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Preface

These are the notes of lectures delivered by the two of us to the Spring
School on Noncommutative Geometry, held at Vanderbilt University in
May, 2004. The notes were mostly written on the fly during the school.
Since then some parts have been rearranged and otherwise changed, but
there is quite a bit of work to be done before the notes reach their final
form. Please keep this in mind while reading them!

We hope to have a close-to-final version of the notes prepared by the
end of 2004.






CHAPTER 1

The Signature and Hodge Theory

In this introductory chapter we shall discuss an important differential
operator to which the index theorem may be applied. At the same time we
shall review some ideas in topology which we shall require when we discuss
characteristic classes in Chapter 4.

1. Differential Operators

Let M be a smooth manifold and I8tbe a smooth vector bundle over
M. A linear operatoD: C*(M,S) — C*>(M,S) acting on the space of
smooth sections df is alinear partial differential operatoiif:

(a) for every smooth sectiom and open setl C M, the restriction oDu
to U depends only on the restriction afto U;

(b) in any coordinate neighbourhood et and local trivialization of5, the
operatorD has the form

Dut) = ¥ aulx) S Y0

ld<k

for somek > 0. Herex = («y, ..., &, ) is @ multi-index composed of
non-negative integerd,*/0x« is short hand fod* /0x, - - - 0% /0X . »
and|a| = o7 + --- a,. The quantitiesa, are smooth, matrix-valued
functions.

We shall be mainly interested order onelinear partial differential opera-

tors, which are those which have local representations, as abovk with

This is in part because the analysis of order one operators is somewhat sim-
pler than the analysis of higher order operators, and in part because most of
the fundamental examples to which the index theorem applies are order one
operators.

If S is the trivial (real) vector bundle of rank one ovkt, then an
order one partial differential operator is little more than a vector field on
M and as such it will not be very interesting from our point of view. This
indicates the importance of introducing operators acting on the sections
of non-trivial bundles. As we shall see, $fis non-trivial, then several
very interesting possibilities exist for the construction of order one partial
differential operators.
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1.1. EXERCISE. If D is an order one, linear partial differential operator
on M, acting on the smooth sections of some burfjlandf is a smooth
function onM, acting on sections d§ by pointwise multiplication, then
the commutatofD, f]: C*(M,S) — C*(M,S) is the linear map induced
from some endomorphism of the bundle

1.2. REMARK. The property of order one operators indicated in the ex-
ercise is very important and will be used repeatedly. In fact it may be shown
that if a linear ma@: C*(M,S) — C*(M, S) has the property that for
everyf the commutatolD, f] is induced from a bundle endomorphism, then
D is an order one linear partial differential operator.

2. De Rham Cohomology

Let M be a smooth manifold. The local differentiable structure and the
global topology ofM are tied together in many ways, but one of the most
fundamental is the existence of a model for twomologyof M based
on the existence and uniqueness of solutions to certain partial differential
equations. This ide Rham cohomology

1.3. DEFINITION. Thede Rham complexf M is the complex
O°M) - '(M) 4~ 02 (M) — - --

of smooth differential forms oM, with coboundary operator given by the
exterior derivatived. The de Rham cohomology*(M;R) of M is the
cohomology of the de Rham complex.

Remember thatd?(M) is the space of smooth sections of thth
exterior power of the cotangent bundle. So for examPREM) is the
space of smooth functions awl, while Q'(M) is the space of sections
of the cotangent bundle. The operatorQ°(M) — Q'(M) is given by
the canonical formula

df(X) = X(f),
wheref is a smooth function anX is a tangent vector (acting on functions
as a directional derivative). It is a basic principle that there are differential
operatorsd: QP(M) — QP*1(M) which are uniquely determined by the
requirementsl’o = 0 for all «, and

d(OC] AN 062) = dOC1 VAN o + (—1 )deqm )(X] VAN dOCz,
for all o7 andoc,.
Differential forms pull back under smooth maps, and therefore de Rham
cohomology is a contravariant functor. A fundamental theorem identifies

de Rham cohomology with any other model for the cohomology for real
coefficients (such as Cech or singular cohomology).

DRAFT 4 August 17, 2004
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1.4. REMARK ON NOTATION. WhenM is not compact it is convenient
to consider variants of de Rham cohomology described by various support
conditions. The most usual of these is to require all the differential forms to
be compactly supported, from which we obtawmhomology with compact
supports Because this is the variant which will be of most use to us, we
shall from now on use the notatidi* (M, R), or more brieflyH*(M), to
refer to de Rham cohomology with compact supports.

The simplest place to find de Rham cohomology classes is in the top
dimension. Assume thal is compact and oriented, and tet= dim(M).
If o is any n-form on M then we can form the integraf,,« € R.
According to Stokes’ Theorem, & = df3 then

JMOL:JMdB:O,

and therefore[,, o« depends only on the class afin H"(M) (note that
do = 0 since there are no non-zefa + 1)-forms on ann-manifold). In
particular if [, « # 0 then the cohomology class afis non-zero.

Now letp € M and letx', ..., x™ be oriented local coordinates negr
with x'(p) = --- = x™(p) = 0. Letp: R™ — R be a smooth, nonnegative
function with small compact support near 0 and witlp = 1. Then the
“bump n-form”

oo=d(x', ..., xVdx' A Adx™

is well-defined onM (vanishing outside a neighborhood pj and has
J"M o« = 1, so it defines a non-zero classhil'(M). In fact it can be shown
that if M is connected thehi™(M) is one-dimensional, generated by the
cohomology class of any bump-form. This follows from the Poincar
duality theorem which we will discuss at the end of this chapter.

In this construction we started with a poimtwhich is a O-dimensional
object, and finished with an-dimensional cohomology class. We can gen-
eralize the construction by starting with a higher-dimensional submanifold
instead of a point. To this end we make the following definition.

1.5. DEFINITION. Let N be a compact manifold and I&t be an ori-
ented real vector bundle ové&¥, of fiber dimensiork. A Thom formis a
compactly supportett-form on the total space df, which is closed and
which restricts on each fiber tokaform of integrall.

1.6. RROPOSITION Let N be a compact manifold and l&t be an
oriented real vector bundle ové. There exists a Thom form an O

Now suppose thavl is a compact oriented-manifold, as before, and
that N is a compact orientedn — k)-dimensional submanifold. By a
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standard theorem of differential topology, there is a neighborhodd iof
M (atubular neighborhoogwhich is diffeomorphic to the total space of
a k-dimensional oriented vector bundle owér namely the normal bundle
(TM)|n/TN. Pick a Thom form for this vector bundle, transfer it to the
tubular neighborhood by the diffeomorphism, and extend it by zero to a
form on the whole oM. The resultis a smooth differential form & since
the Thom form was compactly supported within the tubular neighborhood.
We obtain a closed-form defining a cohomology classy € HY(M).
Whenk = n this is our earlier construction. It can be shown that the
cohomology class obtained does not depend on the choices made in the
construction.

The “dual forms”«y are related to the geometry of submanifolds by
the following proposition.

1.7. RROPOSITION Let N; and N, be oriented submanifolds a¥l
having dimensions. — k and k respectively, and suppose that they meet
transversely in a finite set of points. The integral

J N, A XN,
is the signed count of the number of points of intersectid¥,adndN,. [

Notice that the integral isohomologicalin nature; it depends only
on the de Rham cohomology classesogf, and «y,, and moreover the
wedge product of forms corresponds to the cohomological operaticunpof
product

3. The Signature

Let us assume now that diml) is a multiple of 4. IfM is a compact,
orienteddk-manifold, then the formula

Q([od,[m)zjam

defines a symmetric bilinear form on the middle-dimensional cohomology
groupH?*(M; R).

1.8. DEFINITION. Because of the geometric interpretation given in
Proposition 1.7, the symmetric bilinear for@ is called theintersection
form for the manifoldM.

Elementary linear algebra tells us that there is a Hasi§ for the vector
spaceH?*(M) such thatQ([«i], [a;]) = 0 wheni # j. Moreover the
difference

#{j: Q(ley], [o5]) > 0} —#{j : Q(lay], [5]) < 0}
DRAFT 6 August 17, 2004
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is an invariant ofQ, and hence oM. It is therefore natural to make the
following definition.

1.9. DEFINITION. Thesignature Sign(M) of a 4k-dimensional com-
pact oriented manifold is the signature of its intersection form.

1.10. REmMARK. It follows from the Poincar duality theorem that the
intersection formQ is non-degenerate, that is[if] # 0 then there existg
such thaQ([«d, [B]) # 0. This quite deep result implies that the “diagonal
values” Q([wl, [o]) are all non-zero. So they are all either positive or
negative, and they all contribute to Sigvt).

1.11. EXERCISE. Show that the signature for the complex projective
plane,CP? is + 1 (the sign depends on the choice of orientatior{(#).

During and after the 1950’s it became clear that the signature invariant
(and its extensions and generalizations) includes much of the most impor-
tant topological information about the manifoM. In 1956 Hirzebruch
proved hissignature theorenwhich identified the signature with certain
differential invariants of\, so-calledcharacteristic numbersThis result
was a precursor to the index theorem which is the subject of these notes.

The construction of characteristic numbers depends on an important
classification principle for vector bundles.

1.12. DEFINITION. TheGrassmanniarG,(CN) of the vector spacé™
is the space ok-dimensional subspaces ©f¥. Thecanonical bundlever
the GrassmanniaG(CN) is the k-dimensional vector bundl& whose
fiber over a pointp of the Grassmannian is tHedimensional subspace
represented by that point. Theal Grassmannia,(R"™) and its canonical
bundle are defined similarly.

In the following theoremFF will denoteR or C.

1.13. THEOREM. LetV be anFF-vector bundle over a compact manifold
M. Then for sufficiently larg@:

(i) V isisomorphic to a sub-bundle of the trivial bundié x F™.

(i) There is aclassifying mappv: M — G (FN), the Grassmannian
of k-planes, such thaV is isomorphic to the pull-backs, U of the
universal bundl& over Gy (FN).

(iif) The set of isomorphism classes of complex, rankector bundles
on M is isomorphic to the set of homotopy classes of maps bm
into G«(FN), in such a way that to a magp: M — Gy (FN) there
corresponds the pullback*E. O

Suppose now that is a class in the cohomology of the Grassmanian
Gy(FN): thusc € H*(Gy(FVN)). If Vis a vector bundle oM, and

DRAFT 7 August 17, 2004
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if pv: M — Gi(FN) is its classifying map, then the cohomology class
¢y (c) € H*(M) depends only on the isomorphism class of the vector
bundleV. Such a class, which measures the “twistednes¥’,a$ called a
characteristic clasgor V and is usually denoted V). These classes will
be studied in some detail in Chapter 4.

1.14. DEFINITION. LetM be a compact-dimensional, oriented man-
ifold. Thecharacteristic numbersef M are the numbers

c(M) = JMC(TM)

obtained by integrating the-dimensional characteristic classgdM) €
H™(M) of M.

Thom showed that any invariant of oriented manifdifsl) € R which
satisfiesf(M; U M,) = f(M;) + f(M,), and which vanishes whenever
M is the boundary of an oriented manifold, is necessarily a characteristic
number. The signature &fl has precisely these properties, and Hirzebruch
was able to determine the characteristic clagsgdor real vector bundles
needed to represent the signature:

1.15. THEOREM. LetM be a compact orientedk-manifold. Then

Sign(M) = JM Ly (TM).

d

In later chapters we will explain in detail the construction of these and
other characteristic classes. For now, notice the very different nature of
the terms appearing on the two sides of the signature theorem. The left
hand side is obviously an integer, the right hand side is not; the left hand
side is an invariant of homotopy type, the right hand sadpriori only
of diffeomorphism (since it involves the tangent bundle); the left hand
side involves the global topology d¥1, whereas the right side involves
an invariant which (it turns out) depends only on the local geometiyvbf
Much of the power of Hirzebruch’s theorem comes from these contrasts.

4. Hodge Theory and the de Rham Operator

Let M be a smooth, closed, oriented manifold. A Riemannian metric
on M is of course an inner product on the tangent burdie It gives rise
to inner products on all the vector bundles associated to TM — in particular
on the bundleg\? (T*M) whose sections are differential forms. The metric
also provides a canonical choice of volume formMn Using these two
notions we can define theoperatorx: QP(M) — Q™ ?(M) as follows.

DRAFT 8 August 17, 2004
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1.16. DEFINITION. Let & be ap-form. Define x « to be the unique
(n — p)-form such that for alp-forms 3

(o, B) Vol = B A *ax,

where («, 3) is the pointwise inner product ak and  (and is thus a
function onM).

1.17. EXAMPLE. On R3, where Vol = dxdydz, * dx = dydz,
* dy = —dxdz, * dxdy = dz, x dxdz = —dy, and so on.

The Hodgex-operator is “almost” an involution:
1.18. LEMMA. If xis ap-form, thenx xx = (—1)P"Px.
PROOF Exercise. O

1.19. DEFINITION. If «is ap-form, define

(_1 )np+n+1

dox = *d* .

Thusdx is a (p — 1)-form. Clearly, 8> = 0, sinced? = 0. The
importance ofd lies in the fact that it is théormal adjoint d* of d.
Specifically, letox and 3 be forms of the same degree. Define their global
inner product by

(o, B) :J (x, p) Vol :JMB/\*OC:J o A\ *PB.

M M

Then:

1.20. RROPOSITION If «, 3 are smooth forms of degrepsandp — 1
onM, then
(o, dB) = (8cx, B).

PROOF This is proved using integration by parts. By Stokes’ theorem,
if ais ap-form andp is a(p — 1)-form, then

ond(ﬁ/\*oc):Jdﬁ/\*aJr(—np1Jf5/\d*o¢
= (dB, o) + (=1)"PT(B,xd* &)

(Note that the differential forny = d x « is an(n — p + 1)-form, so that
*xy = (=1)w++p+ly by Lemma 1.18. We have used this formula to
convert the second integral into an inner product.) It now follows from our
definition of d* that

(dB, o) = (B, dax),

as required. O
DRAFT 9 August 17, 2004
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1.21. REMARK. The adjoint operatord* exists on any Riemannian
manifold. But it is only for oriented manifolds that we obtain the formula
relatingd* to d and the Hodge operator.

Let us now state a key theorem in analysis related to the de Rham
complex:

1.22. THEOREM (Hodge). Let M be a compact Riemannian manifold.
For eachp there are orthogonal direct sum decompositions

QP(M) = Kerneld) ® Imagg d*)
and
QP(M) = Kernel(d*) & Imagdd).

We shall prove this in the next chapter. Note that the summands are
certainly orthogonal to one another. For example i€ Kerneld) and if
[ = d*y € Imagdd*), then

(o, B) = (&, d"y) = (do,y) = 0.

The issue is whether or not the summands add up to &i"gM ). This is
a problem in PDE theory: for example, given a differential fopnwith
f L Kerneld) we need to prove that there is a solution to the partial
differential equatiord*y = 3.

We are going to use the Hodge theorem to exhibit the signatuvé a$
the Fredholm index of a differential operator dh Denote byQ*(M) the
direct sum of all the spac&3?(M). Define a differential operator

D: Q* (M) — Q*(M)
by the formulaDw = dw + d*w.
1.23. LEMMA. Kerne[D) = Kerneld) N Kernel d*).

PROOF. Sinced? = 0 andd*? = 0, it follows thatD? = d*d + dd*.
As a result we obtain the identity

ID«|* = (D%, o) = {(d*d + dd*)ex, o) = ||dex||* + ||d*ex||.
This proves the lemma. O

1.24. DEFINITION. A differential form o« on a compact Riemannian
manifold isharmonicif de = 0 andd* o = 0.

1.25. LEMMA. LetM be a compact Riemannian manifold. Each coho-
mology class foM contains exactly one harmonic form. As a result, there
is a natural isomorphisnKerne(D) = @,HP(M).

DRAFT 10 August 17, 2004
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PROOF Suppose thaloc = 0. From the direct sum decomposition in
the Hodge theorem,

QP(M) = Kerneld*) & Imagd d),
we can writex = o1 + df3, whered* oy = 0. Sincex; = «x — df3, we see
that oy represents the same cohomology classcaand is harmonic. To
prove uniqueness, note thataf and «, are harmonic, and if; — «; is
zero in cohomology, them; — «, € Imaged). But in additiona; — «; €

Kernel d*), and since Kernéti*) and Imagéd) are orthognal, this is only
possible ifoc; — x; = 0. ]

1.26. LEMMA. The Hodge theorem is equivalent to the formula
Q*(M) = KernelD) & ImagdD).

PROOF If « € QP(M), then we may use the above direct sum decom-
position to writex as a sum

o =01+ da+ d*«g,

wherex; € KernelD). We can assume that; € QP(M), x, € QP~'(M)
and sz € QPT'(M). The reason is that Kerr@) = Kerneld) N
Kerneld*), so that ifoe; € Q*(M) is a general element in Kerrié&l),
then its various homogeneous components also belong to KBrnellow
sinced? = 0, Imagdd) C Kerneld), so we immediately obtain the
decompositions of the Hodge theorem. For example:

x=o01+da, + dos .
—— ~—~—
Kernel(d) Imageg d*)

The converse is proved in a similar way, and is left as an exercise for the
reader. O

The operatorD maps Q®*(M) = @,Q%*(M) into QM) =
®p Q%P T1(M). It follows immediately from Lemma 1.26 and the Hodge
theorem, together with Lemma 1.25 that

IndexD: Q®*(M) — Q% (M) = x(M),
wherex (M) is theEuler characteristicof M.

x(M) =) (=1)PdimHP(M).
P
We have therefore obtained a representation of an interesting topological
invariant of M as the index of a differential operator. To do the same
for the signature ofMl we need to divideQ*(M) into two pieces in a
more sophisticated way than separating the even and odd-degree differential
forms.

DRAFT 11 August 17, 2004
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1.27. DEFINITION. Assume that difM) = n = 2k. Define an
operatore: Q*(M) — Q*(M) by the formula

ex = PP o
wherex € QP(M).

The operatore is a grading operator in the sense of the following
definition.

1.28. DEFINITION. A graded inner product spads an inner product
space equipped withgrading operator— a self-adjoint operatosr whose
square is equal to 1. An operator on a graded inner product spacerig
it commutes with the grading operatoandoddif it anticommutes.

A grading is an orthogonal decomposition of the inner product space
into the + 1 eigenspaces of the grading operatpand an operator is even
if it preserves these subspaces, whereas it is odd if it exchanges them.
Now let D be an odd, self-adjoint operator on a graded inner product
spaceH = H, & H_. Assume thaH = Kerne[D) ¢ Imagg D) and that
Kernel D) is finite-dimensional.

1.29. DEFINITION. In the above situation thiedexof D is the Fred-
holm index of the component & which mapsH, to H;. In other words,
it is the difference

Index D, ¢) = dim(Kernel(D) " H, ) — dim(Kerne(D) " H_).

Now let us return to the consideration of the signature operator.

1.30. RRoOPOSITION If M is a closed, oriented Riemannian manifold
of dimensiortk then the signature d¥1 is equal to the index dd = d+ d*
relative to the grading defined above.

PROOF The kernel ofD, that is the space of harmonic forms, decom-
poses into a sum of subspacde&s of harmonicp-forms. If we arrange this
sum as

(g_(:O ® g_c4k) ® (J’C] ® g_(:4kf]) DB (J_{:Zkf1 D j_(ZkJH) D J—(:Zk,

the 2k + 1 summands shown here atanvariant and so make indepen-
dent contributions to the index. Think first about the middle dimengikn,
Here the Hodge theorem identifig&’* with the middle-dimensional coho-
mology. Moreover, the intersection for@(x, ) = [ A B = (&, *B),

when considered ofi(?*, is positive on the positive eigenspacesof= x

and negative on the negative eigenspace. Thus, the contribution to the in-
dex fromJ(?* is precisely the signature.

DRAFT 12 August 17, 2004
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To see that the other summands above make a zero contribution, we
just need to observe that to each harmonic paijre(x)) € H' @ FH*
which is in the positive eigenspace gfthere corresponds a harmonic pair
(x, —e()) in the negative eigenspace. O

We conclude this chapter with some exercises on Paindaality. As
another application of the Hodge theorem, let us prove the P@mtelity
theorem, to which we referred once or twice earlier on.

1.31. EXERCISE Let M be a compact, oriented-dimensional mani-
fold. Show that for every the bilinear pairing

HP(M) x H™P(M) — R

lod, [B] HJ XA B

M
is non-degenerate. (Use Lemma 1.25 to reduce to the case wheler-
monic, then takgp = x«.) Show that the pairing induces an isomorphism

HP(M) HEHom(H“*p(M),R).

1.32. EXERCISE. Check that the results which we earlier said ‘follow
from Poincae duality’ reallydo follow from this theorem. (This is easy!)

5. Notes

Aside from introducing the signature operator, this chapter should indi-
cate to the reader that we are assuming a certain degree of familiarity with
basic topics in topology, mostly organized around de Rham cohomology
theory. The first two chapters of the book by Bott and Tu [] should pro-
vide adequate backgound; later on we shall cover several of the topics from
Chapter 4 of that book.
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CHAPTER 2

Elliptic Operators and Fredholm Theory

In this chapter we shall lay the foundations for index theory by develop-
ing the theory of elliptic linear partial differential operators on manifolds.
We shall also prove the Hodge theorem (Theorem 1.22) that we discussed
in the last chapter.

1. Spectral Theory

We are going to approach index theory through the spectral theory of
self-adjoint linear operators on Hilbert space.

2.1. DEFINITION. A (densely defined)ynbounded operatawn a Hilbert
spaceH is a linear operatof from a dense linear subspacettfcalled the
domainof T and denoted dor, into H. An unbounded operator is
symmetridf

(Tu,v) = (u, Tv)
for all u,v € domT. An unbounded, symmetric operatbris essentially
self-adjointif the operatord + il map doml onto dense subspacestéf
An unbounded, symmetric operatbiis self-adjointif the operatord + il
map doml onto the whole oH.

2.2. EXERCISE If dimH < oo then every symmetric operator dh
is automatically self-adjoint. Thus the distinctions between symmetric, es-
sentially self-adjoint, and self-adjoint operators arise only in infinite dimen-
sions.

If Tis symmetric then the operatofs+ il are automatically bounded
below. This is because
(T +iDu||? = (T £ i, (T £il)u)
= ((TF1I) Tj:II)u u)
= ((T* + Du,u)
= [Tl + [l
As a result, the operato§ + il)~" are well-defined and bounded linear

operators from the ranges ®f+ il into H (or indeed into dont). If T
is self-adjoint, then since the operatdi6 + i) map doml bijectively

15
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ontoH, we may form the inverse operatdiE + il)~', which are bounded

linear operators fronH to itself. Similarly, if T is essentially self-adjoint

then the operator§l 4+ il) map doml bijectively onto dense subspaces

of H, and since the inverse operatdiB & il)~" (which are defined on

these dense subspaces) are bounded linear operators, they may be extended
by continuity so as to obtain bounded operators freinto itself. The
spectral theorenasserts that we can then form more general functions of
the operatofl:

2.3. THEOREM. Let T be an essentially self-adjoint operator on a
Hilbert spaceH. There is a unigue homomorphism ©f-algebras from
the algebra of continuous, bounded functions ®nnto the algebra of
bounded operators oH which maps the functiorigs+1i)~' to the operators
(T4, O

The spectral theorem is proved by observing that the opertard )
generate a commutativé -algebra of operators. According to the Gelfand-
Naimark theorem, every commutati¢&-algebra is isomorphic t€y(X),
for some locally compact spage In this case the spa¢éemay be identified
with a closed subset aR (the spectrum ofl) in such a way that the
operators(T + il)~' correspond to the functionsc + i)~'. The reader
is referred to [] or [] for further details.

2.4. DEFINITION. If f is a continuous, bounded function &and T
is an essentially self-adjoint operator, then we shall denot Dythe the
operator associated the the paandT by the spectral theorem.

Suppose now thdD is a differential operator acting on the sections of a
smooth, complex vector bundfeover a smooth manifol/1. Suppose also
thatS is provided with a hermitian structure and thdt is provided with
a smooth measure. In this case we can form the Hilbert sp&ad, S)
of square-integrable sections 6f by completing the space of smooth,
compactly supported sections in the norm induced from the inner product

(wv) = | fulm),vim)) dm.
M

We can then regarD as an unbounded Hilbert space operator with domain

the smooth, compactly supported section$.of

2.5. RRoPOSITION If D is a symmetric, order one, linear partial
differential operator on a closed manifold thénis essentially self-adjoint.

Before proving this, let us review some terminology concerning solu-
tions of linear partial differential equations. ¥ is any symmetric linear
partial differential operator on a manifold, anchifv € L?(M,S), then
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we say thatDu = v in the strong sense if there is a sequenfie,} of
smooth, compactly supported sections such that- u in L>(M, S) and
Du, — vin L?(M,S). We say thaDu = v in theweaksense (or in the
sense oflistributionsif, for every smooth, compactly supported section
(D*w,u) = (w, V), whereD* is the formal adjoirttof D. (The idea here is
to think of (D*w, u) as a substitute fopw, Du), which is not necessarily
well-defined sincer may not belong to dor.)

2.6. EXERCISE. Every strong solution is a weak solution.

2.7. LEMMA. If D is an order one, linear partial differential operator
on a manifold, and it € 1?(M,S) is compactly supported, then every
compactly supported weak solution of the equafidn = v is a strong
solution.

PROOF Let us suppose first that andv are supported within a coor-
dinate neighborhoodl of M, over which the bundIé§ is trivialized. By
shrinking U slightly, we may identifyll with an open set ifR™ in such a
way that the restriction dD to U identifies with the restriction tbl of some
compactly supported order one operdidron R™, acting on vector-valued
functions. We will show that there are smooth, vector-valued functions
compactly supported ibl, such thatt,, - wandD'u,, — v. Letf be a
compactly supported function dR™ with total integrall, and fore > 0
let K. be the operator of convolution wittt™f(¢~'x). The following facts
may be shown abow.:

(i) Kv — vase — 0, for everyL?-functionv;
(i) The commutato{D’, K] extends to a bounded operator bf{R™),
for everye, and[D’, K Jv — 0, for everyL?-functionv.

If D’u = v in the weak sense thdn’'K,u = K.v + [D’, K.]Ju in the honest
sense (note that.u is a smooth function). We see tHatK.u — v, while
Keu — u, so we can sétl, = Ky u.

In the general case, Du = v in the weak sense, choose a partition
of unity {o;} on M subordinate to coordinate charts. THeo;u = o;v +
[D, o;lu in the weak sense (note that the commutéiidyo;] is a bounded
operator), and hence also in the strong sense. Summing,oaed using
the fact that) [D, o;] = 0, we see thaDu = v in the strong sense, as
required. O

PROOF OFPROPOSITION2.5. Ifuis orthogonal to the range of one of
D + i, thenu is a weak solution of one of the equatiofi3 + il)u = 0.

LIf D is any linear partial differential operator then the formal adjoint is the unique
linear partial differential operatob* such that(Du,v) = (u,D*v), for all smooth,
compactly supported sectionsandv. We already encountered this notion in the last
chapter, where we showed thit = + x d*.
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It follows from the previous lemma that is then a strong solution. {i,,}
is a sequence of smooth sections such that> uwand(D F il)u,, — 0,
then we can compute:

0= lim ||(DFiDuu|* > lim |Ju.|* = [Jul*
n—oo n—oo
Henceu = 0, which proves the proposition. O

2.8. EXERCISE. Assume that a linear partial differential operaldiis
essentially self-adjoint. Show thatdu € 1L?(M,S) in the weak sense,
thenDu € L?(M, S) in the strong sense. Show that the rang&®f-il) !
(which we consider, after extending by continuity, to be defined on all of
L2(M,S)) consists of alu € L?(M, S) such thatDu € L*(M,S) in the
strong sense.

We conclude with a useful piece of terminology:

2.9. DerINITION. If D is essentially self-adjoint then there is a unique
self-adjoint operatoD such that donb C domD andDu = Du, for
everyu € domD. This operator is called theelf-adjoint extensioof D.

Its domain consists of all such thaDu € 1?(M, S) in the weak or strong
sense.

