; have the meaning of derivatiods' dz, d /daj. Strictly
speaking, here we should consider not polynomials but fopoaver series with
respect to variableg;,bj, but it gives the same result in the categoryZefraded
spaces because there are only finitely many monomiajs by in any given degree.

The dgaA is obtained from@y by “switching on” the differentiad;. Here we
describe the corresponding HKR description of the Hochdatbhomology ofA,
and therefore oH*(A,A) by lemma 1.

Proposition 1 Complex C(A,A) is quasi-isomorphic to T= T,*" endowed with

the differential
0

fJ
Za b‘an. zf’aa,

The Hodge grading is given by counting variablgsb;.
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Proof: The formula fordy is just the formula for the Lie derivative of a polyvector
field onY = C"™ with respect to the odd vector fiettk = ¥ ; f; a%,-- It is easy to see

that the formulas from above give a homomorphism of compglexe
X: (T,dr) —C*(AA)

We have to prove that it is a quasi-isomorphism. Let us inteed -o—gradingdeg,
on Oy by the total number of variables; (incidentally, it coincides with minus the
standardZ—grading o). A Hochschild cochairgy,"— &y is called homogeneous
of deg, degreeN € Z if it is homogenous with respect to gradidigg, of degree
N. The whole Hochschild comple®(&y, 0y) is the product over alN € Z of
subcomplexes consisting of dedegreeN cochains. The Hochschild differential of
algebrady preserves the dgggrading. The correction to the differential coming
from d; decreases this grading by 1. Finally, it is obvious that fooa-zero cochain
its deg, is bounded from below (by-m). Therefore we have a convergent spectral
sequence proving that is a quasi-isomorphism. The statement about the Hodge
grading is obvious. Q.E.D.

Now we introduce a smaller complex

ofy, 0
T:=AN,...,Nn;b1,...,by), ds == Zp 2
n m T %de ’ani

where the variables have the same grading as bedeggr);) = +1, degb;) = +2.

Theorem 2 Under the previous assumptions the Hochschild cohomolbgyi®iso-
morphic to the cohomology of compl@x, d;). The Hodge grading is given by count-
ing variablesn);, b;.

Proof: The obvious magTg, dr)—(T,ds) induces a quasi-isomorphism on graded
guotients for the filtration by the total number of variabitgs Q.E.D.
The conclusion for the only non-trivial Harrison cohomataye in degrees 1 and
2 and are given by kernel and cokernel of the map
An (dfj_/aﬁ) Am
In particular, there is no obstruction for commutative defations asdarr3(A) = 0.
It is easy to see that a miniversal commutative deformatioA & given by any

deformationfy(zt), ..., fm(z t) of polynomialsfi(z), ..., fm(z) depending on formal
parametersy, ...ty whereN = rk Harr?(A), such that vectors

afy 0 fm )
V= —=— ,...,— ,k=1,....,N
“ <t9tk t=0 Ot t—o
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form a basis irHarr?(A) = A"/ (g—;_j) A", The deformed algebra is

C[[tl,.. . ,tNH[Z]_,.. . ,Zn]/l

wherel is the completion with respect to the topology ©fits, . . .,tn]] associated
with the maximal ideal, of the ideal generated fayz t), ..., fu(z t).

In particular, if we have only one equatidiiz) = f1(z) = 0 thenHarr?(A) is the
quotientC|zy,...,z,|/(f,0f/0z,...,01/0z,).

In the casen = 2 andm = 1, Hochschild cohomology groups consists of an un-
stable part in lower degrees and 2—periodically repeateckbl

(02 1.0z, f1) (Ozy F1,—0zy 1)
— —

A ADA A

Finally, forn=m= 1, A= C[Z/(Z) we have
HOAA) =A~CK H'(AA) ~CKtforl =1,2,...

A4. Calculation of Hochschild a homology with coefficients \th the diagonal
bimodule, for complete intersections

Similarly, one can calculate Hochschild homoldgy(A, A) for complete inter-
sections. Here is the final result:

Theorem 3 In previous notations and under the assumption of compiégesection
the Hochschild homology KiA, A) of A is isomorphic to the cohomology of complex
Q:=A[&y,...,&n;a1,...,am| Where degrees of variables are &g = —1, dega;) =

—2 endowed with the differentialgd= 3 ; ‘;—;"Ei 5%. The Hodge grading is given by
counting variables;, a;.

The proof is parallel to one for the cohomological complexn éxample of this
calculation for the case of truncated polynomial ring carfidumd in [17], exercise
E.4.1.8 and Proposition 5.4.15.
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