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1 How Mathematicians Study Symmetry

Example 1.1. Consider an equilateral triangle with six symmetries. Rotations about O through
angles 0, 2π

3
, 4π

3
and three reflections about axial lines l1, l2, and l3.

Definition 1.1 (Isometry). A function f : Rn −→ Rn is called an isometry if it preserves distance,
i.e. ‖x− y‖ = ‖f(x)− f(y)‖ for any x,y ∈ Rn.

Definition 1.2 (Symmetry). Let F ⊆ Rn. A symmetry of F is a (surjective) isometry T : Rn −→
Rn such that T (F ) = F .

Proposition 1.1. Let S, T be symmetries of some F ⊆ Rn. The composite ST : Rn −→ Rn is
also a symmetry of F .

Proof. Let us check that ST is an isometry for x,y ∈ Rn. ‖STx − STy‖ = ‖Tx− Ty‖ (S is an
isometry) = ‖x−y‖ (T is an isometry). So ST is an isometry. Also ST (F ) = S(F ) (T is onto) = F
(S is onto). So ST is indeed a symmetry of F .

Let G be the set of symmetries of F ⊆ Rn.

Proposition 1.2. G possesses the following properties:

(i) Composition of functions is associative, i.e. (ST )R = S(TR)

(ii) idRn ∈ G, recall idRnT = T = T idRn for any T ∈ G
(iii) If T ∈ G, then T is bijective and T−1 ∈ G

Proof. (i) and (ii) are fairly easy exercises. For (iii), we have that T ∈ G is surjective by definition,
so only need to check one to one. For x,y ∈ Rn, Tx = Ty =⇒ 0 = ‖Tx−Ty‖ = ‖x−y‖ =⇒ x = y.
So T is bijective, and T−1 is surjective. T−1 is an isometry since for x,y ∈ Rn, ‖T−1x− T−1y‖ =
‖TT−1x− TT−1y‖ = ‖x− y‖. Lastly T−1(F ) = T−1(T (F )) = F . So T−1 ∈ G.

∗The following notes were based on Dr Daniel Chan’s MATH3711 lectures in semester 1, 2006
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The proposition is used to motivate abstract definition of a group.

Definition 1.3 (Group). A group is a set G equipped with a map µ : G × G −→ G, where for
g, h ∈ G, µ(g, h) is abbreviated to gh, called the multiplication map, satisfying the following axioms

(i) Associativity, i.e. g, h, k ∈ G, then (gh)k = g(hk)

(ii) Existence of identity, i.e. there is an element denoted by 1G in F called identity of G such
that 1Gg = g = g1G for any g ∈ G

(iii) Existence of inverse, i.e. for any g ∈ G, there is an element denoted by g−1 ∈ G called inverse
of g such that gg−1 = g−1g = 1

Example 1.2. For F ⊆ Rn, the set G of symmetries of F , equipped with multiplication map equal
to composition of functions is a group by Proposition 1.2. It has identity 1G = idRn and the inverse
in group is just the inverse function.

Proposition 1.3. Here are some properties of a group.

(i) When you multiply three or more elements in a group, it does not matter how you bracket
the expression

(ii) Cancellation law, i.e. for elements g, h, k in a group, gh = gk =⇒ h = k

Proof. (i) Mathematical induction as for matrix multiplication. (ii) By associative law, gh =
gk =⇒ g−1gh = g−1gk =⇒ h = k.

2 Matrix Groups

Let GLn(R) and GLn(C) be the set of real and complex invertible n×n matrices respectively. Note
that we will often identify matrices with the linear transformations they represent.

Proposition 2.1. GLn(R) and GLn(C) are groups when endowed with matrix multiplication.

Proof. Note that product of invertible matrices is an invertible matrix. Just check axioms. (i)
Matrix multiplication is associative. (ii) Identity matrix In satisfies InM = M = MIn for any
M ∈ GLn(R). So GLn(R) has identity 1 = In. (iii) For M ∈ GLn(R), M−1 ∈ GLn(R) satisfies
MM−1 = In = M−1M where In ∈ G. So inverses exist too and GLn(R) is a group.

As for matrix multiplication, we have . . .

Proposition 2.2. In a group G

(i) The identity is unique, i.e. if 1, e ∈ G satisfy 1g = g = g1 and eg = g = ge for all g ∈ G,
then 1 = e

(ii) Inverses are unique
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(iii) For g, h ∈ G, (gh)−1 = h−1g−1

Proof. (i) By definition, 1 = 1e = e. (ii) Suppose a, b are inverses of h, then using associative
law, a = a1G = a(hb) = (ah)b = 1Gb = b. (iii) Also using associative law, (h−1g−1)(gh) =
h−1(g−1g)h = h−11h = 1 = g1g−1 = ghh−1g−1 = (gh)(h−1g−1). Thus by uniqueness of inverse in
(ii), (gh)−1 = h−1g−1.

Definition 2.1 (Subgroup). Let G be a group. A subset H ⊆ G is said to be a subgroup of G,
denoted by H ≤ G, if it satisfies the following axioms.

(i) Existence of identity, 1G ∈ H
(ii) Closure under multiplication, i.e. if h, k ∈ H, then hk ∈ H
(iii) Closure under inverse, i.e. if h ∈ H, then h−1 ∈ H

Proposition 2.3. In this case, we have an induced multiplication map µH : H ×H −→ H, such
that (h, k) ∈ H ×H =⇒ hk ∈ H by Definition 2.1 (ii), which makes H into a group.

Proof. Just check axioms. (i) µH is associative since µ is, i.e. (gh)k = g(hk). (ii) For any h ∈ H,
1Gh = h = h1G, so 1G = 1H , i.e. identity exists. (iii) For h ∈ H, its inverse h−1 in G lies in H
by Definition 2.1 (iii). Since hh−1 = 1G = 1H = h−1h, the inverse in H is inverse in G. Hence the
inverse exists and the result is proved.

Proposition - Definition 2.1. Set of orthogonal matrices On(R) = {M ∈ GLn(R) : MT =
M−1} � GLn(R) forms a group, namely the set of symmetries of an n − 1 sphere, i.e. an n
dimensional circle.

Proof. Check axioms. (i) Know In ∈ On(R). (ii) For M,N ∈ On(R), have (MN)T = NTMT =
N−1M−1 = (MN)−1. So have closure under multiplication. (iii) For M ∈ On(R), (M−1)T =
(MT )T = M = (M−1)−1. So closed under inverses. Since On(R) $ GLn(R), we have a subgroup.

Proposition 2.4. Other basic observations include

(i) Any group G has two trivial subgroups, namely G and 1 = {1G}
(ii) If H ≤ G and J ≤ H, then J ≤ G

Proof. Similarly check axioms . . .

Here are some notations. Given group G and g ∈ G, write

(i) gn = gg . . . g (n times), n ∈ Z+

(ii) g0 = 1G

(iii) g−n = (g−1)n = (gn)−1 (proof by mathematical induction)

(iv) For m,n ∈ Z, we have gmgn = gm+n and (gm)n = gmn

Definition 2.2. The order of a group G, denoted |G|, is the number of elements in G. For g ∈ G,
the order of g is the smallest integer n such that gn = 1. Say infinite order if no such n exists.

Example 2.1.

(
1 0
0 −1

)
∈ GL2(R) has order 2. More generally any reflection has order 2.
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3 Permutation Groups

Definition 3.1 (Permutation). Let S be a set. The set of permutations on S, Perm(S) is the
set of bijections of the form σ : S −→ S.

Proposition 3.1. Perm(S) is a group when endowed with composition of functions for multipli-
cation.

Proof. Just check axioms. Composition of bijections is a bijection. The identity is idS and group
inverse is the inverse function.

Definition 3.2. If S = {1, 2, . . . , n}, then the symmetric group (set of symmetries) on the n
symbols is Perm(S) and is denoted by Sn.

Two notations are used. With the two line notation, represent σ ∈ Sn by
(

1 2 3 . . . n
σ(1) σ(2) σ(3) . . . σ(n)

)

(σ(i)’s are all distinct, hence σ is one to one and bijective). Note this shows |Sn| = n!.

Example 3.1. σ =

(
1 2 3 4
2 3 1 4

)
∈ S4 and τ =

(
1 2 3 4
4 2 3 1

)
∈ S4. We have στ =

(
1 2 3 4
4 3 1 2

)
and σ−1 =

(
1 2 3 4
3 1 2 4

)
. Note that στ(1) = σ(4) = 4, στ(2) = σ(2) = 3,

στ(3) = σ(3) = 1, στ(4) = σ(1) = 2.

With the cyclic notation, let s1, s2, . . . , sk ∈ S be distinct. We will define a new permutation σ ∈
Perm(S) by σ(si) = si+1 for i = 1, 2, . . . , k − 1, σ(sk) = σ(s1) and σ(s) = s for s /∈ {s1, s2, . . . , sk}.
This permutation is denoted by (s1s2 . . . sk) and is called a k-cycle.

Example 3.2. For Example 3.1, σ does 1 7−→ 2 7−→ 3 7−→ 1 and 4 fixed. So we have 3-cycle
σ = (123). τ does 1 7−→ 4 7−→ 1 and 2, 3 fixed. So we have 2-cycle τ = (14).

Note that an 1-cycle is the identity. The order of a k-cycle σ is k, i.e. rotate k times before getting
back to the original position. So σk = 1 and σ−1 = σk−1.

Definition 3.3 (Disjoint Cycles). Cycles (s1s2 . . . sk) and (t1t2 . . . tl) are disjoint if {s1, s2, . . . , sk}∩
{t1, t2, . . . , tl} = ∅.

Definition 3.4 (Commutativity). Two elements g, h in a group are said to commute if gh = hg.

Proposition 3.2. Disjoint cycles commute.

Proof. Clear from any example such as g = (12), h = (34). Then gh and hg both do 1 7−→ 2 7−→ 1,
3 7−→ 4 7−→ 3, i.e. swaps irrelevant of order. So gh = hg.
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Proposition 3.3. For S, a finite set, any σ ∈ Perm(S) is a product of disjoint cycles.

Example 3.3. σ =

(
1 2 3 4 5 6
2 4 6 1 5 3

)
does 1 7−→ 2 7−→ 4 7−→ 1, 3 7−→ 6 7−→ 3 and 5 fixed. ∴

σ = (124)(36) since (5) is the identity.

Proposition 3.4. Let S be a finite set and σ ∈ Perm(S) then S is a disjoint union of cer-
tain subsets S1, S2, . . . , Sn such that σ permutes elements of Si cyclically for each i, i.e. σ =
(s1σ(s1)σ

2(s1) . . .)(s2σ(s2)σ
2(s2) . . .) . . . (srσ(sr)σ

2(sr) . . .) for si being an element of Si.

Definition 3.5 (Transposition). A transposition is a 2-cycle.

Proposition 3.5. Two important observations

(i) The k-cycle (s1s2 . . . sk) = (s1sk)(s1sk−1) . . . (s1s3)(s1s2)

(ii) Any permutation of a finite set is a product of transpositions

Proof. (i) The right hand side does the following: s1 7−→ s2 (consider the first transposition);
s2 7−→ s1 7−→ s3 (the first two transpositions); s3 7−→ s1 7−→ s4 (the second two transpositions); . . . ;
sk 7−→ s1 (the last transposition). This is the same as (s1s2 . . . sk) as desired. (ii) By Proposition 3.4,
σ ∈ Perm(S) has form σ = σ1σ2 . . . σr with σi cycles. But by (i), each cycle is a product of
transpositions, and so can rewrite each σi as product of transpositions, hence giving (ii).

4 Generators & Dihedral Groups

Lemma 4.1. Let {Hi}i∈I be a set of subgroups of a group G. Then
⋂
i∈I Hi ≤ G.

Proof. Same as for subspaces. Just check axioms. For example, with closure under multiplication,
if h, h′ ∈ ⋂

i∈I Hi, then h, h′ ∈ Hi for every i. But Hi ≤ G =⇒ hh′ ∈ Hi for every i by closure
under groups. Hence hh′ ∈ ⋂

i∈I Hi as desired.

Proposition - Definition 4.1. Let G be a group and S ⊆ G. Let J be the set of subgroups j ≤ G
containing S.

(i) The subgroup generated by S is 〈S〉 =
⋂
j∈J ≤ G, i.e. it is the unique smallest subgroup of

G containing S.

(ii) 〈S〉 is the set of elements of the form g = s1s2 . . . sn where si ∈ S and n ≥ 0; define g = 1
when n = 0.

Proof. (i) Follows from Lemma 4.1 that
⋂
j∈J j ≤ G. (ii) Let H be the set of elements of form

g = s1s2 . . . sn. Closure axioms =⇒ H ≤ j, ∀j ∈ J . ∴ H ⊆ 〈S〉 =
⋂
j∈J j. Suffice to show

that H ⊇ 〈S〉, or by part (i) that H is a subgroup containing S. H ⊇ S by definition. So
only need to check H ≤ G by checking axioms. For example, suppose s1, s2, . . . , sn as in g =
s1s2 . . . sn, then (s1s2 . . . sn)

−1 = s−1
n s−1

n−1 . . . s
−1
1 ∈ H since s−1

i ∈ S ∀ i. So H is closed under
inverses. H is closed under multiplication by the associative law, i.e. s1s2 . . . sm, t1t2 . . . tn ∈ H =⇒
(s1s2 . . . sm)(t1t2 . . . tn) = s1s2 . . . smt1t2 . . . tn ∈ H. Finally, s, s−1 ∈ S 6= ∅ =⇒ ss−1 = 1G ∈ H. So
we have the identity.
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Definition 4.1 (Finitely Generated & Cyclic Groups). A group G is finitely generated if
there is a finite set S ⊆ G such that G = 〈S〉. We say G is cyclic if furthermore we can take S to
be an one element set, i.e. generated by one element.

Example 4.1. Find the subgroup generated by σ =

(
cos(2π

n
) − sin(2π

n
)

sin(2π
n

) cos(2π
n

)

)
∈ GL2(R) and

τ =

(
1 0
0 −1

)
for integers n ≥ 2. These are both symmetries of a regular n-gon. Note

symmetries of regular n-gon are either rotations or reflections. Any element of 〈σ, τ〉 has form
σi1τ j1σi2τ j2 . . . σirτ jr . Note it must be finite. But we have relations σn = 1 = τ 2. So we may as
well assume i1, i2, . . . , ir ∈ {0, 1, . . . , n − 1} and j1, j2, . . . , jr ∈ {0, 1} through multiplications of
appropriate numbers σn, σ−n, τ 2, τ−2. Also it is easily checked that τστ−1 = σ−1. Thus we get
skew commutativity τσ = σ−1τ . Hence we have

τσi = τ σσ . . . σ︸ ︷︷ ︸
i

= σ−1τ σσ . . . σ︸ ︷︷ ︸
i−1

= σ−2τ σσ . . . σ︸ ︷︷ ︸
i−2

= . . .

= σ−iτ

Proposition - Definition 4.2. 〈σ, τ〉 is the dihedral group. It is denoted by Dn. Its elements are
Dn = {1, σ, . . . , σn−1, τ, στ, . . . , σn−1τ} and |Dn| = 2n.

Proof. Note τσi = σ−iτ allows us to put all τ ’s to the right without changing the number of total
τ ’s in the expression. So push all the τ ’s in σi1τ j1σi2τ j2 . . . σirτ jr to the right. This shows that
elements in Dn have form above. It remains only to show that they are distinct. Now det(σi) = 1
and det(σiτ) = −1 for all i. By cancellation law, to show σiτ ’s are distinct is same as showing σi,
i = 0, 1, 2, . . . , n− 1 are distinct. But these are easily seen to be distinct rotations through matrix
multiplication.

We will see Dn is the complete group of symmetries of a regular n-gon.

5 Alternating & Abelian Groups

Let f be a real valued function in n real variables.

Definition 5.1 (Symmetric Function). Let σ ∈ Sn. We define a new function σ.f as follow:
σ.f(x1, x2, . . . , xn) = f(xσ(1), xσ(2), . . . , xσ(n)). We say f is symmetric if σ.f = f for any σ ∈ Sn.

Example 5.1. f(x1, x2, x3) = x3
1x

2
2x3 and (12).f(x1, x2, x3) = x3

2x
2
1x3. ∴ f is not symmetric. But

f(x1, x2) = x2
1x

2
2 is symmetric in two variables.
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Definition 5.2 (Difference Product). The difference product in n variables is ∆(x1, x2, . . . , xn) =∏
i<j(xi − xj).

Example 5.2. For n = 2, ∆ = x1 − x2 is not symmetric. But what symmetries does it have?

Lemma 5.1. Let f(x1, x2, . . . , xn) be a real valued function in n real values. If σ, τ ∈ Sn, then
(στ).f = σ.(τ.f).

Proof.