2. Compact Resolvent and Fredholm Theory

2.10. DEFINITION. Let D be a self-adjoint, or essentially self-adjoint
operator on a Hilbert spad¢. We shall say thaD hascompact resolverit,
for every continuous functiohonR which vanishes at infinity, the operator
f(D), defined by means of the spectral theorem, is a compact operator.

If D has compact resolvent then the 8&tD) : f € Cy(R) } is a com-
muting algebra of normal, compact operators. It follows from the spectral
theorem for compact operators, proved in elementary Hilbert space theory,
that there is an orthornomal bagis;} for H consisting of simultaneous
eigenvectors for all the operatofD).

2.11. RrRopPosITION With D and{u;} as above, there are real scalars
A; such thatf(D)u; = f(A;)u;, for all j. The vectorsy; belong todomD
(or domD, if D is essentially self-adjoint), anBu; = Aju;, for all j.
Moreover lim;_, [Aj| = oo.

PROOF Exercise. O
This allows us to prove a Hilbert space version of the Hodge theorem:

2.12. @ROLLARY. If D is a self-adjoint operator on a Hilbert spaté
and if D has compact resolvent, then the kerneDois finite-dimensional,
the range oD is closed, andKernelD ¢ RangeD = H. O
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Let us suppose now thd@ is a self-adjoint operator oHl, thatH is
7Z./2-graded (so thaitl is decomposed as a direct stin= Hy ® H,), and
that D is odd-graded. By the latter we mean that the grading opetator
maps donD into itself, andeD + De = 0. In matrix form, we can write

0 D_
- (2 %),
The kernel ofD decomposes as a direct sum of the kernel® pfandD _,
and if D has compact resolvent then both of these summands are finite-

dimensional. As a result we can essentially repeat the definition of index
from the last chapter (although the context here is just a bit different):

2.13. DEFINITION. Theindexof the odd, self-adjoint operat® with
compact resolvent is

Index D, ¢) = dimKerne[D_ ) — dim Kernel(D_).

It follows from our “Hilbert space Hodge theorem” that this is the
same as the Fredholm index of the operdior, considered as a linear
operator from its domain intél_. We shall show in the next chapter
that the index we have defined has stability properties which are remi-
niscent of those familiar from the theory of bounded Fredholm operators.
For example, ifB is a bounded, odd-graded self-adjoint operator, then
IndexD + B, ¢) = Index D, ¢). In addition, if{D,} is a one-parameter
familty of odd-graded, self-adjoint operators with compact resolvent, and if,
for everyf the operator$(D) are norm-continuous ity then IndexD¢, ¢)
is constant int. (However the reader might enjoy trying to prove these di-
rectly now.)

3. Sobolev Spaces and Fourier Theory

Our objective is to show that various operators such as the signature
operatoD = d 4 d* which we considered in the last chapter have compact
resolvent, so that the notion of Fredholm index introduced above applies to
them. Eventually we shall also prove thé>*-Hodge theorem” which was
stated and proved in Chapter 1. One important tool which we shall need to
meet these objectives is the theory of Sobolev spaces.

2.14. DEFINITION. Letu be a smooth, compactly supported function
onR™ Lets be a non-negative integerThe Sobolevs-norm of u is the
quantity ||u|[s defined by

)l = J (1 + [ER)0(E) de,
Rﬂ.

2The definition works for all read, but the restriction to non-negative integers simpli-
fies some arguments and is enough for our purposes.
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wherefi denotes the Fourier transform
{i(&) = J e & (x) dx.

If U is an open subset &™ then theSobolev spacE*(U) is the completion
in the Sobolews-norm of the space of smooth functions Bft which are
compactly supported ibl.

The Plancherel formula from Fourier theory asserts that

1
| meoran= | ke

Thus, up to a multiplicative constant (which will be irrelevant to us), the
Sobolev0-norm is the same thing as the ordindr¢norm. Observe that if

s1 > sy then|ulls, > ||ulls,. It follows thatH®' (L) may be regarded as a
(dense) subspace b2 (). In particular all of the Sobolev spackls()

can be regarded as subspaces of the Hilbert spAté).

If u is any smooth, compactly supported function ®&fA, then the
Fourier transform of the functio@*u is the function(i&)*{i(¢). As a
result of this, there is a close relation between the Sobolev spétés)
and spaces of differentiable functions:

2.15. LEMMA. If s > 0 then the Soboley-norm is equivalent to the

norm
Z Ha“u”%z(R“)'

x<s

ProoE It follows from Plancherel’s theorem that

> 1wl ) = WZ | emraerac,
x<s

The lemma follows from the fact that the functiols, ., £2* and(1+[&/?)s
are bounded multiples of one another. B O

Thus roughly speaking the Sobolev sp&tdll) consists of functions
supported irll all of whose derivatives of ordaror less belong ta.?(LL).

In order to globalize the Sobolev norms to manifolds we shall need the
following result:

2.16. LEMMA. If o is a smooth function on an open sdt C R™
whose derivatives of all orders are bounded function&lothen pointwise
multiplication by o extends to a bounded linear operator &tf(ll), for
everys. In addition, if¢: U" — U in a diffeomorphism from one open set
in R™ to another whose derivatives of all orders are bounded functions, then
the operation of composition with extends to a bounded linear operator
fromHs(U’) to HS(U).
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PROOF Both of these facts follow easily from the alternate characteri-
zation of thes-norms given in the last lemma. O

Suppose now thatl is a closed manifold. Choose a finite coordinate
cover{l;} for M and a partition of unity{c;} subordinate to this cover.
Using this structure any function oml can be broken up into a list of
compactly supported functions d@*; we construct é&sobolevs-norm of
the function onu M by combining thes-norms of the constituent pieces
o;u, which we regard as compactly supported function®3nThus:

Iullf =D lloyul.
j

The norm depends on the choices we have made, but it is not hard to check,
using the lemma above, that different sets of choices give equivalent norms.
Thus the following makes sense.

2.17. DEFINITION. Let M be a closed manifold. Th8obolev space
H*(M) is the completion of£> (M) in the above Soboles-norm.

The following result is known as thieellich Lemma

2.18. RRoPOSITION If M is a closed manifold, then the inclusion of
H'(M) into L?(M) is a compact operator.

PROOF. In view of the way the spacél'(M) is constructed using
partitions of unity, it suffices to show that & is a smooth, compactly
supported function o™ then the composition

H'(R") —= LA(R™) —= L*(R™)

where the first map is inclusion and the second is pointwise multiplication
by o, is compact. There is a commutative diagram

H'(R") — L}(R™) —— L3(R")

N

L?(R") — L3(R™) — L?(R™)
in which the leftmost vertical map is Fourier transform, followed by point-
wise multiplication by(1 + £2)2; the remaining two vertical maps are
Fourier transforms; and the left bottom map is pointwise multiplication with
(1+ Ez)*%, and the right bottom map is convolution with the Fourier trans-
form of 0. Since the vertical maps are unitary isomorphisms it suffices to
prove that the bottom composition is compact. It is left to the reader to
check that the composition of pointwise multiplication by dtyfunction
with convolution against anl'-function is compact. U
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2.19. EXERCISE Prove the claim at the end of the proof of the Rel-
lich lemma by approximating the two functions with continuous, compactly
supported functions, for which the corresponding composition is then rep-
resented by a continuous, compactly supported kernel funkfiony).

2.20. REMARK. By arefinement of this argument it may be shown that
the inclusion ofH®' (M) into H%2(M) is compact, whenever > s,.

The Rellich Lemma is very relevant to the problem of showing that
suitable operator® have compact resolvent, as the following argument
shows.

2.21. LEMMA. Let M be a smooth, closed manifold.f is an essen-
tially self-adjoint operator orl.?2(M), and if the domain of the self-adjoint
extension oD is H'(M), thenD has compact resolvent.

PROOF. Assume that the domain d is H'(M). The range of the
operators(D + il)~' is thenH'(M). Since it is easy to verify that the
graph of the operatdD + il)~': L?(M) — H'(M) is a closed subspace
of L2(M) x H'(M), it follows from the closed graph theorem that the
operators D + il)~' are bounded, viewed as operators frbAtM) into
H'(M). Since the Rellich Lemma asserts that the inclusioR M) into
L?(M) is compact, it follows that the resolvent® + il)~', viewed as
operators froni?(M) to itself, are compact. Since the functigixsE i)
generateCy(RR), it now follows from an easy approximation argument that
f(D) is a compact operator, for evefye Cy(R). O

2.22. REMARK. It follows easily from Lemma 2.15 thati) is an order
one operator on a compact manifold thBnextends to a bounded linear
operator fromH'(M) into L2(M). It follows from this that the domain of
alwaysD containsH'(M). The reverse containment is more difficult to
establish, and indeed it does not hold in general.

4. Estimates for Elliptic Operators

The purpose of this section and the next is to obtain a condition on a
order one operatdD on a closed manifold which is sufficient to imply that
the domain oD is H'(M).

We shall consider firstonstant coefficient, homogeneaitifferential
operators oR™. The underlying manifold here is of course not compact,
but it will turn out that the analysis of constant coefficient operators is the
key to understanding operators on compact manifolds.
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A constant coefficient homogenenous order one opefatmm R™ must
have the form
)
D= a;—-:.
; T X

If we are to allowD to operate orvectorvalued functions (corresponding
to our intention to consider operators on bundles in the variable-coefficient
case) then the constantsmay bematrices If D is symmetric, the matrices
a; will be skew-Hermitian.
Let us rewriteD in terms of the Fourier transform, as follows:

(Du)(&) =1)_ aga().
Hereu is a smooth, compactly supported function®h

2.23. DEFINITION. The constant coefficient operaforabove illiptic
if 5 a;& is aninvertiblematrix for all nonzerd,.

2.24. REMARK. The condition of ellipticity is invariant under linear
changes of coordinates, and so we can — and later on will — speak of
elliptic, translation-invariant, partial differential operators on vector spaces.

2.25. XaMPLE. LetD be the operator

= 2 ;. @
(0 0Y_(,°% Tafhe
o 0 == + 15— 0

aX] aXZ

onC = RZ. Then the matrix in Definition 2.23 is

0 — & +i&
&1 +1&, 0 ’

and as a resulD) is elliptic.

2.26. LEMMA. If D is a symmetric, order one, constant coefficient
operator onR™ then there is a constawnt> 0 such that

[ullo + IDuflo = 8ffully,
for everyu € C®(R"™).

PROOF At the expense of altering, is suffices to prove the related
inequality
[l + IDul§ = 8]l
Using the Plancherel formula, this is equivalent to the inequality
G + D5 = 8|[7.

Bearing in mind the formula fd/Dl\,L, this follows from the matrix inequality

1+ (X ) (Y ) =801+ ) &),
23
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which is implied by the invertibility of)_ a;&;. 0

2.27. @ROLLARY. If D is a symmetric, order one, constant coefficient
operator onR™, and if Du € L%(R"™) in either the weak or strong sense,
thenu € H'(R™).

PROOF SinceD is essentially self-adjoint, the notions of weak and
strong solution agree. IDu = v, then there is a sequende,,} of
smooth, compactly supported functions such that— u and such that
Du, — v (convergence in the norm of the Hilbert spdd¢R™)). Thanks
to Lemma 2.26, the convergence{of,} and of{Du,} in L*(R™) implies
the convergence dft,,} in H'(R™). Thusu € H'(R™), as required. [

In the remainder of this section we shall extend the crucial estimate
in Lemma 2.26, known a&arding’s inequality to operators ofR™ with
variable coefficients. In the next section we shall extend the estimate still
further to operators on manifolds.

To deal with a variable coefficient operattr we shall “freeze the
coefficients” ofD at a single point and try to approximai® by resulting
constant coefficient operator in a neighborhood of that point.

2.28. DEFINITION. Let D = ) a;0; + b be a order one, partial
differential operator on an open subdétof R™. We shall say thaD
is elliptic if, for every m € U, the constant coefficient operatbr,, =
> a;(m)o; is elliptic.

2.29. RROPOSITION Let D be an order one, linear elliptic partial
differential operator on an open skt of R™. For every compact sé&t C U
there is a constant > 0 such that

[ullo + IDuflo > 8ffufs,
for every smooth function supported irk.
PrROOF If p € K, then there is a constabf > 0 such that
o+ IDpuflo > Spllufls,
forallu e C2(R™). There is also a neighborhoad, of p in U such that

1
IDpu = Dullo < 58 [us,

for all u supported iriL,. It follows that

1
lllo + [Dpullo > 58pull,

for all u supported intl,. Choose a finite cover df by neighborhoods
u,,,..., U, for which there exist estimates of this type. Let} be a

DRAFT 24 August 17, 2004



DRAFT August 17, 2004
partition of unity subordinate tfl,, }. Write

lull < > lloyull < constant)_ [|oufo + [Dojullo
j j
< Constan'E lojullo + [|[d;Dullo + [|D, ojluo.

)

In the last display the first term is bounded by a multipl¢hof,; the second
term is bounded by a multiple gD u/||o; the third term is also bounded by
a multiple of||ul|o since[D, ;] is an operator of order zero. We obtain the
inequality

[ully < constant|[uf|o + [[Dullo)

which completes the proof. O

5. The Symbol

To extend Garding’s inequality to operators on manifolds we shall use
a coordinate-free way to describe the operatogswhich we obtained in
the last section by freezing coefficients. This leads us to the notion of
the symbolof a differential operator, which will be of central importance
throughout the rest of these notes.

2.30. DEFINITION. Let D be an order one, linear partial differential
operator on a smooth manifoM, acting on sections of a smooth, complex
vector bundles. Thesymbolof D at a pointm € M is the linear map

o: TAM — End(Sy)

given by the formula
o: df — i[D, f]

2.31. REMARKS. If fis a smooth function oM, then the commutator
D, f] is an endomorphism of the bundie and so its valu¢D, f],,, at the
pointm € M is an endomorphism of the fib&r,,, as required. The value
of this endomorphism d§,, depends only on the value df atm, and so
we obtain a map from*M into EndS,,,), as required. The appearance of
iin our formula for the symbol is purely conventional. It has the effect that
if D is a symmetric operator (with respect to some measunel@nd inner
product onS), thenop is symmetric too.

2.32. XAMPLE. If D = } a;0; + b in local coordinates then the
symbol o maps the cotangent vectérto the endomorphisnd_ a;(m)§;
at the pointm € M.
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Now, the space of linear maps froij M into EndS,,,) identifies with
the tensor product Ertf,,) ® T.,M, and an elemend_ a; ® X; of this
tensor product determines a translation-invariant, first oder linear partial
differential operatoD,,, on the vector spacé,,M, acting on sections of
the trivial bundle with fibesS,,,, by the formula

Dnu = Z a;X;(u).

Here we regard the tangent vectofsas translation-invariant vector fields
on T.,M (or in other words as directional derivatives). In summary, the
symbol o of an order one operatdd on M determines a translation-
invariant, order one partial differential operaidy, on the the tangent space
T.M.

2.33. DeEFINITION. We shall refer to the translation invariant operator
D, obtained from the symbol in this way as thedel operatorfor D at
m.

2.34. EXAMPLE. If D = ) a;0; + b in local coordinates theD,, =
> aj(m)9;. Thus the model operatdp,, is precisely the operator we
obtained in the last section by the process of freezing coefficients at the
pointm € M.

2.35. DEFINITION. Let D be an order one, linear partial differential
operator on a smooth manifod. The operatoD is elliptic if all its model
operatord,, (m € M) are elliptic.

With these definitions in hand, we can generalize the results of the
previous section to operators on manifolds.

2.36. THEOREM. LetD be an elliptic, order one, linear partial differ-
ential operator on a smooth manifoldl, acting on sections of a smooth
vector bundleS. For every compact sé&¢ C M there is a constant > 0
such that

[ullo + IDuflo > 8[fuf,

for every smooth sectiom of the bundles which is supported irK.

PROOF This is a consequence of the local result proved in Proposi-
tion 2.29, together with the partition of unity argument introduced in the
proof of Proposition 2.29. O

By repeating the argument used to prove Corollary 2.27 we reach one
of our main objectives for this chapter:

2.37. @ROLLARY. LetD be an order one, elliptic linear partial dif-
ferential operator on a closed manifoldl, acting on sections of a smooth
vector bundles. The domain of the self-adjoint extensioripis H'(M, S),
andD has compact resolvent. O
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2.38. XAMPLE. TheD = d + d* which we introduced in the last
chapter is elliptic. To see this, let us begin by computing the symbol of the
de Rham differentiadl. According to the definition, itif = n then

oamw =1ild, flw =in A w.

So the symbol ofd is given in a very simple way by wedge product of
forms. Since the symbol of the adjoidt is the adjoint of the symbal, we
find that the symbol of the operatbr = d + d* is given by the formula

opMw=Aw—1in_Jw,
where the operatao — 1 _ w is the adjoint of the map — n A w.
2.39. LEMMA. LetV be a finite-dimensional inner product space and

letS = A*V. If v € V then the operatoc: S — S given by the formula
c(x) =v Ax—v Jx has the property that* = —||v||*1.

PROOFE We can assume thatis a unit vector and the first vector in an
orthonormal basis;, ..., vy for V. The products);; A --- Av;,, where
i < --- < 1, form an orthonormal basis f& = A x V, and in this
orthonormal basis the operator— v A x acts as

VAV A Avy if i #£1

0 ifi; =1
The operator is therefore a partial isometry, and its adjoint is therefore given
by the formula

Vi]/\"'AVipl—){

V12/\"'/\Vip |fl1:]
0 ifi #1
The lemma follows immediately from these formulas. U

Vi]/\"'/\\)ipH{

As a result of this computation, the square of the symb& of d + d*
is ||&]|1. Thus, the symbol is invertible — up to a scalar multiple it is its
own inverse — for alk, # 0. This kind of algebra will be developed further
in our discussion of Dirac-type operators in Chapter 6.

6. Elliptic Regularity and the Hodge Theorem

We shall now refine the results obtained so far so as to prove the
Hodge Theorem from the last chapter. We shall also prove a result about
representing the operatofi)) in the functional calculus by kernels which
strengthens the assertion that an elliptic operator on a closed manifold has
compact resolvent.

The followingSobolev embedding lemrisaa crucial feature of Sobolev
space theory. It relates the norfhg s to the ordinary notion of differentia-
bility of functions.
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2.40. LEMMA. If s > 3 + k thenH*(R™) is included withinCk(R™),
the Banach space df-times continuously differentiable functions Brt,
whose derivatives up to ordé&rvanish at infinity.

PROOF. We need to show that thé*-norm of a smooth, compactly
supported function is bounded by a multiple of the Sobslerm, when-
evers > 5 + k. This will imply that the identity map o€°(R™) extends
to a continuous map dfis(R") into C*(R™), as required. Ifx| < k we
compute, using the Fourier inversion formula, that

o"ulx) = | e(ie) (e de.
Therefore, by the Cauchy-Schwarz inequality,
R < (14 €3 sede -1+ £2la(e) de.
If s > 5 +kandk > |« then the first integral is finite. Taking square roots

we get the required estimate sup*u(x)| < constantu||s. O

2.41. LEMMA. Letu € L?(R™). If u € HS(R™), for somes > 1, and if
o;u € HS(R™) forallj = 1,...,n (in the weak sense), thenc Hs*'(R™).

PROOF Thanks to the Plancherel formula, the Fourier transform ex-
tends from smooth compactly supported functions%dunctions. The hy-
pothesis thad;u € H¥(R™) implies that

(14 EHSEZH(E)1* dE < 0.

JRM
This being true for alj, it follows that

r

(1+ &2)*HA(E)* d& < oo,

JR™

and it is then easy to prove by an approximation argument that
Hs+1 (Rn) O

2.42. LEMMA. LetD be an order one, linear elliptic partial differential
operator on an open sd C R™. Letu € L?(R") and assume that
has compact support withibl. If w € H*(R™) for somes > 0, and if
Du € H$(R"), then in factu € HsH(R™M).

PROOF. Suppose first that = 0, thatu € L?(R™) has compact support
in U, and thatDu = v € L?(R"), in the weak sense. The proof of
Proposition 2.5 shows that there is a sequehngg of smooth functions,
compactly supported ihl, such thatw,, - uwandDu,, — v. It follows
from Garding’s inequality thafu,,} converges tar in H'(R™). To prove
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the lemma for highes we use induction. Ift € H*(U) andDu € H3(U),
then from the formula

Daju = a)Du + [D, a]—]u,

together with the fact thaftD, 0;] is an order zero operator, we see that
Doju € Hs~'(U), for all j. It follows from the induction hypothesis that
o;u € H(U), for allj. It now follows from Lemma 2.41 that € Hs™'(U),

as required. O

2.43. THEOREM. LetD be an order one, essentially self-adjoint, linear
elliptic partial differential operator on a smooth manifald. If u € L2(M)
and if Du is smooth thent is smooth.

PROOF Assume thatt € L?(M) and thatDu is smooth. We will show
that if o is any smooth function oM which is compactly supported in
a coordinate neighbourhodd, thenocu € H*(U), for all s. In view of
Lemma 2.40 this will suffice. We shall use induction, noting that the case
s = 0 is trivial. Assume then thatu € H*(U), for all smootho which are
compactly supported itl. It follows that if A is any smooth, order zero
operator, which is compactly supportedlin thenAu € H*(U). We want
to show thaiou € Hs*'(U). From the equation

Dou = oDu+ [D, ou,

together with the fact thalD, o] is compactly supported and of order
zero, we see thdDou € H*(U), and hence, by the previous lemma, that
ou € HsT1(U), as required. O

2.44. REMARK. If we were to introduce the language of distribution
theory we could prove without much difficulty the following stronger ver-
sion of the theorem: D is elliptic, and ifu is a distribution such thddu is
smooth, thenuitself is smooth. This property @ is calledhypoellipticity.

We close this section by considering the problem of representing oper-
atorsf(D) by continuous kernel functiorigx,y). Since the operators we
are interested in act oi?(M, S), we shall need to consider kernels which
are not scalar-valued bfitvalued in the sense thaf(x,y) € Hom(S,,, Sy)
(thusk is a continuous section of a bundle ovdrx M).

2.45. ROPOSITION LetD be an essentially self-adjoint, elliptic order
one operator on a smooth manifoldl and letf € §(R) be a rapidly
decaying function. There is a continuo§syalued kernek such that

f(D)u(my) = JMk(mz,mnu(mn dm,

for every compactly supported sectian
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PROOF We shall assume tha¥l is closed, which simplifies things a
little bit, and leave the general case to the reader.Ex0 and write the
rapidly decreasing functiofas a product

f(x) = (x> + 1) g (x) (x> + 1),

whereg is also rapidly decreasing, and in particular bounded. Using the
functional calculus we see that

f(D) = (D?+1)*g(D)(D?*+ 1)~

We shall prove the proposition by analyzing the operétar D2)~*. Since
(D?24-1)7' = (D +il)7'(D —1iI)7!, it follows from Theorem 2.43 that the
range of the operatdi + D?)~%is the Sobolev spadd?(M). So ifk > 0
and if¢ > 3 then(I+D?)~“ mapsL*(M) continuously intaC(M). Taking
Banach space adjoints, and using the fact that

(I+D?)w,v) = (u, (I+ D)),

for all u,v € L?(M), it follows that (I + D?)~* extends to a continuous
map of the dual spac€(M)* into L?(M). Returning to our product

decomposition of (D), we see thaf(D) extends to a continuous map of
C(M)* into C(M). Now, each elementn € M determines an element
dm € C(M)* by the formulad..(¢) = d(m). We can therefore define a
kernel function ortM x M by the formula

k(my,mz) = (f(D)dm, ) (m4).

It may be verified that this is a continuous kernel which represging in
the required fashion. O

2.46. REMARK. The same sort of argument shows tRkas in fact a
smooth function, so thdt D) is asmoothing operator

7. A More General Version of the Elliptic Package

In later chapters we shall need to consider not single elliptic operators
but families of elliptic operators on smooth families of smooth manifolds.
In this section, which can be omitted on a first reading, we set up the
necessary details.

Let us begin by recalling the following basic concept.

2.47. DEFINITION. A submersionis a surjective mapt: E — B
between smooth Riemannian manifolds with the property that for every

p € E there are local coordinates, ..., x.,. hearp and local coordi-
natesy,...,y, nearnt(p) in B such thatt has the form
W(Xh--- »Xn—l—m) - (U]»- .. ayn)-
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2.48. REMARK. According to the implicit function theorem, the exis-
tence of these local coordinates is equivalent to the fact that the differential
Dm: T,E — Tx,)B is a surjective linear map.

If T: E — Bis a submersion, then for eveyc B the fibert, = 7 '[b]
is a smooth submanifold df (the fibers ofr need not be diffeomorphic to
one another). LeD be an order one, linear partial differential operator on
E (acting on sections of some smooth bunf)ewhich acts fiberwise, so
thatD restricts to a family of linear partial differential operat@s on the
fibersky.

2.49. EXERCISE To say thatD acts fiberwise is the same thing as to
say that iff is any smooth function oB which is pulled back td& via 7,
then the commutatdD, f] is zero. Show that this implies thatif is any
section, then the restrictidu), of Du to a fiberk, depends only on the
restrictionuy, of u to Ey, and that there is a unique operaldg on Ey, such
thatDyuy, = (Du)b

Assume now that the bundkis equipped with an inner product, and
that the manifolds,, are equipped with smooth measureswhich vary
smoothly withb in the sense that it is a smooth, compactly supported
function onE then the formula

b J Uup(m)dm
Eob

defines a smooth function dh The inner product and measures determine
[2-spacesL?(Ey, Sp), and these assemble to formcantinuous fieldof
Hilbert spaces, oHilbert Co(B)-module in the following way. On the
space of continuous, compactly supported sections of the buideS)
overB define aCy(B)-valued inner product by the formula

(u,v)p = <ub>Vb>L2(Eb Su)»

and denote by (E, S) the completion in the associated norm

lulf = max(us, wo) -

TheCy(B)-valued inner product extendstt{E, S), and we obtain a Hilbert
module (see [] for an introduction to Hilbert modules). An element of
H(E, S) can be viewed as a continuous family of sectiagss L?(Ey, Sy).

Let us return to the operat@. We want to consider it as an unbounded
operator on the Hilbert modulEl(E,S). For this purpose we extend the
definition of the Sobolev spaces that we introduced in Section 3. For
simplicity, we shall consider only submersions for whicks compact.
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2.50. DEFINITION. Let7m: E — B be a submersion for which is a
compact manifold, and latbe a non-negative integer. DenoteH§/(E, S)
the space of all familieguy} in H(E, S) such thatu, € H%(Ey, Sy), for all
b, and such that iX is any fiberwise differential operator of ordeor less,
then the family{X,u,} belongs toH(E, S).

ThusHS®(E, S) consists of familiesy, € H*(Ey, Sy ) which—in a suit-
able sense—vary continuously in the Sobalavorm.

2.51. RROPOSITION If E is compact then the operatof® + il) map
H'(E, S) bijectively toH(E, S).

PROOF. Let {vy,} be any family inH(E,S). We need to show that
the families(Dy, & il)~'vy, defined fiberwise, belong td'(E, S). Since
(Dp £ 1il)" vy € H'(Ey, Sy), for all b, the problem is to show continuity,
in the appropriate sense, in the Sobolemorm. Sincet is compact the
(compact) fibers ot are locally diffeomorphic to one another, and indeed
the submersion is locally a produdt x U — U, in such a way tha$
may be viewed as pulled back to the proditt< U from some bundle on
M. The proposition amounts to the assertion that,ifb € U) is a norm-
continuous family inL?(M, S) then(Dy, + il)~'vy, is norm-continuous in
the Hilbert spacéi'(M, S). This follows from the formula

(Dp, £1I) vy, — (Dy, £ 1iI) v, = (Dy, 1) (vy, — Vp,)
+ (Dy, +£1iI) 7' (Dy, — Dy, )(Dy, +1iI) vy,

and Garding’s inequality. (We need the fact that the constant in Garding’s
inequality can be chosen to be the same fobathis follows from a simple
compactness argument.) O

2.52. RopPoSITION If u € H'(E,S) andDu € H3(E, S), then in fact
u € Hs(E, S).

PROOF This follows by a similar argument, using the fact that in the
product situation the operato(®, + il)~' mapH*(M, S) continuously
(and in fact equicontinuously) intids*'(E, S) O

2.53. DEFINITION. If m: E — B is a submersion, then denote by
E xg E the submanifold(x,y) € E x E : t(x) = mt(y)} of E x E. A
continuous familyfky} of S-valued continuous kernels on the fiberstak
a continuous section of the vector bundle oker g E whose fiber afx, y)
is Hom(S,, Sy).

2.54. RROPOSITION Letn: E — B be a submersion, with compact,
and letD be an order one, fiberwise elliptic operator d) acting on
sections of a bundl&. If f: R — R is a rapidly decreasing function
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then there is a continuous fami{{,} of S-valued continuous kernels on
the fibers oft such that

f(Dy)up(msz) ZJ kp (M2, my)up(my) dm,
Ep

for everyb € B and every section of S.

PROOF This is proved following the argument used to prove Proposi-
tion 2.45. O

We shall also need a version of this proposition which applies to non-
compact submersions. The following lemma allows us to reduce its proof
to the compact case.

2.55. LEMMA. LetD be an essentially self-adjoint differential operator
on M. LetK be a compact subset M and letU be an open neighborhood
of K. There exists > 0 such that ifu is supported withirkK, and if|s| < e,
thene'sPu is supported withiril.

2.56. EXAMPLE. LetM = R and letD = i£. Thene*P is the opera-
tor onL%(R) of translation bys, and therefore has the “finite propagation”
property of the lemma.

PROOF By treating treating separately the two operatol3, it suffices
to consider nonnegative Let g: M — R be a smooth function which
is equal to1 on K, and which is compactly supported withlth. Let
f: R — [0, 1] be a smoothnon-decreasingunction such that

ft) <1 ift<1
ft)=1 ift>1.

Finally, lethg(m) = f(g(m) + cs), wherec is a positive constant which
we will specify in a moment. Note that, is bounded byl. Moreover if
s < 1/c, then the set where; actually attains the valué is contained
within the support ofg, and hence withirll. Suppose now that is a
smooth section which is supported withip and letu, = e**Pu. We are
going to show that

s>0 = (hsusug) > (houo, Uo) .
Sinceu is supported withinK, (houg, wo) = (o, uo); sincee®P is a
unitary operator,(ug, up) = (us,us). By incorporating these identities
we obtain the relation
s>0 = (hougus) > (ug, ug).
This implies thath;us; = ug, SO thatug is supported within the set where
hs = 1, and hence withifl, so long as < 1/c.
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To prove thathsug, us) > (houo, ue) for s > 0, let us first note that
dhg
ds

We may also calculate the differential of the function M — R: we see
thatdhg(m) = f’(g(m) + cs) dg(m), and as a result

1 dhy

= ——2dg,
c ds 9

dhs ' g]. Now let us choose the constanin such

S

||. Having done so, we see that
1 dhg

(m) = cf’(g(m) +cs) > 0.

dhy

and henceD, h,] =
away thatc > ||[D, g

dh, .
—i[D,h] = -
ds iD, h] c ds

Returning now to the smooth sectionwhich is supported withirK, we
conclude that

[RE

—_

0 dhs .
a<hsus»us> - <Eu5)us> - <1[D>hs]usus> > O)
as required. O

2.57. THEOREM. Let D be an order one, fiberwise elliptic, linear
partial differential operator on a submersiont E — B. Assume that each
fiber operatorDy, is essentially self-adjoint. Ldt € Co(R) be a smooth
function with compactly supported Fourier transform. There is a continuous
family {ky,} of continuous kernels such that

f(Dp)up(msz) ZJ kp(my, my)up(my) dmy
Eo

for everyb € B and every compactly supported sectioof S. O

PROOF The existence of a family of kernelg, representing the opera-
torsf(Dy) follows from Proposition 2.45; the problem is to show continuity
of the family inb. For this purpose we shall use that following geometric
fact: for every compact sétof E and everyb € B there is a neighbourhood
of LN Ey in E and a compact submersi@r — B’ and which agrees with
E — B inthat neighbourhood, along with a fiberwise elliptic oper&éon
E’ which agrees witD on the neighbourhood. This will allow us to reduce
the proposition to the compact case already proved in Proposition 2.54.

Let f: R — R be a rapidly decreasing function and assume that the
Fourier transfornd is supported in some bounded inter¥at R. It follows
from Lemma 2.55 that for every compact subkeof E there is a larger
compact subsdt of E such that ifu is supported irk and ifs € I then
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e*Pu is supported irL. If u is supported withirkK it now follows from
finite propagation speed that

eisDu — eisD’LL
for s € I. To see this, observe that in this range

Qo . -, , o
&(eISDeflsD LL) — elSD(D o D/)eflsD u=0.
Now by the Fourier inversion formula one has

T [~ s
=5 Lf(s)e“D ds,
where the integral converges in the strong topologyBgil). It follows
that if u is supported inK then f(D)u = f(D’)u. Because of this,
we obtain a representation féfD’) by a continuous family of kernels
using Proposition 2.54, which provides a representationf fbr’) using
a continuous family of kernels. O

f(D)
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CHAPTER 3

C*-Algebras and K-theory

We assume that the reader has some prior acquaintance with K-theory,
including the topologicaK-theory of compact spaces aketheory forC*-
algebras, up to, but not necessarily including, the Bott periodicity theorem.
But to fix notation we shall rapidly review some of the essential ideas in the
first two sections of the chapter, before going on to present an alternate
description ofK-theory which is particularly well-suited to the study of
index theory.

1. Review of K-Theory

If A is a unital ring thenK(A) (also calledKy(A)) is the abelian
group with one generator for each isomorphism class of finitely generated
projective modules ovek, and with relations

[M4] + M) = My & M,

for finitely generated projective modulé4,; andM,. We can equivalently
describeK(A) as the group generated by equivalence clagsesf idem-
potents in matrix rings ovek, subject to the relation

pl + gl =1[p & dl

(the notationp @ ¢ represents a block diagonal sum of matrices). Two
idempotent matricep and q are equivalent if there are matricasandv
(not necessarily square matrices) such that uv andq = vu.

There is a standard device (adjoining a unit) by means of which the
definition of K(A) can be extended to non-unital rings. There are more
elaborate ways of approaching the same problem, which show tihainifl
g are idempotent matrices of the same size over a Binghich contains
A as an ideal, and ip — g is a matrix with entries i, then there is an
associated clasp © q] € K(A). The following exercise is designed to
remind the reader of the details.

3.1. EXERCISE. If A is anideal inB, construct the ring

C:{(b1,b2) eEBxB: b1—bz€A}.
37



DRAFT August 17, 2004

Show (using the elementary propertiesketheory you know) that there is
a short exact sequence

0 — K(A) —=K(C) K(B) 0

in which the maX(A) — K(C) is induced from the ring homomorphism
a — (a,0). The sequence is split by the homomorphism- (b, b) from

B into C, and as aresulk(A) can be viewed as a direct summand&ot).

If p andq are idempotent matrices of the same size ®jeand ifp — q is

a matrix with entries im\, then the projection of the clag®, q)] € K(C)
into K(A) defines a class ifp & q] € K(A). Show that ifp andq are
actually matrices oveA then[p © q] = [p] — [q].

3.2. REMARK. If A is an ideal inB, and if ¢o,p;: D — B are
ring homomorphisms which are equal, moddo then the pairn ¢y, ¢1)
determines a ring homomorphismfrom D into the ringC of the previous
exercise. By composing the induced mép: K(D) — K(C) with the
projection fromK(C) to K(A) we obtain a homomorphis@,: K(D) —
K(A).

The K-theory functor has a multiplicative property: A; and A, are
any two rings then there is a functorial pairing

K(A1) ® K(A2) = K(A1 ® Ay).

If we restrict from rings to algebras, say o&rthen we can take the tensor
product overC (rather than oveE, as is implicit here). The formula for
the product is very simple in the unital case:pif andp, are idempotent
matrices overA; and A, respectively, then we can think pf® q as an
idempotent matrix oveA; ® A,. TheK-theory pairing map&:] ® [p2] —
[p1 ® p2l, and is characterized by this property.

If A is a commutative ring then the multiplication mapx A — A is
a ring homomorphism, and the composition of ¥x¢heory product

K(A) @ K(A) = K(A® A)
with the K-theory map
K(A®A) — K(A)

induced from multiplication giveK (A ) the structure of a commutative ring.
More generally, ifA — B is a homomorphism from a commutative ring
into the center of a rin® thenK(B) is a module over the ring(A).

2. C*-Algebra K-Theory

If X is a locally compact space, then we shall wKieX) for K(Cy(X)),
where Cy(X) is the ring of complex-valued, continuous functions Xn
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which vanish at infinity. IfX is acompactspace we can interprét(X)

in terms of complex vector bundles overvia the correspondence between
vector bundles and projection-valued functions which was mentioned in
Chapter 1. ThigopologicalK-theoryfunctor has several properties which
are not enjoyed by the more general algebkaiteory functor of the pre-
vious section, but which are however shared by the restriction of algebraic
K-theory to the category df*-algebras.

The special features &f-theory for C*-algebras stem from the inter-
action between algebra and analysi<ittalgebra theory, often ultimately
boiling down to the statement thatifis small enough theh + x is invert-
ible. It follows from this, for instance, th&-theory for C*-algebras is a
homotopy functarif two morphisms

(I)O) (I)1 :A—B
of C*-algebras are linked by a continuous pgath} of morphisms, then
$os = d1,: K(A) — K(B).

Also, in the unital cas&(A) can be represented llomotopy classesf
projections(self-adjoint idempotents) in matrix algebras over

3.3. EXERCISE A C*-algebra] is calledcontractibleif the identity
homomorphism] — ] is homotopic to the zero homomorphism. Show
that if ] is a contractible ideal in &£*-algebraA, then the induced map
K(A) — K(A/J]) is an isomorphism. (There is an obvious argument using
the ‘six term exact sequence’ Kftheory, and therefore implicitly involving
Bott periodicity. If you know a bit more, you can prove this with less.)

In the C*-algebra theory a special role is played by @iealgebrak =
XK (H) of compact operators on a Hilbert spaddwe usually requiréH to
be separable, although this detail will be of no concern to us in these notes).
By considering operators which are zero on the orthogonal complements of
finite-dimensional subspaces it is easy to seekhabntains an increasing
family of matrix algebras whose union is densé&inSo, roughly speaking,
X plays the role of an algebra of matrices of arbitrarily large but finite size.
In algebraicK-theory the mapVl,(A) — M, «(A) which includes
ann x n matrix as the upper left corner of dn + k) x (n + k) matrix
(whose entries are otherwise zero) induces an isomorpKigvh, (A)) =
K(M..x(A)). This fact can be strengthened @t-algebrak-theory, as
follows:

3.4. LEMMA. If H; andH; are Hilbert spaces, then the natural inclu-
sionXK(H;) € X(H; ¢ H;) K-theory isomorphisms
K(A ® X(Hy)) =K(A®X(H; ®Hy)),
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for everyC*-algebraA. O

3.5. COROLLARY. The inclusion ofC as a one-dimensional subspace
of any Hilbert spacéH induces an isomorphisi(A) = K(A® X). O

3.6. REMARK. In C*-algebra theory there are, in general, various dif-
ferent tensor produciA®B (that is, differentC*-algebra completions of the
algebraic tensor product @ andB overC). In these notes it will not mat-
ter whichC*-algebraic completion of the tensor product ofewe choose,
since in fact in all the cases we shall consider, all the tensor products will
agree. But for our purposes the most natural tensor product to consider
would be theamaximalproduct.

At one or two points we shall use a small extension of the lemma. Let
€ be a Hilbert module over @*-algebraA. Recall that this means thétis
simultaneously:

(a) A Banach space
(b) Aright A-module
(c) A space equipped with a sesquilinear, positive definite form

(, ) Ex&—A.

These structures must be compatible with one another in the way that
the various structures on a Hilbert space are compatible with one another
(indeed, a Hilbert module ovéx = C is exactly the same thing as a Hilbert
space).

3.7. DEFINITION. TheC*-algebra ofA-compact operatorsn € is the
C*-algebraX (&) of A-linear operators o8 generated by the “rank-one”
operator,, ., : v — vi(v2,Vv), wherev, vy, v, € E.

3.8. RRoPosITION If &7 and€; are Hilbert A-modules, and if€+, £;) =
A then the natural inclusion

Kal€1) = Kal&1 @ &E2)
induces an isomorphism ik-theory. O

3.9. ExaMPLE. If {*(N, A) is the completion of the algebraic direct
sum @52, A in the norm

o
Ha}llZ=11)_ a;ay]
j=1

thent?(N, A) is a Hilbert module an& A ((?(N,A)) = A ® K(¢2(N)). In
this way Proposition 3.8 generalizes Lemma 3.4.

The feature ofK-theory exhibited in Lemmas 3.4 and 3.8 is called
Morita invariance
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3. Graded Algebras

3.10. DEFINITION. A graded algebras an (associative, complex) al-
gebraA equipped with an automorphism whose square is the identity.
An elementa € A such thatx(a) = a is calledeven and one such that
a«(a) = —ais calledodd If the algebraA is a C*-algebra then we require
the automorphismx to be aC*-algebra automorphism (that is, we require it
to be compatible with the-operation). Elements in a graded algebra which
are either even or odd are calledmogeneous

The product of two even elements, or two odd elements, is even; the
product of an even and an odd element is odd; a general elem@ntarh
be written uniquely as the sum of an even part and an odd part.

3.11. REMARK. We might more properly say that is Z/2-graded
since the grading is in effect a decompositiorAointo a direct sum of even
and odd subspaces, or in other words a decomposition into a direct sum
whose summands are labeled by elements of the gfgdpin such a way
that multiplication in the algebra is compatible with addition in the group
7Z./2. It is possible to consider more elaborate gradings, in wHigh is
replaced by another abelian group. But we shall not need to consider these.

3.12. EXAMPLE. The definition is designed to be compatible with our
previous discussion of graded Hilbert spaces. Het= Hy, ® H; be a
graded Hilbert space, or more generally a graded Hilbert module . Then
the C*-algebra of compact operators bins a graded_*-algebra. The even
elements are those which preserve the grading;ahe odd elements are
those that reverse it. In other words the even elements preserve each of the
subspace$l, and H;, whereas the odd elements exchange the subspaces
Hoy andH;. In particular the algebrd1,(A) can be graded by declaring
that the diagonal matrices are even and the off-diagonal matrices are odd.

The following definition provides a second very important example of a
gradedC*-algebra.

3.13. DEFINITION. We denote by the algebraCy(R) with the grading
automorphisnmx(f(x)) = f(—x). Thus the even and odd elementsSaire
those functions which are even and odd in the usual sense of elementary
calculus.

We shall encounter one further source of examples later one, in Chap-
ter 6. But in truth our recourse to graded algebras will be rather minor, and
is done for notational convenience more than anything else. For our pur-
poses, the great advantage of using graded algebras is that they allow for a
considerable simplification d-theory formulas involvinglifferencegfor
example, differences of projections). Since the index can be regarded as
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just such a difference (of two integers, or of two kernel projection¥)n
this feature of graded algebras is very useful in index theory.

3.14. DEFINITION. A graded homomorphisimetween graded algebras
is a homomorphism which sends even elements to even, and odd elements
to odd. In theC*-algebra case we shall obviously also require that the map
be compatible with the-operation.

There are some quite surprising differences between the categories of
graded and ungradect-algebras. For example the mapS — C defined
by f — f(0) is a graded«-homomorphism which, when one forgets the
grading, is in a simple way homotopic to the zerbomomorphism. But as
a gradedk-homomorphism it is not at all trivial at the level of homotopy.

3.15. EXERCISE. Show that the map — M,(C) defined by the

formula
f(0) 0
fH( 0 f(0)>

is a gradedk-homomorphism which is homotopic (through graded homo-
morphisms) to the 0-homomorphism, whereas#®momorphism

£(0) 0
fH( 0 O>

The “cancellation” phenomenon which we see in the previous exercise
suggests the following construction. Suppose thas a unital (ungraded)
C*-algebra. Lebp, g be projections irA, whose formal difference defines a
K-theory classq] — [p] € Ko(A). Define a graded-homomorphism

d)p,q: S — MZ(A)>
where§ andM;(A) are graded as above, by

pf(0) 0
(I)p,q(f) = ( 0 qf(O) ) .

Clearly, homotopic projections give rise to homotopic homomorphisms;
and (by Exercise 3.15) ip = q, thend,, 4 is homotopic to th&-homo-
morphism. Replacing. by A @ X allows us to handle projections in matrix
algebras oveA, and we obtain a canonical map

D: K(A) = [8,A ® K],

where thel...] notation denotes homotopy classes of graddtbmo-
morphisms, and wher¥ is theC*-algebra of operators on a graded Hilbert
spaceH = H, & H;, whose homogeneous subspaces are both infinite-
dimensional.
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3.16. EXERCISE. The collection of homotopy classgs A ® K] can be
given a group structure: addition is by direct sum followed by the map

KMH)® K(H) - KH@H) =K(H)

associated to a graded unitary isomorphidn® H = H. The inverse of
a x-homomorphisnt is obtained by reflecting the domair (= —x) and
reversing the grading on the range. With this group structure, thednap
above is a homomorphism of groups.

3.17. RoOPOSITION For any (ungraded)C*-algebraA, the map
®: K(A) = [8,A®X]
defined above is an isomorphism.

PROOF Using the Cayley transform
x+1
= -
X—1
let us identifyS = Cy(RR) with the algebra of continuous functions on the
unit circle T which vanish afl € T. In this way a homomorphism from
S into A ® X corresponds to a unital homomorphism from the algebra
C(T) into the algebra obtained by adjoining a unitAop X. By spectral
theory, such a homomorphism corresponds to a unitamthe unitalization
of A ® K. If we begin with a graded homomorphism then the unitary
u we obtain has the property thafu) = u*, wherex is the grading
automorphism. Now, for the purposes of this proof, let us use theskem-
unitary for any unitary in a grade@*-algebraB which has this property. If
the grading isinternal, which is to say thatx(x) = exe for some self-
adjoint unitarye € B, then there is a bijective correspondence between
skew-unitaries inB and projections irB, given byu — %(1 + ue). In
view of all this, if B is any unital, grade@*-algebra containing botA @ X
and the grading operatar = (2) ° ) then we obtain from a graded
homomorphismp: § — A @ X a projectionpy, € B which is equal to the
projectionp. = (| §) moduloA ® X. The correspondence

[$] = [Py © Pl

defines a map fron$, A ® K] into K(A) = K(A ® X) which is inverse to
D. O

3.18. XERCISE. Provide the remaining details in the proof of the
proposition.

3.19. XERCISE. If you are familiar with Kasparov'&K-theory, show
that the inverse maj§, A®X] can also be constructed in the following way.
Identify A @ X with the compact operators on the universal graded Hilbert
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A-moduleé = (*(N,A) (see Example 3.9). Givensahomomorphism
¢: 8 = AR XK, letEy be the Hilbert submodulg[S]E. Thend extends to
a homomorphism from the bounded, continuous functions-ex, co) to
the bounded operators @y,. LetF € B(E,) be the operator corresponding
to the odd functiorx — x(1 + x2)~1/2. Verify thatF describes a Kasparov

cycle forKK(C, A) = Ko(A).

4. K-Theory and Index Theory

Having quickly reviewed some topics iKk-theory, and introduced a
new picture ofK-theory using the grade@*-algebras, let us show how
to associate two fundamentgitheory classes to an elliptic operaior

Let D be a symmetric, odd-graded, elliptic operator on a graded vector
bundleS over a compact manifold. Thus we can write

0 D_

o= (5. %)
whereD_ = D7,.. To keep within the framework developed in the previous
chapter, let us assume thathas orderl, although nothing we do in this
chapter will depend on this additional assumption. The spade’ skc-
tions of S is a graded Hilbert spadd. According to the elliptic package
developed in Chapter 2 (Proposition 2.45), the functional calculus homo-
morphismép: f — f(D) gives a graded-homomorphisng: § — K(H),
which according to our discussion above defines an elemeéat©y.

3.20. RROPOSITION The elementdp] € K(C) = Z is the Fredholm
index of the operatoD.

3.21. REMARK. Recall that by the index oD we mean the integer
dim(KernelD) "H, ) —dim(Kerne[D) " H_).

PROOF. One can use the homotopy efhomomorphismsh, 1 (f) =
f(s7'D). At s = 1 we havedp and ats = 0 we have the homomorphism
f — f(0)P, whereP is the projection onto the kernel BY. This corresponds
to the integer dirtKerne(D) N H, ) —dim(KernelD) " H_), which is the
index of D in our sense. O

We see that by means of the algelfrave can encode the integer
Fredholm index irk-theory. The great advantage of uskfpr this purpose
is that the following very similar construction also places the symbol of an
elliptic operator intok-theory.

3.22. DEFINITION. Let Z be a locally compact space and kbe a
graded Hermitian vector bundle ov&r Letc: S — S be a self-adjoint, odd
endomorphism o§. Then for each € Z, the fiber operatoe(z): S, — S,
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is a positive operator. We say thatS — S is elliptic if the norm of the
operator{I + ¢(z)?)~': S, — S, tends to zero, as € Z tends to infinity.

3.23. REMARK. In particular, arc must be invertible outside a compact
set.

3.24. EXAMPLE. Recall that the ellipticity of the operatd@ can be
expressed in terms of theymbolop: S — 7*S, as in Remark?. The
symbol of an elliptic operator is an elliptic endomorphism of the bundle
77*(S) overT*M. This both explains our terminology and provides the most
fundamental instances of Definition 3.22.

Given a elliptic endomorphism: S — S over a locally compact space
Z, the mapf — f(c) is a gradec-homomorphism

$c: 8 — Co(ZEnd(S)),

where the target algebra is the algebra of continuous sections, vanishing
at infinity, of the endomorphism bundle Ei$d. But this target algebra

is precisely the algebra @y(Z) compact operators on the Hilbel(Z)-
moduleCy(Z, S) of continuous sections & which vanish at infinity. So

by Morita invariance we obtain&-theory clasg € K(Z).

3.25. DEFINITION. We shall calle € K(Z) thedifference clas®f the
elliptic endomorphisne: S — S.

3.26. REMARK. The idea is that € K(Z) represents the difference
“So — S1” where the endomorphism is used to given meaning to this
difference. This is similar to the way that the index elemenKiiT)
associated to an elliptic operator represemig “ H;,” where D is used
to give meaning to the difference (by cancelling out all but Kegiinelin
Hoy andH;).

3.27. DEFINITION. Let D be an elliptic operator acting on sections of
a graded Hermitian vector bundfe Assume thaD is odd-graded and
symmetric. Thesymbol clas®f D is the difference classp € K(T*M)
associated to the symbob: S — 7*S.

5. A Functorial Property

Proposition 3.20 and Definition 3.27 provide two differéitheory
classes associated to the same elliptic opefatorhe proof of the Atiyah-
Singer Index Theorem hinges on devising a procedure to relate them. To
conclude this chapter we shall take the first steps towards doing this by
enlarging the class of morphisms betwdégroups beyond those simply
induced byx-homomorphisms.
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We saw above how &homomorphismp: § — A ® X gives rise to an
element ofK(A). In this section we are going to generalize this statement
as follows.

3.28. ARROPOSITION A gradedx-homomorphismp: § ® A — B ®
X determines aK-theory mapd.: K(A) — K(B), with the following
properties:
(i) The correspondenag — ¢, is functorial with respect to composition
with x-homomorphismg; — A andB — B;.
(i) The mapp, depends only on the homotopy classhof
(i) fp: S®A — A® XK(H) is of the form

d(f®a)=1f0a®p e A®XK(H)

wherep is a rank-one projection operator whose range is a even-
graded subspace @, thend.,: K(A) — K(A) is the identity.

PROOF Let C be the image 08 ® A underd; it is a C*-subalgebra of
B®X. Fromd we obtain homomorphismiss andd 5 of S andA separately
into the multiplier algebra o€. From ¢s we obtain two projectiong,
and p; in the multiplier algebra ofC, using exactly the same formulas
we used earlier in our proof of Proposition 3.17. Thus if we vigw
as a homomorphismi — f(D), then we can form the Cayley transform
Up = (D + 1)(D — i)~ in the multiplier algebra ofC, and if ¢ is the
grading operator then the projectiomsandp; are the positive projections
of the involutionslle ande. Now these projectionsommutevith the image
of the x-homomorphisnp 5. So the maps

a— podpala) and a+— pidpala)

are bothx-homomorphisms. The difference of these two homomorphisms
mapsA into C, so as we noted earlier in Remark 3.2, the two homo-
morphisms determine a homomorphism fratpA) to K(C). If we fol-

low with the inclusion ofC into B ® X, and then use the isomorphism
K(B) = K(B ® X), we obtain a map

b.: K(A) — K(B).
The verification of the properties listed is left to the reader. U

6. A More General Functorial Property

The construction of the previous section permits us to build many inter-
esting homomorphisms betwe&rtheory groups. We will, however, need
to make use of a still more general kind of functoriality. This arises on re-
placing the notion omorphisnof gradedC*-algebras by that acisymptotic
morphism
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3.29. DEFINITION. Let A andB be C*-algebras. Arasymptotic mor-
phismfrom A to B is a family of functionsp;: A — B, wheret € [1, c0),
such that

(i) For eacha € A the mapt — ¢+(a) € B is continuous and bounded.
(i) Forall a,a;,a; € A andAq, A, € C,

dilaraz) — dilar)di(az)
tlLrDo Pe(Arar +Az2az) — Mdelar) +Axde(az) p =0.
di(a®) — dpela)”

3.30. DeFINITION. An homotopyof asymptotic morphisms from to
B is an asymptotic morphism fror to C([0, 1]; B).

Ordinaryx-homomorphisms of course give rise asymptotic morphisms
(if ¢ is a homomorphism we can s¢t = ¢, for all t), and ordinary ho-
motopies ofx-homomorphisms give rise homotopies of asymptotic mor-
phisms. Less trivial examples will have to wait until Chapter 7; in fact, the
key construction in the index theorem is a certain asymptotic morphism.

3.31. DEFINITION. We will denote the collection of asymptotic homo-
topy classes of asymptotic morphisms fréaio B by [A, B].

3.32. RROPOSITION An asymptotic morphisi,: A — B determines
a K-theory mapp..: K(A) — K(B), with the following properties:

(i) The correspondenag — ¢, is functorial with respect to composition
with x-homomorphisma.; — A andB — B;.
(i) The mapp. depends only on the homotopy clasgof
(i) If eachdg, is actually ax-homomorphism, thed.,: K(A) — K(B) is
the map induced b;.

PROOF Denote byC(B) the algebra of bounded, continuous functions
from [1, 00) into B and denote by (B) the ideal of functions which vanish
at infinity. Denote byQ(B) the quotientC*-algebra. There is a short exact
sequence

Since the idealJ(B) is contractible, the quotient map in the short exact
sequence induces an isomorphisnKitheory. An asymptotic morphism
from 8 ® A into B induces as-homomorphism

$: A — Q(B).
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The required maph: K(A) — K(B) is then the one which fits into the
following diagram:

K(Q(B)) <— K(A(B)).
The right upwards arrow is induced from evaluation &t [1, co). O

This construction can be combined with Proposition 3.28. Let us say
that an asymptotic morphisih,: A — B between graded*-algebras is
graded if the mapg, commute asymptotically with the grading operators
on A andB.

3.33. RROPOSITION A graded asymptotic morphis: S ® A —
B ® X determines K-theory mapd..: K(A) — K(B), with the following
properties:

(i) The correspondenag — ¢, is functorial with respect to composition
with x-homomorphisma.; — A andB — B;.
(i) The mapp, depends only on the homotopy clasgof
(i) If eachd, is actually ax-homomorphism, the®., : K(A) — K(B) is
the map induced by, as in the proof of Proposition 3.28. O

7. A Remark on Graded Tensor Products

In this optional section we shall show how the constructions of the
previous two sections can be made a bit more cleanly by making a further
investment in the technology of graded algebras.