(σ.(τ.f))(x1, x2, . . . , xn) = (τ.f)(xσ(1), xσ(2), . . . , xσ(n)) (by definition)

= f(yτ(1), yτ(2), . . . , yτ(n)) (where yi = xσ(i))

= f(xσ(τ(1)), xσ(τ(2)), . . . , xσ(τ(n)))

= f(x(στ)(1), x(στ)(2), . . . , x(στ)(n))

= ((στ).f)(x1, x2, . . . , xn)

Proposition - Definition 5.1 (Odd & Even Permutations). Let σ ∈ Sn. Write σ = τ1τ2 . . . τm,
with τi’s transpositions. Then

σ.∆ =

{
∆ if m is even (say that σ is an even permutation)
−∆ if m is odd (say that σ is an odd permutation)

Proof. Need only to prove m = 1 case, for then Lemma 5.1 implies that

σ.∆ = τ1(τ2(τ3 . . . (τm−1(τm.∆)) . . .)) = τ1((−1)m−1∆) = (−1)m∆ (by induction)

So we mat assume σ = (ij) with i < j. Examine three cases. (1) σ(xi−xj) = xj−xi = −(xi−xj).
(2) For i, j, r, s distinct, σ(xr − xs) = xr − xs. (3) For i, j, r distinct, we have three more cases. (i)
r < i < j, σ.(xr−xi)(xr−xj) = (xr−xj)(xr−xi), i.e. no change. (ii) i < r < j, σ.(xi−xr)(xr−xj) =
(xj − xr)(xr − xi) = (xi − xr)(xr − xj). (iii) i < j < r, σ.(xi − xr)(xj − xr) = (xj − xr)(xi − xr).
So no changes in (i), (ii) and (iii). Multiply (1), (2) and (3) together to find σ.∆ = −∆.

Corollary 5.1. Even permutations are products of even number of transpositions and odd permu-
tations are products of odd number of permutations.

Proposition - Definition 5.2 (Alternating Group). The alternating group is An = {σ ∈ Sn :
σ.∆ = ∆} which is the subgroup of Sn generated by {τ1τ2 : τ1, τ2 transpositions}.
Proof. Just note (τ1τ2)

−1 = τ−1
2 τ−1

1 = τ2τ1 since inverse of a transposition is itself. Since the
inverses do not add anything new to the generating set, we have {τ1τ2 : τ1, τ2 transpositions}
generates all functions of the form τ1τ2 . . . τm where m is even.

Proposition 5.1. Group of symmetries of anti-symmetric functions is An.
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Definition 5.3 (Abelian Group). A group G is abelian or commutative if any two elements
commute.

Example 5.3. G = Z is an abelian group when endowed with group multiplication equal to
addition. The identity is 0 and the group inverse of m is −m.

Often for abelian groups, we switch notation and terminology as below.

(i) Product gh to sum g + h

(ii) Identity 1 to zero 0

(iii) gn to ng

(iv) Inverse g−1 to negative −g

Example 5.4. Let V be a vector space. it is an abelian group under its additive structure. Also
any subspace is a subgroup.

Example 5.5. Let F be a field, e.g. C,R,Q, then F ∗ = F − {0} is an abelian group with
multiplication in the group equal to usual multiplication in the field.

Example 5.6. For {1,−1} ≤ R∗, the multiplication table is
× 1 −1
1 1 −1
−1 −1 1

6 Cosets & Lagrange’s Theorem

Let H ≤ G be a subgroup.

Definition 6.1 (Coset). A (left) coset of H in G is set of the form gH = {gh : h ∈ H} ⊆ G for
some g ∈ G. The set of left cosets is denoted by G/H.

Example 6.1. Let H = An ≤ Sn = G for the alternating group for n ≥ 2. Let τ be a transposition.
We claim that τAn is the set of odd permutations. To prove this, we see that elements of τAn
have form τσ where σ is a product of an even number of transpositions. So τσ is an odd number
of transpositions. Suppose conversely, ρ ∈ Sn is odd. Then ρ = τ 2ρ = τ(τρ) since τ 2 = 1 for
transposition τ . But τρ is product of even number of transpositions. Hence ρ = τ(τρ) ∈ τAn and
this proves the claim.

Example 6.2. Let G = Z. The set of multiples of m, mZ, is a subgroup of Z. Using addition
notation, the left cosets are r + mZ = {r + mq : q ∈ Z}, the set of integers whose remainder on
dividing by m is r. Using this notation, 2Z is the set of even integers and 1 + 2Z is the set of odd
integers.
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Theorem 6.1. Let H ≤ G. We define a relation on G by g ≡ g′ if and only if g ∈ g′H. Then ≡ is
an equivalent relation with equivalence classes, the left cosets of H. Hence G =

⋃̇
i∈IgiH (disjoint

union) for some gi ∈ G.

Proof. Let us check reflexivity. g = g1 ∈ gH since 1 ∈ H for subgroup H. ∴ g ≡ g. Symmetry,
suppose g ≡ g′, so g = g′h for some h ∈ H. Now g′ = gh−1 ∈ gH as a subgroup is closed under
inverses, thus g′ ≡ g. For transitivity, suppose g ≡ g′, g′ ≡ g′′. Say g = g′h, g′ = g′′h′ where
h, h′ ∈ H. ∴ g = g′h = g′′h′h ∈ g′′H due to closure under multiplication of a subgroup, i.e. g ≡ g′′.
This completes the proof of the theorem. Note that subgroup properties of existence of identity,
closures under inverses and products give the respective properties of reflexivity, symmetry and
transitivity.

Note 1H = H is always a coset of G and the coset containing g ∈ G is gH.

Example 6.3. H = An ≤ Sn = G. Sn = An∪̇τAn, ,i.e. union of the set of even and odd
permutations, where τ is an odd permutation, e.g. a transposition.

Lemma 6.1. Let H ≤ G. Then for any g ∈ G, H and gH have the same cardinality.

Proof. Cancellation laws implies that map π : H −→ gH; h 7−→ gh is injective, i.e. gh = gh′ =⇒
h = h′. It is clearly surjective by definition. So it is bijective and we see that any two cosets of H
have the same cardinality.

Definition 6.2 (Index Of Subgroup). Let H ≤ G. The index of H in G is the number of left
of cosets of H in G. It is denoted by [G : H].

Theorem 6.2 (Lagrange’s Theorem). Let H ≤ G, where G is finite. Then |G| = |H|[G : H],

i.e. [G : H] = |G/H| = |G|
|H| . So in particular, |H| divides |G|.

Proof. By Theorem 6.1 and Lemma 6.1, we have

G =

[G:H]⋃
i=1

giH (disjoint union) =⇒ |G| =
[G:H]∑
i=1

|giH| =
[G:H]∑
i=1

|H| = [G : H]|H|

Example 6.4. Again An ≤ Sn. [Sn : An] = 2. ∴ |An| = |Sn|
2

= n!
2
, i.e. half of the permutations are

odd, the half even.

In the problem sheets, there is a right handed version of everything above. Right cosets have form
Hg = {hg : h ∈ H}. Set of these is denoted by H\G. All theorems and lemmas hold for these
right cosets. Also the number of left cosets equal the number of right cosets always.
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7 Normal Subgroups & Quotient Groups

Study of a group G may be done by studying some H ≤ G and G/H. This however requires
G/H to be a group also. Suppose G is some group and J,K ≤ G. Then the subset product is
JK = {jk : j ∈ J, k ∈ K} ⊆ G.

Proposition 7.1. Let G be a group.

(i) If J ′ ⊆ J ⊆ G, K ⊆ G, then KJ ′ ⊆ KJ

(ii) If H ≤ G then H2 = HH = H

(iii) For J,K, L ⊆ G, we have (JK)L = J(KL)

Proof. (i) is clear. (ii) H = 1H ⊆ HH by (i), since 1 ⊆ H and HH ⊆ H by closure under products
for H ≤ G. (iii) Using associativity of products in G, (JK)L = J(KL) = {jkl : j ∈ J, k ∈ K, l ∈
L}.

Proposition - Definition 7.1 (Normal Subgroup). Let N ≤ G. The following conditions on
N are equivalent.

(i) gN = Ng for all g ∈ G, i.e. left coset equals right coset

(ii) g−1Ng = N for all g ∈ G
(iii) g−1Ng ⊆ N for all g ∈ G
(iv) We say N is a normal subgroup of G and denote this by N EG

Proof. (i) =⇒ (ii) gN = Ng =⇒ g−1gN = g−1Ng =⇒ N = 1N = g−1Ng. (ii) =⇒ (i) is similar
by reversing the steps. It only remains to show (iii) =⇒ (ii) since (ii) =⇒ (iii) is obvious. Suppose
g−1Ng ⊆ N then gg−1Ngg−1 ⊆ gNg−1 =⇒ N ⊆ gNg−1 = (g−1)−1Ng−1. But as g runs through
all of G, g−1 also runs through all of G. Hence N ⊆ g−1Ng for all g too and so (iii) =⇒ (ii).

Example 7.1. If G is abelian, then any subgroup N is normal since gH = Hg is always true due
to commutativity.

Example 7.2. Matrix computation. Consider




a1 ∗ ∗ . . . ∗
0 a2 ∗ . . . ∗
...

...
...

...
0 0 0 . . . an







b1 ∗ ∗ . . . ∗
0 b2 ∗ . . . ∗
...

...
...

...
0 0 0 . . . bn


 =




a1b1 ∗ ∗ . . . ∗
0 a2b2 ∗ . . . ∗
...

...
...

...
0 0 0 . . . anbn


 and




a1 ∗ ∗ . . . ∗
0 a2 ∗ . . . ∗
...

...
...

...
0 0 0 . . . an




−1

=




a−1
1 ∗ ∗ . . . ∗
0 a−1

2 ∗ . . . ∗
...

...
...

...
0 0 0 . . . a−1

n


 We

have B = {M ∈ GLn(C) : M is upper triangular} ≤ GLn(C) (check axioms). The set of unipotent
matrices, U = {M ∈ B : generalised eigenvalues are all 1, i.e. only 1’s on the diagonal of M} ≤ B
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(check axioms). Now we have




a1 0 0 . . . 0
0 a2 0 . . . 0
...

...
...

...
0 0 0 . . . an


U = set of




a1 ∗ ∗ . . . ∗
0 a2 ∗ . . . ∗
...

...
...

...
0 0 0 . . . an


, where




a1 0 0 . . . 0
0 a2 0 . . . 0
...

...
...

...
0 0 0 . . . an


 ∈ GLn(C) multiplies row i of matrices of U by ai. We also have that

U




a1 0 0 . . . 0
0 a2 0 . . . 0
...

...
...

...
0 0 0 . . . an


 = set of




a1 ∗ ∗ . . . ∗
0 a2 ∗ . . . ∗
...

...
...

...
0 0 0 . . . an


, where




a1 0 0 . . . 0
0 a2 0 . . . 0
...

...
...

...
0 0 0 . . . an


 ∈

GLn(C) multiplies column i of matrices of U by ai. Hence all left and right cosets of U in B
coincide, and U EB. Note that U 5 GLn(C).

Proposition - Definition 7.2 (Quotient Group). Let N E G then subset multiplication is a
well defined multiplication map on G/N which makes G/N a group. It is called the quotient group.
Furthermore, for g, g′ ∈ G, we have

(i) (gN)(g′N) = gg′N

(ii) 1G/N = N

(iii) (gN)−1 = g−1N

Proof. (i) By Proposition 7.1, we have both closure and associativity of multiplication, i.e. subset
product of cosets is a coset and multiplication is well defined. (gN)(g′N) = g(Ng′)N = gg′NN =
gg′N . (ii) Using (i), NgN = 1NgN = (1g)N = gN =⇒ N = 1G/N . (iii) (gN)(g−1N) = gg−1N =
1N = N = 1G/N and (g−1N)(gN) = g−1gN = 1N = N = 1G/N . So inverse exist with (gN)−1 =
g−1N . Hence G/N is a group.

Example 7.3. Multiplication in B/U . Cosets of U are of the form {




a1 ∗ ∗ . . . ∗
0 a2 ∗ . . . ∗
...

...
...

...
0 0 0 . . . an


} =⇒

{




a1 ∗ ∗ . . . ∗
0 a2 ∗ . . . ∗
...

...
...

...
0 0 0 . . . an


}{




b1 ∗ ∗ . . . ∗
0 b2 ∗ . . . ∗
...

...
...

...
0 0 0 . . . bn


} = {




a1b1 ∗ ∗ . . . ∗
0 a2b2 ∗ . . . ∗
...

...
...

...
0 0 0 . . . anbn


}, i.e. clo-

sure under multiplication.

Example 7.4. Let m ∈ Z+. Z D mZ since Z is abelian. Z/mZ = {mZ, 1 + mZ, . . . , (m − 1) +
mZ} = {0, 1, . . . ,m− 1, }. Note G is abelian, so G/N is also an abelian group by Proposition -
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Definition 7.2. What is addition in the quotient group Z/mZ?

i+ j = (i+mZ) + (j +mZ)

= (i+ j) +mZ

=

{
i+ j if i+ j < m
i+ j −m if i+ j ≥ m

This recovers modulo arithmetic.

Example 7.5. Let G = R3 and N EG, where N is the “z = 0” plane. Cosets have form (0, 0, a)+
N , i.e. “z = a” plane. In G/N , we have partition of “z = a” planes. Addition is “z = a” plane +
“z = b” plane = “z = a+ b” plane.

8 Group Homomorphisms I

Example 8.1. Let G = {σ ∈ S4 : σ(4) = 4} ≤ S4. G looks like S3, but technically G 6= S3.

Example 8.2. Consider groups {1,−1} ≤ R∗ and Z/2Z, with multiplication tables
× 1 −1
1 1 −1
−1 −1 1

and
+ 2Z 1 + 2Z
2Z 2Z 1 + 2Z

1 + 2Z 1 + 2Z 2Z
. If we identify 1←→ 2Z and−1←→ 1+2Z, then the multiplication

tables are the same. We wish to say that the groups are essentially the same. More generally, we
want to be able to compare groups.

Definition 8.1 (Homomorphism). For groups H, G, a function φ : H −→ G is a group homo-
morphism if for any h, h′ ∈ H, we have φ(hh′) = φ(h)φ(h′).

Note that group homomorphisms are structure preserving maps like linear transformations of vector
spaces.

Example 8.3. φ = det : GLn(R) −→ R∗ is an homomorphism, i.e. det(AB) = det(A) det(B) for
all A,B ∈ GLn(R).

Example 8.4. exp : R −→ R∗ is an homomorphism, since ea+b = eaeb ∀ a, b ∈ R. Note that in R,
the group multiplication is addition, while in R∗, it is multiplication.

Example 8.5. A linear map T : U −→ V is an homomorphism of the underlying abelian group,
i.e. T (x + x) = T (x) + T (y).

Example 8.6. φ : {1,−1} −→ Z/2Z; 1 7−→ 2Z;−1 7−→ 1+2Z is an homomorphism in Example 8.2.
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Proposition - Definition 8.1 (Isomorphism & Automorphism). Let φ : H −→ G be a group
homomorphism. The following are equivalent.

(i) There exists an homomorphism ψ : G −→ H such that ψφ = idH and φψ = idG.

(ii) φ is bijective.

In this case, we say φ is an isomorphism or G and H are isomorphic. Write G ∼= H. If H = G, in
this case, we say φ is an automorphism.

Proof. (i) =⇒ (ii) clear due to existence of inverse. (ii) =⇒ (i), suffice to show ψ = φ−1 is a
group homomorphism, i.e for g, g′ ∈ G, need to show φ−1(gg′) = φ−1(g)φ−1(g′) ⇐⇒ gg′ =
φ(hh′) (where h = φ−1(g), h′ = φ−1(g′)) ⇐⇒ φ(h)φ(h′) = φ(hh′). This is clearly true as φ is an
homomorphism.

Example 8.7. In Example 8.2, φ : {1,−1} −→ Z/2Z is an isomorphism.

Example 8.8. idG : G −→ G is an automorphism.

Example 8.9. Recall from Example 7.2 that U = {
(

1 a
0 1

)
: a ∈ C} ≤ GL2(C) (set of unipotent

matrices). Claim φ : C −→ U ; a 7−→
(

1 a
0 1

)
is an isomorphism. Why? Clearly φ is bijective.

Suffice to check it is an homomorphism, i.e. for any a, b ∈ C, φ(a + b) = φ(a)φ(b). LHS =(
1 a+ b
0 1

)
and RHS =

(
1 a
0 1

)(
1 b
0 1

)
=

(
1 a+ b
0 1

)
. So study properties of group U is

the same as studying group C.

Proposition 8.1. Let φ : H −→ G be a group homomorphism. Then

(i) φ(1H) = 1G

(ii) φ(h−1) = (φ(h))−1 for h ∈ H
(iii) If H ′ ≤ H then φ(H ′) ≤ G

Proof. (i) 1Gφ(1H) = φ(1H) = φ(1H1H) = φ(1H)φ(1H) =⇒ 1G = φ(1H) (cancellation law). (ii)
φ(h)φ(h−1) = φ(hh−1) = φ(1H) = 1G from (i). ∴ φ(h−1) = (φ(h))−1 by uniqueness of inverses. (iii)
just check axioms. 1G = φ(1H) ∈ φ(H ′) as 1H ∈ H ′. Let h, h′ ∈ H ′. So φ(h)φ(h′) = φ(hh′) ∈ φ(H ′)
as hh′ ∈ H ′ due to closure of subgroups. Since φ(h) and φ(h′) are any elements of φ(H ′), we have
closure under multiplication. Also (φ(h))−1 = φ(h−1) ∈ φ(H ′) as h−1 ∈ H ′, i.e. closure under
inverses in subgroups. Thus we have closure under inverses and φ(H ′) ≤ G.

Proposition 8.2. If ψ : I −→ H and φ : H −→ G are group homomorphisms then φψ : I −→ G
is also an homomorphism.
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Proposition - Definition 8.2 (Conjugate). Let G be a group and g ∈ G. We define conjugate
by g to be the function Cg : G −→ G;h 7−→ ghg−1. Then Cg is an automorphism with inverse
Cg−1 . Let H ≤ G and g ∈ G. Then Cg(H) = gHg−1 ≤ G is called the conjugate of H.

Proof. Check first Cg is an homomorphism. For h, h′ ∈ G, Cg(hh
′) = ghh′g−1 = ghg−1gh′g−1 =

Cg(h)Cg(h
′). Now check Cg−1 is the inverse. Cg−1Cg(h) = Cg−1(ghg−1) = g−1ghg−1(g−1)−1 = h.

This holds for all g, so we are done.

Proposition 8.3. Let f : S −→ T be a bijection of sets. Then Perm(S) ∼= Perm(T ).

Proof. Show there is an isomorphism φ : Perm(S) −→ Perm(T ); σ 7−→ f ◦ σ ◦ f−1 with inverse
φ−1 : Perm(T ) −→ Perm(S); τ 7−→ f−1 ◦ τ ◦ f .

9 Group Homomorphisms II

Definition 9.1 (Epimorphism & Monomorphism). Let φ : H −→ G be an homomorphism,
we say φ is an epimorphism if φ is onto; monomorphism if φ is one to one.

Example 9.1. Let G be a group. φ : G −→ {1} is an epimorphism. Since for g, g′ ∈ G, we have
φ(gg′) = 1 = 12 = φ(g)φ(g′). This shows φ is homomorphism, and it is clearly surjective.

Example 9.2. Let H ≤ G then the inclusion map η : H ↪−→ G;h 7−→ h is a monomorphism. It
is one to one and an homomorphism, i.e. η(h1h2) = h1h2 = η(h1)η(h2).

Definition 9.2 (Kernel). Let φ : H −→ G be a group homomorphism. The kernel of φ is
ker(φ) = φ−1(1) = {h ∈ H : φ(h) = 1G}.

Proposition 9.1. Let φ : H −→ G be a group homomorphism.

(i) Let G′ ≤ G then φ−1(G′) ≤ H

(ii) Let G′ EG then φ−1(G′) EH

(iii) K = ker(φ) EH

(iv) The non-empty fibres of φ, i.e. sets of form φ−1(g) ⊆ H for some g ∈ G, are the cosets of K

(v) φ is one to one (monomorphism) if and only if K = 1 = {1H}
Proof. (i) Just check closure axioms. φ(1H) = 1G ∈ G′ =⇒ 1H ∈ φ−1(G′). If h, h′ ∈ φ−1(G′) then
φ(hh′) = φ(h)φ(h′) ∈ G′ by closure of subgroups. So hh′ ∈ φ−1(G′). By closure under inverses
of a subgroup, φ(h−1) = (φ(h))−1 ∈ G′ =⇒ h−1 ∈ φ−1(G′). Thus φ−1(G′) ≤ H. (ii) Suffice
to show for any h ∈ H, h′ ∈ φ−1(G′), we have h−1h′h ∈ φ−1(G′), i.e. h−1φ−1(G′)h ⊆ φ−1(G′).
φ(h−1h′h) = φ(h−1)φ(h′)φ(h) = (φ(h))−1φ(h′)φ(h) ∈ (φ(h))−1G′φ(h) = G′ due to normality of
G′. ∴ h−1h′h ∈ φ−1(G′) =⇒ φ−1(G′) E H. (iii) When you put G′ = 1 and note 1 E G, ker(φ) =
φ−1(1) E H. (iv) Let h ∈ H be such that g = φ(h). Suffice to show hK = φ−1(g). Now
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φ(hK) = φ(h)φ(K) = φ(h) = g as φ(K) = 1. ∴ hK ⊆ φ−1(g). Suppose h′ ∈ φ−1(g) then
φ(h−1h′) = φ(h−1)φ(h′) = (φ(h))−1φ(h′) = g−1g = 1. Thus h−1h′ ∈ K. ∴ h′ = h(h−1h′) ∈ hK =⇒
φ−1(g) ⊆ hK. hK = φ−1(g) and (iv) holds. (v) By (iv), φ is one to one if and only if non-empty
fibres have one element. But cosets of K has same number of elements, i.e. if and only if K, a
coset of K, has one element.

Example 9.3. Let T : V −→ W be linear, e.g. in R3, T is the projection onto a line L. Fix
w ∈ W , then the set of solutions to T (v) = w is T−1(w) = vp +K (coset of K). K is the kernel
and vp is any particular solution.

Example 9.4. Special linear group. Consider homomorphism det : GLn(C) −→ C∗. Define
SLn(C) = ker(det) = {M ∈ GLn(C) : det(M) = 1}EGLn(C). Similarly define SLn(R).

Example 9.5. There is an homomorphism φ : Sn −→ GLn(R);σ 7−→ φ(σ) defined by φ(σ) :

Rn −→ Rn; ei 7−→ eσ(i), e.g. σ(12) =




0 1 0 . . . 0 0
1 0 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . 1 0
0 0 0 . . . 0 1




. Consider composite homomorphism

ψ = detφ : Sn
φ−→GLn(R)

det−→R∗. Write σ ∈ Sn as σ = τ1τ2 . . . τm for transpositions τi. ψ(σ) =
ψ(τ1)ψ(τ2) . . . ψ(τm) = (−1)m since ψ of a transposition is the determinant of the identity matrix
with two rows swapped. Note ψ−1(1) = ker(ψ) = AnESn and ψ−1(−1) = set of odd permutations,
which is the other coset of An.

Proposition - Definition 9.1 (Quotient Morphism). Let N EG, the quotient morphism of G
by N is π : G −→ G/N ; g 7−→ gN . π is an epimorphism with kernel N

Proof. Check π is homomorphism, i.e. for g, g′ ∈ G, π(gg′) = gg′N = gNg′N = π(g)π(g′). ∴ it is
an homomorphism. Finally, ker(π) = π−1(1G/N) = π−1(N) = {g ∈ G : gN = N} = N .

10 First Group Isomorphism Theorem

How much does an homomorphism deviate from being an isomorphism?

Theorem 10.1 (Universal Property Of Quotient Morphism). Let N E G and π : G −→
G/N ; g 7−→ gN be the quotient morphism. Let φ : G −→ H be an homomorphism such that
ker(φ) ≥ N . Then

(i) If g, g′ ∈ G lie in the same coset of N , i.e. gN = g′N , then φ(g) = φ(g′)

(ii) The map ψ : G/N −→ H; gN 7−→ φ(g) is an homomorphism, called an induced homomor-
phism

(iii) φ = ψ ◦ π is the unique such function
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(iv) ker(ψ) = ker(φ)/N

Proof. (i) Suppose g′ = gn for some n ∈ N , i.e. g′ ∈ gN , then φ(g′) = φ(gn) = φ(g)φ(n) = φ(g),
since n ∈ N ≤ ker(φ). (ii) ψ is well defined since if g′N = gN then φ(g′) = φ(g) by part (i).
For g, g′ ∈ G, we check ψ(gNg′N) = ψ(gN)ψ(g′N). Now since φ is an homomorphism, we have
ψ(gNg′N) = ψ(gg′N) = φ(gg′) = φ(g)φ(g′) = ψ(gN)ψ(g′N). (iii) Clear from the picture. (iv)
ker(ψ) = {gN : ψ(gN) = 1H} = {gN : φ(g) = 1H} = {gN : g ∈ ker(φ)} = ker(φ)/N by definition.

G
φ−−−−−→H

π ↘ ↗ψ

G/N

g p−−−−−→ φ(g)
↘ ↗

gN

Lemma 10.1. Any subgroup N ≤ Z has the form N = mZ for some m ∈ Z.

Proof. If N = 0, can take m = 0. Suppose N 6= 0, since N is closed under negatives, it has a
minimal positive element m. Suffice to show N = mZ. Subgroup closure axioms =⇒ mZ ⊆ N , as
any multiple of m will be in N . To show N ⊆ mZ, let n ∈ N and write n = mq + r, where q ∈ Z,
r ∈ {0, 1, 2, . . . ,m− 1}. ∴ r = n−mq ∈ N since n ∈ N and mq ∈ mZ ⊆ N . Minimality of m =⇒
r = 0. So n = mq ∈ mZ. Hence N = mZ as desired.

Note that Z/mZ is a cyclic group generated by 1 + mZ, i.e. k(1 + mZ) = k + mZ for k ∈
{0, 1, 2, . . . ,m− 1}. Further, if m 6= 0, then 1 +mZ has order m since m(1 +mZ) = mZ = 0Z/mZ
but for i ∈ {1, 2, . . . ,m− 1}, i(1 + mZ) = i+mZ 6= mZ.

Proposition 10.1 (Classification Of Cyclic Groups). Let H = 〈h〉 be a cyclic group. Then
there is a well defined isomorphism φ : Z/mZ −→ H; i +mZ 7−→ hi, where m is the order of h if
this is finite and is 0 if h has infinite order.

Proof. Define function φ : Z −→ H; i 7−→ hi. It is an homomorphism since φ(i + j) = hi+j =
hihj = φ(i)φ(j). Apply Theorem 10.1 with N = ker(φ) to get homomorphism ψ : Z/N −→ H. By
Lemma 10.1, N = ker(φ) is a subgroup of Z, so N = mZ for some m ∈ Z. Using Theorem 10.1
(iv), ker(ψ) = ker(φ)/N = ker(φ)/ ker(φ) = 0, the identity. So ψ is one to one. Note φ is surjective.
So by Theorem 10.1 (iii), i.e. φ = ψ ◦ π, ψ must be surjective too. As an exercise, check h infinite
order case. See order of h = order of φ−1(h) = order of 1 +mZ = m.

Corollary 10.1. A group H is said to have an exponent n > 0 if either of the following equivalent
conditions hold.

(i) hn = 1 for all h ∈ H
(ii) For every h ∈ H, n in a multiple of the order of h

Proof. Use isomorphism ψ : Z/mZ −→ 〈h〉 of Proposition 10.1, to see that hn = 1 ⇐⇒ n ∈ mZ.
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Theorem 10.2 (First Isomorphism Theorem). Let φ : G −→ H be an homomorphism. Then
the Universal Property Of Quotient Morphism π : G −→ G/ ker(φ) induces a monomorphism
ψ : G/ ker(φ) ↪−→ H, which induces isomorphism G/ ker(φ) ∼= Im(φ) ≤ H. We can fact φ into
φ : G

π−→G/ ker(φ) (quotient morphism) ∼= Im(φ) ↪−→ H.

Proof. Same as in Theorem 10.1, The Universal Property Of Quotient Morphism, with N = ker(φ).

So to turn an homomorphism into an isomorphism, we need to first factor out the kernel using the
quotient morphism, so it is one to one. Then we must restrict the codomain to the range to make
it onto.

Example 10.1. T : R3 −→ R3 be the projection onto a line L. Then R3/ ker(T ) are the planes
perpendicular to L. ∴ R3/ ker(T ) ∼= L, the bijection from the plane to the corresponding point on
L.

11 Subgroups Of Quotient Groups & Other Isomorphism

Group Theorems

The idea is that if we know all subgroups of the original group, then we should know all subgroups
of the quotient group.

Proposition 11.1 (Subgroups Of Quotient Groups). Let N EG and π : G −→ G/N be the
quotient morphism.

(i) If N ≤ H ≤ G then N EH

(ii) There is a bijection {subgroups H ≤ G such that N ≤ H} −→ {subgroups H̄ ≤ G/N};H 7−→
π(H) = H/N = {hN : h ∈ H} and H̄ 7−→ π−1(H̄) is the inverse

(iii) Normal subgroups above correspond

Proof. (i) By definition hN = Nh for all h ∈ G, so hN = Nh ∀ h ∈ H, i.e. N E H. For (ii)
and (iii), we check that maps are well defined. Homomorphisms takes subgroups to subgroups.
So π−1 takes subgroups to subgroups, and so does π. Also π−1(H̄) ≥ π−1(1G/N) = π−1(N) = N .
Let us check that it preserves normality. Suppose N ≤ H E G, we need to show H/N E G/N .
Consider g ∈ G, h ∈ H, (g−1N)(hN)(gN) = (g−1hg)N (N E G) ∈ H/N as g−1hg ∈ H E G. So
H/N E G/N . We now check that these two maps are inverses to each other. Firstly π is onto
=⇒ π(π−1(H̄)) = H̄. π−1(π(H)) = π−1(H/N) =

⋃
h∈H hN = H as H/N has elements of the form

hN . So we obtain a bijection.

Proposition 11.2 (Subgroups Of Cyclic Groups). Let m ∈ Z be positive and H̄ ≤ Z/mZ.
Then H̄ = nZ/mZ where n | m for some n. H̄ = 〈n+mZ〉 is a cyclic group of order m

n
.

Proof. By Proposition 11.1, H̄ = H/mZ for some H ≤ Z. From Lemma 10.1, we know H = nZ
for some n ∈ N. Also nZ ⊇ mZ ⇐⇒ m ∈ nZ ⇐⇒ n | m. The last statement is trivial. Note
that H̄

m
n = m

n
(n+mZ) = n× m

n
+mZ = mZ, which is the identity in Z/mZ.
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Suppose H ≤ G, N E G, we apply First Isomorphism Theorem to the following composite homo-
morphisms, since composition of homomorphisms is still an homomorphism.

(i) φ : H ↪−→ G
πN−→G/N

(ii) φ : G
πN−→G/N

πH/N−→ G/N
H/N

, since by Proposition 11.1, if N ≤ H EG, then H/N EG/N .

Theorem 11.1 (Second Isomorphism Theorem). Suppose N ≤ HEG and NEG as in above.

Then G/N
H/N
∼= G/H.

Proof. Since πN , πH/N are both onto, φ = πH/N ◦ πN is onto also. ker(φ) = {g ∈ G : πN(g) ∈
ker(πH/N : G/N −→ G/N

H/N
)} = {g ∈ G : πN(g) ∈ H/N} = π−1

N (H/N) = H by Proposition 11.1.

First Isomorphism Theorem says G/ ker(φ) ∼= Im(φ) =⇒ G/H ∼= G/N
H/N

. This proves the theorem.

Example 11.1. Z/4Z
2Z/4Z = Z/2Z.

Theorem 11.2 (Third Isomorphism Theorem). Suppose H ≤ G, N EG. Then

(i) H ∩N EH, HN ≤ G (note if H,N ≤ G only, we may not necessarily have HN ≤ G)

(ii) We have isomorphism H
H∩N

∼= HN
N

Proof. By applying First Isomorphism Theorem to φ : H ↪−→ G
πN−→G/N and using Proposi-

tion 11.1, it suffices to show (a) ker(φ) = H ∩ N , (b) Im(φ) = HN/N . Check (a), ker(φ) = {h ∈
H : h ∈ ker(πN : G −→ G/N)} = {h ∈ H : h ∈ N} = N ∩H. Check (b), Im(φ) = {hN : h ∈ H} ≤
G/N . By Proposition 11.1, H̄ = π−1

N πN(H̄) = πN(H̄)/N . But πN(H̄) =
⋃
h∈H hN = HN =⇒ H̄ =

HN/N ≤ G/N andHN ≤ G. By First Isomorphism Theorem, H/ ker(φ) ∼= Im(φ) =⇒ H
H∩N

∼= HN
N

.
To see H ∩N EH, note N EG and H ∩N ≤ N =⇒ H ∩N EG. Since H ∩N ≤ H ≤ G and by
Proposition 11.1, H ∩N EH.

Example 11.2. G = Sn D An = N . H = 〈τ〉 ∼= Z/2Z, where τ is a transposition. H ∩ N =
〈τ〉 ∩ An = {1, τ} ∩ An = 1. HN = An ∪ τAn = Sn. Hence H

H∩N
∼= HN

N
⇐⇒ 〈τ〉 ∼= Sn/An with

1←→ An; τ ←→ τAn.

12 Products

Given groups G1, G2, . . . , Gn, recall G1×G2× . . .×Gn = {(g1, g2, . . . , gn) : gi ∈ Gi for all i}. More
generally, for groups Gi, indexed i ∈ I, we have

∏
i∈I Gi = {(gi)i∈I : gi ∈ Gi for all i}.