To begin with, let us discuss thgraded tensor producobf graded
algebra$. This is the algebraic tensor product o¥&ras a vector space,
but we introduce a “twist” into the multiplication in the following way.
Let A andB be graded algebras and ket®b; anda,®b, be elementary
tensors in their graded tensor product. Assume thatatbeandb’s are
homogeneous (either even or odd) and use the symbmlenote degrees
(O for even, 1 for odd). Then we decree that

(@1®b1) - (a2®b3) = (—1)°C12(%)(ay0,)®(b1by).
This extends by linearity to define the multiplication A®B.

1As with the usual tensor product, when we pas<tealgebras we shall take the
C*-completion of the algebraic graded tensor product. There are in general various
possible choices for the product-norm. However, it is fortunately the case that in the
situations we consider the product norm is unique, so we will not need to worry about this
complication.
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3.34. XERCISE. Show that ifA andB are gradec-algebras then the
formula(a®b)* = (—1)°%*a*Qb* makesA®B into a graded-algebra.

3.35. XERCISE. LetH andH’ be graded Hilbert spaces. Check that
the algebrak(H)®K(H’) is isomorphic tak(H ® H’), whereH ® H’ is
graded by the product of the grading operaters, ¢’. Moreover, any two
such isomorphisms are homotopic.

3.36. EXERCISE Show that the algebi$®$ is isomorphic to the alge-
bra of matrix-valued functions on the quarter-plafie(R*)2 — M,(C),
having the properties that for eachthe valuef(x,0) belongs to the 2-
dimensional subalgebra of matrices of the forfn® ), and for eachy the
value f(0,y) belongs to the 2-dimensional subalgebra of matrices of the
form (4 ©). (Hint: First give a similar description & itself as functions
on the half-line with values in a certain graded algebra.)

Notice that in the previous exercise we have describeé as a sub-
algebra of the endomorphisms of a certain graded vector bundle (namely
C @ C) over(R™)2. The endomorphism

7 ( 0 x+iy ) ’
X —1y 0
is odd, self-adjoint and elliptic. The difference construction described in
Definition 3.25 gives us a “comultiplication” map

A: S — 828

defined byf — f(Z).

The mapA can be described very concisely using the notion of “un-
bounded multiplier,” or in other words using unbounded operator€en
algebras, considered as Hilbert modules over themselves (see for example
Lance’s book [] on Hilbert modules). There is a natural unbounded, self-
adjoint multiplier X on 8, namely the functiorx — x. If we apply the
functional calculus tX andf € 8 we obtain the elemerf{ X) in 8§ which
is, of course, jusf itself. The operatoK®1 + 1®X is an unbounded mul-
tiplier of $®8, and the mag is given by the attractive formula

A: f(X) = f(X®1 + 18X).
3.37. RROPOSITION The diagrams

A

$ s&s and  $BS >3
8®8 — = 8288 §<~—=—38
commute. O
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Thus S is a sort of “gradedC*-bialgebra.” Because of this we can
form a category whose objects are grad&dalgebras and for which the
morphisms fromA to B are the graded-homomorphismsp: SRA — B.
The composition of two morphismfs and is given by the prescription

~ S I 1) —~ P
SEA 2 SBSPA 2> SGB —— C.

The identity morphism is the-homomorphisme®1: S®A — A. The
category of graded*-algebras is included within thiss*category” by the
map

{AL’ B] - [8®A*>E®¢ B}

If A is a gradedC*-algebra, let us defink(A) to be the set of homotopy
classes of graded-homorphisms fron$ to A@XK. If the grading onA is
trivial, this agrees with our previous definition. In genekalA) is just the
set of homotopy classes of morphisms fréhto AQX in the $-category.

3.38. RROPOSITION Let A ang B be C*A-algebras, possibly graded.
A gradedx-homomorphism frolS®A — B®X gives rise to an induced
homomorphisniK(A) — K(B) of K-theory groups.

PROOF The induced homomorphism is just composition in e
category. 0

The case of asymptotic morphisms is taken care of by the following
simple result.

3.39. RROPOSITION LetD be any gradedC*-algebra. The forgetful
map
[8,D] — [8,DI

is an isomorphism.
3.40. EXERCISE. Prove this.

3.41. MROLLARY. LetA be aC*-algebra. One has an identification
K(A) = [8, A®X]. O

3.42. FROPOSITION Let A aAnd B be (;*-algebras, possibly graded.
An asymptotic morphism fro®d®A — B®X gives rise to an induced
homomorphisniK(A) — K(B) of K-theory groups.

PROOF Composition in thes-category gives a map
8, A@K] — [8, ABXKI.
O
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Notice that in the above proof we did not attempt the (rather technical)
feat of composing two asymptotic morphisms (for which the reader can
refer to [], for example). We only composed an asymptotic morphism with
a regular one, and this is easy.
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CHAPTER 4

Characteristic Classes

In this chapter we are going to study in detail ttheracteristic classes
of vector bundles. We mentioned these briefly in Chapter 1.

4.1. DEFINITION. A characteristic clas$or vector bundles (of a certain
kind, for instance complek-dimensional vector bundles) is a natural map
¢ which assigns, to each vector bundleof that kind over a bas, a
cohomology clasg(V) € H*(M). Herenatural means that commutes
with pull-backs: iff: M’ — M is a map and/ is a vector bundle ove¥,
thenf*(c(V)) = c(f*(V)).

For the purposes of these notes, there will be no loss of generality if
we think of M as a compact manifold, and the cohomology as de Rham
cohomology. But sometimes it is very important to understand that certain
characteristic classes argegral, that is, they are elements of the integral
cohomology groupdi*(M;Z). We will touch on this at the end of the
chapter.

There is an extensive theory of characteristic classes; the canonical
reference is the book by Milnor and Stasheff. Our motivation in studying
the theory is the following. As we have seen, an elliptic oper&t@n a
compact manifoldM gives rise to aymbol clas$op] € K°(T*M), and the
problem to which the Index Theorem gives an answer is that of computing,
in some explicit way, how the index dD depends on its symbol class.
SinceK-theory is constructed out of vector bundles, characteristic classes
will give rise to maps fronK-theory to cohomology. Moreover the resulting
cohomology classes are explicitly computable (we will not have time to give
many examples of this, but again we refer to Milnor and Stasheff’'s book
for techniques of calculation with characteristic classes). We are therefore
going to regard the index problem as solved if we can find an e explicit
formula for the index oD in terms of characteristic classesaj.

1. Classifying Spaces and Cohomology

Recall from Chapter 1 that th&rassmannianG,(C") is the space
of k-dimensional subspaces df It is a compact manifold. There is a
canonical bundlef k-dimensional vector spaces ov&g(C™), and if M is
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any compact manifold then fer sufficiently large, the isomorphism classes
of complex vector bundles oM of rank k correspond to the homotopy
classes of maps from to G (C™) via the operation which assigns to any
map the pullback of the canonical bundle.
In order to obviate the need to continually makésufficiently large”
it is convenient to speak of the space
Gk(C™) = lim Gy (C™).

n—oo

This is a legitimate topological space in its own right (when given the
direct limit topology). But for our purposes we can think of a map from
a compact manifold int@&(C*) as a compatible family of maps into the

Gy (C™), for all large enougm, while by a cohomology class da, (C*)

we shall mean a family of cohomology classes, one on €a¢fi™) which

are compatible with one another under the maps in cohomology induced
from the inclusiongG (C™) C Gy (C™). Notice that the canonical bundles
on theG,(C™), for differentn, are compatible with one another under these
inclusion maps. With these conventions, we shall speak of the cohomology
ring of G4 (C*), the canonical bundle ovéi, (C*), and so on.

4.2. RROPOSITION Letk be a positive integer.

(i) There is a bijection between isomorphism classes of complex krank
vector bundles over a compact manifditl and homotopy classes of
maps fromM to G (C>).

(i) There is a bijection between characteristic classes of fackmplex
vector bundles on compact manifolds and classes in the cohomology
ring

H*(GL(C®)) = [ [HP(Gk(C™)).
P

The first bijection associates to a méphe pullbackf*E of the canonical
bundle. The second bijection associates to a e pullback of the class
in H*(Gy(C*>)) along the map. O

4.3. DEFINITION. The mapf is called aclassifying magfor the (iso-
morphism class of) bundi&V.

2. Characteristic Classes for Complex Line Bundles

The spaceG;(C™) is none other than the projective space™ ' of
lines in C™. So in order to determine the characteristic classes of one-
dimensional complex vector bundles — in other words complex line bun-
dles — we need to compute the cohomology rings of complex projective
space.
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To do so, recall from Chapter 1 that associated to any oriented, rank-
d real vector bundlé/ over a compact manifold/! there is aThom class
uy in the compactly supported de Rham cohomology grddfV). In our
case, the real bundle underlying the canonical line bundle @P™' is
2-dimensional and oriented as follows: dfis any non-zero local section
then we deem the paif, ie to be an oriented local frame of the underlying
real bundle (the orientation so-defined does not depera).on

4.4. DEFINITION. If Vis an oriented, ranl, real vector bundle over a
compact manifoldV, theEuler classof E is the imageey € HY(M) of the
Thom clasaty € HY(V) under the map induced from including into V
as the zero section.

4.5. REMARK. This is a characteristic class of real, oriented vector
bundles. The name is derived from the following beautiful theorem (which
we shall not need, except to compute examples)erif, is the Euler
class of an oriented, closed manifold, th¢p, em is equal to the Euler
characteristic oM.

4.6. ROPOSITION The cohomology ringH*(CP™) is the unital
algebra freely generated by the Euler class € H?(CP™ ), subject to
the relatione} = 0.

To prove this we shall use the following important result, which will
also figure in later computations.

4.7. THEOREM (Thom Isomorphism Theorem)f V is an oriented,
rank d, real vector bundle over a compact manifdit] thenH* (V) is freely
generated as a module ovElrr(M) by the Thom class.

PROOF (SKETCH). If M is a point then the result follows from the char-
acteristic property of the Thom class, that its restriction to each fib&t of
generates the cohomology of the fiber.Mf is a contractible open mani-
fold then the result follows from the homotopy invariance on cohomotogy.
The general result follows by choosing a suitable open cover by contractible
sets, and applying a Mayer-Vietoris argument. O

PROOF OFPROPOSITION4.6. Associated to any vector bundle over a
compactM there is a long exact cohomology sequence

o ——=HP(V) —=HP(V) —= HP(§(V)) —= Hp 1 (V) —— -+
whereV is the compactification o¥ obtained by adding a sphere at infinity
to each fiber, an8(V) is the bundle of spheres. (These spaces are smooth

When dealing with non-compact manifolds we should use de Rham cohomology with
compact supports only in the fiber direction\6f See [].
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manifolds in a natural way: if we put an inner product WnthenV is
diffeomorphic to the closed unit ball bundle afflV) is diffeomorphic to
the unit sphere bundle.) W is oriented and if we incorporate the Thom
isomorphism, we obtain th@ysinlong exact sequence

o —> HP M) =L HP(M)
— ~ HP(S(V)) —= HP T (M) —— - -

in which the map labeledy is multiplication by the Euler class. Whev
is the complex projective spadéP™ andV is the canonical line bundle,
the space (V) may be identified with the unit sphere @. Knowing the
cohomology of the unit sphere, it is now easy to deduce the result. []

Hence:

4.8. THEOREM. The ringH*(G;(C®>)) is isomorphic to ring of formal
power series over the Euler clags= eg of the canonical line bundle. As a
result, the characteristic classes of complex line bundles are in one-to-one
correspondence with formal power series. O

To put it another way, the only characteristic classes of line bundles are
the Euler class of the underlying real, oriented plane bundle, and the other
classes obtained from it by simple algebraic operations (squaring, cubing,
etc, and linear combinations of these).

While this may seem disappointingly simglghere are nonetheless
some interesting questions to be answered. For instance, the set of iso-
morphism classes of complex line bundles oxédrhas the structure of
an abelian group. The group operation is tensor product of line bundles,
and the inverse of is the class of the conjugate line bundléthis is the
same real plane bundle, but with the complex conjugate complex structure
1-conjugatey = —1v; itis isomorphic to the dual bundle’). How is this group
structure reflected in the theory of characteristic classes?

4.9. RRoposSITION If L andL are line bundles oveM thene s =
er + ers. Moreover ifL is any line bundle oM thene; = —e;.

PROOF We’'ll prove the first relation; the second follows from the easily
verified fact that the Euler class of the trivial bundle is zero. Let us consider
first the universal situation in whicM = G;(C™) andL andL’ are both
the canonical line bundle. Construct owdrx M the line bundld.” whose
fiber over a pairflm,m’) is L,, ® L/ ,. What is its Euler class? The

20r reassuringly simple, depending on your perspective.
DRAFT 56 August 17, 2004



DRAFT August 17, 2004

Kunneth formula in cohomology says that wedge product of forms sets up
an isomorphism

H'(M x M) =&, qHP(M) ® HY(M).
In our case we are interested in the formula
H?(M x M) = H*(M)@H°(M) @ H'(M)®@H*(M)

(there are noH'(M) terms sinceH' is zero forM = G;(C")). By
restrictingL” to M x {pt} and{pt} x M we see that

e]_//:e]_®1+]®61_/.

If we now restrict to the diagonal C M x M, over whichL” becomes
L ® L', then by functoriality of the Euler class we obtain the formula

erglr = erL + ey, as required. In the case of geneMl and general
line bundles, pull back this formula via the product of classifying maps
M x M — G1(C™) x G1(C™). O

4.10. EXERCISE. Let L be a complex line bundle over the base space
M. We can assume without loss of generality thas provided with a
Hermitian metric in each fiber. Now sindeis locally trivial, we can cover
M by open sefs{U;} such that each restrictidny,, is trivial and so admits
a unit sectiors;. Whenl; andl, intersect, we can find transition functions
dyn: UyN U — R measuring the difference between these sections, so that

Sj = ezmq’ik + Sk.
On triple intersectionsl; N Uy N Uy, we must have

Cijkt := Gji + P — by € Z.

This means that is a 2-cocycle for the Cech cohomologit(M; Z). De-
note byc,(L) the associated cohomology class. Verify that the construction
of ¢;(L) given above depends only on the isomorphism clads &f L and

L’ are line bundles, we can form thdéensor product. ® L’. Prove that
ci(L® L") =cy(L) 4+ cq(L’). For extra points, identify de Rham and Cech
cohomology, and thereby identify (L) with ey.

4.11. REMARK. In fact one can show that; gives anisomorphism
between the abelian group of isomorphism classes of line bundles (under
tensor product) antli?(M; Z); but we will not need this.

3We may assume that these sets and all their intersections are contractible.
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3. Characteristic Classes of Higher Rank Bundles

There is a natural map

fkl G]((Cn) X G]((Cn) X oo X G1(Cn) — Gk((Ck“)

J/

~
ktimes

(there is an obvious direct formula, but in homotopy theoretic terms, the left
had space has over ikafold direct sum of canonical line bundles, and there
is therefore a classifying map @ (C"), for someN, which classifies this
rankk vector bundle). Passing to cohomology, and to the limitas oo,

we obtain a canonical homomorphism

H*(G(C™)) = H(G1(C%) x - -+ x G1(C%)).

Now the symmetric grougy acts on the right-hand cohomology ring by
permuting the factor&(C*). The fundamental fact abott* (G, (C>))
is this:

4.12. THEOREM. The above ring homomorphism identiftéy G, (C>))
with the permutation-invariant elementsliti (G;(C*®) x --- x G;(C*)).
Thus the ringH* (G« (C>)) is isomorphic to the ring of formal power series
in degree 2 indeterminates, . . ., xi which are symmetric under permuta-
tion of thex;. Under the map on homology induced from the map

fi: G1(C®) x G1(C®) x - -+ x G1(C*) — Gi(C™)

which classifies thé-fold direct sum of canonical line bundles, the gen-
erator x; maps to the Euler class of the canonical line bundle overjthe
factor. O

We shall not prove this result here (but see Remark 4.28 in Section 6
for some comments on the proof). The theorem is sometimes called the
‘splitting principle’, because it effectively tells us that, in calculations with
characteristic classes, we can behave as though every (complex) vector
bundle is a direct sum of line bundles. See the next section for an example
of this.

4. The Chern Character

What the theorem in the previous section definitely tells us is that to
specify a characteristic class of rakkector bundles it is enough to specify
a symmetric formal power serieskdegree 2 variables;, ..., x,. Let us
illustrate how this is done in what is perhaps the most important case: that
of the Chern character
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4.13. DEFINITION. The Chern charactetis the characteristic class of
rank k vector bundles which corresponds to the symmetric formal power
series

exl +eX2+,__+eXk

This definition applies to any positive integerand if V is any vector
bundle overM we shall denote by dV) € H*(M) its Chern character,
obtained by applying the formula in the definition for the appropriate

The Chern character is important because it is a sort of ‘ring-homo-
morphism’ from vector bundles to cohomology:

4.14. RROPOSITION LetV andW be complex vector bundles ovt.
Then
ch(V & W) =ch(V) + ch(W)
and
ch(V ® W) = ch(V) ch(w).

PROOF It suffices to prove these identities in the case whéendW
are the pullbacks to the produGi (Coo) x G,(C*) of the universal rank
k and{ bundles on the two factors (compare the proof of Proposition 4.9).
By the Kunneth formula and the theorem in the last section, the classifying
map

fk)gi §1(Cm) X G](COO) X e X G](COO)/% Gk(C‘X’) X GQ(COO)

k+%mes

is injective on cohomology. It therefore suffices to verify the identity in
the cohomology of the product of th&; (C>). In particular, it suffices to
prove the formula whew andW are complex vector bundles over some

space which are direct sums of line bundles. But for a direct sum of line
bundlesL; @ - - - @ L,, the meaning of Definition 4.13 is that

chiLi@---@L,)=e +... 4 eb.

Additivity is therefore obvious, while multiplicativity follows from the case
of individual line bundles, which is handled by Proposition 4.9. n

It follows easily that:
4.15. THEOREM. The Chern character gives a homomorphism of rings
ch: K(M) — H®*(M),
for any compact spack!. O

4.16. REMARK. Atiyah and Hirzebruch showed that this homomor-
phism passes to asomorphismkK®(M) @ C — H®®{M) (the factorC
is appropriate if we are using de Rham theory with complex coefficients).
However, we shall not need this fact.
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5. Multiplicative Characteristic Classes

4.17. DEFINITION. A characteristic class for complex vector bundles,
say(C, is multiplicativeif

C(Va V) =C(V) CV),
for any vector bundle¥ andV’.

4.18. REMARK. Strictly speaking, a multiplicative characteristic class
is, like the Chern character, a whole family of characteristic classes, one for
each dimension of complex vector bundles.

We could equally well have definediditiveclasses, of which the Chern
character would be an example. However multiplicative classes arise more
frequently in the sequel. The great virtue of multiplicative (or additive)
classes, is that they may be determined by computation of a very limited set
of examples, as the following proposition shows.

4.19. RROPOSITION Two multiplicative characteristic classes are equal
if they are equal on the canonical line bundles over all G¢C™).

PrROOF To show that two classes are equal, it suffices to show that
they are equal on the universal bundles o8gfC*). But by the splitting
principle, as illustrated in the last section, it then suffices to show they are
equal for direct sums of line bundles. By multiplicativity we can then reduce
to single line bundles; and by universality it finally suffices to consider the
canonical line bundle oveg(C>). O

4.20. ROPOSITION LetF(x) be a formal power series ix. There is a
unigue multiplicative clas8r such that, on line bundles,

Cr(L) = F(er) € H* (M),
wheree; is the Euler class.

ProoOF On rankk bundles, lefCy be the characteristic class associated
to the formal power series

F(X]) X e X F(Xk) S H*(Gk((COO))

By the splitting principle, as illustrated in the previous section, this defines
a multiplicative characteristic class. 0

4.21. REMARK. A multiplicative clas<® such thaC(1) = 1, where the
first 1 denotes the trivial line bundle, is calledyanus Genera correspond
to formal power serieg(x) whose order zero term is
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4.22. EXAMPLE. Later on we shall consider the formal power series

X 1 1, T 4

T—ex TP T T

(As an easy exercise, show that no odd powers bfgher than the first
appear in this expansion. The coefficienkdffor evenn is B,,/n!, where

B, is then’th Bernoulli number.) The associated genus is calledTibaid

genusdenoted TodV).

4.23. EXERCISE. The inverse (with respect to the product in cohomol-
ogy) of the multiplicative class associated to the formal power séries
the multiplicative class associated to the formal power sériés

6. Chern Classes

It is a theorem of algebra that the algebra of symmetric formal power
series inxq, ..., X IS isomorphic to the algebra of all formal power series
in the indeterminates;, - - - , ck, via the map which sends; to the jth
elementary symmetric functioamx,, . .., x,. This is the degregcoefficient
in the ponnomiaI]_[‘f:1 (T4 x4).

4.24. DEFINITION. Thejth Chern clasgnot to be confused with the
Chern character) is the characteristic clegd’) associated to thgh ele-
mentary symmetric function in the ring of symmetric formal power series
iNX7,..., Xk

Thus, H*(G(C®)) is an algebra of formal power series in the Chern
classes.

4.25. EXERCISE. Thetotal Chern classs, by definition, the character-
istic class
c(V)=1+c1(V)+ca(V)+---.
Show thaitc(V) is the genus associated to the power series (in fact polyno-
mial) F(x) =1 + x.

It is traditional to expand characteristic classes in terms of the Chern
classes; the following exercises give some examples, which also hint at the
one useful reason for doing this.

4.26. EXERCISE On2-dimensional bundles the formula

X1 X2 B 1 1 , ,
e T ema = 1Tyl xa) S Bxixa b xixg) 4

gives

Todd V) =1+ %C](V) + 11—2(01(V)2 +co(V)) +---
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Show that this is valid for a bundle of any rank, and compute the next term
in the Todd genus, again for any rank.

4.27. EXERCISE. By expanding the power series for the exponential
function, show that

ch(V) =k+ci(V) +3(cf—2c0) + - .

An even more important reason for focusing on the Chern classes is that
they arentegral, which is to say that in fact they may be defined in integral
cohomology:

¢;(V) € HI(M, 7).

This stems ultimately from the fact that the Thom class of an oriented
vector bundle is integral too. As we shall see very briefly at the end of
this chapter, this integrality may be played of very effectively against other
integrality phenomena to introduce interesting arithmetic constraints into
manifold theory.

4.28. REMARK. The Chern classes also arise naturally in the computa-
tion of the cohomology ringt* (G (C>). By geometric arguments similar
to those used in the proof of Proposition 4.6 it is possible to construct a long
exact sequence
222

from which the ringdH* (G (C*)) can be computed by induction &nThe
map labelledcy is multiplication by thekth Chern class of the canonical
bundle onGy (C>).

7. Real Characteristic Classes

We now want to consider characteristic classegdaf vector bundles.
By working with de Rham cohomology we can avoid complicated issues
involving torsion in cohomology, and in so doing we can reduce, by the
process ofcomplexification characteristic class theory in the real case to
the complex case already considered.

Complexification (that is, the process of tensoring real vector spaces or
bundles byC) gives rise to an inclusion map

Gr(R%) = Gi(C™),

and therefore we get an induced map on cohomology frbiG, (C*>)),
which we have already computed, k(G (C>)). This map isnot an
isomorphism. However, we do have the following fact (which, once again,
we shall not prove):
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4.29. RROPOSITION Suppose thatt = 2m is even. Then the induced
map

H*(GK(COO)) - Csym[[xl)yh s »meym]] — H*(GK(ROO))

is surjective, and its kernel is the ideal generatedxhy- y1,...,xm +
Ym- O

4.30. REMARK. There is a similar proposition far = 2m + 1, but we
won't need it.

What underlies the proposition is that the composition of operations
{Real Bundles—— {Complex Bundles—— {Real Bundles

where the first arrow is complexification, whereas the second is “realifica-
tion,” the passage to the real bundle underlying a complex bundle, satisfies:
V — V @V, whereas the composition

{Complex Bundles—— {Real Bundles—— {Complex Bundles

satisifiesV — V @ V, and the operatio’V +— V corresponds to the
operationx; — —x; in H*(G(C*>)).

Since the quotienCq,mllx1,...,ymll/(x1 +U1,...,%m + ym) Ccan be
identified withCym[[x4, . .., x2]], follows that

(l) H*(GZm(Rzm)) = Csym[[X%) cee Xiq_]]

4.31. DEFINITION. The characteristic classes corresponding to the el-
ementary symmetric functions of?,...,x2 are called thePontrjagin
classew;.

4.32. REMARK. Tracing through the identifications we have made
above one sees that

p;i(V) = (—1)ey(V® C).
The Pontrjagin classes are thereforegral.

Let us now study multiplicative characteristic classes for even-dimensional
for real vector bundles (these are defined analogously to their complex
counterparts). For simplicity we shall consider even-dimensional bundles
only. One can argue just as in the complex case to see that:

4.33. LEMMA. There is a bijective correspondence between mutli-
plicative classeg for real vector bundles and formal power seriesxif
F(x?). O
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The correspondence goes like this: given a power séliel, find a
symmetric power seriggxq,yi, ..., Xm, Ym) Such that

~

F(x1, —X1,%2, =X2, - - -, Xm, —Xm) = F(x3)F(x3) - - F(x3,).

The power serie§ lies in H*(G(C>)) and hence defines a characteristic
classC of complex vector bundles. ¥ is a real vector bundle one defines
C(V) =C(Ve).

4.34. XAMPLE. The simplest such class is the one corresponding to
F(x?) = 1+ x?; it is thetotal Pontrjagin class

p(V) =1+p1(V) +pa(V) +---

4.35. EXAMPLE. The A genusand thel genus which appear promi-
nently in index theory, are the real genera associated to the formal power
series P

2 X 2 x
F) = G 2) )= anhx
respectively. (Thel genus is the characteristic class that appeared in
Hirzebruch’s signature theorem in Chapter 1).

4.36. EXERCISE. LetV be a real vector bundle. Prove th&'(V)2 =
ToddV & C).

and F(x
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CHAPTER 5

The Index Problem

In Chapter 2 we saw that a linear elliptic partial differential operator
on a smooth closed manifold has a Fredholm index,

Index D) € Z.
In Chapter 3 we saw that associatedXdhere is a symbol class
op € K(T*M).

In Chapter 4 we discussed the Chern character and characteristic classes of
vector bundles. In this chapter we shall give in outline form the solution of
the followingindex problemto compute IndefD) in terms of chop).

The answer to the problem is the famous Atiyah-Singer Index Theorem.

5.1. THEOREM (Atiyah and Singer).Let D be a linear elliptic partial
differential operatot on a smooth, closed even-dimensidmahnifold M,
and denote byop] € K(T*M) its symbol class. Then

Index D) = J chlop] Todd ™ ® C).
*M
Recall that the Todd class To@dd) of a complex vector bund[¥ is the
genus associated to the formal power sexigd — e ™).

5.2. REMARK. In many of the applications of the index theorem, the
integral overT*M is evaluated in two stages: first integrate over the fibers of
T*M and then integrate the result over the base spacé&or example, we
shall see that this is how the expressifn,a L(TM) arises in the Hirzebruch
signature theorem.

We are only considering first order operators in these notes, but the result applies
more generally.

2There is a version of the index theorem for operators on odd-dimensional manifolds
too, but to obtain interesting examples one must move outside the world of differential
operators to the larger class p$eudodifferentiabperators. That is the reason for the
restriction to even-dimensional manifolds here.
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1. The Analytic Index Map

The first and major step in solving the index problem is to recastdt in
theoretic terms, using the following result, which we will prove in Chapter
7.

5.3. THEOREM. For each smooth manifol¥ (compact or not), there
is a homomorphism

am: K(T*M) — K(pt)
that has the following property: M is compact, and ibp € K(T*M) is

the symbol class of an elliptic operatér on M, thenx(op) = Index D)
inK(pt) =Z.

5.4. REMARK. This theorem does not yet tell us everything we need to
know about theanalytic index mapx. Further necessary properties of the
construction will be described in Theorem 5.20.

Once we have the mag in hand, the index problem will amount to
filling in the blank in the following diagram:

K(T*M) —= K(pt)

o o

Heven( T* M) . Heven( pt)

We shall do so by reducing frorvl to the simpler manifoldR*, and in
order to successfully carry out this program we shall need to understand the
correspondence between constructions-tteory and their counterparts in
cohomology theory. The major part of the present chapter will be devoted
to this.