Proposition - Definition 12.1 (Product). The set G =
∏

i∈I Gi is a group called the product
of the Gi’s, when endowed with coordinatewise multiplication, i.e. (gi)(g

′
i) = (gig

′
i).

(i) 1G = (1Gi
)

(ii) (gi)
−1 = (g−1

i )
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Proof. Check axioms, e.g. (1Gi
)(gi) = (1Gi

gi) = (gi) = (gi)(1Gi
).

Example 12.1. Z2 = Z × Z. (2, 3) + (1,−1) = (3, 2) since product of abelian groups is abelian.
Z2 is finitely generated by (1, 0) and (0, 1) since for all (m,n) ∈ Z2, (m,n) = m(1, 0) + n(0, 1).

Let Gi be groups indexed by i ∈ I. We define two new maps for any r ∈ I.
(i) Canonical projection: πr :

∏
i∈I Gi −→ Gr; (gi) 7−→ gr

(ii) Canonical injection: ιr : Gr −→
∏

i∈I Gi; gr 7−→ (gi) where gi = 1 if i 6= r; gi = gr if i = r

Proposition 12.1. With the above notation, we have:

(i) ιr is a monomorphism

(ii) πr is an epimorphism

(iii) G1×G2

G1×1
∼= G2

Proof. (i) is similar to (ii). (ii) πr is onto, so suffice to check homomorphism, i.e. πr((gi)(g
′
i)) =

πr(gig
′
i) = grg

′
r = πr((gi))πr((g

′
i)). (iii) For groups G1, G2, apply First Isomorphism Theorem to

π2 : G1 ×G2 −→ G2 gives the isomorphism.

Note that G1
∼= G1 × 1, so we can sort of see G1, G2 as subgroups or factors of G1 ×G2. Can you

recognise if subgroups G1, G2, . . . , Gn ≤ G are such that G ∼= G1 ×G2 × . . .×Gn naturally?

Proposition 12.2 (Internal Characterisation Of products). Let G1, G2, . . . , Gn ≤ G gener-
ate G, i.e. 〈G1, G2, . . . , Gn〉 = G. Suppose that

(i) For i, j distinct, elements of Gi and Gj commute

(ii) For any i, Gi ∩ 〈
⋃
l 6=iGl〉 = 1, i.e. similar to linear independence in vector spaces

Then we have an isomorphism φ : G1 ×G2 × . . .×Gn −→ G; (g1, g2, . . . , gn) 7−→ g1g2 . . . gn.

Proof. Check φ is an homomorphism, i.e. φ((gi)(g
′
i)) = φ(gig

′
i) = g1g

′
1g2g

′
2 . . . gng

′
n = g1g2 . . . gn

g′1g
′
2 . . . g

′
n = φ(gi)φ(g′i) (for i 6= j, gi and gj commute. Check φ is onto. This follows from

the commutativity of gi, gl for i 6= j (can write in the form g1g2 . . . gn, gi ∈ Gi) and the fact
G1, G2, . . . , Gn generate G. Suppose (g1, g2, . . . , gn) ∈ ker(φ). Then suffice to show gi = 1 for any
i. Now 1 = φ(g1, g2, . . . , gn) = g1g2 . . . gn =⇒ gi = g−1

1 g−1
2 . . . g−1

i−1g
−1
i+1 . . . g

−1
n due to commutativity.

The left hand side is in Gi and the right hand side in 〈⋃l 6=iGl〉. Thus gi = 1 since Gi∩〈
⋃
l 6=iGl〉 = 1.

This gives the second proposition.

Corollary 12.1. Let G be a finite group of exponent two, then G ∼= Z/2Z × Z/2Z × . . . × Z/2Z
(finite times), where Z/2Z is the cyclic group of order two.

Proof. G finite =⇒ G is finitely generated, e.g. generated by G itself. Pick minimal generating set
{g1, g2, . . . , gn}. Note gi has order 2. =⇒ 〈gi〉 ∼= Z/2Z. It suffices to use Proposition 12.2 to show
G ∼= 〈g1〉 × 〈g2〉 × . . . × 〈gn〉. Let us check the conditions (i) and (ii) hold since 〈gi〉’s generate G.
To check (i), for g, h ∈ G, 1 = (gh)2 = ghgh ∴ gh = g2hgh2 = hg as g2 = h2 = 1. So G is abelian
and so is OK. (ii) WLOG, suffice to check 〈g1〉 ∩ 〈g2, g3, . . . , gn〉 = {1, g1} ∩ 〈g2, g3, . . . , gn〉 = 1. If
false then g1 ∈ 〈g2, g3, . . . , gn〉. So g1 can be omitted from the generating set. This contradicts the
minimality assumption.
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Proposition 12.3 (Universal Property Of Products). Let Hi, Gi (i ∈ I) be groups. For
i ∈ I, let φi : H −→ Gi be an homomorphism. Then we have an homomorphism (φi)i∈I : H −→∏

i∈I Gi;h 7−→ (φi(h))i∈I .

Proof. Check definitions.

Theorem 12.1 (Structure Theorem For Finitely Generated Abelian Groups). Let G be
a finitely generated group. Then G ∼= Z/h1Z×Z/h2Z× . . .×Z/hrZ×Zs, where h1 | h2 | h3 | . . . |
hr−1 | hr for some r, s ∈ N.

13 Symmetries Of Regular Polygons

Recall an isometry T : Rn −→ Rn satisfies ‖x− y‖ = ‖Tx− Ty‖. Also recall that AOn, the set of
surjective symmetries T : Rn −→ Rn forms a subgroup of Perm(Rn).

Example 13.1. Let x ∈ Rn. For this lecture, denote translation by v by Tv : Rn −→ Rn;x 7−→
x + v. Tv is an isometry.

Proposition 13.1. Let T ∈ AOn, then T = Tv ◦ T ′, where v = T (0) and T ′ is an isometry with
T ′(0) = 0.

Proof. Let v = T (0). Set T ′ = T−1
v ◦ T = T−v ◦ T , which is an isometry, being composite of

isometries. T ′(0) = T−v(T (0)) = Tv(v) = v − v = 0 gives the proposition.

Theorem 13.1. Let T : Rn −→ Rn be an isometry such that T (0) = 0. Then T is linear. Since
T is injective so T is automatically surjective and T ∈ On, i.e. T preserves dot product and
orthogonality.

Proof. Tx = Ty =⇒ ‖Tx − Ty‖ = 0 =⇒ ‖x − y‖ = 0 =⇒ x = y. The following is an heuristic
argument that is not examinable. Note that T is continuous (‖x− y‖ → 0 =⇒ ‖Tx− Ty‖ → 0).
Check additivity of T . Sides are all equal, i.e. OA = OA′, OB = OB′, AB = A′B′, as T is an
isometry. (‖x− y‖ = ‖Tx− Ty‖) on 0, Tx, Ty, T (x + y). ∴ 4OAB ∼= 4OA′B′ (SSS). Similarly
4OBC ∼= 4OB′C ′ (SSS). Now AC = ‖x− y‖ = ‖Tx− Ty‖ = A′C ′ also. So points OA′B′C ′ is a
parallelogram congruent to OABC. So if x 6= y, then T (x+y) = Tx+Ty, using the parallelogram
OA′B′C ′. ∵ T is continuous ∴ let x→ y, T (x + y) = Tx + y still holds if x = y. Thus additivity
is true for all x, y by continuity of T . Let us check scalar multiplication is preserved too. Let
x ∈ Rn and m ∈ N. Then T (mx) = Tx + Tx + . . .+ Tx = mTx. Put 1

m
x for x in the above gives

Tx = mT ( 1
m
x) =⇒ T ( 1

m
x) = 1

m
Tx. Note also 0 = T (0) = T (x−x) = T (x)+T (−x) =⇒ T (−x) =

−T (x). ∴ T (λx) = λT (x) for all λ ∈ Q. Hence true for all λ ∈ R by continuity of T .

Let V = {v1,v2, . . . ,vm} ⊆ Rn. Recall its centre of mass is cV = 1
m

(v1 + v2 + . . .+ vm).

Proposition 13.2. Consider the following function. The function attains a unique minimum when
x = cV .

EV (x) =
m∑
i=1

‖x− vi‖2
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Proof. Consider the following. ∴ unique minimum when xj = − b
2a

= 1
m

∑
i v

i
j, i.e. when x = cV .

EV (x) =
∑
i,j

(xj − vij)2 =
∑
i,j

(x2
j − 2xjv

i
j + (vij)

2) =
∑
j

(mx2
j − 2xj(

∑
i

vij) +
∑
i

(vij)
2)

Corollary 13.1. Let V = {v1,v2, . . . ,vm} and T : Rn −→ Rn be an isometry such that T (V ) = V .
Then T (cV ) = cV .

Proof. TcV = cV since

EV (TcV ) =
m∑
i=1

‖TcV − vi‖2

=
m∑
i=1

‖TcV − Tvi‖2 (T permutes vi’s)

=
m∑
i=1

‖cV − vi‖2

= EV (cV ) (T ∈ AOn)

Corollary 13.2. Let G ≤ AOn be finite. There is some vector c ∈ Rn such that Tc = c for ant
T ∈ G.

Proof. Pick w ∈ Rn and let V = {Sw : S ∈ G} ⊆ Rn be as in Corollary 13.1. Note V is finite as
G is finite. Note T (V ) = {TSw : S ∈ G} ⊆ V as TS ∈ G for all T ∈ G. But T is bijective =⇒ we
have T (V ) = V . Put c = cV in Corollary 13.1 to get this corollary.

Note if G ≤ AOn is finite. Let us translate in Rn to change the coordinates and make c in
Corollary 13.2 equal to 0. By Theorem 13.1, G ≤ On.

Example 13.2. Let v ∈ Rn − {0}. Note there is no c with Tv(c) = v + c = c. However
〈Tv〉 = {T iv : i ∈ Z} = {Tiv : i ∈ Z} is infinite. This is a contrapositive example of Corollary 13.2.

Let F be a regular n-gon, V be the set of vertices and G the set of symmetries of F . By Proposi-
tion 13.1, any isometry is a composite of linear translation and linear map. ∴ Any T ∈ G satisfies
T (V ) = V , since T is a linear translation or a linear map, i.e. T takes edges to edges and vertices
to vertices. Corollary 13.1 =⇒ T (cV ) = cV . We change the coordinates so that cV = 0. Hence
by Theorem 13.1, G ≤ O2 (n = 2 for a plane). But O2 consists of rotations and reflections. By
symmetry, we get . . .

Proposition 13.3 (Symmetries Of Regular Polygons). The group of symmetries of a regular
n-gon is in fact Dn.

Note that if T , such that T (0) = 0, preserves distance, then T preserves dot product, i.e. ‖Tx −
Ty‖2 = ‖x−y‖2 =⇒ ‖Tx‖2− 2(Tx) · (Ty)+ ‖Ty‖2 = ‖x‖2− 2x ·y + ‖y‖2 =⇒ (Tx) · (Ty) = x ·y
(‖T (x)‖ = ‖T (x)− 0‖ = ‖T (x)− T (0)‖ = ‖x− 0‖ = ‖x‖).
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14 Abstract Symmetry & Group Actions

Example 14.1. (A), (B) and (C) have symmetric groups {1, τ}, {1, σ} and {1, τ} respectively.
Thus the symmetry group is Z/2Z in all cases but (A) and (B) exhibit very different symmetries
while (A) and (C) very similar. So we need more data to distinguish (A) and (B).

Let G be a group.

Definition 14.1 (G-Set). A G-Set S is a set S equipped with a map α : G× S −→ S; (g, s) 7−→
α(g, s) = g.s, called the group action or operation satisfying the following axioms:

(i) Associativity, for g, h ∈ G, s ∈ S, we have g.(h.s) = (gh).s (note h.s ∈ S, gh ∈ G)

(ii) For s ∈ S, we have 1.s = s

We also say that G acts on S or operates on S.

Example 14.2. Let G = R∗ (multiplicative group) and S a vector space over R. Then S is a G-set
with group action α.v = αv (scalar multiplication, α ∈ G = R∗, v ∈ S). In a sense, group actions
looks like scalar multiplication in vector spaces.

Example 14.3. let G = GLn(C) and S = Cn. S is a G-set with G-action A.v = Av (matrix
multiplication, A ∈ GLn(C), v ∈ Cn). Why? (i) (AB)v = A(Bv) and (ii) Inv = v.

Proposition - Definition 14.1 (Permutation Representation). A permutation representation
of a group G on a set S is an homomorphism φ : G −→ Perm(S). This gives rise to a G-set S with
G-action g.s = (φ(g))(s) (g ∈ G, s ∈ S, φ(g) ∈ Perm(S), (φ(g))(s) ∈ S).

Proof. Check axioms. For s ∈ S, check (ii), i.e. 1.s = s? LHS = (φ(1))(s) = id(s) = s = RHS
since φ is an homomorphism. And further if g, h ∈ G, we check condition (i), i.e. g.(h.s) = (gh).s.
RHS = (φ(gh))(s) = (φ(g) ◦ φ(h))(s) (multiplication in permutation groups in composition of
functions) = φ(g)(φ(h)(s)) = g.(φ(h)(s)) = g.(h.s) = LHS. ∴ S is a G-set.

Example 14.4. Back to Example 14.1. G = {1, g} ∼= Z/2Z, we have the following representations

and G-sets. S = R2. (A) =⇒ φA : G ∼= Z/2Z −→ 〈τ〉 = 〈
( −1 0

0 1

)
〉 ↪−→ GL2(R) ↪−→ Perm(R2),

i.e. permutations of R2 are matrices, while φA(g) =

( −1 0
0 1

)
. (B) =⇒ φB : G −→ 〈σ〉 =

〈
( −1 0

0 −1

)
〉 ↪−→ Perm(R2) and (C) =⇒ φC : G −→ 〈σ〉 = 〈

(
1 0
0 −1

)
〉 ↪−→ Perm(R2).

Proposition 14.1. Every G-set arises from a permutation representation in this fashion, i.e. every
G-action can be represented in a permutation form.
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Proof. Let S be a G-set. Define function φ : G −→ Perm(S); g 7−→ φ(g) and φ(g) : S −→
S; s 7−→ g.s. Check well defined, i.e. φ(g) is bijective by showing φ(g−1) is the inverse. For s ∈ S,
(φ(g−1) ◦ φ(g))(s) = g−1.(g.s) = (g−1g).s (by associativity) = 1.s = s. ∴ φ(g−1) ◦ φ(g) = id and
similarly φ(g) ◦ φ(g−1) = id. So φ(g) ∈ Perm(S). Now check φ is an homomorphism, i.e. g, h ∈ G,
s ∈ S, (φ(gh))(s) = (φ(g) ◦ φ(h))(s)? Note checking functions are equal is equivalent to checking
that the functions have the same value for all input. LHS = (gh).s = g.(h.s) = RHS. The
definition ensures the G-set corresponding to φ is S, i.e. g.s = (φ(g))(s).

Let G be a group and S1, S2 be G-sets.

Definition 14.2 (Equivariance). A morphism of G-sets is a function ψ : S1 −→ S2 satisfying
axiom: for any g ∈ G, s ∈ S, we have g.ψ(s) = ψ(g.s) (g.s ∈ S1, ψ(s) ∈ S2). In this case, we also
say ψ is G-equivariant or that ψ is compatible with the G-action.

Note that equivariant maps are like linear operators preserving scalar multiplication over vector
spaces, i.e. T (λx) = λT (x).

Example 14.5. Back to Example 14.1 yet again. Let SA, SB be G-sets corresponding to φA
and φB, i.e. SA = SB = R2. Recall G = {1, g}. Claim ψ : SA −→ SB; (x, y) 7−→ (y, x) is
a morphism of G-sets. Check for s ∈ SA, the axiom holds. ψ(1.s) = ψ(s) = 1.ψ(s). Also
ψ(g.(x, y)) = ψ(φA(g)(x, y)) = ψ(−x, y) = (y,−x) = φA(g)(y, x) = g.ψ(x, y).

Proposition - Definition 14.2 (Isomorphism Of Morphism). A morphism ψ : S1 −→ S2 of
G-sets is an isomorphism if it is bijective. In this case ψ−1 is G-invariant too.

Proof. Same as for isomorphisms of groups.

Example 14.6. ψ : SA −→ SB is bijective as well, so is an isomorphism of G-sets.

15 Orbits & Stabilisers

Example 15.1. We have a permutation representation of G = O3 defined by G = O3 ↪−→
GL3(R) ↪−→ Perm(R3). R3 is a G-set in this way, A.x = Ax for A ∈ O3, x ∈ R3.

Proposition - Definition 15.1 (G-Stable Subset). Let S be a G-set. A subset T ⊆ S is said
to be G-stable if for any g ∈ G, t ∈ T , we have g.t ∈ T . In this case, the group action restricted to
T make T a G-set.

Proof. Same as for subgroups.