2. The Thom Homomorphism in K-Theory

Let V be a complex Hermitian vector bundle over a locally compact
base spack. We are going to constructEhom homomorphism

$: K(X) = K(V)

which is in many ways analogous to the Thom homomorphism in cohomol-
ogy described in the previous chapter.

Let A*V be the exterior algebra bundle ¥ which is aZ/2-graded
hermitian vector bundle ové (it is graded by its decomposition into forms
of even and odd degree). Lat V — X be the projection, and form the
pullbackr* A* V. Define an endomorphism

b: TNV TNV
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by the formula

b(v)s=vAs+v_s,
where the map — v _Is is the adjoint of the operatar— v /A s of exterior
multiplication byv. Obviouslyb is a self-adjoint, odd endomorphism. Its
most important property is this:

5.5. LEMMA. b(v)? = ||v||*- L.

PROOF We may assume that € V, has norm one. Choose an
orthonormal basiévy, ..., v} for V in whichv = v;. The exterior algebra
/\*Vy has then the orthonormal basis made up of all produeis- - -Av;,
wherei; < --- < i,. The operatov A _ satisfies

ViAvy A Avy if iy £
0 ifi, =1.

From this it follows that the exterior product operator is a partial isometry,
and that

VAV A Avy :{

0 if i, £ 1
Viz/\"'/\vip |f11 =1.

The lemma follows easily from this. O

Vvy A Ay, = {

It follows from the lemma that the endomorphignbehaves just like
the symbol of an elliptic operator. Indeed it is an elliptic element in the
sense of Definition 3.22. Thus determines &-theory clasgb] in K(V)
by the difference bundle construction.

5.6. DEFINITION. LetV be a complex Hermitian vector bundle over a
compact base spageand form the pullback™ A* V of the exterior algebra
bundle ofV to V. TheThom elemerit the clas$ € K(V) determined by
the elliptic endomorphisrb: 7 A* V — * A* V constructed above. The
Thom homomorphisiis the homomorphism

b: K(X) = K(V)

determined by the formulé(x) = x- by (recall thatk (V) is a module over
the ringK(X)).

If V is a complex vector bundle over a non-compact (but still locally
compact) bas¥, then the Thonelement, € K(V) is no longer defined.
However the Thomhomomorphismp: K(X) — K(V) may still be con-
structed. One way to do this is to u§é-algebra homomorphisms, as fol-
lows.

Suppose thaV is a complex vector bundle over the locally compact
spaceX, and denote byCy(V,End /A*V)) the C*-algebra of continuous
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sections, vanishing at infinity, the bundle End A* V) overV. This is
a Z/2-gradedC*-algebra, Morita equivalent t@y(V).2 Define a graded
x-homomorphism

d: 8 ® Co(X) = Co(V,EndA*V))

by the formula
$(f @ h)(v) = f(b(v))h(m(v)),
wherernt: V — X is the projection. According to the observations we made

in Chapter 3, this induces a homomorphigtfX) — K(V) of K-theory
groups, which we will again denote lay.

5.7. DEFINITION. The homomorphisng: K(X) — K(V) constructed
in the preceding paragraph is called Tf®om homomorphistior V.

5.8. EXERCISE. Show that ifX is compact then this is the same Thom
homomorphism as in Definition 5.6.

5.9. REMARK. Another way to construct the Thom homomorphism in
the non-compact case is to reduce to the compact case as follows. Write
X as a union of an increasing sequence (or net) of open sulgetgh
compact closure irX. LetY; be the compact space obtained by joining
together two copies oX; alongdX;. ThenX; may be viewed as an open
subset ofY; (embedX; in the first copy ofY;) and the bundl& overX may
be extended in the obvious wayYa There is a commuting diagram

0 — K(X;) ——= K(Y;) K(X;) —=0

oo b

0 —= K(Vlx) —= K(Vly,) —= K(VIx) —=0

using which we may defing: K(X;) — K(Vl|x,). SinceK(X) = Im K(X;)
andK(V) = h% K(Vlx;), and since the maps just constructed are compati-
ble with direct limits, we obtain a map: K(X) — K(V), as required.

5.10. EXERCISE. Check that this is consistent with our previous con-
struction of the Thom homomorphism in the non-compact case.

In ordinary cohomology, the Thom class had the crucial property that
its restriction to each fiber of an oriented vector bundle was a generator for
the cohomology (with compact supports) of that fiber. The corresponding
property inK-theory is just as important: it is the famous Bott periodicity
theorem.

3|t is the algebra of compact operators on the Hilbert modev, A*V).
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Let V be a finite-dimensional complex vector space. We may regard it
as a vector bundle over a point, and so associate to it a Thom class, which
we shall call in this special case tBett elementThus the Bott element is
the class irkK(V) associated to the endomorphidm A* V — A*V of the
trivial bundle overV with fiber A* V.

5.11. THEOREM(Bott Periodicity).LetV be a finite-dimensional, com-
plex Hermitian vector space. The abelian grokifV) is freely generated
by the Bott element.

This theorem is at the center of topologid&itheory. It allows us to
promote the functoK(X) to a fully fledged cohomology theory, with long
exact sequences, excision and so one. Using the Mayer-Vietoris argument
hinted at during our discussion of the Thom isomorphism in cohomology,
one can generalize Bott Periodicity to a Thom isomorphism theorefn in
theory:

5.12. THEOREM (Thom Isomorphism)Let V be a complex Hermitian
vector bundle over a locally compact spaeThe Thom homomorphism

¢: K(X) = K(V)
is an isomorphism.

We shall not need th&-theory Thom Isomorphism Theorem in these
notes, but the Bott Periodicity Theorem is a central component oKthe
theory proof of the index theorem. We shall prove it in Chapter 8.

3. Comparison of Thom Homomorphisms

The underlying real vector space of any complex vector space is canon-
ically oriented: pick a complex basis, ..., v, then decree that the real
basis

VI, V1, ..., Vi, TV
is oriented. Thus the real bundle underlying every complex vector bundle
V is oriented, and we can therefore consider the Thom homomorphism in
cohomologyby: H®® M) — H:H2%(V). In this section we shall compare
the Thom homomorphisms ik-theory and in cohomology.

Let V be ak-dimensional, smooth, complex vector bundle over a
smooth manifoldM. Does the diagram

¢

K(M)

o o

Heven(M) " Hiven(v)
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which relates the Thom homomorphismKitheory and cohomology com-
mute? Assume for a moment thettis compact. Then since both Thom ho-
momorphisms are module maps (o¥&M ) andH®*"(M)), and the Chern
character is a module homomorphism, the question is equivalent to asking
if the Chern character of the-theory Thom clas® is the cohomology
classuy,.

5.13. REMARK. Here we have used the Chern character for a non-
compact space, namely. Butitis easy to extend the definition of the Chern
character from compact to non-compact (but locally compact) spaces, by
way of the following diagram which relates such a sp&de its one-point
compactificatiorX":

0 — K(X) K(X™) K(pt) ——0

e

O Hgven(x) Heven(x+) R Heven( pt) O

The fact that ch is a module homomorphism in this context follows from
the fact that it is a ring homomorphism fr".

In generalthe answer to our question is nAccording to the cohomol-
ogy Thom isomorphism theorerhl"*V) is a free module oved®*(X),
generated by the cohomology Thom class We can therefore write

ch(by) =T(V) - uy,

for some unique clasgV) € H®*(X). The class(V) is not in general.

But it is functorial inV, in the sense th&tt(V) = t(f*V), for every map

f: Mj — M, (because the Thom classes and the Chern character are func-
torial). Moreover the following proposition shows thetv) is multiplica-

tive, and therefore, according to the previous chapter, quite computable.

5.14. RROPOSITION LetV be ak-dimensional, smooth, complex vector
bundle over a smooth, closed manifald. Define a cohomology class
(V) € H®*(M) by the formula

ch(by)) = (V) - uy,

whereby is theK-theory Thom class andy, € H®*(V) is the cohomology
Thom class. Then(V) is a multiplicative characteristic class of complex
vector bundles.

This is proved using the following multiplicative property of Thom
classes. Suppose thét andV; are two complex vector bundles overWe
can viewV; as a vector bundle over the total spac&/pby pulling back to
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V;. The total space of this pullback bundle is equal to the total space of the
bundleV; & V; overX. We can then compose Thom homomorphisms:

¢

K(X) K(V1) K(Vi @ V2),
and of course we can do the same thing in cohomology.

5.15. LEMMA. Suppose tha¥; andV, are two complex vector bundles
over M. We can view/; as a vector bundle over the total space\gfby
pulling back toV;. The compositions of Thom homomorphisms

d)ﬂ*Vz

bv

K(M) K(V7) K(Vi & V2),

and

II)T[*VZ

Heven( M) by

HEeTV;) HEV; & V),

are equal to the Thom homomorphismKktheory and cohomology respec-
tively, for the complex vector bundi§ & V, over M.

We shall postpone the proof for a moment, and proceed with a proof of
multiplicativity of T(V), followed by a computation of this class.

PROOF OFPROPOSITIONS.14. The basic ideais very simple: we want
to show that

ch(dv,av, (x)) = T(VI)T(V2)bviev, (%),
for every X € K(X). We obtain this formula by factoring the Thom
homomorphismsby, ey, andiy, v, using Lemma 5.15. In the following
computation we shall omit the pullback symbdlfrom V,. Here we go:
chidv,ev, (x)) = ch(dv, (dv, ()
= T(V2)hy, (ch(dy, (%)) = T(V2)y, (T(Vi)by, (ch(x))).
Using the fact thatp, is anH®**'(M) module map, and using the lemma
again, we get
T(V2) by, (T(Vi)by, (ch(x)))
= 1(V2)t(Vi)y, (B, (ch(x))) = T(V2)T(Vi)dv,ev, (Ch(x)),
as required. There is a small detail here: the Thom homomorplignis
really Y .v, : K(Vq) — K(V; @ V2, and we need to know the formula
ch(drv, (y)) = T(V2) v, (Chly)),

for everyy € H®®N(V;). (The classt(V;) is fits, by definition, into the
analogous formula for the bundlé over M, rather than the pullback af,
overV;.) We leave this small issue to the reader as an exercise. [
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As a result of this calculation we now know that the Thom homomor-
phisms inK-theory and cohomology are related by

2) chi¢(x)) = (V) - (chx)

wheret is a certain multiplicative characteristic class. But from Proposi-
tion 4.20 we know that such classes are determined simply by formal power
series in one variable.

5.16. THEOREM. The multiplicative class above is associated to the
power serieg1 — e*)/x.

PROOF The formal power series associated to a multiplicative charac-
teristic class just tells us what that class does to the canonical line bundle
overBU(1) = CP*. Let us calculate irCPM for largeN, letx = c¢;(L)
be the generator of the cohomology ring, andyet H®*(CPN) be the
cohomology clas$l — e*)/x.

We want to compare the two elements(ieh) andy - up in HE®(L).
Consider the map: M — L which includesM as the zero section df.
Restricting the endomorphism representing the Thom clagstireory to
the zero section, we see thatb; ) = 1 — [L] € K(M), and therefore

(ch(br)) =ch(1 —[L]) =1—e¢".
On the other hand, we pointed out in Chapter 4 that
Clug) =x;

restricting the Thom class df in cohomology gives the generator of the
cohomology ring ofCP™. Therefore

v(ch(br)) =y - ur).

But under the Thom isomorphishtf**\(L) = H®*YM) the restriction map
corresponds to multiplication by, which is injective except in the highest
non-zero degree of cohomology. Thus

ch(by) =y -w

in all degrees except possibly H?™N(CPN). LettingN — oo we complete
the proof. O

5.17. REMARK. As a very special case, of the above calculation, we see
that for any complex vector spa®® of dimensionk,

J ch(b) = (—~1)%,
w

whereb denotes the Bott generator. (Considléras a trivial vector bundle
over a point.)
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5.18. EXERCISE. ltis clear that the multiplicative characteristic class
(associated toe* — 1)/x) is closely related to the Todd genus (associated
to x/(1 — e ™)). The actual relation, for &dimensional complex vector
bundle, is .

G
ToddV
where the bar denotes complex conjugation. Prove this.

PrROOF OFLEMMA 5.15. LetS; = A*V; andS, = A*V,, and observe
that

S,®S1 = A (Vad Vy).
The Thom homomorphisip: K(V;) — K(V; & V;) is induced from the
s-homomorphismp: 8 @ Co(V;) — Co( Vo, ENdS:1RS5)), but it is also
induced from the--homomorphism

$: SBCo(Vy, EndS1)) — Co(Va @ Vi, ENd(S,3S1).
given by the formula
G2(foh) (v, vi) = f(c2(v2))@h(v1).
The composition

—

Adv, bv,

8§ ® Co(X)

8®Co(V1,End(Sy)) Co(V2 @ Vi, End(S,®S1)

is preciselydv, g v, - O

5.19. REMARK. TopologicalK-theory is a ‘generalized cohomology’
theory, and in particular it igontravariantlyfunctorial: if f: X — Y'is
a map, there is an induced homomorphismK(Y) — K(X). If we are
working with non-compact spaces we need to add an extra condition whose
purpose is to ensure th&t mapsCy(Y) to Co(X); the most convenient
such condition is to require thatshould beproper (the inverse image of a
compact set is compact).

Nevertheless it is the case that certaomnproper mapsgy also induce
homomorphisms oik-theory, not contravariantly butovariantly, so that
g: X — Yinducesg, : K(X) — K(Y). A simple example of such a ‘wrong
way’ map occurs wheK is an open subset df, andg is the inclusion. Then
any element of°,(X) extends by zero to an element@§(Y), so we get a
homomorphisnCy(X) — Co(Y) andg is the induced map oK-theory.

It is convenient to consider the Thom homomorphism to be a ‘wrong
way’ map also, induced by the inclusion of the zero-sectidn— V.
Lemma 5.15 then shows that these ‘wrong way maps’ are functorial.

There are functorial ‘wrong way’ maps in (compactly supported) coho-
mology also. However — and this is the main point of this section — the
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Chern character isot a natural transformation for this wrong way functo-
riality. We have explicitly computed the ‘naturality defect’ in terms of the
classt(V).

4. Axioms for the Analytic Index Map

Let us now return to the index problem, as formulated in Section 1.
There we explained that we are going construct, for each manifgld
homomorphismx,,: K(TM) — Z which implements the analytic index, in
the sense that

amlopl = Index D)

for any elliptic operatoD.

Once we have the homomorphisky, to hand, the proof of the index
theorem will require us to identify it in cohomological terms. We shall
do this by showing thad,, satisfies the hypotheses of the theorem below,
whose conclusion is the ‘right hand side’ of the Index Theorem.

5.20. THEOREM. Assume that to every manifoM there is associated
a homomorphisnxy,: K(T*M) — Z with the following properties:
(i) If M, is embedded as an open subsebbf then the diagram

DC)\/[1

K(T*M,)

Z

K(T*M,;)

Oq\/[2

commutes.

(ii) If Visareal vector bundle of dimensid&roverM, and ifp: K(T*M) —
K(T*V) denotes the Thom homomorphfsithen the following dia-
gram commutes:

K(T*M) —2 z

K(T*V)

Z.

xv

4This requires us to givE*V the structure of a complex vector bundle o¥véM. The
way to do this is described in the remark following the statement of the theorem.
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(i) If b € K(T*R") is the Bott elemeptthenog- (b) = 1.
Then

3) do(x) = (—1)dmV j Todd T™ ® C) - chix),

*M

for everyM and everyx € K(T*M).

5.21. REMARK. We need to make various conventions about complex
structures, orientations, and so on. We need to knowlthdts naturally a
complexvector bundle ovel*M. By choosing Euclidean metrics one can
identify TM andT*M as real vector bundles, and similarly one can identify
TV andT*V. Thus it is enough to exhibifV as a complex vector bundle
over TM.. But in fact

TV =1 (Ve V), (wherem: TM — M),

and we can identifW & V=V ® C.

The final formula 3 requires that we oriefitM. This we do as
follows. Choose local coordinatégs,,...,x,} on M and corresponding
coordinatesy, ..., , &, in the fibers ofT*M. Then we deem that the list
x1,&1,...,%n, &n IS an oriented local coordinate systemiM.

5.22. REMARK. Note that axioms (i) and (ii) above simply say thais
natural with respect to the two sorts of ‘wrong way maps’ that we identified
in Remark 5.19.

PROOF OFTHEOREM5.20. We are going to approach this proof by
easy stages, so consider first the case of Euclidean dpacand the
associated homomorphism

ogn : K(TR™) — K(pt).

According to the normalization axiom (iiixg~ (b) = 1 € K(pt). On the
other hand, on the right-hand side of formula 3 the Todd genus is equal to 1
(because the tangent bundleR8 is trivial) and so we are required simply

to integrate the Chern character of the Bott class. By remark 5.17, the result
is (—1)™. So formula 3 is correct ob € K(T*R™). But, according to

the Bott Periodicity Theorem 5.11 (which is here used in a crucial way),
the elemenb generates all oK(T*R™). Thus the formula is correct on
every element oK(T*R™). Now using axiom (i), it is easy to show that the
formula is correct on any open subd¢tof R™. (Of course, for such &l

the tangent bundle is still trivial, so that the Todd genus is again 1 and the
formula readsxy(x) = (—1)™ [1., ch(x).)

SWe consideM*R™ as a complex vector space via the formulax, &) = (—&,x),
whereX € R™ and¢ € TR™ =R"
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The Tubular Neighborhood Theorem of differential topology tells us
that, given any manifold\, there is a real vector bundl¢ of some
dimensionk over M such that the total space dfis diffeomorphic to an
open subset aR™. Thus the formula 3 holds fov and we will finish the
proof by deducing the formula fowl from that forV, using of course the
axiom (ii) which refers to the Thom isomorphism.

By that axiom we obtain, fox € K(T*M),

am(x) = av(d(x)) = (—U““‘J ch(¢(x)),
*V
using formula 3 forV. On the right hand side of this equation apply
Proposition 5.14 to get

dn(x) = (—1)“+'<J (Ve Tichix)

whereT is the genus corresponding to the power sefies e*)/x. (We
are using here the fact thatV, as a complex vector bundle ovErM, is
isomorphic tort*(V @ C).) To finish the proof, note that the direct sum
V @ TM is isomorphic to a trivial bundle (of dimension+ k). Thus

(Ve C) = (—1)/ToddV & C) = (—1)*Todd TM & C)

using Exercise 5.18 and the fact that the complexification of a real vector
bundle is isomorphic to its conjugate. Substituting this into the previously
displayed equation we obtain the result. O

5. The Signature Operator

In this section we are going to outline an important application of the
Hirzebruch signature theorem to the construction oéxotic sphereThis
is due to Milnor (1957) and it highlighted the importance of playing off
against one another two sources of ‘integrality’ in the signature theorem: the
fact the the signature (or more generally the index of an elliptic operator) is
an integer, and the fact that the Pontrjagin classes are integral conomology
classes. It is interesting that moncommutative geometry only the first
source of integrality (index theory) is available to us.

The geometric input that is needed is a construction of manifolds with
prescribed intersection form (remember that thiersection formis the
form defined by the cup-product on the middle-dimensional cohomology).
We will be considering manifold$V with boundary, whose boundary is
topologically a sphere; if you don’t want to work out a general theory of
intersection forms for manifolds with boundary, jafinethe intersection
form of such a manifold to be the intersection form of the topological
manifold obtained by capping off the boundary with a disk.
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A quadratic form over the integers is said todxeenif it can be repre-
sented by a matrix all of whose diagonal entries are evenuairdodular
if its determinant is+ 1. Milnor gave an explicit construction, sometimes
called ‘plumbing’, which will produce a smoot with prescribed even
intersection form; unimodularity implies that the boundary is topologically
a sphere. In particular

5.23. THEOREM (Milnor Plumbing). There is a smooth 8-dimensional
manifoldW with boundary, such that

e ~ = 0W is homeomorphic t&87;

e W is parallelizable (its tangent bundle is trivial);
e The intersection form dfV is theEg matrix,

r2 0 -1 0 0 0 0 07
o 2 0 —-1 0 0 0 0
-1 0 2 =1 0 0 0 O
E_|0 =1 -1 2 -1 .0 o0 0
871 0 0 o —1 2 =1 0 0
o 0 o 0 -1 2 =1 0
o 0 o0 0 o0 -1 —1
o o o o o o0 -1 2|

The Eg form is even, unimodular, armgbsitive definiteit is the ‘small-
est’ integral quadratic form with these properties.

We are going to show that is not diffeomorphido S”: it is an ‘exotic
sphere’. For, suppose that it were. Then we could form a smooth, closed
8-manifold M by attaching an 8-disk toW. Applying the Hirzebruch
signature theorem we get

SignM) = (L(TM), [M]);
that is

1
8= 4—5(7]92 +p7)

where the Pontrjagin class@s andp, are (implicitly) evaluated on the
fundamental class aM. Recall, however, that the tangent bundleVuf
is trivial. ThusTM is obtained by ‘clutching’ two trivial bundles over the
7-sphere, and in such circumstances it is easy to see that all but the highest
Pontrjagin classes must vanish. We concludephat 0 so
56

P2= 45

which contradicts the integrality of the Pontrjagin classes.
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CHAPTER 6

The Dirac Operator

Before commencing the proof of the index theorem are going to work
out the especially important example of tBérac operator. Atiyah and
Singer were developed (or rediscovered) the Dirac operator to serve as a
counterpart in the realm of real manifolds, of the Dolbeault operator in
complex manifold theory. Accordingly, we shall take a quick look at the
Dobeault operator first.

1. The Dolbeault Operator

In this section we shall assume that the reader has some very basic
familiarity with complex manifold theory. See for instance []. et be
a compactomplex hermitian manifoldf complex dimensiotk, and hence
real dimensior2k (see for example [] for an introductory account). The
space of ordinaryi-forms onM (with complex coefficients) decomposes
as a direct sum
A'M =AM @& A'M,

with the first summand generated locally by the and the second by the
dz;. The de Rham differential decomposes as a direct sum

d=0+93: Q°M) = A2™M @ AT°M.

There is a corresponding decomposition of differential forms and the de
Rham operator in higher degrees, so that for example

/\TM - @p+q:‘r /\P,q M.

The space/A>9 M is isomorphic to the space of smooth sections of the
bundle A9 TM, where here we regartM as a complex vector bundle to
define the exterior power.
We can consider thBolbeault complex
0%(M) —2- Q%1(M) £ - - —= QM)
and associateBolbeault operatoiD = 9+ 9 . This is an elliptic operator,

and in fact its symbol is a familiar object. Namely, after we use the
hermitian metric to identifyT*M and TM as smooth manifolds (not as
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complex vector bundles) the symbol Bfcan be identified with the Thom
element for the pullback of\* TM to TM:

op=b: A" TM — 7 A* TM.

Because of this we can readily compute the contribution of its Chern char-
acter to the index formula. We get

Index D) :J T(TM)ut-pm Todd TecM)
*M

where the overall sigfi—1)™ has been dropped sineeis even. NowM,
being a complex manifold, is naturally oriented, and if we oriEm using
local coordinatexy, ..., xn, &1,. .., &0, Wherex,, ..., x, are oriented lo-
cal coordinates oM, then we can compute the integral by first integrating
along the fibers of *M. We get

J T(TM)urpm Todd TcM) :J T(TM) Todd TcM).
*M M

However this new orientation ofi* M differs from the orientation provided
in Remark 5.21 by the sigh—1)w. Bearing this in mind, and since
(_1)@ = (—1)¥, we obtain the index formula

Index D) = (—1)kJ T(TM) Todd(TcM).
M

Finally, the bundleTcM is isomorphic, as a complex vector bundle, to
TM & TM (the overline denotes the complex conjugate bundle). As a result

Todd(TeM) = Todd(TM) - Todd(TM).

Now using exercise 5.18 again, we obtain thiezebruch Riemann-Roch
formula

Index D) =J Todd TM).
M

6.1. EXERCISE (For those who know some complex manifold theory.)
Check Hirzebruch’s formula faCP'. For extra credit, do the same f6P™
(in all cases you should gét=1).

Let M be an oriented, Riemannian manifold. The signature operator
D on M was discussed in Lecture 1. Its square is the Laplace operator on
differential forms. If we square its symbolwe find the key property that

o(x,&)* = [&]*- 1,

which we used to infer thdD is elliptic.
DRAFT 80 August 17, 2004



DRAFT August 17, 2004

Formulas of this type are common through&utheory and index the-
ory. For example we encountered essentially the same identity in our treat-
ment of the Bott element and the Thom homomorphism. We saw in Exam-
ple ??that the signature operator is not the only operator whose symbol has
this feature that it is the square root of the functj@d|? - 1. In this lecture
we shall define and study the Dirac operator, which is in many respects the
most important and most basic example of such an operator.

2. Clifford Symbols

6.2. DEFINITION. LetV be a euclidean vector bundle over some base
X. A (complex)Clifford symbolassociated t& consists of the following:

() A Z/2-graded hermitian vector bundfeoverX;
(i) An R-linear vector bundle map

c:V = EndS)

whose values are all odd-graded, self-adjoint endomorphisnss of
which satisfies the relation

c(v)? = |v[|*- 1,
forallv e V.

6.3. REMARK. We can also define @al Clifford symbol in the same
way, by replacing the hermitian vector bundlewith a euclidean vector
bundle. We will take a quick look at these at the end of the lecture.

We shall be most interested in the case whéie the cotangent bundle
of a Riemannian manifold, in which case we can view a Clifford symbol as
the symbol of some elliptic operator avi. Notice that a Clifford symbol
defines an elliptic endomorphism of the pullbaci§ of S overV, and thus
defines &-theory clasdc] € K(V) by the difference bundle construction
of 3.25.

6.4. EXAMPLE. Suppose thal is a complex hermitian bundle, and let
S = A*V. The formula

bviw=vAw+v_w

(which we used to define the Thom classKistheory) is an example of a
Clifford symbol.

To put it another way, Clifford symbols generalize the Thom element
construction that we introduced in the previous lecture. The name “Clifford
symbol” is borrowed from the following construction in algebra:
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6.5. DEFINITION. LetV be a finite-dimensional euclidean vector space.
Thecomplex Clifford algebr& (V) is the complex, associative algebra with
unit which is characterized up to canonical isomorphism by the following
properties:

(i) There is areal linear mag: V — C(V), such that(v?) = ||v||*1, for
allveV.

(i) If A is any associative algebra with unit equipped with a real linear
mapca: V — A such that(v?) = ||v||?], for all v € V, then there is
a unique algebra homomorphigiitV) — A such that the diagram

N

C(V)

A
commutes

It is easy to check that ifq,..., vy is a basis forV then the set of
productsc(vy, ) - - - c(vy, ), wherei; < --- < i, is a linear basis foC(V).
ThusC(V) is a finite-dimensional algebra, with

dim(C(V)) = 28mV),

The algebré(V) is Z/2-graded by assigning the monomaal;, ) - - - c(vy,)
even or odd degree, according@ass even or odd. A little less obvious is
the following important fact:

6.6. RROPOSITION If V has even dimensiatk, thenC(V) is isomor-
phic to the algebra o2 x 2* complex matrices.

PROOF (SKETCHEXERCISE). We shall construct an explicit represen-
tation fromC(V) into the matrix algebra, and proving using a linear basis
for C(V) that it is injective (and hence surjective too, by dimension count-
ing). To do this, observe that if;, ..., v, is an orthonormal basis fdr,
and if matrices,, . .., Ey are given such that

Ef=1 and EE;+EE =0 when i#]
then the formula
clayvi+---+anvy) = aiEy + -+ anky

defines a representation of the Clifford algebra. For examplefl, then
we can define

c(v1):((]) é) and c(vz):(_oi 5)

We leave it to the reader to work out suitable formulas for gerergFor
k = 2 you will find them in Dirac’s book on quantum mechanics.) 0O
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6.7. EXERCISE We can make this argument a little slicker if we are
prepared to use the notion gfaded tensor produgctwhich we already
discussed in Lecture 3 in connection witti-algebras. For it is not hard
to see from the universal property tiatvV & W) = C(V)QC(W). On the
other hand, we have explicitly computed above that it 2-dimensional,
C(V) is isomorphic to the graded algebra of endomorphisms of the graded
vector spacél = C @ C. Therefore we obtain

C(C*) = C(C?)®* = End H®*) = EndC* ' & C% ') = M (C).