Example 15.2. G = O3, S = R3. Let T = {v : ‖v‖ < 1} ⊆ S, i.e. T is the unit ball. Now T is
G-stable, why? If A ∈ O3, then ‖Av‖ = ‖v‖. So unit ball T is a G-set.

If T ⊆ S is G-stable then the inclusion T ↪−→ S is a morphism of G-sets. Let S be a G-set. We
define a relation ∼ on S by s ∼ s′ if there is some g ∈ G such that s = g.s′.
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Proposition 15.1. The relation ∼ is an equivalence relation.

Proof. Check reflexivity. For s ∈ S, 1.s = s. ∴ s ∼ s, as 1 ∈ G. Check symmetry. Suppose
s ∼ s′, so s = g.s′ for some g ∈ G. Then s′ = 1.s′ = (g−1g).s = g−1(g.s′) = g−1.s =⇒ s′ ∼ s.
Check transitivity. Suppose s ∼ s′, s′ ∼ s′′, so say g, g′ ∈ G are such that s = g.s′, s′ = g′.s′′. Then
s = g.s′ = g.(g′.s′′) = (gg′).s′′ (by associativity). Hence ∼ is an equivalence relation.

Proposition - Definition 15.2 (G-Orbits). The set of equivalence classes are called the G-
orbits. The G-orbit containing s ∈ S is G.s = {g.s : g ∈ G}. Then S is disjoint union of orbits and
the set of orbits is denoted by S/G (perhaps G\S is a better notation).

Example 15.3. O3 acts on R3 via O3 ↪−→ Perm(R). Let v ∈ R3 have length d. Let Sd be the
sphere of radius d, centred 0. Since for A ∈ O3 = G, Av ∈ Sd. So G.v ⊆ Sd. But given another
w ∈ Sd, we can rotate w onto v, i.e. Sd ⊆ G.v. Hence the orbit of v is G.v = Sd. Also we have
that R3 =

⋃̇
d≥0Sd.

Proposition 15.2. Let S be a G-set and s ∈ S. Then G.s is the smallest G-stable subset of S
containing s.

Proof. Firstly ”closure ” axioms imply G.s lies in any G-stable subset containing s. It is suffice
now to check G.s is G-stable. Let g, h ∈ G. Then for any h.s ∈ G.s, g.(h.s) = (gh).s ∈ G.s (by
associativity). ∴ G.s is G-stable.

Definition 15.1. We say that G acts transitively on S if S consists of just one orbit.

Example 15.4. Let G = GLn(C). G acts on S = Mn(C), the set of n × n matrices over C,
by conjugation, i.e. ∀ A ∈ G = GLn(C), M ∈ S, A.M = AMA−1. Let us check indeed this
gives a group action. Check axioms. (i) In.M = InMI−1

n = M . (ii) A.(B.M) = A.(BMB−1) =
ABMB−1A1 = (AB)M(AB)−1 = (AB).M . What are the orbits? G.M = {AMA−1 : A ∈
GLn(C)}. The theory of Jordan canonical forms aims to find a nice representation in this orbit.

Let S be a G-set.

Definition 15.2 (Stabiliser). The stabiliser of S is stabG(s) = {g ∈ G : g.s = s} ⊆ G.

Proposition 15.3. Let S be a G-set and s ∈ S. Then stabG(s) ≤ G.

Proof. Check axioms. (i) 1.s = s =⇒ 1 ∈ stabG(s). (ii) Suppose g, h ∈ stabG(s), (gh).s =
g.(h.s) = g.s = s (by associativity) =⇒ gh ∈ stabG(s). (iii) If g ∈ stabG(s) then g.s = s =⇒
g−1.s = g−1.(g.s) = (g−1g).s = 1.s = s. So g−1 ∈ stabG(s). ∴ stabG(s) ≤ G.

Example 15.5. Let G = SO3 = SL3 ∩O3. It acts on R3 via permutation representation SO3 ↪−→
GL3 ↪−→ Perm(R3). Let v ∈ R3 − {0}. stabG(v) = groups of rotations about axis through v and
−v ∼= SO2(R).

Note that isomorphic G-sets also have isomorphic orbits and stabilisers of corresponding elements
equal.

Example 15.6. Back to Example 14.1. (A) has lots of one point orbits, i.e. on the line of symmetry,
while (B) has only a single one point orbit at the centre of mass. Thus they are not isomorphic
G-sets.
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16 Structure Of Orbits & Platonic Solids

The stereotypical example of a transitive G-action is the G-set G/H. Let H ≤ G.

Proposition 16.1. The set G/H is a G-set when endowed with group action g′.(gH) = g′gH for
g, g′ ∈ G, gH ∈ G/H.

Proof. Just check axioms. (i) 1.(gH) = gH (ii) Need for any g, g′, g′′ ∈ G, g′′.(g′.(gH)) =
(g′′g′)(gH). LHS = g′′.(g′gH) = g′′g′gH = (g′′g′)gH = RHS. ∴ G/H is a G-set.

Theorem 16.1 (Structure Of G-Orbits). Let a group G act transitively on a set S. Let
s ∈ S and H = stabG(s) ≤ G. Then we have the following well defined isomorphism of G-sets
ψ : G/H −→ S; gH 7−→ g.s.

Proof. Let us check ψ is well defined, i.e. for g ∈ G, h ∈ H, need to check g.s = g.(h.s) =
(gh).s since h ∈ stabG(s). Check ψ is equivariant, i.e. for g, g′ ∈ G, ψ(g′.(gH)) = g′.ψ(gH).
LHS = ψ(g′gH) = (g′g).s = g′.(g.s) = RHS due to associativity. ψ is surjective as S = G.s
(G transitive on S =⇒ S is an orbit). Check ψ is injective. So suppose g, g′ ∈ G such that
ψ(gH) = ψ(g′H) then g.s = g′.s =⇒ s = g−1(g′.s) = (g−1g′).s. So g−1g′ ∈ H, i.e. a stabiliser of s.
∴ g′ ∈ gH =⇒ g′H = gH, i.e. ψ is injective, completing proof that ψ is an isomorphism of G-sets.

Corollary 16.1. If G is finite then |G.s| | |G|.
Proof. By Theorem 16.1, G.s ∼= G/H and by Lagrange’s Theorem, |G| = |G/H||H| =⇒ |G.s| | |G|.

Example 16.1. As in Example 15.5, we let G = SO3 act transitively on the unit sphere S = S2.
Pick s ∈ S. H = stabG(s) ∼= SO2 (rotate about s, −s axis). Theorem 16.1 =⇒ S2 ∼= G/H =
SO3/SO2 as G-sets. Note that the SO2 changes with choices of s.

Proposition 16.2. Let S be a G-set and s ∈ S and g ∈ G. Then stab)G(g.s) = gstabG(s)g−1.

Proof. Note this is saying that the axis of new points is obtained by changing the coordinates, i.e.
conjugation of the original axis. Suffice to prove stabG(g.s) ⊇ gstabg(s)g

−1. For this result applied
to g−1 for g and g.s for s gives stab(g−1.(g.s)) ⊇ g−1stabG(g.s)g =⇒ stabG(g.s) ⊆ gstabG(s)g−1,
which is the reverse inclusion. So we prove that stab)G(g.s) ⊇ gstabG(s)g−1. Let h ∈ stabG(s), we
need to show ghg−1 ∈ stabG(g.s). But (ghg−1).(g.s) = (gh).s = g.(h.s) = g.s (h ∈ stabG(s)), i.e.
ghg−1 ∈ stabG(s) and stabG(g.s) ⊇ gstabG(s)g−1 holds, giving the proposition.

Corollary 16.2. Let H1, H2 ≤ G be conjugate subgroups. Then G/H1
∼= G/H2 as G-sets.

Note the converse is also true and is a good exercise, i.e. if two G-sets are isomorphic, then H1, H2

must be conjugates.

Platonic solids are solids where all faces are congruent regular polygons and the same number of
faces meet at each vertex. There are 5 Platonic solids: tetrahedron (T) ha 4 triangular faces, cube
(C) had 6 square faces, octahedron (O) has 8 triangular faces, dodecahedron (D) has 12 pentagonal
faces and icosahedron (I) has 20 triangular faces.
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Definition 16.1 (Group Of Rotational Symmetries Of Platonic Solids). Let S be a Platonic
solid with centre of mass 0, its group of symmetries G ≤ O2 (since T ∈ G =⇒ T (0) = 0, i.e. fixed
centre of mass). The rotational group of symmetries of S is H = G ∩ SO3.

Proposition 16.3. Let S be Platonic solid as defined above and G be its rotational group of
symmetries. Then |G| = number of faces of S × number of edges in each face.

Tetrahedron Cube Octahedron Dodecahedron Icosahedron
|G| 12 24 24 60 60

Proof. Let F = set of faces of S. G permutes the faces, so get permutation representation
G ↪−→ Perm(F ), since G is linear. So we get G-set F . Let f ∈ F be a face. Note F = G.f is
an orbit, since we can rotate any faces to any other faces. By Theorem 16.1, G.f ∼= G/stabG(f).
What is stabG(f)? It is the set of rotations about axis through centre of f and centre of S, i.e 0.

Hence |stabG(f)| = number of edges of f = number of edges in each face. Then |G.f | = |G|
|stabG(f)| .

Hence number of faces of S = |G|
number of edges in each face

. This gives the proposition.

17 Counting Orbits & Cayley’s Theorem

Let S be a G-set.

Definition 17.1 (Fixed Point Set). Let J ⊆ G, the fixed point set of J is SJ = {s ∈ S : j.s =
s for all j ∈ J}.

Example 17.1. G = Perm(R2) acts naturally on S = R2. Let τ1, τ2 ∈ G be reflections about lines
L1, L2. Then Sτi = Li and S{τ1,τ2} = L1 ∩ L2.

Proposition 17.1. Let S be a G-set. Then

(i) If J1 ⊆ J2 ⊆ G then SJ2 ⊆ SJ1

(ii) If J ⊆ G then SJ = S〈J〉

Proof. (i) Logically clear. (ii) Exercise.

Example 17.2. In Example 17.1, S〈τ1,τ2〉 = L1 ∩ L2.

Note that fixed point set are the same for isomorphic G-sets.

Theorem 17.1 (Counting Orbits). Let G be a finite group and S be a finite G-set. Let |X|
denote the cardinality of X. Then

number of orbits of S =
1

|G|
∑
g∈G
|Sg| = average size of the fixed point set
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Proof. Suppose S =
⋃̇
iSi, where Si are G-stable, e.g. Si are G-orbits. Then Sg =

⋃̇
iS

g
i . So

LHS =
∑

i number of orbits of Si (since Si’s are union of G-orbits and Si’s are disjoint) while
RHS =

∑
i

1
|G|

∑
g∈G |Sgi |. ∴ Suffice to prove theorem for S = Si and then just sum over i. But

S = disjoint union of G-orbits, so can assume S = Si = G-orbit, which by Theorem 16.1, means
S ∼= G/H for some H ≤ G. So in this case

RHS =
1

|G|
∑
g∈G
|Sg|

=
1

|G| × number of (g, s) ∈ G× S : g.s = s by letting g vary all over G

=
1

|G|
∑

s∈S=G/H

|stabG(s)|

Note by Proposition 16.2, these stabilisers are all conjugates, and hence all have the same size.
Since |stabG(1.H)| = |H|, |stabG(s)| = |H| for all s ∈ S. Hence RHS = 1

|G| |G/H||H| = |H|
|G|

|G|
|H| = 1

and LHS = number of orbits of S = 1 as S is assumed to be a G-orbit.

Example 17.3 (Application To Birthday Cake Problem). Divide the round birthday cake
into 8 equal sectors. Place red or green candle in centre of each sector. Question is how many
essentially different ways are there of doing this? More precisely, let S = (Z/2Z)8. Let σ ∈ Perm(S)
be defined by σ(x0, x1, . . . , x7) = (x1, x2, . . . , x7, x0). Note σ generates a cyclic subgroup G of order
8. Want to find number of G-orbits in G-set S. Use Theorem 17.1 to compute Sg. S1 = S =⇒
|S1| = 28, Sσ = {(0, 0, . . . , 0), (1, 1, . . . , 1)} =⇒ |Sσ| = 2, i.e. all colours the same. Similarly
Sσ

2
= {(0, 0, . . . , 0), (1, 1, . . . , 1), (0, 1, 0, . . . , 0, 1), (1, 0, 1, . . . , 1, 0)}, i.e. when fixed by σ2, x ∈ S is

determined by x0 and x1. ∴ |Sσ2| = 4. Using the same idea, Sσ
3

= S〈σ
3〉 = S〈σ〉 =⇒ |Sσ3| = 2,

|Sσ4| = 24 = 16, |Sσ5| = 2, |Sσ6| = |Sσ2| = 4, |Sσ7| = 2. By Theorem 17.1, the number of orbits
= 1

8
(28 + 2 + 4 + 2 + 16 + 2 + 4 + 2) = 1

8
(28 + 8 + 8 + 16) = 25 + 4 = 36.

Definition 17.2 (Faithful Permutation Representation). A permutation representation φ :
G −→ Perm(S) is faithful if ker(φ) = 1.

Theorem 17.2 (Cayley’s Theorem). Let G be a group. Then G is isomorphic to a subgroup
of Perm(G). In particular, if |G| = n <∞, then G is isomorphic to a subgroup of Sn.

Proof. Consider G-set G = G/1. This gives permutation representation φ : G −→ Perm(G). We
seek to show this is faithful. So suppose g ∈ ker(φ), so φ(g) = 1Perm(G) = idG. Note g = g.1 =
(φ(g))(1) = idG(1) = 1 =⇒ ker(φ) = 1 and φ is faithful. This shows G is isomorphic to Im(φ) ≤
Perm(G). We know finally that it |G| = n is finite, then Perm(G) ∼= Perm({0, 1, . . . , n− 1}) = Sn,
since G is bijective with {0, 1, . . . , n− 1}.

18 Finite Groups Of Isometries I

Recall that any finite group G of isometries on Rn embed in On.
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Lemma 18.1. Let H ≤ SO2 have order n, finite. Then H is cyclic group generated by the rotation
σ about angle 2π

n
.

Proof. OK if n = 1, i.e. σ = id. Assume n > 1. Pick σ ∈ H, rotation anti-clockwise about angle
θ where θ is the minimal positive such amongst all possibilities. We first show 〈σ〉 = H . We
know 〈σ〉 ⊆ H holds by closure. Suppose h ∈ H is a rotation anticlockwise about angle θ′. Pick
integer m so that mθ ≤ θ′ ≤ (m + 1)θ. Note σ−mh ∈ H is a rotation anticlockwise about angle
0 ≤ θ′ −mθ < θ. Minimality of θ =⇒ θ′ −mθ = 0 so θ′ = mθ =⇒ h = σm ∈ 〈σ〉. hence H = 〈σ〉.
It remains to check θ = 2π

n
. Pick an integer l, so lθ ≤ 2π < (l + 1)θ. Since σ−l ∈ H is a rotation

anticlockwise about angle 0 ≤ 2π − lθ < θ, minimality of θ =⇒ 2π = lθ. We must have l = n so
θ = 2π

n
. This proves the lemma.

Theorem 18.1 (Subgroups Of O2). Any subgroup G of O2 is cyclic or dihedral.

Proof. The subgroups will be described explicitly in the proof. Note that by dihedral, we always
mean isomorphic to the group Dn. If G ≤ O2 is finite and is also in SO2, we just apply Lemma 18.1.
Assume G � SO2 and let τ ∈ G − SO2. τ is a reflection about say line L. Rotate to change
coordinates so that L is horizontal. This does not change the isomorphic class of G. Then τ =(

1 0
0 −1

)
. Let H = G ∩ SO2 ≤ SO2.By Lemma 18.1, H = 〈σ〉, where σ is the rotation

anticlockwise about angle 2π
n

for some n. ∴ Dn satisfies G ≤ Dn as G ⊆ 〈τ, σ〉 = Dn. Note
G/H = G

G∩SO2
↪−→ O2/SO2

∼= {SO2, τSO2} ∼= Z/2Z =⇒ |G/H| = |Z/2Z| = 2. ∵ H ∈ G/H,

τ ∈ G, τ /∈ H ∴ G/H = {H, τH}. Hence every element in G has form σi or τσi, i.e. G ≤ Dn too.
So G is dihedral.

Theorem 18.2 (Subgroups Of SO3). Any finite subgroup of SO3 is either cyclic, dihedral or
the rotational symmetry group of a Platonic solid.

Proof. The proof of the theorem requires some new concepts.

Recall any G ≤ SO3 acts on the unit sphere T ⊆ R3.

Definition 18.1 (Pole). A pole of G is some t ∈ T such that stabG(t) 6= 1.

Proposition 18.1. The set S of poles of G is G-stable.

Proof. By Proposition 16.2, stabG(g.t) = gstabG(t)g−1.

We can find all poles of a Platonic solid. Let G be the rotational symmetry group of a Platonic
solid. It looks like you have face poles corresponding to centres of faces, vertex poles corresponding
to vertices, and edge poles to centre of edges. Also it seems like face poles form an orbit, edge poles
form an orbit and form vertex poles form an orbit.

Lemma 18.2 (Platonic Triples). An integer triple (n1, n2, n3) ia a Platonic triple if 1 ≤ n1 ≤
n2 ≤ n3 and

∑
i

1
ni
> 1. The possibilities are (n1, n2, n3) = (2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5) for

n ≥ 2.
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Proof. Suppose n1 ≥ 3, then 1
n1

+ 1
n2

+ 1
n3
≤ 1

3
+ 1

3
+ 1

3
= 1 =⇒ n1 = 2. If n2 ≥ 4, then

1
n1

+ 1
n2

+ 1
n3
≤ 1

2
+ 1

4
+ 1

4
= 1 =⇒ n2 = 2 or 3. If n2 = 2, then n3 is anything. Suppose n2 = 3. If

n3 ≥ 6, then 1
n1

+ 1
n2

+ 1
n3
≤ 1

2
+ 1

3
+ 1

6
= 1. So the only possibilities are those given above. It is

easily checked that they are all indeed Platonic.

Centres of faces of a cube are the vertices of an octahedron. Similarly centres of faces of an octa-
hedron are the vertices of a cube. Hence say octahedron and cube are duals. Similarly icosahedron
and dodecahedron are duals. Tetrahedron is self dual. It is clear that if F , F ′ are dual Platonic
solids, their rotational symmetry groups are isomorphic. Why? If T is a symmetry of F , it takes
centres of faces of F to centres of faces of F , i.e. vertices of F ′ to vertices of vertices of F ′.

19 Finite Groups Of Isometries II

Theorem 19.1 (Subgroups Of SO3). Any finite subgroup G of SO3 is either cyclic, dihedral or
the rotational symmetry group of a Platonic solid.

Proof. We consider the G-set S of poles of G and decompose it into G-orbits, i.e. S = G.s1∪̇
G.s2∪̇ . . . ∪̇G.sr, we see that each G-orbit is finite later. Apply Theorem 17.1 on counting orbits.
For g ∈ G,

Sg =

{
the two poles of rotation if g 6= 1
S if g = 1

So by Theorem 17.1, we have

r = number of orbits

=
1

|G|
∑
g∈G
|Sg|

=
1

|G|(2× (|G| − 1) + |S|) (2 poles of rotation for the non-identity, and everything for the

identity)

= 2− 2

|G| +
r∑
i=1

1

|stabG(si)| (since |S| =
r∑
i=1

|G.si| =
r∑
i=1

|G|
|stabG(si)| , due to G.si ∼= G/stabG

(si))

Hence we can get

2− 2

|G| =
r∑
i=1

|G|
stabG(si)

Since si is a pole, i.e. stabG(si) 6= 1, each summand 1− 1
|stabG(si)| ≥ 1−1

2
= 1

2
. But LHS = 2− 2

|G| < 2.

Thus r ≤ 3. We can also show that r 6= 1. Suppose r = 1, then RHS = 1− 1
|stabG(si)| ∈ (0, 1). But

LHS ∈ (1, 2) as |G| ≥ |stabG(s1)| ≥ 2 =⇒ 2 − 2
|G| ≥ 2 − 2

2
= 1. So we have only two case, r = 2

and r = 3. For r = 2 case, stabG(si) ≤ G =⇒ 1 − 1
|stabG(si)| ≤ 1 − 1

|G| with equality if and only if

G = stabG(si). But we also have

2∑
i=1

(1− 1

|stabG(si)|) = 2− 2

|G| = 2(1− 1

|G|)
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We must have equality and so G = stabG(si). So G must be the cyclic group of rotations about si,
−si axis. And furthermore, we must have s1 = −s2, i.e. {s1, s2} = {si,−si}. For the r = 3 case,
we have

2 > 2− 2

|G| =
3∑
i=1

(1− 1

|stabG(si)|)

Let ni = |stabG(si)| and reorder so n1 ≤ n2 ≤ n3. We have 2 > 3 − 1
n1
− 1

n2
− 1

n3
or

∑3
i=1

1
ni
> 1.

Hence (n1, n2, n3) is a Platonic triple. Note also n1 = |stabG(s1)| ≥ 2. From Lemma 18.2, there
are four possibilities for (n1, n2, n3), namely

(i) (2, 2, n) (claim to be dihedral)

(ii) (2, 3, 3) (claim to be a tetrahedron)

(iii) (2, 3, 4) (claim to a cube or an octahedron)

(iv) (2, 3, 5) (claim to be dodecahedron or an icosahedron)

20 Rings

You can add and multiply two integers, polynomials and n × n matrices. Further, addition and
multiplication give similar arithmetic in all three cases. We have abstract common principles in
the notion of rings.

Definition 20.1 (Ring). An abelian group R, say with group addition +, is called a ring when
it is endowed with a ring multiplication map µ : R × R −→ R; (r, s) 7−→ µ(r, s) = rs satisfying
axioms.

(i) Associativity, for any r, s, t ∈ R, (rs)t = r(st)

(ii) Multiplication identity, there is an element 1R ∈ R such that for any r ∈ R, we have 1Rr =
r = r1R

(iii) Distributivity, for r, s, t ∈ R, we have r(s+ t) = rs+ rt and (s+ t)r = sr + tr

Note that some people do not insist on axiom (ii) and call those rings with (ii) unital. Other
things to note is that we have uniqueness of multiplication identity 1R as usual and for any r ∈ R,
0r = 0 = r0.

Example 20.1. C is a ring with ring addition and ring multiplication equal to the usual addition
and multiplication of numbers.

Example 20.2. Let X be a set and R be a ring. Let Fun(X,R) be the set of function from X
to R. Then Fun(X,R) is a ring when endowed with pointwise addition and multiplication, i.e. for
f, g : X −→ R, x ∈ X, (f+g)(x) = f(x)+g(x) ∈ R and (fg)(x) = f(x)g(x) ∈ R as f(x), g(x) ∈ R.
Then 0 = constant map to 0, 1 = constant map to 1. Usually checking the axioms involve checking
the equations hold pointwise. So we can check ring axioms for R implies that we can check ring
axioms for Fun(X,R).
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Example 20.3. Let V be a vector space over C. Define EndC(V ) to be the set of linear maps
T : V −→ V . Then EndC(V ) is a ring when endowed with ring addition equal to sum of linear
maps, ring multiplication equal to composition of linear maps. 0 = constant map to 0 and 1 = idV .

Proposition - Definition 20.1 (Subring). A subset S of a ring R is a subring if it satisfies the
following closure axioms.

(i) s+ s′ ∈ S for any s, s′ ∈ S
(ii) ss′ ∈ S for any s, s′ ∈ S
(iii) −s ∈ S for any s ∈ S
(iv) 0R ∈ S
(v) 1R ∈ S

In another word, it is a subgroup closed under multiplication and has an one. In this case, the ring
addition and multiplication on R restricted to S make S a ring with 1S = 1R.

Example 20.4. Z, Q and R are all subrings of C. Also the set of Gaussian integers Z[i] = {a+ bi :
a, b ∈ Z} is a subring, simply check axiom.

Example 20.5. Fun(Rn,R) has subring C(R) of continuous functions and Ck(R) of k fold differ-
entiable functions.

Example 20.6. Fun(Cn,C) had subrings C[x1, x2, . . . , xn] of complex polynomial functions in n
variables and R[x1, x2, . . . , xn] of real polynomial functions in n variables.

Example 20.7. We know that the set of n× n real or complex matrices Mn(R) and Mn(C) form
a ring. The set of upper triangular matrices form a subring.

Proposition 20.1. Two useful observations are

(i) Subrings of subrings are subrings

(ii) The intersection of subrings is a subring

Proof. Just check axioms. We will only do (ii) as an example. Let Si be a subring of R, i ∈ I. Si a
subgroup of R =⇒ ⋂

i Si is a subgroup. Also 1R ∈
⋂
i Si as 1R ∈ Si ∀i. Also if s, s′ ∈ Si =⇒ ss′ ∈ Si

for each i =⇒ ss′ ∈ ⋂
i Si. Thus

⋂
i Si is a subring.

Proposition - Definition 20.2 (Invertibility). An element u of a ring R is a unit or invertible
if there is some v ∈ R with uv = 1R = vu. We write R∗ for the set of these. Usually we write u−1

for v since we have uniqueness of inverses and R∗ forms a group under ring multiplication.
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Proof. We prove only here R∗ is a group. For u, v ∈ R∗, uv ∈ R∗ since v−1u−1uv = v−1v = 1 =
uvv−1u−1. Hence ring multiplication induces group multiplication map R∗×R∗ −→ R∗. Existence
of inverse is hypothesised, i.e. u ∈ R∗ =⇒ u−1 ∈ R∗. 1R is the group identity. Associativity is from
ring axioms.

Example 20.8. Z∗ = {1,−1} and Z[i]∗ = {1,−1, i,−i}

Definition 20.2 (Commutative Ring). A ring R is commutative if rs = sr for all r, s ∈ R.

Definition 20.3 (Field). A commutative ring R is a field if R∗ = R− 0.

21 Ideals & Quotient Rings

Let R be a ring.

Definition 21.1 (Ideals). A subgroup I of the underlying abelian group R is called an ideal of
for any r ∈ R, x ∈ I, we have rx ∈ I, xr ∈ I. Then we write I ER.

Note that I may not contain 1, so it may not be subring.

Example 21.1. nZ E Z is an ideal of Z. It is a subgroup as if m ∈ nZ then rm ∈ nZ for any
integer r.

Example 21.2. Let Y ⊆ Cn. The ideal of polynomials zero on Y is I(Y ) = {f ∈ C[x1, x2, . . . , xn] :
f(y) = 0 for all y ∈ Y }. Then I(Y ) E C[x1, x2, . . . , xn]. Check that this is a subgroup of
C[x1, x2, . . . , xn]. Let f ∈ I(Y ), p ∈ C[x1, x2, . . . , xn], y ∈ Y then (fp)(y) = f(y)p(y) = 0 =
(pf)(y) as f ∈ I. So by definition, fp ∈ I(Y ) and pf ∈ I(Y ). Thus I(Y ) is an ideal.

Generating ideals are similar to generating subgroups and spanning vector spaces.

Proposition 21.1. Let Ii ER for i ∈ I then
⋂
i Ii ER.

Proof. Just check axioms as for subgroups or subrings. Ii E R =⇒ Ii ≤ R =⇒ ⋂
i Ii ≤ R. Now

for x ∈ ⋂
i Ii, r ∈ R, we have x ∈ Ii for i ∈ I. Hence xr, rx ∈ Ii for all i as it is an ideal. Hence

xr, rx ∈ ⋂
i Ii =⇒ ⋂

i Ii ER.

Corollary 21.1. Let R be a ring and S ⊆ R. Let J be the set of all ideals I E R containing S.
The ideal generated by S is 〈S〉 =

⋂
I∈J I.

Note that 〈S〉, unique smallest one, is an ideal of R containing S and 〈S〉 is contained in any I ∈ J .
To compute this, we use . . .

Proposition 21.2. Let R be a ring.

32



(i) Let I, J be ideals of R. The ideal generated by I ∪ J is I + J = {i+ j : i ∈ I, j ∈ J}.
(ii) Let x ∈ R and R be a commutative ring, then 〈x〉 = Rx = {rx : r ∈ R} ⊆ R.

(iii) For R commutative and x1, x2, . . . , xn ∈ R, we have 〈x1, x2, . . . , xn〉 = Rx1+Rx2+. . .+Rxn =
set of all R-linear combinations of x1, x2, . . . , xn.

Proof. Note 〈x〉 ⊇ Rx by definition. x ∈ Rx, so since 〈x〉 is the unique smallest ideal containing
x, it suffices to show Rx is an ideal containing x and then we will have 〈x〉 ⊆ Rx. Check it is a
subgroup. (a) 0 = 0.x ∈ Rx. (b) If r, s ∈ R, then rx + sx = (r + s)x ∈ Rx. (c) If r ∈ R, note
(−r)x + rx = (−r + r)x = 0x = 0 =⇒ −(rx) = (−r)x ∈ Rx as −r ∈ R. Thus Rx is a subgroup.
Check Rx is an ideal. let r ∈ R, so rx ∈ Rx. If s ∈ R then s(rx) = (sr)x ∈ Rx. Hence by
commutativity, RxER and (ii) is proved. (i) is proved similarly by showing I + J is an ideal. (iii)
follows from (i) and induction on (ii).

Example 21.3. The ideal generated by n ∈ Z in Z is nZ = Zn.

Example 21.4. R = C[x1, x2, . . . , xn] =⇒ 〈x1, x2, . . . , xn〉 = C[x1, x2, . . . , xn]x1 + C[x1, x2, . . . , xn]
x2 + . . .+ C[x1, x2, . . . , xn]xn = set of polynomials with constant term 0 = {f ∈ C[x1, x2, . . . , xn] :
f(0) = 0} = I(0).

Note that the ideal I ER is also a normal subgroup of R since R is abelian.

Proposition - Definition 21.1 (Quotient Ring). Let IER. The abelian group R/I has a very
well defined multiplication map µ : R/I×R/I −→ R/I; (r+ I, s+ I) 7−→ rs+ I, which makes R/I
a ring called the quotient rig of R by I. Also 1R/I = 1R + I.

Proof. Check µ is well defined, i.e. x, y ∈ I, we need rs + I = (r + x)(s + y) + I. RHS =
rs + xs + ry + xy + I = rs + I as xs, ry, xy ∈ I. Note that ring axioms for R/I follow from ring
axioms for R.

Example 21.5. Again Z/nZ is essentially modulo n arithmetic, i.e. (i+ nZ)(j + nZ) = ij + nZ.
Thus Z/nZ represents not only the addition but also the multiplication in modulo n.

Example 21.6. R = C[x1, x2, . . . , xn], I = 〈x1, x2, . . . , xn〉. Note C[x1, x2, . . . , xn] =
⋃̇
α∈I(α+I) =

union of set of all polynomials with constant α. Thus R/I = {α + I : α ∈ C}. For α, β ∈ C, the
ring operations are (α + I) + (β + I) = (α + β) + I and (α + I)(β + I) = αβ + I. Ring R/I just
look like ring C, i.e. R/I and C are isomorphic rings.

Example 21.7. Again let Y ⊆ Cn. We define C[Y ] = C[x1, x2, . . . , xn]/I(Y ). Let f, g ∈ C
[x1, x2, . . . , xn] with f + I(Y ) = g + I(Y ) ⇐⇒ f − g ∈ I(Y ) ⇐⇒ (f − g)(y) = 0 for all
y ∈ Y ⇐⇒ f|Y = g|Y (functions with domain restricted to Y ). This shows C[Y ] arises naturally
as a subring of Fun(Y,C), i.e. restrict domain to Y .
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22 Ring Homomorphisms I

Definition 22.1 (Homomorphism). Let R, S be rings. A ring homomorphism φ : R −→ S is
group homomorphism φ : R −→ S of the underlying abelian groups such that

(i) φ(1R) = 1S

(ii) For r, r′ ∈ R, φ(rr′) = φ(r)φ(r′)

Example 22.1 (Quotient Morphism). Let I E R, a ring. The quotient morphism π : R −→
R/I; r 7−→ r + I is a ring homomorphism. Why? We know π is a group homomorphism. Check
now (i) π(1R) = 1R + I = 1R/I (ii) for r, r′ ∈ R, check π(rr′) = π(r)π(r′). LHS = rr′ + I =
(r + I)(r′ + I) = RHS, since I is an ideal, i.e. rI, r′I ⊆ I.

Example 22.2 (Evaluation Homomorphism). Let S be a subring of Fun(X,R) where X is
some set and R some ring. Let x ∈ X. The evaluation map εx : S −→ R; f 7−→ f(x) is a ring
homomorphism. Why? Note (i) εx(1S) = εx(constant function 1) = 1R. For f, g ∈ S, we check (ii)
εx(f + g) = (f + g)(x) = f(x) + g(x) = εx(f) + εx(g) and (iii) εx(fg) = (fg)(x) = f(x)g(x) =
εx(f)εx(g).

Lemma 22.1. Composites of ring homomorphisms are ring homomorphisms.

Proof. Easy exercise.

Definition 22.2 (Isomorphism). A ring isomorphism is a bijective ring homomorphism φ : R −→
S. In this case φ−1 is also a ring homomorphism. We write R ∼= S as rings.

Example 22.3. φ : C −→ C[x, y]/〈x, y〉;α 7−→ α + 〈x, y〉 (coset of all polynomials with constant
α) is a ring homomorphism, because we saw φ is bijective and for α, β ∈ C, (α + β) + 〈x, y〉 =
(α+ 〈x, y〉) + (β + 〈x, y〉) and (α+ 〈x, y〉)(β + 〈x, y〉) = (αβ) + 〈x, y〉 and 1 + 〈x, y〉 is the identity.

Proposition 22.1. Let φ : R −→ S be a ring homomorphism.