This argument gives us the grading andlgebra structure too (see the next
remark).

6.8. EXERCISE Following up on the previous exercise, suppose that
¢ andc; are Clifford symbols for bundle®; andV;, acting onS; andS,
respectively. Show that thesharp product

cifc: = 1®1 4 1®¢;

is a Clifford symbol forV; & V, acting onS;®S,. For extra credit, show
that the associated-theory classes satisfy

[cifca] = [cq] - [ea],
and thus that de,fic;) = ch(cq) ch(c,).

6.9. REMARK. Itis easy to check that¥ is any euclidean vector space,
then there is a unique-algebra structure o (V) for whichc(v)* = c(v),
for all v. If dim(V) = 2k thenC(V) is x-isomorphic to the matrix algebra
M (C), with its usualx-algebra structure of conjugate transpose. In
addition, we can find a grading preservirgsomorphism, wheré/,« (C)
is graded as an algebra of blogkx 2 matrices. We shall use these
refinements of Proposition 6.6 at one or two points below.

6.10. REMARK. Proposition 6.6 is not true for odd-dimensioivgland
this is the reason that we shall restrict to even-dimensigrfal the rest of
this lecture. There are odd-dimensional counterparts to the proposition and
to most of what follows, but they are rather more complicated and will not
be discussed in these notes.

To return to our notion of Clifford symbol, from the vector bunieve
can form the bundI€(V) of Clifford algebras, and it is clear that a Clifford
symbol is the same thing as a homomorphism of bundles ftoM) into
EndS), which is fiberwise a homomorphism @f/2-graded algebras.
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3. Dirac Symbols

6.11. DEFINITION. Let V be a euclidean vector bundle efrendi-
mensionm = 2k. A Dirac symbolassociated td/ is a Clifford symbol
c: V — EndS) such that the vector spacgs have (complex) dimension
2k,

The condition on dirntS) specifies the minimal possible dimension of
S, in view of the following result:

6.12. LEMMA. If c: V — ENndS) is a Clifford symbol associated to a
euclidean vector bundle, and dim(V) = 2k, then the fiber dimension of
S is a multiple of2*,

PROOF The fibers of are representation spaces of the Clifford algebra
of 2k-dimensional euclidean vector spaces. Since the Clifford algebras are
all isomorphic to the matrix algebrsl ,« (C), all such representations are
multiples of the standard representation, of dimengion O

Why the interest in Dirac symbols? They play the same roke-itheory
that orientations of vector bundles play in cohomology theory. It can be
shown that ifV is an even-dimensional euclidean vector bundle &yemnd
if c: V. — EndS) is a Dirac symbol, then th&-theory class € K(V)
freely generate& (V) as a module oveK(M). Thus the existence of a
Dirac symbol is a sufficient (and as it happens necessary) condition for the
formulation of a Thom isomorphism theoremKntheory.

Not every vector bundl® admits a Dirac symbol. At the very lea3f,
must be orientable:

6.13. LEMMA. If V is even-dimensional and i: V — EndS) is a
Dirac symbol thenV is oriented by the following requirement: a local
orthonormal framev, ..., vy is oriented if and only if the operator

Y :iko'(vl)"'G(VZk)

is the grading operator of the bundfe(in other wordsy is + I on the even
part of S and — I on the odd part).

PROOF. The elementy has the following propertiesy = v*; y? = 1;
andy anticommutes with everg(v). Using the explicit basis fo€(V)
given earlier, it is not hard to check that there are precisely two elements in
any Clifford algebra with these properties, which differ from one another
by a sign only. Under the isomorphism of bundéesC(V) — End(S), one
of + vy corresponds to the grading operator and one to its negative (since
the grading operator and its negative have the same properties). We can
therefore specify a family of consistent orientations in the fiber¥ dify
requiring that in every fibery corresponds to the grading operator. [
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6.14. REMARK. From now on we shall assume thatis oriented and
that the orientation is compatible with the gradingSQras specified in the
lemma.

Not every orientable vector bundle admits a Dirac symbol; for instance,
the tangent bundle to the orientable manif@t(3)/SO(3) does not.
There is however a simple sufficient conditionMfis (the underlying real
vector bundle of) a complex hermitian bundle, it admits a Dirac symbol,
namely the one given in Example 6.4.

We shall say a bit more later about conditions necessary to guarantee
the existence of Dirac symbols. But let us note now that Dirac symbols are
not necessarily unique. Indeedcif V. — EndS) is a Dirac symbol and if
L is a complex line bundle, then the object

c®i(Lj:VeEnd(S®L)

is also a Dirac symbol.

6.15. LEMMA. Letcy: V — EndS;) andc,: V — ENndS;) be
two Dirac symbols associated to an even-dimensional, oriented euclidean
vector bundléV. The formula

L= HOIT](S] , Sz)
A\

defines a line bundle, for whicty: V. — EndS;) is isomorphic to the
tensor product

c1® Ig V — EndS;®L).

PrROOF By Homy(S;,S,) we mean the vector bundle whose fibers are
the complex linear maps from the fibers $f to the fibers ofS, which
are of ever¥Z/2-grading degree and which commute with the action of the
fibers of V. Neglecting the orientation condition, the fact that the action
of the fiberV, corresponds to an irreducible representation of the Clifford
algebraC(V,) proves that the fibers of HoyiS,, S,) are one-dimensional
vector spaces (this is Schur's Lemma in representation theory). The fact
that the elements of HoptS, S,) are grading-preserving follows from our
orientation assumption. The isomorphism in the statement of the lemma
comes from the canonical evaluation map

S$1® Hgm(shsz) — Sz,
so the proof of the lemma is complete. O

1The proof of this result is out of reach using the techniques we have developed so far.
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4. Chern Character of Dirac Symbols

If c: V — ENndS) is a Dirac symbol then so is the adjoint map
c¢*: V — EndS*). The construction in Lemma 6.15 therefore allows us
to associate to a single Dirac symholV — End(S) a line bundleE. by
the formula

E. = Hom(S*,S).
Y

Note that by the canonical evaluation map given in the proof of Lemma 6.15,
E.®S* =8S.

6.16. EXERCISE Show that ifL is an auxiliary line bundle, and if
oL=¢Cc® id[_, thenEcL ZE.®L®L.

6.17. EXERCISE. Show that ifV is ann-dimensional complex vector
bundle and ifb: V — End A*V) is the Thom element, viewed as a Dirac
symbol, thert, = A™V. (This is a little tricky.)

Our aim is to prove the following result:

6.18. RROPOSITION LetV be an euclidean vector bundle of ragk
over a compact manifolM. If c: V — End(S) is a Dirac symbol, then

ch(c) = (—1)*/eh(Ed) v/a(V ® Cluy € H' (W)

whereu, € H*(V) is the cohomology Thom class ®f and T is the
multiplicative characteristic class of complex vector bundles associated to
the power serie§l — e*)/x.

The formula requires a little bit of interpretation. Note that the classes
T(V®C) and cHE.) both are elements of the graded ridg(M ) and have
degree zero term equal to 1. Square roots of such elements (in any graded
ring) may be defined by the usual binomial formula

(T+x)2 _1—|—§x—gx + -
In fact, sincet. is a line bundle, its Chern character is simply where

x = c1(E.) is the Chern class df.. The square root of this Chern character
is of course just*/?.

PROOF OF THEPROPOSITION(SKETCH). Consider the euclidean vec-
tor bundleV & V. There ardwo natural ways to construct a Dirac symbol
on this bundle:

(i) We may form the product symbrattc of two copies of the given Dirac
symboilc;
2See Exercise 6.8.
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(ii) Ignoring the given symbot entirely, we may considev & V as the
underlying real vector bundle of the complex vector burdie C,
and then form the associated Dirac symbol according to example 6.4.

Call these Dirac symbols;, c;, acting onS;, S, respectively. According to
Lemma 6.15 there is aline bundlesuch thaS; = S;® Landc; = ¢ ® 1.
What is this line bundle? We shall see that it is simp}y the dual of the
canonical line bundle associated to the original Dirac symbol.

Once we have this information we may proceed as follows. cLet
K(V) be theK-theory class of the Dirac symbot V — End(S), and let
a(c) be the cohomology class determined by the formula

ch(c) = a(V)uy € H* (V).

By following the same line of reasoning that we used in the last lecture,
one can show thai(c) is multiplicative, in the sense that(c’'ic”) =
a(c’) - a(c”). In particular we have

ch(ci) = a(c)? - uvee € H(V ® C).

On the other handg; is just theK-theory Thom class associated to the
complex vector bundl&/ ® C, so according to Theorem 5.16 from the
previous lecture,

ch(cz) = 1(V ® Cluvgc.
UsingS,; = S; ® EZ, we obtain
T(V® C) = a(c)?ch(E}),

and so

a(c) = £v/Cch(E)/T(V® C).

This is what we want, except that we have to check that the sign is correct.
To do this we just need to work out the degree zero pas{ of in HO(M),

and to do this we can restrict the bundfeto a single point inM.. Here,

over a single point, we can giv¥ a complex structure, and since all line
bundles over a point are trivial, the restriction of the Dirac symbol to our
point is isomorphic to the Bott element f¥rover this point (considered as

a complex vector space). The computations in the previous lecture now tell
us that the correct sign is-1)* (wherek is the complex dimension of the
restrictedV).

It remains to explain why it is th&f, = S; ® EZ. Begin by considering
C(V), the bundle of Clifford algebras ovey. Like any algebra, the
Clifford algebra is of course Aimoduleover itself, using the actions of
left and right multiplication. These actions commute: but we can make

DRAFT 87 August 17, 2004



DRAFT August 17, 2004

them anticommute instead by introducing a small twist from the grading
automorphismu:

L(u) - x = ux, R(v) - x = ax(x)v.

Now L and R define anticommuting Clifford symbols fdv, so the pair
(L, R) defines a Clifford symbol fov & V, which (by dimension counting)
must in fact be a Dirac symbol. In fact, this Dirac symbol is a familiar
one: there is a canonical isomorphism of vector spaces om) to the
complexified exterior algebra &f, and under this isomorphism the symbol
(L, R) just passes to the symbol of Example 6.4. In other words, the bundle
C(V), considered as a Dirac bundle owérb V by the actionL, R), just is
S.

But we can apply our knowledge of the representation theory of the
Clifford algebra to understan@ (V). We know that the Clifford algebra
is a matrix algebra over its spin space: thUsy) = EndS) = $* ® S.
The effect of the ‘twist’ that we introduced above to make the left and right
actions anticommute is to replace the ordinary tensor product here by a
gradedtensor product, so that

S, = S$*®S.
On the other hand,

S; = S®S,
so the desired result, = S; ® EZ now follows from the definition of the
bundleE.. O

6.19. DEFINITION. We shall call a (symmetric, first-order) differential
operator aDirac operator if its symbol is a Dirac symbol associated to
T*M.

A Dirac operator is necessarily elliptic. Our calculation of the Chern
character of Dirac symbols allows us to write out the index formula for
Dirac operators in fairly explicit terms.

6.20. THEOREM. Let D be a Dirac operator associated to a Dirac
symbolo on a compact oriented (even-dimensional) manifeldThen

Index(D) :J \/ch(E;) A(TM).
M

where the genuﬁ(TM) is defined in Example 4.35. O

PrRooOF We will deduce this from the general form of the Index Theo-
rem 5.1. The idea is the same as in Exanfiile
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Substituting the formula of Proposition 6.18, which gives the Chern
character of the symbol, into the index theorem 5.1, we get

Index D) = J V/Ch(Eo)v/T(TM @ C) Todd TM ® C)upwm.
™M

Now the clasg is just the inverse of the Todd class (see Exercise 5.18; there
are no signs because we are in the even-dimensional case). Using this, and
integrating over the fiber, we get

Index D) = J V/Ch(E4)/ToddTM @ C).
M

But according to exercise 4.36, tbﬁegenus is the square root of the Todd
genus of the complexification. This completes the proof. O

6.21. EXAMPLE. If M is a complex manifold then the symbol of the
Dolbeault operatorD = 9 + 9* acting onS = A>*TAM = A*TM is a
Dirac symbol. The line bundlgs is the dual of thecanonical line bundle
Esp, = A™MTM (we form the highest exterior power using the complex
structure onfM).

5. Spirf-Structures and Principal Bundles

This short section is optional, and aimed at people with some familiarity
with principal bundle theory.

6.22. DEFINITION. A Spin°-structureon a Riemannian manifold is an
isomorphism class of Dirac symbols associated*tv1.

Let us discuss in more detail the problem of determining whether or not
an oriented Riemannian manifold admits a Sgtructure.
Consider the complex Clifford algebra®f*. It is isomorphic to matrix
algebraM , (C):
C!Ciﬁ (R%) = M (C).

Let us fix such an isomorphism. The gro§®(2k) acts onR%** and
therefore on Cliff.(R%*), and therefore oM« (C) via the given, fixed,
isomorphism. Since every automorphismMfx (C) is induced from an
automorphism ofC2*, which is determined up to a scalar multiple of the
identity, we obtain a group homomorphism

SO(2k) — U(24/z,

whereZ denotes the center of the unitary grauf2¥) (Z is isomorphic to
S and consists of scalar multiples of the identity).
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6.23. DEFINITION. Denote by Spifi2k) the group which fits into the
pullback diagram

§1 —— Spinf(2k) —— SO(2k)

1 |

Z uk) ——u(v)/z

Observe that the group Spi2k) comes with canonical representations
on the space®Z* andC%". The mapRZ ® CZ* — C2* which is induced
from our fixed isomorphisn(R?<) = M« (C) is Spirf(2k)-equivariant.

One can prove the following result.

6.24. THEOREM. An oriented Riemanniatk-manifold admits &pin'-
structure if and only if the principab0(2k)-bundleF of oriented frames
admits a reductiorf to the groupSpirt(2k). In this case, the cotangent
bundleTM is given by

T*M = F Xspire (21) R,
and the formula

= k
S = F Xgpir (210 C*

defines a hermitian bundle equipped with an acfiomM ® S — S which
is a Dirac symbol. In this waySpirf-structures correspond bijectively to
reductions of the oriented frame bundleSpirt(2k). O

6. Spin-Structures

Let us finish by making some remarks about Dirac operators associated
to real (as opposed to complex) Dirac symbols. In the real case, we shall
restrict to manifolds of dimensioén (for the definitions we have given
here). This is to accommodate the following result:

6.25. RROPOSITION The real Clifford algebraR(R3™) is isomorphic
to the matrix algebravi .« (R). d

We define real Dirac symbols in tik-dimensional case by putting
a minimal dimensionality requirement on the bundlgwe shall orient
M compatibly with the symbol). We define a Spin-structure to be an
isomorphism class of real Dirac symbols.

By following a similar reasoning to that used in the previous section one
can prove:

6.26. THEOREM. An oriented Riemannia8k-manifold admits a Spin-
structure if and only if the principab0(8k)-bundleF of oriented frames
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admits a reductiort to the groupSpin(8k). HereSpin(8k) is the double
cover ofSO(8k) which fits into the diagram

72— Spin(8k) — SO(8k)

L |

Z — SO(2%) ——=S0(2%)/z

(one can show thatSpin(8n) is the simply connected double cover of
SO(8n)). In this case, the bundlgis given by

4k

S=F X spinsn) R”
and the action of"*M on it is induced from the action &8 on R%"".

If the Dirac symbolc: T*M — End(S) is the complexification of a
real Dirac symbol then the line bundle. is trivial. In this case the index
formula reads quite simply

Index D) :J A(M).

M
One of the interesting features of this formula is that in the real case,
thanks to the fact that the reductibis a covering space of the frame bundle
F, there is a natural connection ¢nwhich gives rise to a natural affine
connection orf, and ultimately a canonical operator (defined in terms of
the Riemannian geometry dl) whose symbol is the Dirac symbol, namely

D=) o(w)Vx,
where the sum is over a local fraff%;} and dual framéw;}. This operator
has the following important property, known as thiehnerowicz formula

K
D2 =V*V + —
+

wherek is the scalar curvatutdunction of M. Hence:

6.27. THEOREM. Let M be a Riemannian manifold which admits a
Spin structure. If the scalar curvature ®fl is everywhere positive then

[ AM) = 0.

PROOEF If k > 0 then by the Lichnerowicz formula the Dirac operator
is bounded below, and is therefore invertible. Hence its index is zerl

3Results of this type, known aBochner-Weitzenbock formulaean be proved for
many natural geometric operators; the point about the Dirac operator associated to a Spin-
structure is that the curvature term which appears in all such formulae is of a particularly
simple sort.
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CHAPTER 7

The Tangent Groupoid

In this chapter we will construct the homomorphisigy: K(T*M) —
7 which maps the symbol class of an elliptic operdioto the index ofD.
The construction will be made using Connes’ notiottasfgent groupoid

1. Smooth Groupoids

What is non-commutative geometry? Recall that a governing idea in all
sorts of ordinary geometry is that features of geometric spaces are reflected
within the algebras of their coordinate functions. For instanc¥ i$ a
compact Hausdorff space then one can recdvas the space of maximal
ideals of the algebr& (X) of continuous, complex-valued functions ¥n
Alain Connes’ non-commutative geometry is concerned with aspects of the
space—algebra correspondence which, on the algebra side, involve Hilbert
space methods, particularly the spectral theory of operators on Hilbert
space. Moreover itis a guiding principle of the theory tha-commutative
algebras may often arise from geometric situations, and that one should as
far as possible treat non-commutative and commutative algebrsisiigr
geometric methods. One natural way to formalize this idea is by means of
the theory of which we will develop in this chapter.

Let us begin with the following definition, which is short, but probably
opaque to anyone who has not encountered it before.

7.1. DEFINITION. A smooth groupoids a small category in which
every morphism is invertible, and for which the set of all morphisms and
the set of all objects are given the structure of smooth manifolds; the source
and range maps are submersions; and the composition law and inclusion of
identities are smooth maps.

In a more detail, a smooth groupoid consists of, to begin with, a man-
ifold G, whose points constitute the morphisms (all of them, between any
two objects) in some category; a smooth manifBlvhose points are the
objects in the category; and two maps: G — B which associate to
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morphisms their range and source objects and which are required to be sub-
mersions. It can be shown then that the set

GZZ{(’Y],’YZ) ceGxG: S(Y]) :T(’YZJ}

of composable pairs of morphisms is a smooth submanifolél »fG. With
this in hand we require further that the composition operationy;) —
Y1 o v2 be a smooth map fronG? to G. We also require that the map
e: B — G which maps an object € B to the identity morphism at
be smooth. Finally, we require that every morphism in the category be
invertible; it may be shown that the map — y~' from G to itself is
automatically a diffeomorphism.

In noncommutative geometry it is customary to paint what might be
called thequotient space picturef groupoid theory. In this view, one thinks
of the morphisms inG as defining an equivalence relation on the object
spaceB: two objects are equivalent if there is a morphism between them.
Two objects might be equivalent for more than one reason, and the groupoid
keeps track of this. It is customary in mathematics to form the quotient
space from an equivalence relation, but even in rather simple examples the
ordinary guotient space of general topology can be highly singular, and for
example not at all a manifold. The groupoid serves as a smooth stand-in
for the quotient space in these situations, and using it one can study the
cohomology of the quotient space, and even its geometry. These ideas are
developed extensively in Connes’ book [].

A second view of groupoid theory, which is better suited to our present
purposes, is what we shall call tifemilies picture We shall think of the
groupoid first as the family of smooth manifolds

Gx={yeG:s(y)=x}
parametrized by € B. If n is a morphism inG from x to y, then there is
an associated diffeomorphism

R,: Gy — Gy
defined byR,(y) = vy on. We shall therefore think oG as being a
smooth family of smooth manifolds, provided with the collection of all
the intertwining diffeomorphism®,,. From this point of view, having
been given a groupoic it will be very natural to consider families of

say differential operatorB,, one on eaclt,, which are equivariant with
respect to th&,,, in the obvious sense.

7.2. EXAMPLE. A Lie groupG may be viewed as a smooth groupoid.
The object set is a single-element set, and the set of morphisms from this

!Recall that a smooth map between manifolds is a submersion if in suitable local
coordinates it has the form of a projectiony, ..., xp1+q) — (X1,...,%p).
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single element to itself i&. In the families picture, we have one manifold
— the underlying smooth manifold ¢ — and a family of self-maps of
this manifold, given by the usual right-translation operators on a group. An
equivariant operator in this example is a right-translation-invariant operator
on the Lie groupG. Thus if for exampleG = R™, then an equivariant
differential operator is nothing but a constant coefficient operatd@'an

7.3. EXAMPLE. Let M be a smooth manifold. Thaair groupoidof M

has object spackl, and morphism spadé@ = M x M. Its structure maps
are as follows:

e Source maps(my, mq) = my.

e Range mapg(m;, m;) = m,.

e Composition:(ms, my) o (m,, my) = (msz, my).

e Inclusion of identitiesm — (m, m).
The space$ ., all identify with M, and the translation operato@s,,, —
G, all become the identity map under these identifications. An equivariant
family of operators in this example is nothing more than a single, but
general, operator on the manifa\d.

7.4. EXAMPLE. The previous two examples can be combined, after a
fashion, as follows. LeA be a Lie group which acts (on the left) on a
smooth manifoldV. Thetransformation groupoidd x M has object space
M and the following morphism space:

{(my,a,my) EMXAXM:my=am}.

Obviously the morphism space identifies with the prodactx M by
projection onto the last two factors, but the above description makes the
structure maps more transparent:

e Source maps(my, a, m;) = my.

e Range mapr(m,, a, my) = m,.

o Composition:(m3, aj, mz) o (mz, ar, m1) = (m3, azar, m1).

e Inclusion of identitiesm — (m, e, m).
The inverse of(m,, a,m;) is (m;,a”', m,). However an equivariant
family of operators is not, as one might guess, the same thing &s an
equivariant operator oM. Instead it is a family of operatond,, on A,
parametrized byn € M, for which the operatob,,, is equivariant for the
right translation action of the isotropy subgroéip, on A.

2. Foliation Groupoids
3. The Tangent Groupoid

Let M be a smooth manifold. The tangent groupoid is a smooth
groupoid whose object space is the produvtt< R. In the families picture
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the tangent groupoid d¥1 consists of repeated copiesf, together with
the tangent spacds,M. These will ultimately be joined together to form
the fibers of a single smooth mapTM — M x R. But let us begin by
describingTM as a topological space.

7.5. DEFINITION. Let M be a smooth, open manifold. Denote Bl
the set
™ = TM x{0} U M xM xR*
(a disjoint union) equipped with the following topology:
(i) Any open subset oM x M xR* is deemed to be an open sefliM.
(i) Let X be a tangent vector awl, let f: M — C be a smooth function
and lete > 0. The sefll;. C TM defined by

Use N TM {0} ={(Y,0) : [X(f) =Y(f)l< e}

and
f(ma) — f(m1)| _ 8}
t

is an open neighbourhood &fin TM, and the set of finite intersec-
tions of such sets forms a neighborhood basg. at

ufys N MxM xR* = {(mz,mz,t) : ’X(f) —

7.6. REMARK. We are thinking here of a triplen,, m;, t) as being an
“approximate tangent vector” which is close to a real tangent vecifithe
difference quotientf(m;) — f(m,)|/t is close toX(f).

The topology onTM is easily seen to be Hausdorff. Moreover it is
locally Euclidean:

7.7. LEMMA. LetM be a smooth, open manifold.Ufis an open subset
of M then the set
TU =TUx{0} U UxUxR"*

is an open subset M. Moreover if¢p: U — R™ is a diffeomorphism
onto an open subset then the map

O: TU — R"xR"™ xR
defined by
@ (X, m,0) = (Dpm(X), $(m),0)
{ @ (my,my, t) = (t7(b(m2) — d(my)), b(m), )
is @ homeomorphism onto an open subset. O

7.8. REMARK. For clarity we are using the redundant notatidhm),
whereX € T,,U, to describe points ofU. We denote byD ¢ ,: T,,U —
R™ the derivative ofp atm < U.
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7.9. EXERCISE. Prove the lemma.

The mapsd defined in the lemma determine an atlas of charts for the
smooth manifoldl'M:

7.10. LEMMA. Let®: TU — R*"xR™ xR and¥: TV — R"xR™ xR
be the maps associated to diffeomorphigmal — R™ and: V — R™,
as in the previous lemma. The compositivn ®~' is defined on an open
subset oR™ xR™ xR, and is a smooth map.

PROOF. The inverseDd ' is given by the formula

(G (tva+vi),d " (ve),t) ift#0
(D3 (v2), " (v1),0) if t = 0.

Using the notatio® =1 o ¢ ', the compositior® = ¥ o @' is given by
the formula

BO(wz, Wy, t) = {

(D_1 (VZ)V1 ) t) = {

(t1(8(twa +wq) — 0(w1)),0(wq),t) ift#£0
(DO, (W2), 8(w1),0) if t =0.

By a version of the Taylor expansion, there is a smooth, matrix-valued
function®(h, w) such that

O(h+w)=0(w)+0(h,wh and 0(0,w)=D0,,.
So we see that

O(wa, w1, t) = {

(e(tWZ,W1)W2, 9(W1),t) if t 7é 0
(DB, (W2),8(w1),0)  ift=0.

This is clearly a smooth function. O

We have therefore obtained a smooth manifBMd. It is clear that the
map
s:TM - M xR
defined bys(X, m,0) = (m,0) ands(m,, m;,t) = m, is a submersion.
The fibers ofs are T,,M at (m,0) andM at (m,t), whent # 0. The
remaining groupoid structure maps are as follows.

7.11. DEFINITION. Let M be a smooth, open manifold. Tha&ngent
groupoidof M is the groupoid with morphism s&M, object setM x R,
and the following structure maps (in whith# 0 in every formula):

e Source maps(X,m,0) = (m,0) ands(my, mq,t) = (mq, t).

e Range mapr(X, m,0) = (m,0) andr(my, my,t) = (my, t).

e Composition:(X, m,0)o(Y, m,0) = (X+Y, m,0) and(ms, m,, t)o
(M2, my,t) = (M3, my, t).

e Inclusion of identities{m, 0) — (0, m,0) and(x, t) — (m, m,t).
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Inverses are given by the formulés,v)~' = (x,—v) and (x,y,t)"! =
(y,x,t).

It is clear that if we look at the subs&M consisting of those mor-
phisms attached to a fixadincluding possiblyt = 0) then the above oper-
ations provide “slice” offTM with a groupoid structure on its own, whose
object space id1. Whent = 0 we get the tangent bundléVi: the source
and range maps are both the projection amtpand the composition law
is addition of tangent vectors. When# 0 we get the pair groupoid o¥1.

Thus, algebraicallyTM is the union of multiple copies of the pair groupoid

of M and one copy of the tangent bundle, viewed as a groupoid. Let us show
that the overall package is a smooth groupoid, first in the special case where
M =R™

7.12. XAMPLE. The map®d: TR™ — R™x R™x R defined by
®(vz,v1,0) = (v2,v1,0)
Q(vy,vi,t) = (t 7 (va—v1),v1,t)  (t#0)
is a diffeomorphism. Now consider the space
G={(wz,a,wq) : wi,w; ER"xR,a € R",w, = alAw },
where the operatior is defined by
aAv,t) = (v+ta,t).

Thus theA operation defines an action of the grodp= R™ onR™ x R,
and our spacé is the corresponding transformation groupoid. The sggace
identifies withR™ x R™ x R by droppingw, from (w5, a, wy). Using this,
we can consider the diffeormorphisinto be a diffeomorphisn®: TM —

G by the formulas

@ (v,v1,0) = ((v1,0),v2, (v1,0))
@(Vz,V],t) = ((VZ)t)at71 (VZ _\)1)) (Vht)) (t % O)

Using these, it is evident tha is actually an isomorphism of groupoids,
from which it follows that the groupoid structure @R™ is smooth.