(i) If R′ is a subring of R the φ(R′) is a subring of S

(ii) If S ′ is a subring of S then φ−1(S ′) is a subring of R

(iii) If I E S then φ−1(I) ER (ideals)

Proof. Just check axioms. Let us do (iii). Suppose I E R. φ−1(I) is a subgroup of R. Suppose
x ∈ φ−1(I) and r ∈ R. We need to check that rx, xr ∈ φ−1(I). But φ(rx) = φ(r)φ(x) ∈ I as
φ(x) ∈ I (an ideal), φ(r) ∈ S. Hence rx ∈ φ−1(I). Similarly xr ∈ φ−1(I). Hence φ−1(I) ER. Note
that I ER does not imply φ(I) E S, i.e. the image of an ideal may not be an ideal.
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Corollary 22.1. Let φ : R −→ S be a ring homomorphism. Then Im(φ) = φ(R) is a subring of S
and ker(φ) = φ−1(0) is an ideal in R.

Proof. Just note R is a subring of R, so must be φ(R) of S. 0 E S since it is a subgroup and for
s ∈ S, s0 = 0 = 0s ∈ 0. Hence φ−1(0) ER.

Theorem 22.1 (First Isomorphism Theorem). Let R be a ring and IER (ideal). Let π : R −→
R/I be a quotient morphism of rings. Let φ : R −→ S be ring homomorphism with ker(φ) ⊇ I.
The induced group homomorphism ψ : R/I −→ S; r + I 7−→ φ(r) generated by the Universal
Property Of Quotient Groups is also a ring homomorphism. In particular, setting I = ker(φ), we
find R/I ∼= Im(φ) as ring isomorphism.

R
φ−−−−−→S

π ↘ ↗ψ

R/I

r p−−−−−→ φ(r)
↘ ↗

r + I

Proof. we know ψ is a group homomorphism, so we shall only check the ring homomorphism
axioms. (i) ψ(1R/I) = ψ(1R + I) = φ(1R) = 1S. (ii) For r, r′ ∈ R, check ψ((r + I)(r′ + I)) =
ψ(rr′ + I) = φ(rr′) = φ(r)φ(r′) = ψ(r + I)ψ(r′ + I) as φ is an homomorphism for rings. Hence
theorem is proved.

Example 22.4. C ∼= R[x]/〈x〉 (R[x] is polynomials in R with real coefficients) . Consider evaluation
homomorphism εi : R[x] −→ C; p(x) 7−→ p(i). Note if p(x) = ax + b, a, b ∈ R, then p(i) = ai + b.
So εi is surjective. By the First Isomorphism Theorem, it suffices to show that ker(εi) = 〈x2 + 1〉.
Note x2 − 1 ∈ ker(εi) as i2 + 1 = 0. So 〈x2 + 1〉 ⊆ ker(εi). For the reverse inclusion, suppose
p(x) ∈ ker(εi), i.e. p(i) = 0. Write p(x) = (x2 + 1)q(x) + ax + b, where a, b ∈ R. q(x) is a real
polynomial, i.e. q ∈ R[x]. Now 0 = p(i) = q(i)(i2 + 1) + ai+ b = ai+ b. Hence both a, b are zero.
Hence p(x) = q(x)(x2 + 1) ∈ R[x](x2 + 1) = 〈x2 + 1〉 and so ker(εi) = 〈x2 + 1〉.

23 Ring Homomorphisms II

The idea is that knowing everything of a large group should give you everything about the quotient
group. Now what about for rings?

Proposition 23.1. Let J be an ideal of ring R and π : R −→ R/J be a quotient morphism.
Then {ideals I ER such that I ⊇ J} −→ {ideals Ī ER/J}; I 7−→ π(I) = I/J and Ī 7−→ π−1(I)
are inverse bijections. In particular, every ideal in R/J has form Ī = I/J , where I E R such that
I ⊇ J .

Proof. Very similar to classification of subgroups of quotient groups. In fact ideals are subgroups
so that classification of subgroups of quotient groups say I 7−→ π(I), Ī 7−→ π−1(Ī) are inverses as
long as they are well defined. If Ī E R/J then π−1(Ī) E R, so Ī 7−→ π−1(Ī) is well defined. Let
I ER with I ⊇ J . We need now only show I/J E R/J so I 7−→ π(I) is well defined. We do know
I/J is a subgroup of R/J . Let x ∈ I, r ∈ R. Then (r+ J)(x+ J) = rx+ J ∈ I/J as rx ∈ I (since
I E R), for r + J ∈ R/J , x + J ∈ I/J . Similarly (x+ J)(r + J) = xr + J ∈ I/J . This proves the
proposition.
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Definition 23.1 (Maximal Ideal). An ideal I E R, with I 6= R, is maximal if it is maximal
amongst ideals not equal to R, i.e. if J ER with I ⊆ J then either J = I or R.

Example 23.1. 10ZE Z is not maximal as 10Z $ 2ZE Z. However 2ZE Z is maximal.

Proposition 23.2. Let R 6= 0 be a commutative ring.

(i) R is a field if and only if every ideal is maximal, i.e. 0 ideal is maximum

(ii) I ER, with I 6= R, is maximal if and only if R/I is a field

Proof. (ii) follows from Proposition 23.1 and (i). R/I is a field =⇒ R/I contains R/I and 0 ideals
only =⇒ R has ideals R and I only =⇒ I is maximal. Conversely I E R, I 6= R, is maximal
=⇒ R/I has ideals of the form J/I where I E J ≤ R =⇒ J = I or R as I is maximal =⇒ R has
only ideals R and 0, and hence is a field by (i). Let us prove (i). Suppose R is a field. Suppose
I E R, is non-zero, so contains x ∈ I − 0. Let r ∈ R then rx−1 ∈ R (x−1 exists as R is a field)
=⇒ r = rx−1x ∈ I. Hence I = R. Conversely suppose every ideal of R is trivial. Let r ∈ R − 0,
then the ideal 〈r〉 = Rr 6= 0. So by hypothesis, we must have R = Rr. Hence we can find s ∈ R
with sr = 1 ∈ R. Since R is commutative, r is invertible, i.e. R∗ = R− 0. This shows R is a field.
Note this is useful for constructing fields.

Let y ∈ Cn. Recall we have evaluation ring homomorphism εy : C[x1, x2, . . . , xn] −→ C; f 7−→ f(y),
which is surjective (since ∀ α ∈ C, we can let f be the constant polynomial of value α).

An exercise would be to check this map agrees with the quotient morphism C[x1, x2, . . . , xn]
π−→C

[x1, x2, . . . , xn]/I(y) = C[y] ⊆ Fun(y,C). We claim under these identification C[x1, x2, . . . , xn]/I(y)
= Fun(y,C) = C. The fact is I(y) = ker(π) ∼= ker(εy) is maximal since by the First Isomorphism
Theorem, C[x1, x2, . . . , xn]/I(y) ∼= Im(εy) is a field and Proposition 23.2 now shows I(y) is max-
imal. The converse is also true, but is not proved here. It is part of Hilbert’s Nullstellersatz. So
points in Cn gives maximum ideals of C[x1, x2, . . . , xn].

Theorem 23.1 (Second Isomorphism Theorem). Let R be a ring. IER and J ⊆ I be another

ideal. Then R/J
I/J
∼= R/I as rings.

Proof. Same as Second Isomorphism Theorem for groups except we apply First Isomorphism

Theorem for rings instead for groups to R
πJ−→R/J

πI/J−→ R/J
I/J

.

Theorem 23.2 (Third Isomorphism Theorem). Let S be a subring of R and I E R. Then
S + I is a subring of R and S ∩ I ER. Also S

S∩I
∼= S+I

I
is a ring isomorphism.

Proof. Both are ring quotients since S ∩ I ES and I ≤ S+ I, I ER =⇒ I ES+ I. Same as Third
Isomorphism Theorem for groups except we apply First Isomorphism Theorem for rings instead for
groups to S ↪−→ R

πI−→R/I.

Example 23.2. S = C[x] is a subring of R = C[x, y]. Let I = 〈y〉 E C[x, y] and apply Third
Isomorphism Theorem. S ∩ I = C[x]∩ 〈y〉 = 0. S + I = C[x] + 〈y〉 = C[x, y]. Clearly C[x] + 〈y〉 ⊆
C[x, y] and for p(x, y) ∈ C[x, y], we have

p(x, y) =
∑
i,j≥0

aijx
iyj =

∑
i

ai0x
i +

∑
j>0

aijx
iyj ∈ C[x] + 〈y〉

Thus we get ring homomorphism S
S∩I
∼= S+I

I
=⇒ C[x] ∼= C[x, y]/〈y〉.
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24 Polynomial Rings

Let R be a ring and x an indeterminant.

Definition 24.1 (Polynomial). A polynomial in x with coefficients in R is a formal expression of
the form p =

∑
i≥0 rix

i where ri ∈ R and ri = 0 for i sufficiently large, i.e. p = r0x
0+r1x

1+. . .+rnx
n

for some n. Let R[x] be the set of such polynomials.

Proposition - Definition 24.1 (Polynomial Ring). R[x] is a ring, called the polynomial ring
with coefficients in R, when endowed with ring addition

∑
i≥0 rix

i+
∑

i≥0 r
′
ix
i =

∑
i≥0(ri+r

′
i)x

i and

ring multiplication (
∑

i≥0 rix
i)(

∑
i≥0 r

′
ix
i) =

∑
k≥0(

∑
i+j=k rir

′
j)x

k. Also 0R[x] = 0+0x+0x2+ . . . =

0 and 1R[x] = 1 + 0x+ 0x2 + . . . = 1.

Proof. The proof is really boring, but is not hard, i.e. check axioms.

Proposition 24.1. Let φ : R −→ S be a ring homomorphism.

(i) R is a subring of R[x] when you identify elements of R with constant polynomials, i.e. coef-
ficients of x, x2, . . . are 0

(ii) The map φ[x] : R[x] −→ S[x];
∑

i≥0 rix
i 7−→∑

i≥0 φ(ri)x
i is a ring homomorphism

Proof. More boring check of axioms. Let us check some of these for (ii).

(φ[x])((
∑
i

rix
i)(

∑
j

r′jx
j)) = (φ[x])(

∑

k

(
∑

i+j=k

rir
′
j)x

k)

=
∑

k

φ(
∑

i+j=k

rir
′
j)x

k

=
∑

k

(
∑

i+j=k

φ(rir
′
j)x

k) (ring homomorphism)

=
∑

k

(
∑

i+j=k

φ(ri)φ(r′j))x
k

= (
∑
i

φ(ri)x
i)(

∑
j

φ(r′j)x
j)

= (φ[x](
∑
i

rix
i))(φ[x](

∑
j

r′jx
j))

Also φ[x](1r[x]) = φ(1R) = 1S = 1S[x]. As an exercise, check others as you feel like.

Let S be a subring of R and r ∈ R such that rs = sr for all s ∈ S. Define the evaluation map or
substitution εr : S[x] −→ R; p =

∑
i≥0 six

i 7−→∑
i≥0 sir

i = p(r).

Proposition 24.2. The map εr above is a ring homomorphism.
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Proof. Note εr(1s[x]) = εr(1S + 0x + 0x2 + . . .) = 1S = 1R as S ≤ R. For polynomials∑
i≥0 six

i,
∑

i≥0 s
′
ix
i ∈ S[x], we have

εr(
∑
i≥0

six
i +

∑
i≥0

s′ix
i) = εr(

∑
i≥0

(si + s′i)x
i)

=
∑
i≥0

(si + s′i)r
i

=
∑
i≥0

sir
i +

∑
i≥0

s′ir
i (distributive law)

= εr(
∑
i≥0

(si)x
i)εr(

∑
i≥0

(s′i)x
i)

So εr is a group homomorphism.

εr((
∑
i≥0

six
i)(

∑
i≥0

s′ix
i)) = εr(

∑

k≥0

(
∑

i+j=k

sis
′
j)x

k)

=
∑
i≥0

(
∑

i+j=k

sis
′
j)r

k

=
∑

k≥0

∑

i+j=k

(six
i)(s′jx

j) (as sjr = rsj)

= (
∑
i≥0

sir
i)(

∑
j≥0

s′jr
j) (distributive law)

= εr(
∑
i≥0

(si)x
i)εr(

∑
j≥0

(s′j)x
j)

Hence εr is a ring homomorphism. Note checking pointwise gives . . .

Corollary 24.1. If R is commutative then the map c : S[x] −→ Fun(R,R); r 7−→ function sending
r to p(r), i.e. polynomials to polynomial functions, is a ring homomorphism.

Note the map c is not necessarily injective, so R[x] may not be naturally identified with a ring of
functions.

Example 24.1. S = R = Z/2Z. Consider p = x2 + x = (1 + 2Z)x + (1 + 2Z)x2 ∈ (Z/2Z)[x].
We have c : (Z/2Z)[x] −→ Fun(Z/2Z,Z/2Z). Find c(p). c(p)(0 + 2Z) = p(0 + 2Z) = 02 + 0 = 0.
c(p)(1 + 2Z) = p(1 + 2Z) = 12

Z/2Z + 1Z/2Z = 1 + 2Z + 1 + 2Z = 2 + 2Z = 0Z/2Z. ∴ c(p) is the zero
function, i.e. outputs 0 for all input values. So it is the zero polynomial function but is not the
zero polynomial.

Let S be a subring of R and x1, x2, . . . , xn indeterminants. We can define polynomial ring in
determinants x1, x2, . . . xn as before or inductively as S[x1, x2, . . . xn] = (. . . ((S[x1])[x2]) . . .)[xn].
Similarly if r1, r2, . . . , rn ∈ R are such that rirj = rjri and ris = sri for all i, j with s ∈ S, we
have a ring homomorphism by substitution or evaluation εr1,r2,...,rn : S[x1, x2, . . . , xn] −→ R; p =∑

i1,i2,...,in≥0 Si1,i2,...,inx
i1
1 x

i2
2 . . . x

in
n 7−→

∑
i1,i2,...,in≥0 Si1,i2,...,inr

i1
1 r

i2
2 . . . r

in
n = p(r1, r2, . . . , rn).

With notation as above, we define the subring of R generated by S and r1, r2, . . . , rn to be
Im(εr1,r2,...,rn : S[x1, x2, . . . , xn] −→ R) = S[r1, r2, . . . , rn].
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Example 24.2. S = Z, R = C, Z[i] = Im(εi : Z[x] 7−→ C) = {∑j≥0 aji
j : aj ∈ Z} = {a + bi :

a, b ∈ Z}.

Proposition 24.3. With the above notation, let S ′ be a subring of R containing S, r1, r2, . . . , rn.
Then S ′ ⊇ S[r1, r2, . . . , rn], i.e. S[r1, r2, . . . , rn] is the smallest such S ′.

Proof. For Si1,i2,...,in ∈ S, closure axioms =⇒∑
i1,i2,...,in

Si1,i2,...,inr
i1
1 r

i2
2 . . . r

in
n ∈ S ′. This applies to

any
∑

i1,i2,...,in
Si1,i2,...,inr

i1
1 r

i2
2 . . . r

in
n ∈ Im(εr1,r2,...,rn : S[x1, x2, . . . , xn] −→ R). So S[r1, r2, . . . , rn] ⊇

S ′.

25 Matrix Rings & Direct Product

Let R be a ring with the identity. (rij) =




r11 r12 . . . r1n
r21 r22 . . . r2n
...

...
...

rn1 rn2 . . . rnn


 is an n× n matrix with entries

from R. Mn(R) is the set of all such matrices.

Proposition - Definition 25.1 (Matrix Ring). Mn(R) is a ring, called the matrix ring, with
addition and multiplication defined by (aij) + (bij) = (aij + bij) and (aij)(bij) = (cij) where cij =

∑
k aikbkj. The identity is IMn(R) =




1 0 . . . 0
0 1 . . . 0
...

...
...

0 0 . . . 1


.

Proof. Very obvious, just check axioms.

Example 25.1. In M2(C[x]),

(
1 x
0 2

)(
x3 0
4 −x5

)
=

(
4x+ x3 −x6

8 −2x5

)
.

Let Ri, i ∈ I, be rings. Since each Ri is an abelian group, we have that
∏
i∈I

Ri = R1 ×R2 × . . . = {(r1, r2, . . .)}

Proposition 25.1.
∏

i∈I Ri becomes a ring with multiplication defined by coordinatewise via
(r1, r2, . . .)(s1, s2, . . .) = (r1s1, r2s2, . . .).

Proof. All fairly obvious, e.g. associativity, ((ri)(si))(ti) = (risi)(ti) = ((risi)ti) (by definition)
= (ri(siti)) (since each Ri is a ring and is associative) = (ri)(siti) = (ri)((si)(ti)). Note the notation
used here (ri) = (r1, r2, . . .).

If all Ri are commutative so is
∏

i∈I Ri since multiplication is done componentwise. So
∏

i∈I Ri is
a ring. Could it be a field if all Ri are fields? No. (1, 0)(0, 1) = (0, 0). So there exists zero divisors,
i.e. in a field, ab = 0 =⇒ a = 0 or b = 0.