To summarize:

7.13. RRoPOSITION Denote byG = R™ x R™! the transformation
groupoid associated to the action Bf* on the spac®™' = R™ xR given
by the formula

alA(v,t) = (v+ta,t) (a e R™and(v,t) € R™).
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The map¥: TR™ — G which is given by the formulas

@ (v2,v1,0) = ((v1,0),v2, (v1,0))

O (v, vi,t) = (v, 1)t (va— 1), (v1, 1)) (t#0).
is an isomorphism of smooth groupoids. O

7.14. REMARK. The groupoidl'R™ only depends on the smooth struc-
ture of R™, whereas, superficially at least, the groupGid= R™ x R™!
depends very much on the vector space structufR™of The proposition
shows that this dependence is an illusion.

7.15. RROPOSITION The structure maps are all smooth, and the source
and range maps are submersions. THUM is a smooth groupoid.

PROOF Since smoothness is a local property, we can check this in a
coordinate neighbourhodd. Since the construction afU is coordinate-
independent we can assume that= R™, and thereby reduce to the
example just considered. O

4. Groupoid Algebras

We are going to associate to a smooth groupoid a convolufion
algebra, generalizing the reduced grdiipalgebra of a Lie group.

7.16. DEFINITION. A right Haar systenon a smooth groupoi is a
system of smooth measures, one on each of the manifolds

Gx={vy€G:s(y)=x},

with the properties that:

(i) If fis a smooth, compactly supported function®then jGX f(y) dux(y)
Is a smooth function of.
(i) If n is a morphism fronx toy then

j f(v)dux(v):j fly om) disy (¥).
Gx Gy

7.17. ROPOSITION Every smooth groupoid admits a right Haar sys-
tem. U

The proposition can be proved by adapting the standard construction
of Haar measures on Lie groups: picK-alensity (basically a top degree
differential form) onG, at the point ig and do so in a way which varies
smoothly withx. Then right-translate the densities arouado define a
1-density at every point with the required properties.
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7.18. DEFINITION. LetG be a smooth groupoid with right Haar system.
Define a convolution multiplication and adjoint on the sp&ate(G) of
smooth, compactly supported complex functions on the morphism space
of G using the formulas

f1 o faly) = J f1(y on ) am) diteiy ().
Gs{v)

and

f*(y) =f(y ).

7.19. RROPOSITION Let G be a smooth groupoid with right Haar
system. With the above operatio@ss (G) is an associative-algebra. [

7.20. DEFINITION. LetG be a smooth groupoid with right Haar system.
Define representations

Ac: C2(G) = B(L*(Gy))

by the formulas

A fIR(Y) = fx hiy) = J fly o () Ay ()-

GSW)

Thereduced groupoidC*-algebraof G, denotedC;(G), is the completion
of C2°(G) in the norm

11l = supl[A(F)llB(L2(G.))-

7.21. XAMPLE. If G = M x M (the pair groupoid), then in any Haar
system all the measures,, on G,,, = M x {m} = M are equal to one
another and conversely any smooth measudetermines a Haar system.
The convolution multiplication and adjoint are

f1xfa(my,my) = J f1(mz, m)fz(m, m;) du(m).
M

and

f*(m2, my) = f(my, m2).
The groupoidC*-algebraC;(G) is theC*-algebra of compact operators on
L2(M).

7.22. EXAMPLE. If G = TM (the tangent bundle) then a Haar system is
a smoothly varying system of translation-invariant measures on the vector
spacesl,,M. Since a translation-invariant measure oM is the same
thing as a point in/A™ T;; M, we see that a smooth Haar systemTav
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is determined by a smooth measureMn The convolution multiplication
and adjoint in the groupoid algebra are

£ f2(X, m) = j £1(X — Y, m)f2(Y, m) du(Y).
mM

and

(X, m) = f(—X, m).
The groupoidC*-algebra is therefore, so to speak, a bundl€tflgebras
over M, whose fiber atn € M is the groupC*-algebra ofT,,M. Consider
the tangent bundl@M. But to get a clearer picture of it, let us invoke some
Fourier theory, as follows. The Fourier transform

R = | e RO e TM)
mM

determines an isometric isomorphidA(T,,M) = L*(T: M) (for a suit-
able Haar measure drf, M). If f € C.(TM) then let

~

f(m,m) = J e Yf(Y, m) dy.
mM

The functionf is continuous and vanishes at infinity on the cotangent bundle

T*M. Sincefxh=f-h (pointwise multiplication) we obtain, with a little
more work, a Fourier isomorphism

C:(TM) = Co(T"M).

5. The C*-Algebra of the Tangent Groupoid

Let M be a smooth manifold without boundary. To define a smooth
Haar system on the tangent groupdid, first fix a smooth measurg
on M. As we noted abovey determines a family of translation invariant
measurest,,, on the vector spaceg, M. We define smooth measures on
the fibersTM .., +) of the source map by the formulas

Hmo = Hm ON P]I‘]\/l(nl,o) =TM
and
pm,t) =t onTM ey = M.

7.23. LEMMA. The above formulas define a smooth right Haar system
onTM.

PROOF The measures certainly constitute a translation-invariant sys-
tem (compare Examples 7.21 and 7.22 above). To prove they are smooth
we shall make use of the diffeomorphismisintroduced in the previous
section, or rather their invers& = ®': R™ x R™ x R — TU. Let us
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choose coordinates did C M so that the diffeomorphisnp: U — R™
from which @ is defined is the identity in these local coordinates. Then

O(X,m,0) = (X, m,0) and®(m;, my,t) = (my+tmy, my,t), if t #0.
If we restrict to one of the fibers of the source map then we obtain the maps
Om o(X) =X e T, U

and
@)m] ,t(\)z) =v7+tvy, € U.
The derivatives of these maps (expressed as matrices, using our chosen
coordinates) aré in the first case andl in the second. Now, to transfer
the measures from the fibersBtl to the fibers (under projection onto the
last two factors) ofR™ x R™ x R, we must multiply by the determinant
of these derivative matrices. That is,@f: A — B is a diffeomorphism
between open sets R*, and if u(b) = m(b)db is a smooth measure on
B, then

J f(b) du(b) = J f(b)m(b) db = J f(©(a))m(©(a)) detDO,) da.
B B A

In our case we see that the factor* in the definition ofu,, . cancels with
def{ D®) = t™, and we obtain smoothly varying measures, as requirédl.

The C*-algebra of the tangent groupoid comes equipped with a family
of restrictionx-homomorphisms

€o- C;(TM) — Co(T*M)

and, fort #£ 0,

er: Cx(TM) — K(LAH(M)).
On the subalgebr@® (TM) these are defined by restricting functions on
Tm to the “slice” of TM over t, which is either the tangent bundié/
(whent = 0) or the pair groupoidMl x M (whent £ 0). Strictly speaking,
whent =# 0 the restrictionk-homomorphism lands in the compact operators
on the Hilbert spac&?(M, S) associated to the measurescaled byt ™.
But this Hilbert space is obviously unitarily equivalent to the Hilbert space
associated tqu itself: just multiply bytz. The restriction homomorphisms
will be put to good use in the next section to finally construct the index
homomorphism irK-theory.

6. The Index Homomorphism

The x-homomorphisney: C;(TM) — Co(T*M) is surjective. Let us
fix a set-theoretic sectiom: Co(T*M) — C3(T*M). The mapo need have
no other property than that o o = id, although it is for example possible
to chooses to be linear and continuous.
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7.24. LEMMA. The family of maps,: Co(T*M) — K(L?(M)) defined
by the formula

ai(h) = e (a(h))  (t€[l,00),h € Co(T"M)),
is an asymptotic morphism.

PROOE Exercise. O

7.25. DEFINITION. The index homomorphism: K(T*M) — K(pt) is
theK-theory map induced from the above asymptotic morphisr@y(T*M) —
K(L*(M)).

7. Elliptic Operators and the Tangent Groupoid

Let M be a smooth manifold and & be a partial differential operator
on M. To keep within the framework developed in Chapter 2, let us
assume right away th& has orderl, although this assumption will only
be essential later in the section.

Recall that we had associatedl@oa family of “model operatorsD,,,
which are translation-invariant partial differential operators on the tangent
spacesl,,M. They were obtained by freezing the coefficientdoat m.
ThusifD = }_ a;X’ 4+ b, where thea; andb are smooth functions o
and theX’ are vector fields, the®,, = > a;(m)X},, where we view the
tangent vectoX!  as a directional derivative oh,, M.

Let us now associate O a family of partial differential operators on
the fibers of the source map for the tangent groupoid. To define the family,
we shall identify the fibers associatectte- 0 with the tangent spacds,M
and the fibers associatedttez 0 with M itself, in the obvious way. Having
done so, we define

{ Dmo=Dn onT,,M

Dme=tD onM.

7.26. RROPOSITION The operatorsD,,,, for m € M andt € R,
constitute a smoothly varying family of operators on the fibers of the source
maps: TM — M x R.

7.27. REMARK. By “smoothly varying” we mean that if the family is
applied fiber-wise to a smooth function @M then the result is another
smooth function oM.

PROOF Let us verify this locally by transferring the problemd x
R™ x R using our standard diffeomorphis@: TU — R™ x R™ x R. As
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in the last section, let us choose coordinatesloso that® has the simple
form

q)(X)m)O) = (X>m>0) and (D(mZ)mht) = (til (ml_ m]))mht)-

Write D = ) a;0; + b. Then under® the family of operator,
corresponds to the family,,, : C*(R™) — C*(R") given by the formulas

Emo= Z a;(m)o;
Eme =) a;(tv+m)d;+ th(tv+m)

(these act on functions of the variables R™). It is now clear that we have
a smooth family. O

It is clear that the operatoilS., ¢, for all t andm, constitute an equi-
variant family: compare Examples 7.2 and 7.3.

We are now come to an important general fact about smooth, equivariant
families offirst order, ellipticoperators on the fibers of a groupoid. L&t
be a smooth groupoid. Just as we endowedith a smooth Haar system
by right-translating a smooth density av (thought of as the space of
identity morphisms) over all of th&,, it is possible to equip the fibers
G with a smoothly varying family of Riemannian metrics which is right-
translation invariant. If we now assume that the object spacé & a
compactmanifold then the Riemannian metrics we construct onGhdy
this process are atlomplete

If D ={D,} is an equivariant family of first order, elliptic operators on
the fibers ofG, then by invariance, and by the compactness of the object
space ofG, the principal symbols of th®, have the property that, when
evaluated on cotangent vectors of length one, they return values whose norm
is uniformly bounded (over all th&,). Because of this we can appeal to
a theorem of Chernoff to deduce that, is essentially self-adjoint, and
moreover is equipped with a sharp version of the elliptic package:

7.28. THEOREM (Chernoff). Let D be a symmetric, first order, elliptic
operator on a complete Riemmanian manifdd, and assume that the
symbol oD is uniformly bounded by a constagit> 0 on cotangent vectors
of length one. TheD is essentially self-adjoint. Moreoverfif R — C has
smooth, compactly supported Fourier transform, then the operdioy is
represented by a smooth kerngj(w;,, w1), that is,

F(D)R) (wa) = kad(WZ,woh(W1) dw,

and
Supportkp) C { (wa,wq) : d(wy,wy) < CL
]
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7.29. REMARK. For brevity, we shall say that the operaiothasfinite
propagationC.

7.30. EXAMPLE. We shall not be able to prove this here, however it is
perhaps helpful to look at the case wh&e= R andD = —id/dx. Here,
by Fourier theoryf(D) is represented by the kerneh(y, x) = F(y —x),
wheref is the inverse Fourier transform (which is equal to the Fourier
transforms, up to signs).

A second theorem in partial differential equations guarantees that the
functionkp varies smoothly with the coefficients bf:

7.31. THEOREM. Lets: W — X be a submersion of smooth manifolds
and assume that the fibersolhave been equipped with a smoothly varying
family of complete Riemannian metrics (on the other hxnhdhay for
example be a manifold with boudary). L&} be a family of symmetric,
first-order, elliptic operators on the fibers ef and assume that the family
has uniformly bounded finite propagation speed. Then the kernel functions
kp, vary smoothly withx. O

7.32. REMARK. “Smooth” means th&p, constitute a smooth function
on the manifold (w3, wq) : s(wy) = s(wq) }.

Now let us return to our groupoid. ffhas compactly supported Fourier
transform then we can form the kernel functidas, (v2,v1), defined on
Gx x Gy. From the equivariance of the fami{ip, } it follows that
kp, (v2,v1) = kp,(y20m,v10m),
for every morphismy: y — x. So if we define a functioh: G — C by the
formulah(y) = kp, (v, 1d«), wherex = s(y), then
kp, (v2,71) =h(y20v7") Vy1,v2 € Gx.
The functionh is compactly supported, by the finite propagation speed
argument. Checking the definitions, we arrive at the following theorem:

7.33. THEOREM. LetD = {D,} be a smooth, right-translation invari-
ant family of elliptic operators on the leavés, of a smooth groupoids
with compact object space. There is-daomomorphism

$p: Co(R) — CX(G)

with the property that ifc is any object, and\,: C;(G) — B(L*(G,)) is
the regular representation, then

A @p(f)) = f(Dy): L*(Gy) — L*(Gy)
for everyf € Co(R). O
DRAFT 105 August 17, 2004



DRAFT August 17, 2004

Now let us turn to the index homomorphism which we defined in the
last section. For the purposes of the index homomorphism we can replace
the tangent groupoid, as we have defined it, with the closed subset which
lies over[0, 1] C R. This is a smooth groupoid in its own right (the object
space has a boundary, but tGg are manifolds without boundary, so the
analysis above applies.

7.34. ROPOSITION Let D be a first order, elliptic operator on a
closed manifold\l. Letf € Cyo(T*M). The index asymptotic morphism
oe: Co(T*M) — K(L?(M)) mapsf(op) € Co(T*M) to the family

au(f(op)) ~ f(tD) € K(L*(M)).

7.35. REMARK. In the context of asymptotic morphisms: A — B,
the notationx(a) ~ by means lim,, ||(a) — byl = 0.

PROOF We can define the sectia: Co(T*M) — C;(TM) used in
the definition ofx by the partial formular(f(op)) = ¢p(f). (This defines
o on the element$(op) € Co(T*M); we don’t care how it is defined on
the rest ofCo(T*M).) Having made this particular choice, we get, by the
preceding theorem, thexactrelationo (f(op)) = f(tD). O

Hence:

7.36. THEOREM. Let D be a first order, elliptic operator on a closed
manifold M. The index mapx: K(T*M) — K(pt) maps the symbol class
of D to the index oD. O

8. Groupoid Algebras with Coefficients in a Bundle

In the previous section we argued as if the oper&tacted on scalar
functions, whereas in all interesting examplgscts not on functions but
on sections of some Hermitian vector bunfllever M.. In this section we
shall indicate the changes needed to treat this case properly.

Let G be a smooth groupoid and I6tbe a smooth Hermitian vector
bundle over the manifold of objects. Form the vector bundle (Endver
G whose fiber over a morphisin x — y is the vector space Haf$,, S,).
This is isomorphic to the pullback d* along the source map, ten-
sored with the pullback o$ along the range map. The groupoid algebra
C>(G,EndS)) is the algebra of smooth, compactly supported sections of
End(S), equipped with the convolution multiplication

f1xfaly) = J f1ly o)) ditepoy (1):
Gs{v)
In the formula, the produdt (y om~')f,(n) is a composition of operators
Ssm) = Srm) = Sriy)-
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The adjoint operation 0€>° (G, End(S)) is of coursef*(y) = f(y~')*.
This algebra has natural regular representationd 44s,, S), for each
objectx, and using these we define th&-algebra completion, just as we
did for C;(G).

Repeating the arguments we gave in the previous section, we arrive at
the following result:

7.37. THEOREM. Let G be a smooth groupoid with compact object
space. LeS be a Hermitian vector bundle over the object spac&aind
let D = {D,} be a smooth, right-translation invariant family of elliptic
operators on the leave§,, acting on sections of the pullback along the
range mapr of S. There is a~-homomorphism

¢p: Co(R) — CA(G,EndS))

with the property that ik is any object, and, : C3(G,EndS)) — B(L*(G,,S))
is the regular representation, then

A dp(f)) = f(Dy): L*(Gy, S) = L*(G,, S)
for everyf € Co(R). O

7.38. EXERCISE. In the case of the tangent groupoidSiis pulled back
from a bundle oriM, show that th&k-theory map

K(Co(T*M,End(S))) — K(K(L*(M,$)))

obtained from the asymptotic morphism associate@;fds, EndS)) iden-
tifies with the analytic index map upon composing with the isomorphism

K(Co(T*M,EndS))) = K(T*M)
obtained from Morita invariance d&-theory.
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CHAPTER 8

Bott Periodicity and the Thom Isomorphism

In this lecture we shall evaluate the index map K(T*R™) on the
Bott elementb € K(T*R"™), and use this computation to prove the Bott
periodicity theorem.

1. The Bott Element

This section is a quick review of some ideas encountered in Lecture 5.
Let V be a finite-dimensional euclidean vector space. The tangent
bundleTV may be identified witlV x V (to be precise, the first factor &f
will represents points of the manifo and the second represents tangent
vectors). Using the inner product we obtain an isomorphism

TV =V XV =V xV

In this way we shall identifyT*V with the complex vector space/ =

V +1V. The inner product on the real vector spatprovides the complex
vector spacéV with a hermitian inner product. Denote by\* W the
complex exterior algebra &V, equipped with its inherited hermitian inner
product and define a real-linear map

b: W — EndA*W)

by the formulab(w)(z) = w A z + w V z, where the operatonV is
adjoint to the exterior product operatarA on A* W. This is an elliptic
endomorphism, in the sense of the term used in Lecture 3, and so defines a
K-theory clas® € K(W) by the procedure given there. Nametyijs the
K-theory class of the-homomorphism

B:8 — Co(W,EndA\*W))
given by the formulg (f) = f(b).

8.1. DEFINITION. LetV be afinite-dimensional Euclidean vector space.
TheBott elementor V is the clas® € K(T*V) defined above.

8.2. EXAMPLE. Let W beT*R, viewed as a one-dimenensional com-
plex vector space as described above\ifW is given the basis consisting
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of the zero-forml € A°W and thel-form1 € R ¢ A'W, then the operator

b has the form .

_ x — 1§
More generally, ifV is a real inner product space W = V + 1V and if we
identify A* W with the complexification of/\* V, then the operatds has
the form

bvi,vaJw=viAw+viVw+iv, Aw—iv, V w.
Having made our terminology precise, we can state again our goal:
8.3. THEOREM. LetV be a finite-dimensional euclidean vector space,

letb € K(T*V) be the Bott element, and let K(T*R™) — K(pt) be the
index homomorphism. Thex{b) = 1.

2. Index Computation

In this section we shall prove Theorem 8.3. As we shall see, this boils
down to a Fredholm index computation. We shall concentrate on the case
whereV is one-dimensional, and discuss the modifications needed to handle
the general case at the end.

The proof hinges on the following technical lemma. Ee# 0, let

0 x—td
De= <x+td 0 )

whered = d%. This is an elliptic differential operator on a noncompact
manifold — namely the real line.

8.4. LEMMA. Letb: R — M, (C) be the elliptic element which defines
the Bott element. If: Co(T*R) — K(L*(R)) is the index asymptotic
morphism then for everfye §,

ot (f(b)) ~ f(Dy).

8.5. REMARK. In the lemma we have extended to an asymptotic
morphism
o Ma(Co(T'R)) = Mo(K(L*(R)))
in the obvious way, in order to apptly; to f(b) (compare Example 8.2).
We shall also need a simple, basically algebraic, lemma.
8.6. LEMMA. If f € 8§ thenf(Dy) € K(L?(R) @ L*(R)). The kernel of
D, is one-dimensional, and is spanned ki, wherev(x) = e /2.

8.7. REMARK. It follows from Chernoff’'s theorem in the previous
lecture thatD, is essentially self-adjoint, although the arguments given
below could easily be adapted to prove this.
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PROOE Let us writelL = x + td andR = x — td, so that

0 R RL O
Dz(L O) and Dz(O LR)'
Itis easy to compute th&L = LR — 2t, and thatLv = 0. From this we get
that

RL-Rv=R:-LRv=R:(RL+2t)v =R - 2tv = 2tRv,
and more generally,
RL - R™ = 2ntR™v.

In other words the functionR™v are eigenfunctions faRL with eigenvalue
2nt. Now it is easy to check, by induction, thRt'v is a polynomial of
degreen, timesv, from which it follows that the functionR™v spanL?(RR).
Thus there is an orthonormal basis I0f{R) consisting of eigenfunctions

of RL, with corresponding eigenvalue sequefet, 4t,...}. SincelLR =

RL + 2t, exactly the same thing is true for it, except that the eigenvalue
sequence starts dt, not 0. It follows thatf(D?) is compact, for every

f € 8, from which it follows thatf(D) is compact, for every, too. O

PROOF OFTHEOREM 8.3, ASSUMING THE TECHNICAL LEMMA. For
brevity, let us writeX for KX (L%(R)). The asymptotic morphism gives rise
to ax-homomorphism

&: M2(Co(T*R)) — M(Q(X)),

whereQ(X) is the “asymptotic algebra” of bounded functions fréhoo)
into K, modulo functions which vanish at infinity. According to the recipe
given in Lecture 3, to compute(b) we must first compose the graded
x-homomorphismB: § — M, (Co(T*R)) with &, to obtain a graded-
homomorphism

xof:8— My(9(X)),

which represents an elementi6fQ(X)). We must then lift thik-theory
element to an element in tHétheory of A(X), the bounded continuous
functions on[1,c0). The homotopy property dk-theory guarantees that
we can find such a lift. Then we use the map

K(A(XK)) — K(X)

induced from evaluation of functions &t e [1,00), to obtaina(b). In
our case, the technical lemma asserts that 3 lifts to the gradedx-
homomorphism

$: 8 = Ma(A(K))
given by the formulap(f)(t) = (D). So we have in this situation an
explicit lifting. Evaluating att = 1 we see thatx(b) is represented by
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the graded«-homomorphismf — f(D;). SinceD; has index one, this
represents the elemehi K(pt) (see the proof of Proposition 3.20). [J

PROOF OF THETECHNICAL LEMMA (SKETCH). Define a family of op-
erators on the fibers of the source maf’R — R x R by the formulas

_ 0 m+d B 0 x+td .
Dm"_(m—d 0 ) and Dm’t_(X—td 0 ) if t=£0.

This is an equivariant family of operators, and it is easy to check that
it is smooth (we will see this in a moment anyway). We would like
to appeal to the general arguments we developed in the last lecture, but
unfortunately the object space DR is noncompact, not only by virtue of

the noncompactness of theparameter space, which is easily overcome,
but by virtue of the noncompactness of the manifld So we resort to
somead hoccomputations. Under the usual diffeomorphism fréifR to

R x R x R, the family{D, +} is transformed to the family

ro - 0 m+t(x—m)+d
™ Am 4 t(x—m)—d 0

(which incidentally proves smoothness). flhas smooth and compactly
supported Fourier transform then the general finite propagation and other
arguments proved last time show tHaE., ) is represented by a kernel
km.t(y,x) which is smooth in all its arguments, and which vanishes if
andy are further than some distan€eapart. We should like to say that the
corresponding function on the groupoid,

h(U»X) t) — kx‘t(yyx)v

is compactly supported, at least if we restrict to say|[0, 1]. Unfortunately
this is not so, but a little analysis does show thags at least of rapid decay
in x andy. An approximation argument now shows that all stdre in the
groupoid algebra. O

In higher dimensions we can proceed in much the same way If
is a finite-dimensional, euclidean vector space, then we can consider the
operators

D =d. + dj,

acting on the trivial bundle ovey with fiber Ay V, wherediw =n A

w + tdw andn is the differential of the functiod ||v||*. It is again true that
f(D) is compact, wheri € 8, and the kernel oD, is spanned th@-form
exp(—|[v||?/2). (In fact the analysis of this operator reduces very quickly
to the one-dimensional case because after squdvingne can separate
variables). Thus:
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8.8. LEMMA. Letb: V — ALV be the elliptic element which defines
the Bott element. If: Co(T*V) — K(L?(V)) is the index asymptotic
morphism then for everfy€ 8,

xi(f(b)) ~ (D).
U

8.9. LEMMA. If f € § thenf(D,) € K(L?(V,A\:V)). The kernel oD,
is one-dimensional, and is spanned by®Herme(v) = exp—||v|?/2. O

With these, the rest of the proof is the same.

3. Bott Periodicity
In this section we shall prove the famous Bott periodicity theorem:

8.10. THEOREM (Bott Periodicity). The Bott elemenb € K(T*R™)
freely generate& (T*R™) as an abelian group.

In order to prove the theorem we shall use the following small general-
ization of the index map, which we present as an exercise.

8.11. EXERCISE Let A be anyC*-algebra. There is an asymptotic

morphism
o Co(T'R™) ® A — K(LA(R™) ® A
such thatx (f ® a) ~ a(f) ® @, for all f € Co(T*R™) anda € A. It has
the property that
rMx®@z) =alx)®z

forall x € K(Co(T*R™)) and allz € K(A).

¢, From now on we shall drop the superscAptWe shall also specialize
to the case wherd = Cy(Z), and write the induced-theory map just as

o: K(T"R™ x Z) — K(Z),

for which we have the relation(x ® z) = «(x) ® z for all x € K(T*R™)

and allz € K(Z).
We shall also need to manufacture from the Bott element maps

B: K(ptxZ) — K(T'R™ x Z).

This we do by the formul&(z) = b ® z, using the product ii-theory. We
getthatp(y ® z) = B(y) ® z, forally € K(pt), andz € K(Z).

PROOF OF THEBOTT PERIODICITY THEOREM. With the generalized
versions ofx and 3 in hand, let us recast the problem of proving that
B(x(x)) =x € K(T*R™) as the problem of proving the equivalent identity

Bla(x®@ 1)) =x® 1 € K(T'R™ x pt),
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wherel denotes the generator Kfpt). Using the multiplicative properties
of x and} we get
Blax @ 1)) =Bla(x) ® 1) = B(T @ ex(x)) = B(1) ® ex(x),
where the middle equality holds because v = v ® u in K(pt x pt). We
therefore need to show that
B ®alx) =x®1 e K(TR™ x pt),
or equivalently
a(x) @ B(1) =1T®x € K(ptxT*R™).
Now the crucial observation is that

x(x) @ B(1) = a(x @ B(T)) = x(B(1) ®x).
The last equality is a special case of the general identity
uv=veou in KTR"xTR"Y),

which holds because the map framR™ x T*R™ to itself which exchanges
the two copies off *R™ in the product is homotopic to the identity through
proper maps (to see this, identifyR™ with R?™ and note that the exchange
matrix (120 120“) is homotopic to the identity through orthogonal matrices).

The argurﬁent finishes with an appeal to Theorem 8.3:

(BN @x)=a(p(1))@x=1x.

This remarkable argument is due to Atiyah.

4. A Remark on Categories

This section is optional.

The proof in the preceding section is best viewed in the context of a
suitable category which includes “generalized” morphisms betw&en
algebras. Let us assume that we have a category with the following features:

(a) The objects ar€*-algebras. Every x-homomorphismp: A — B de-
termines in a functorial way a morphism framnto B, which depends
only on the homotopy class df. (Thus there is a functor from the ho-
motopy category o€*-algebras into our category, which is the identity
on objects.)

LIt is customary to work wittseparableC*-algebras, but this detail need not concern
us here.
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(b) The category has a natural product operation, so that morphisnfs; —
B; ando,: A, — B, may be multiplied in a functorial way to produce
a morphism

01 ®0: A1 ® Ay — B ® Bs.

The product should be compatible with tensor produetbdbmomorphisms,
and should have the property thatz 1: A ® C — B ® C identifies

with o: A — B, onceA ® C is identified withA andB ® C is iden-
tified with B. It should also be compatible with the flip isomorphisms
A ® B — B ® A in the natural way.

(c) A morphismo: A — B induces in a functorial way a homomorphism
from K(A) to K(B), which is the standard induced homomorphism
when o is determined by a-homomorphism. (Thus theng-theory
functor should factor through our category.)

With this category in hand, the rotation argument may be expressed as
follows (we shall writeX in place of Co(X), and x in place of® in this
commutative context). In view of the diagram

1
R2™ % ptﬂ> pt x pt&RZnX pt

f.ipl_ =

2n
ptx pt*)uﬁ pt xR

to provep o « is an isomorphism it suffices to shdw x 3) o (x x 1) isan
isomorphism. But consider now the commuting diagram

R2" pt& pt x pt
l ax B l
Txp Txp

R2" x R2" o¢><1> pt XRZn

It shows that it suffices to shofw x 1) o (1 x 3) is an isomorphism. Now
we can use the diagram

R2" % ptﬁi R2n 5 R2M ot ptx R2™

ﬂipl_id = |

RZn X RZn W RZn X pt

to complete the argument, bearing in mind that the left-hand flip induces
the identity map irk-theory.
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The morphisms constructed in Lecture 3 provide a suitable category:
one sets
_ | Homotopy classes of graded asynjp-
Hom(A, B) = {totic morphisms frond @ AtoB XK |-
We didn’'t show it, but thesare the morphism sets in a category with a
suitable product. This is thie-theory category of operatdi-theory.

5. Compatibility with the Thom Homomorphism

In this section we shall prove the following theorem, after which the
proof of the Atiyah-Singer index theorem will be complete.

8.12. THEOREM. LetV be a Euclidean vector bundle over a smooth
manifold M. Choose a splitting of the tangent bundle\ointo horizontal
and vertical subbundles, and using this splitting, vieWW as a complex
vector bundle oved*M. If ¢: K(T*M) — K(T*V) denotes the Thom
homomorphism then the following diagram commutes:

K(T*M) -~ K(pt)

¢l i_

K(T*V) —== K(pt).

Here is how we shall prove the theorem. Let= A:V. This is a
Hermitian vector bundle oveé¥l, and also, by pullback, a Hermitian vector
bundle overV. We shall realize the Thom homomorphism using #he
homomorphism

¢: S® Co(T*M) — Co(T*V,End(S))

which was discussed in Lecture 5. We shall realize the indexand T*V) —
K(pt) using the asympotic morphism

s Co(T*V,EndS)) — K(L*(V, )

which is associated to the*-algebra of the groupoi@V with coefficients
in S (this small elaboration of the groupo(d*-algebraC;(TV) was dis-
cussed in Lecture 7). We have introduced the superscvipirt an attempt
to avoid confusion with the index map foil. For the latter we shall use the
notation the notation

aM: 8§ ® Co(T*M) — K(LA(M))
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for the underlying asymptotic morphism. These variQusalgebra homo-
morphisms and asymptotic morphisms fit into a diagram

@) 8 ® Co(T"M) > Co(T'M) — - K(12(M)

o] |

Co(T"V,End(S)) K(LA(V,S))

v
X

in whiche: 8§ — C is evaluation ad and the left vertical map is induced
from a certain isometryf: L2(M) — L?(V,S) that we will define in a
moment. We shall show that the diagram commutes up to homotopy of
asymptotic morphisms. Sinegeand Ad; both induce the identity map in
K-theory, this will prove the theorem.

The isometryT: L2(M) — L?(V,S) is defined as follows. Just as we
did in the last lecture, let us denote byV — C the function

e(v) = (271)% exp(— L),

which we shall view as a zero-form ovi. The significance ot is that

in each fiber ofV it spans the kernel of the operatBrdiscussed in the
previous lecture. The significance of the constant is that in each fibér of
theL2-norm ofe is 1. We defineT by the formula

(Th)(v) = h(m(v))e(v) (he (M), veV).

ThusT pulls back functiongr € 1L2(M) to V, then multiplies them point-
wise withe. It is easy to check that is an isometry.

Before going on, it is instructive to consider the case in whicls a
trivial bundleV = R* x M. In this case the diagram (4) is quite easy to
analyze in view of the following result.

8.13. DEFINITION. Two asymptotic morphisme,, ¢;: A — B are
asymptotically equivalenif lim . ||di(a) — di(a)|| = 0, for every
acA.

8.14. LEMMA. Inthe case of a product of smooth manifolb$; x M,
the index asymptotic morphism
a1 M2 Co(T*My X T*M,) — K(LA(M; x My))

decomposes as a tensor product,

M] XM2

M M
Xy ~og @yt

up to asymptotic equivalence, whed"" ando™ are the index asymptotic
morphisms foM; and M. O
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8.15. EXERCISE. The reader should check thatdf .: A; — B; and
d2: Ay, — B, are asymptotic morphisms, then there is an asymptotic
morphism,p: A1 ® A, — B; ® By, unique up to asymptotic equivalence,
such that

delar ® az) ~ prelar) @ poilaz).

Here we need to assume that there isnggque C*-algebra tensor product
of A; andA;, of we need to use the maximal tensor product. This is not a
problem in our present, commutative, situation.

Because of the lemma, diagram (4) assumes the following form in the
case of a trivial bundle:

$® Co(T'M) —— 2 C® Co(T*M) C ® K(L2(M))

¢®idl l Ay

Co(T*R*, EndS)) ® Co(T*M) K(L3(RK, S)) ® K(L*(M))

o @t
But in the previous lecture we computed the composition

Rk

§ — Co(R¥, ENd(S)) —— K(L2(R¥, S)),

which we found to be (asymptotic to) the family efhomomorphisms

f — f(Dy). Inserting this fact into the diagram above, and altering the
latter family by a homotopy to obtain first the famify— f(D;), and then
the family f — f(tD;), we obtain, in the end, a commutative diagram, as
required.

To deal with general case we should like to use the fact that the index
asymptotic morphisms are canonical — that they don’t depend on any
choices of coordinates — to reduce to the trivial case just considered, taking
advantage of the fact that every bundle is at least locally trivial. This
strategy works well, except for the fact that the Thom isomorphism is not
completely canonical. Its dependence on a choice of metric on the fibers
of the bundleV is not an issue since every bundle is locally isomorphic to
R¥ x M as a Euclidean bundle. But there is also a dependence on the way
thatT*V is realized as a complex vector bundle ovéM.

In order to analyze the situation we need to describe a bit more carefully
how T*V may be made into a bundle ovéfM. If U C M is an open set
over which there is a trivialization of (respected the Euclidean structure
onYV), say

0: V|u = R* x U,
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then using we obtain isomorphisms

0:: T*(VIW) = T'R* x T*U and 0,: 7 (VIy @ V|u) — TR* x T*U,

wherert: T"M — M is the projection, and in the second map we identify
the second copy o¥ with vertical tangent vectors along (after applying
the derivative o we get a tangent vector aloii, which we identify with
a cotangent vector using the standard metri@nUnfortunately the local
isomorphism

6,01 T*(Vlu) = 7" (VIu x VIu)
we obtain in this way is not independent®fnd so does not immediately
globalize to all ofT*V. However different choices d give rise to local

isomorphisms which differ only by “transition functions” eri( V| x V|u)
of the form

(vi,v2, &, 1) = (v, vz, s(u)vy + &, u),
wheres is a (local) vector bundle map frovi to T*M. What this means is
that by using a partition of unity and a family of local isomorphisms we can
assemble a globaliffeomorphism

e: T"VS (Ve V)

which is not however an isomorphism of vector bundles avavl (this is
unsurprising sincd*V is not naturally a vector bundle ovérM). Let us
useO to identify T*V with 77*(V & V). Then in a local trivialiatior® of V,
which gives a (canonical) local identificatidri(V]y) = T*R* x T*U, the
Thomx-homomorphism

$: 8@ Co(TU) — Co(T*(VIu),EndS)) = Co(T*R* x T*U, End(S))
has the form
¢s(f ® h)(v) = f(b)h(7(v)) (veT"M).

whereb: T*R*¥ — End(S) is the standard Bott element, biit T*R* x
T*U — T*U is not the projection onto the second factor. it is just some
smooth map which is the identity ¢f} x T*LL.

To circumvent this difficulty we consider the composition

%) 8 ® Co(T*M)

‘

Co(T*V,End(S)) K(LA(V,$))

v
X

which is part of our diagram (4), except that we have replaced the Thom
x-homomorphismp by the one-parameter family @thomomorphisms

ds: S® Co(T*M) — Co(T*V,EndS)),
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indexed bys € (0, 1] and defined by the formula
ds(f @ W) (v) = f(s "b)h(F(V)) (veTV).

Hereb is the Thom element and: T*V — T*M is the projection defined

by identificationT*V = 7*(V @ V) we have specified. The advantage
of including the parameteris that ass — 0 the x-homomorphismp; be-
comes independent of the choice of identifications involved in the definition
of 7t: different choices give asymptotic families ehomomorphisms. Us-
ing this fact, and working in locally over coordinate patcheim M , where

V = R4 x U, we can compute the composition. In a product sjilee U

the index asymptotic morphism has the form

o @ als Co(T*R¥, End(S)) ® Co(T*U) — K(L3(R¥, S)) @ K(LA(U)).
Using Lemma 8.8 we conclude thatas- 0, the compositionx) o ¢ in
diagram (5) becomes asymptotic (uniformlytinto the map given locally
by

S® Co(T*W) > f@h = f(s "Dy ® oe(h) € K(LA(R¥, S)) @ K(L(U)).

In fact the asymptotic morphism o ¢ is homotopic to the asymptotic
morphism

8® Co(TU) > f@h— f(t 'Dy) ® au(h) € K(L*(RN,S)) @ K(LA(U))
(the local formula gives a globally well-defined asymptotic morphism).
This in turn is homotopic to the asymptotic morphism

8® Co(T'U) 3 f@h f(t 'D) ® au(h) € K(LAH(R¥,S)) ® K(L*(U)),
which is nothing but the local form of the composition

oaM

8 ® Co(T"M) ~— Co(T"M) ——= K(L2(M))
|
K(L*(V,S))

from diagram (4). This is because fas— oo, the operatorf(t~'D;) con-
verges tof (0) Pkemeip, ). Commutativity of the diagram (4) up to homotopy
of asymptotic morphisms is proved.
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CHAPTER 9

K-Homology and Other Index Theorems

As we have tried to indicate above, the proof of the index theorem
depends on a contemplation of certain ‘wrong way map&-imeory: the
Thom homomorphism (induced by the inclusion of the zero-section in a
complex vector bundle), and the map induced by the inclusion of an open
subsefll C X. Indeed, the analytic index map K(TM) — Z itself may
be thought of as a ‘wrong way map’, induced by the collapsge— pt.

If one wishes to study more elaborate versions of the Index Theorem
(as one does in non-commutative geometry), it is helpful to have some
systematic theory into which these various ‘wrong way’ maps can be fitted
and within which they can be computed. In this chapter we shall sketch the
beginning of such a theory.

1. K-Homology

Let D be an elliptic operator on a compact manifdldl (first-order,
symmetric, and so on, according to our usual conventions). Recall that we
may define the index db as theK-theory class defined by the graded
homomorphism

f— f(D)
from 8§ to the compacts.

9.1. LEMMA. Letd € C(M) be a continuous function. Regaddas
an operator onL? via pointwise multiplication. Then for ali ¢ § the
commutator{f(tD), ¢] := f(tD)p — ¢f(tD) tends to zero as — O.

PrROOE Remember the commutator identities
[A+B,Cl=[A,Cl+[B,C], [AB,C]=AIB,C]+[A,C]B.

Using these and the spectral theorem, it is easy to see that the collection
20 of functionsf € 8 which satisfy the conclusion of the lemma is a
C*-subalgebra o8. According to the Stone-Weierstrass theorem, then, it
suffices to show thall separates points dr.

Consider then the casg¢A) = 1/(A + a), wherea € C\ R. Then
f(tD) = (tD + a) ' and

[f(tD), dp] = —t(tD + a) '[D, d](tD 4+ a) .
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Here (tD + a)~' has norm bounded by/|Jal, by the spectral theorem,
and the termD, ¢] is also aboundedoperator (namelyp(dd)). Thus
|[f(tD), ¢l|| is of ordert andf € 2. For varyinga, thesef separate points
onR, so the proof is complete. O

9.2. REMARK. One can show that iD is a self-adjoint first order
operator on anonrcompact manifoldM then the lemma still holds true,
in the sense that for every € Co(M), the operatoff(tD), ¢] is compact
and tends to zero in norm &s— oo.

A more sophisticated way to state the result of Lemma 9.1 is

9.3. COROLLARY. With hypotheses as above, the family of maps
febd— f(tD)d

defines amasymptotic morphisngDefinition 3.29) fromS @ C(M) to the
compact operators. O

According to Proposition 3.33, this asymptotic morphism gives rise to
a homomorphism
K(M) — K(pt) = Z.

In other words, an elliptic operator gives rise ttuactionalon K-theory.

9.4. REMARK. In fact this homomorphism can be described in terms
of the objects that we have introduced already. Namely, s{ideM) is a
module oveK (M), we get a homomorphisid(M) — K(T*M) generated
by the symbol oD. The diagram

in which the right-hand vertical map is the analytic index map, is commuta-

tive. (The proof, which involves an asymptotically commuting diagram of

asymptotic morphisms, is left as an instructive exercise for the reader.)
Notice that if our elliptic operator is the Dirac operator associated to a

Spirf structure, then the maig(M) — K(TM) above is an isomorphism.

In this situation, then, the map(M ) — Z associated to the Dirac operator

encodes exactly the same information as the analytic indexomap

Our discussion above leads to two conclusions.

(a) The collection of all elliptic operators ovl is in some sense ‘dual’ to
K(M).
DRAFT 122 August 17, 2004



DRAFT August 17, 2004

(b) The key functional-analytic properties which make this duality possible
are encoded in the notion of asymptotic morphism.

It is now a short step to the following definition.

9.5. DEFINITION. LetX be a locally compact space. TRehomology
of X, written Ky(X), is the group[8 ® Co(X), K] of asymptotic homotopy
classes of asymptotic morphisms frégne Cy(X) to the compacts.

Now that we have&k-homology available to us, we shall distinguish or-
dinary K-theory by writing it with a superscripk°(X) = K(X). Proposi-
tion 3.33 gives us a pairing

Ko(X) @ KO(X) = Z

betweerkK-homology and-theory. One can prove th&homology is in-

deed ageneralized homology theory it satisfies the homotopy invariance
and excision properties that are summarized in the Eilenberg-Steenrod ax-
ioms.

9.6. REMARK. The ideathat one can develop a homology theory dual to
K-theory by abstracting the functional-analytic properties of elliptic opera-
tors is due to Atiyah (around 1970). The idea was implemented by Brown-
Douglas-Fillmore and (independently) Kasparov, in a technically different
way to that described above. The ‘asymptotic morphism’ definitiok-of
homology is due to Connes and Higson.

9.7. REMARK. If X is a non-compact space, then there is a some-
times confusing nuance in the statement #gtX) is a homology theory.
Namely, one can see that

Ko(X) = Kernel Ko (X™) — Ko(pt)),

where X" denotes the one-point compactificationXaf This property is
certainly not enjoyed by homology theory as it is usually defined; but it
is enjoyed by the variant of ordinary homology called ‘closed’ or ‘locally
finite’ homology (see Bott and Tu). Thus we should desciiéX) in
algebraic-topological terms as thacally finite K-homology ofX. If we

want to recover the usual (compactly supportg€ehomology we can do

this as lim, Ky(L), where we take the direct limit over compact subdets

of X. Of course these issues can be ignored provided we work with compact
spaces only.

Since we have definitions both Kthomology and oK-theory in terms
of classes of asymptotic morphisms, it is natural to combine them.

9.8. DEFINITION. The groupE(A, B) is defined to bdS ® A, B ® Xl.

ThusKy(X) = E(Co(X),C) andK®(X) = E(C, Co(X)). Moreover, an
element ofE (A, B) gives rise to a homomorphisklA) — K(B).
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2. Wrong Way Functoriality
Let M andN be manifolds.

9.9. DEFINITION. A smooth mapf: M — N is K-orientedif there
is given a Spif structure on the real vector bundldl & f*(TN). (Each
equivalence class of such Spistructures is called K-orientation for the
map.)

9.10. EXAMPLE. If M is a Spiri manifold the the collapse mayd — pt
is K-oriented. In particular, the collapdé — pt is K-oriented forany
manifold M.

9.11. XAamMPLE. If U is an open subset of a manifold then the
inclusionU — M is canonicallyK-oriented.

9.12. XAMPLE. If V is a Spiri vector bundle oveM then both the
inclusionM — V by the zero-section and the projectivh— M areK-
oriented.

The examples above should look familiar.

9.13. THEOREM (Connes and Skandalis)lo eachK-oriented map
f: M — N of manifolds one can associate a functorial ‘wrong way map’
f: K°(M) — K°(N). This map has the following special cases:

(i) If f: TM — ptis the collapse map thefi: K°(TM) — ptis the
analytic index map.
(i) If .: M — Vs the inclusion of the zero-section inSpirnf vector
bundleV, thent,: K°(M) — K°(V) is the Thom isomorphism.
(i) If j: U — M is the inclusion of an open subset thenkK°(U) —
K°(M) is the ‘extension by zero’ map that we have previously dis-
cussed.

U

Using the information given in the theorem one can calculate the wrong-
way homomorphisms associated to some okieriented maps of spaces.

9.14. EXAMPLE. Letn: V — M be the projection of a Spinvector
bundle. Sincer o v is the identity onM, 7, is left inverse toi,. But
(, is the Thom isomorphism, and therefareis the inverse to the Thom
isomorphism.

9.15. XERCISE. Show that ifM is a Spirt manifold, then the map
f,: K°(M) — Z induced by collapsing/ to a point is the homomorphism
associated to thE-homology class of the Dirac operator.
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More to the point, the existence of functorial ‘wrong way’ maps of the
sort described above gives a proof of the index theorem. For recall that
in Theorem 5.20 we showed that the Index Theorem will follow from the
existence of an analytical index map which is compatible in an appropriate
way with Thom homomorphisms and with open inclusforiBut the desired
compatibility is certainly true if the analytical index map, open inclusion
map, and Thom homomorphism are all particular instances of one general
functorial construction.

One should not think of this as giving a new proof of the index theorem
— the construction of the ‘wrong way maps’ involves all the techniques that
we have discussed thus far. But it has the potential to suggest new forms of
the index theorem.

3. The Index Theorem for Families

Imagine that we have a manifold, and overM we have not one but a
whole collection of elliptic operatof®+,}, parameterized by points of some
other spacé®.

9.16. EXERCISE. Show that a® varies continuously irB, the index
Index D) remains constant.

This fact might lead us to believe that the index theory of a family of
elliptic operators contains no more information than the index theory of a
single operator. However, this is far from the case. Consider the analogous
situation of a vector bundle. A vector bundle over a spade a family
of vector spaces ove8. All the individual fibers are isomorphic as vector
spaces, but the whole bundle need not be a product.

9.17. REMARK. The previous discussion could lead us to try to define
the index of a family of elliptic operators asZa2-graded ‘kernel bundle’.
With some effort, this can be made to work, as is done in Atiyah and
Singer’'s paper on the index for families. However, it will be easier for
us to use th& technology that we have already developed.

Now to the details. LeB be a manifold.

9.18. DEFINITION. By afamily of manifoldoverB we mean a locally
trivial fiber bundlerr: E — B, with fiber a smooth manifoldl and with
structural group DiffM ), the diffeomorphisms oM.

Usually we shall assume that bdihand the fibetM are compact.

Together with the calculation of the index of a single ‘Bott operator’ on Euclidean
space.
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9.19. DEFINITION. Letn: E — B be a family of manifolds oveB. A
family of elliptic operatorson this family of manifolds consists of

(i) A Z/2-graded hermitian vector bund$eoverE;
(i) For eachx € B, an elliptic differential operatérD, on the manifold
E. = 7t '(x), acting on sections of the restriction of the bunflieo
E,, such that:
(iif) The operatord, vary smoothly withx.

The condition of smooth variation may be expressed, for instance, by
requiring that the operatons, are the restrictions to th®l, of a single
differential operatorr{ot elliptic) on the manifoldk.

In the language of groupoids, a family of elliptic operators dvé&s the
same thing as a leafwise elliptic operator on the following groupoid.

9.20. DEFINITION. Let7t: E — B be a family of manifolds oveB.
Then thegroupoid of the familyG; is the smooth groupoid defined as
follows:

e The object space i5;

e The morphism space {$x,y) € E x E: t(x) = nt(y) € B};
e The source and range maps afe,y) = x, r(x,y) = y;

e The composition law i$x,y) - (y,z) = (x, z);

e The inversdx,y)~" = (y,x);

e The inclusion of identities is — (x, x).

In other words,G,; is a family of pair groupoids, parameterized By
A Haar system for this groupoid is a smoothly varying family of Lebesgue
measures on the fibers aof

9.21. LEMMA. The C*-algebra of the groupoids,; above is Morita
equivalent toC(B).

PROOF. The Morita equivalence bimodule{g?(7~'(b))}, considered
as a continuous family of Hilbert spaces o®er O

According to the results of Chapter 7, the index of an elliptic family
gives rise to a~-homomorphisn8 — C:(G,) and thus to an element of
K(C*(G,)) = K°(B). Theindex problem for familiess to compute this
element.

9.22. ROPOSITION In the above situation the map
S® C(E) = C*"(Gn))
defined byf ® ¢ — f(tD)d is an asymptotic morphism.

20dd, symmetric and first-order, in accordance with our standing conventions.
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PROOF A simple generalization of the proof of Proposition 9.1. [

In the index theory of families, théle of the tangent bundle is played
by the ‘vertical tangent bundle’ or ‘tangent bundle to the fibers’

T.E = Kernel,: TE — TB).

If this bundle is provided with a Spinstructure then there is a natural
family of Dirac operators ot — B. Applying the previous proposition
to this operator we get an E-theory elemen&irC(E), C(B)) and thus a
mapK°(E) — K°(B).

9.23. RRoPOSITION The maK®(E) — K°(B) just defined is the wrong
way maprr, associated to th&-oriented mapr: E — B.

9.24. REMARK. In general (that is, in the absence of a Sgtructure)
we can use a fiberwise version of the tangent groupoid construction to define
an analytical index mag°(T.E) — K°(B), and this will again be a wrong
way map, this time associated to the projecfigi — TB, which is always
K-oriented.

How shall we compute this analytic index? The key idea in the proof
of the ordinary index theorem was to factor the collapse wap- pt (or
TM — pt) into a composite of maps each of which was of one of the ‘easy’
forms for which we have an explicit understanding of the induced wrong
way homomorphism oK-theory, namely

(&) The inclusion of the zero-section in a Spuector bundle;
(b) The inclusion of an open set;
(c) The projection of a Spinvector bundle (over a point!).

Then we made use of the functoriality of wrong way maps.

We can do the same sort of thing in the families case. Namely, we can
find an embedding of the familf — B fiberwise into a vector bundle
Z — B (we can in fact take to be trivial). Using the tubular neighborhood
theorem we can factor the embeddibg— Z into the composite of the
inclusion of the zero-section of the normal bundle, followed by the inclusion
of an open set intd. We therefore have the same computational techniques
available to us as in the previous case.

The reader may expect that we are now going to use this factorization to
obtain a cohomological formula for the index, and indeed this is possible
(the next exercise states the formula). However there is an important
nuance here. The cohomological formula of necessity computes the Chern
character, cfindexD) € H*(B). WhenB is a point, as in the case of the
ordinary index theorem, cH(pt) — H*(pt) is injective so that the Chern
character captures all the information about the index. However, in general
the Chern character is not injective (it loses all torsion information). For
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this reason, it is better to regard tketheoretic statement, that the index can

be computed by the factorization process described above, as constituting
the ‘correct’ form of the index theorem for families; the cohomological
statement is just a homomorphic image of this.

9.25. XERCISE. Derive the cohomological form of the index theorem
for families

ch(IndexD) = (—1 )“jgch(ch) Todd T,E ® C)

from the discussion above. Hefedenotes ‘integration along the fiber’, an
operation that passes frort (E) to H*(B).

4. The Longitudinal Index Theorem for Foliations
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CHAPTER 10

Higher Index Theory

1. The Higher Index

We finish by taking a look at another kind of index theory which,
superficially at least, seems to generalize in a quite different direction.

10.1. DEFINITION. Let M be a compact manifold with fundamental
groupl” = ryM. Construct a groupoid as follows:

e Space of objects M,

e Space of morphisms is the space of orbits of the diagonal action of
I onM x M, whereM denotes the universal cover. Inother words,
a morphism is an equivalence class of pairsy) € M x M, two
such pairdx,y) and(x’,y’) being considered equivalent if there
isy € I'such thatyx = x” andyy = y’.

e Source and range mapgx,y) = nt(x), r(x,y) = t(y);

e Inclusion of identitiesp — (x,x) for anyx € 7« '(p) (well-
defined).

e Composition and inverses as in the pair groupoid (well-defined).

10.2. EXERCISE. Check that this is a smooth groupoid.

10.3. LEMMA. The C*-algebra of the above groupoit is Morita
equivalent toC%(T').

SKETCH PrROOF This time, the equivalence bimodule can be described
as follows. Consider the vector spddef compactly supported continuous
functions onM.. We can equip this with &(I")-valued inner product by

defining
(o)=Y (Jf(x)g(v—‘x)dx) e cin).

yer
Completing thisU, we obtain aCi(I")-Hilbert module whose algebra of
compact operators can be seen to be exact(ys). O

Suppose thaD is an elliptic operator on the compact manifdid.
We can lift it (using local charts) to an elliptic operatoron M, which
is equivariant with respect tb. Such an operator gives an (equivariant)
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elliptic family on the groupoids. Notice that, in particulai) is essentially
self-adjoint. We have as a special case of our general results for groupoids:

10.4. ROPOSITION The assignmerit— f(D) gives ax-homomorphism
S — CiG).

The associated element KfC:(G)) = K(Ci(I")) is called thehigher
indexof D.

10.5. XERCISE. Using Lichnerowicz’ formula from Chapter 6, show
that if M is a spin manifold carrying a metric of positive scalar curvature,
the higher index of the Dirac operator (and not just the ordinary index)
vanishes.

Suppose thaM is Spirf. Then, again using the argument of 9.1, we
will get a map
K(M) — K(CX(T"))
which is called theassembly map(ln general we can get an assembly map
K(TM) — K(C;(T")) using an appropriate variation of the tangent groupoid
construction.)

10.6. ®NJECTURE(Baum and Connes)f M is compact andispher-
ical (that is,M is contractible), then the assembly map is an isomorphism.

The Baum-Connes conjecture in its various forms has been a central
theme in the development of non-commutative geometry and topology. To
gain perspective, note that the homotopy type of an aspherical space is
completely determined by its fundamental group. Thus, both the left and
the right hand sides of the conjecture depend omly.

2. Higher Index Theory for the Torus

Let us investigate higher index theory f&t = T". In this case
N'=m(M) = Z™andC:(I") = C(P), whereP is anothern-torus. The
assembly map is then a map from tKeheory of the first torus to th&-
theory of the second one.

10.7. LEMMA. The torusP parameterizes the flat connections on a
trivial line bundle overM.

PROOF A point of P is a x-homomorphismC3(I') — C, that is, a
one-dimensional unitary representation of the fundamental gro&ut in
general, homomorphisms; (M) — U(n) correspond to flat connections
on a trivial n-dimensional bundle over a manifold (one sends the con-
nection to the corresponding holonomy representation of the fundamental
group). O
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This means that from the canonical Dirac operdloon M, we can
manufacture damily of elliptic operators, parameterized By by twisting
D with the various line bundles with connection. Although all the individual
operators in this family have the same index, the family itself is nevertheless
non-trivial.

10.8. THEOREM (Lusztig). Consider the composite
K(M) — K(M x P) —— K(P)

where the first map is induced from the projectivhx P — M and the
second is the analytic index map for families of Proposition 9.23. This
composition is the Baum-Connes assembly map.

This allows us to use the index theorem for families to compute the
effect of the assembly map, at least on the cohomology level. Remember
that the cohomology of an-torus is an exterior algebra enl-dimensional
generators.

10.9. LEMMA. LetL be the universal line bundle ovél x P —itis a
line bundle with connection, whose restriction to the copiblying over
p € P justis the flat line bundle described by Then

ci(L) =x1y1+ -+ XnYn
in the cohomology aM x P.
PROOF O

10.10. RROPOSITION The analytic assembly map favl = T™ is
rationally an isomorphism.

PrROOF use the index theorem for families O

10.11. @WROLLARY (Gromov-Lawson).There is no metric of positive
scalar curvature on the torus.
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