Define for each j ∈ I, πj :
∏

i∈I Ri −→ Rj; (ri) 7−→ rj is the projection on Rj.
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Proposition 25.2. Two important observations

(i) Each πj is a ring homomorphism.

(ii) Given ring homomorphism φi : S −→ Ri, define φ : S −→ ∏
i∈I Ri by φ((si)) = (φi(si)).

Then φ is an homomorphism.

Proof. Tedious but based on Universal Property Of Product of groups and monomorphisms of
groups, e.g. πj(1Q

i∈I Ri
) = πj((1Ri

)) = 1Rj
; πj((ri)(si)) = πj(risi) = rjsj = πj((ri))πj((si)).

Lemma 25.1. Suppose R is a commutative ring and I1, I2, . . . , InER (ideals) such that Ii+Ij = R
for each pair of i, j. Then I1 +

⋂
i>1 Ii = R.

Proof. Pick ai ∈ I1 and bi ∈ Ii such that ai + bi = 1 for i = 2, 3, . . . , n, since I1 + Ii = R. Then
1 = (a2 + a3)(a3 + b3) . . . (an + bn) = (b2b3 . . . bn)+ terms each involving ai’s (distributive law)
∈ I1 +

⋂
i≥2 Ii (by properties of ideals). So R = I1 +

⋂
i≥2 Ii as ∀ r ∈ R, r1 = r ∈ I1 +

⋂
i≥2 Ii.

Theorem 25.1 (Chinese Remainder Theorem). SupposeR is a commutative ring and I1, I2, . . . , In
ER (ideals) such that Ii + Ij = R for each pair of i, j. Then the natural map R/

⋂n
i=1 Ii −→

R/I1 ×R/I2 × . . .×R/In; r +
⋂n
i=1 Ii 7−→ (r + I1, r + I2, . . . , r + In) is a ring homomorphism.

Proof. Induction on n. Let n = 2. Consider ψ : R 7−→ R/I1 × R/I2; r 7−→ (r + I1, r + I2), a ring
homomorphism. Clearly ker(ψ) = {r : (r+I1, r+I2) = (0R/I1 , 0R/I2)} = {r : r ∈ I1, r ∈ I2} = I1∩I2.
We now show ψ is surjective. Hence by the First Isomorphism Theorem, R

I1∩I2
∼= R/I1×R/I2. Let

r1, r2 ∈ R. Choose x1 ∈ I1, x2 ∈ I2 with x1 + x2 = 1 (can do this since I1 + I2 = R). Thus
ψ(r2x1 + r1x2) = (r2x1 + r1x2 + I1, r2x1 + r1x2 + I2). Consider r2x1 + r1x2 + I1. r2x1 ∈ I1 as x1 ∈ I1
and r1x2 = r1(1 − x1) = r1 − r1x1 (distributive law), with x1 ∈ I1 =⇒ r2x1 + r1x2 + I1 = r1 + I1.
Similarly r2x1 + r1x2 + I2 = r2 + I2. So ψ(r2x1 + r1x2) = (r1 + I1, r2 + I2). Hence ψ is onto. Using
Lemma 25.1, we have the n = 2 case R/

⋂n
i=1 Ii

∼= R/I1 × R/
⋂n
i=2 Ii

∼= R/I1 × R/I2 × . . .× R/In
(by inductive hypothesis).

Example 25.2. mZ+ nZ = Z if and only if gcd(m,n) = 1. Hence Z/mnZ ∼= Z/mZ× Z/nZ, i.e.
the usual Chinese Remainder Theorem.

26 Fields Of Fractions

This lecture works only with commutative rings.

Definition 26.1 (Domain). A commutative ring R is called a domain or integral domain of for
any r, s ∈ R with rs = 0, we have r = 0 or s = 0.

Note that in a domain, if u ∈ R− 0 and v, w ∈ R then uv = uw ⇐⇒ u(v−w) = 0 ⇐⇒ v−w =
0 ⇐⇒ v = w, i.e. domains do not have zero divisors.

Example 26.1. Z,C[x1, x2, . . . , xn] are domains. Z/6Z is not a domain, e.g. (2 + 6Z)(3 + 6Z) =
6+6Z = 6Z = 0Z/6Z. In fact Z/pZ is a domain if and only if p is prime. And any field is a domain.
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Let R be a commutative domain. Let R̃ = R × (R − 0) = {
(
a
b

)
: a ∈ R, b ∈ R − 0} Define a

relation ∼ on R̃ by

(
a
b

)
∼

(
a′

b′

)
if and only if ab′ = a′b, i.e. like equalities of fractions.

Lemma 26.1. ∼ is an equivalence relation on R̃.

Proof. Immediate that ∼ is reflexive and symmetric. For transitivity, suppose that

(
a
b

)
∼

(
a′

b′

)
and

(
a′

b′

)
∼

(
a′′

b′′

)
. Then ab′ = a′b and a′b′′ = a′′b′. So ab′b′′ = a′bb′′ = ba′b′′ =

ba′′b′ =⇒ b′(ab′′) = b′(a′′b′) by commutativity. Hence since R is a domain, and b′ 6= 0, we get

ab′′ = a′′b, so

(
a
b

)
∼

(
a′′

b′′

)
.

In terms of notations, let a
b

denote the equivalence class containing

(
a
b

)
and write K(R) for

R̃/ ∼, the set of all such fractions.

Lemma 26.2. The following operations give well defined addition and multiplication on K(R).

(i) a
b

+ c
d

= ad+bc
bd

(ii) a
b
c
d

= ac
bd

Proof. (i) Exercise. Note bd 6= 0 since b 6= 0, d 6= 0 (R is a domain). (ii) Commutativity of

multiplication means it suffices to check that if

(
c
d

)
∼

(
c′

d′

)
then

(
ac
bd

)
∼

(
ac′

bd′

)
. But

c′d = cd′ =⇒ acbd′ = ac′bd. So

(
ac
bd

)
∼

(
ac′

bd′

)
as required.

Theorem 26.1. The ring addition and multiplication maps in Lemma 26.2 makes K(R) into a
field with zero 0

1
and 1K(R) = 1

1
.

Proof. Long and tedious, and mostly omitted. Most of the tricks used for Q have analogous
in K(R). In particular, any two fractions a

b
, c
d

can be put on a common denominator, a
b

= ad
bd

,
c
d

= bc
bd

. Also a
d

+ b
d

= ad+bd
d2

= a+b
d

. Hence to check associativity of addition it suffices to check
(a
d

+ b
d
) + c

d
= a

b
+ ( b

d
+ c

d
), Note K(R) is a field since if a

b
6= 0

1
, then a 6= 0, so b

a
∈ K(R) and

(a
b
)−1 = b

a
. As exercises, prove some of the other axioms for K(R) to be a field.

Example 26.2. K(Z) = Q, K(R[x]) = set of real rational functions p(x)
q(x)

. Write for F , K(F [x1, x2,

. . . , xn]) = F (x1, x2, . . . , xn).

Proposition 26.1. Let R be a commutative domain.

(i) The map ι : R 7−→ K(R);α 7−→ α
1

is an injective ring homomorphism. This allows us to
consider R as a subring of K(R).
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(ii) If S is a subring of R then K(S) is essentially a subring of K(R).

Proof. (ii) is fairly clear. (i) a+b
1

= a
1
+ b

1
=⇒ ι(a+ b) = ι(a)+ ι(b). So ι is a group homomorphism.

a
1
b
1

= ab
1
, i.e. ι(ab) = ι(a)ι(b). Also 1

1
= ι(1) = 1K(R). So ι is a ring homomorphism. Finally

a
1

= b
1
⇐⇒ a = a1 = b1 = b. So ι is injective.

Proposition 26.2. Let F be a field. Then K(F ) = F .

Proof. If suffices to check the map φ : F 7−→ K(F ); a 7−→ a
1

is surjective as we know it is an

injective homomorphism. But we know a
b

= ab−1

1
= φ(ab−1) as a1 = aab−1b. So we are done.

Example 26.3. What K(Z[i])? Guess Q[i] = {r + si : r, s ∈ Q}. Note that Q[i] ⊆ K(Z[i]) as
a
b
+ c

d
i = ad+bci

bd
∈ K(Z[i]) But Q[i] is a field, given r, s ∈ Q not both zero, (r+ si)−1 = r−si

r2+s2
∈ Q[i].

So by Proposition 26.2, K(Q[i]) = Q[i]. But also by Proposition 26.1, Z[i] ≤ Q[i] =⇒ K(Z[i]) ≤
K(Q[i]). Hence K(Z[i]) = Q[i]. This is true more generally, i.e. K(R) is the smallest field
containing R. Prove it as an exercise.

27 Introduction To Factorisation Theory

Here, we introduce factorisation in arbitrary commutative domains and work with commutative
domains over the next few lectures. Let R be one such.

Definition 27.1 (Prime Ideal). P E R, with P 6= R, is prime if and only if R/P is a domain.
Equivalently, whenever r, s ∈ R are such that rs ∈ P = 0R/P , then r ∈ P or s ∈ P .

Example 27.1. Z/pZ is prime if and only if p is prime.

Example 27.2. 〈y〉E C[x, y] is prime because C[x, y]/〈y〉 ∼= C[x] which is a domain.

Example 27.3. If M E R, with M 6= R, is maximal then M is prime because R/M is field, thus
a domain. So all maximal ideals are prime ideals.

Definition 27.2 (Divisibility). We say r ∈ R divides s ∈ R, write r | s, if s ∈ 〈r〉 = Rr, or
equivalently 〈s〉 ⊆ 〈r〉.

Example 27.4. 3 | 6 as 6Z ⊆ 3Z.

Proposition - Definition 27.1 (Associates). We say that r, s ∈ R − 0 are associates if one of
the following two equivalent conditions hold.

(i) 〈r〉 = 〈s〉
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(ii) There is a unit u ∈ R∗ with r = us

Proof. (ii) =⇒ (i) Suppose that r = us, where u ∈ R∗, then r ∈ 〈s〉, so 〈r〉 ⊆ 〈s〉. But also
s = u−1r (u ∈ R∗). So by the same argument, 〈s〉 ⊆ 〈r〉. Hence (i) follows. (i) =⇒ (ii) Since
〈r〉 = 〈s〉, we can write r = vs, s = wr for some v, w ∈ R. Then r = vs = vwr. So since R is a
domain and r 6= 0, vw = 1, v, w ∈ R∗, giving (ii) (as R is also commutative).

Example 27.5. 〈−2〉 = 〈2〉E Z, so 2 and −2 are associates.

Definition 27.3 (Prime). An element p ∈ R − 0 is prime if 〈p〉 is prime. That is whenever
r, s ∈ R such that p | rs then p | r or p | s.

Note that 〈p〉 is prime ⇐⇒ R/〈p〉 is a domain. So rs ∈ 〈p〉 ⇐⇒ p | rs ⇐⇒ rs + 〈p〉 =
〈p〉 = 0R/〈p〉 = (r + 〈p〉)(s + 〈p〉) ⇐⇒ r + 〈p〉 = 0R/〈p〉 or s + 〈p〉 = 0R/〈p〉 ⇐⇒ r ∈ 〈p〉 or
s ∈ 〈p〉 ⇐⇒ p | r or p | s.

Example 27.6. ±2,±3,±5 are primes in Z.

Definition 27.4 (Irreducibility). A non-unit p ∈ R − R∗ is irreducible if for any factorisation
p = rs, we have r ∈ R∗ or s ∈ R∗ (note we cannot have both r, s ∈ R∗ as that would imply
p = rs ∈ R∗).

Proposition 27.1. In the commutative domain R, every prime element is irreducible.

Proof. Let p ∈ R be a prime. If p is prime, how do we know that p /∈ R∗. p prime =⇒ 〈p〉 prime.
If p ∈ R∗ then 〈p〉 = 〈1R〉 = R. But prime ideals are proper by definition. ∴ we know p /∈ R∗.
Suppose p = rs where r, s ∈ R. Since p is prime, WLOG, p | r, Hence r = pq for some q ∈ R. So
p = rs = pqs =⇒ qs = 1 as R is a domain and p 6= 0. By commutativity of R, s ∈ R∗, making p
irreducible.

It is important to note that primes are always irreducible but the converse is not true. Apparently
this created a hole in early proofs of Fermat’s Last Theorem.

Definition 27.5 (Unique Factorisation Domain). A commutative domain R is factorial or a
unique factorisation domain (UFD) if we have both

(i) Every non-zero non-unit r ∈ R can be factorised as r = p1p2 . . . pn with all pi irreducibles

(ii) If we have two factorisations of the same element r = p1p2 . . . pn = q1q2 . . . qm with all pi, qi
irreducible then n = m and we can re-index the qi so that pi and qi are associates for all i,
i.e. equal up to unit multiples

Example 27.7. Z is a UFD.
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Lemma 27.1. Let R be a commutative domain in which every irreducible elements is prime. If
r ∈ R can be factorised into a product of irreducibles as in Definition 27.5, then the factorisation
is unique in the sense that it is equal up to unit multiples.

Proof. Suppose that r ∈ R, satisfies that r = p1p2 . . . pn = q1q2 . . . qm with pi, qi irreducibles and
hence are all primes by assumption. We use induction on n. For n = 1, the result is true by
definition of irreducibility. If n > 1, we have p1 | q1q2 . . . qm, so p1 | qj say (as p1 is prime). Re-index
the qi’s so that j = 1. Then q1 = p1u for some u ∈ R. We must have u ∈ R∗ since q1 is irreducible.
So p1 and q1 are associates. Cancel p1 to obtain p2p3 . . . pn = uq2q3 . . . qm. Since u ∈ R∗, we have
〈uq2〉 = 〈q2〉 which is prime. So uq2 is also prime thus irreducible. The inductive hypothesis finishes
the proof, i.e. p2p3 . . . pn = q′2q3 . . . qm, where q′2 = uq2 is prime.

Example 27.8. R = C[x] then C[x]∗ = C∗. Any complex polynomials factor into linear factors,
so the irreducible elements of C[x] are of the form α(x − β), where α, β ∈ C, α 6= 0. Now
〈α(x−β)〉 = 〈x−β〉 (α is a unit) = I(β) = set of all polynomials with root β. As I(β) is a maximum
ideal, I(β) is a prime. Hence α(x − β) is prime. So all irreducibles are prime. Lemma 27.1 gives
that C[x] is a unique factorisation domain.

Example 27.9. In R = Z[
√−5], we have 2 × 3 = 6 = (1 +

√−5)(1 − √−5), i.e. factorisation
is not unique. So need to show 2, 3, 1 +

√
5, 1 −√5 are irreducibles, then Z[

√−5] is not a unique
factorisation domain.

28 Principal Ideal Domains

The motivation here is to give a sufficient criterion for a commutative domain to be a UFD.

Definition 28.1 (Principal Ideal Domain). Let R be a commutative ring. An ideal I is principal
if I = 〈x〉 for some x ∈ R. A principal ideal domain or PID is a commutative domain in which
every ideal is principal.

Example 28.1. R = Z is a PID since every ideal is of the nZ = 〈n〉 and is thus principal.

Proposition 28.1. Let R be a commutative domain and r ∈ R − 0, s ∈ R. Then 〈r〉 = 〈rs〉 and
equality occurs if and only if s ∈ R∗.
Proof. The only unknown fact is 〈r〉 = 〈rs〉 =⇒ s ∈ R∗. Suppose 〈r〉 = 〈rs〉 = R(rs). So r ∈ 〈rs〉
or r = rst for some t ∈ R. Since R is a domain, so we can cancel to get 1 = st = ts (commutativity)
and hence s ∈ R∗.

Proposition 28.2. let R be a PID. Then p ∈ R − 0 is irreducible if and only if 〈p〉 is maximal.
In particular, any irreducible element in R is prime, since maximal ideals are always prime ideals
(the quotient is a field which is always a domain).
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Proof. Assume first, p not irreducible. Say p = rs. By Proposition 28.1, 〈p〉 = 〈rs〉 ⊆ 〈r〉. So
〈p〉 is not maximal. Suppose p is irreducible. Let I E R be such that 〈p〉 ⊆ I. Since R is a PID,
every ideal, including I, is principal, i.e. I = 〈q〉 for some q ∈ R. Hence 〈p〉 ⊆ 〈q〉, thus p ∈ 〈q〉,
i.e. p = qr for some r ∈ R. But p is irreducible, so either q or r is a unit. Suppose q ∈ R∗, then
I = 〈q〉 = Rq = R1 = R (〈q〉 = 〈1〉 = R, as q and 1 are associates, i.e. q = q1). Suppose r ∈ R∗.
Then qr = p and q are associates, so 〈p〉 = 〈q〉 = I. Hence by definition, I is maximal.

Note that by Lemma 27.1, factorisation in a PID is unique if it exists, i.e. every irreducible is a
prime.

Lemma 28.1. Let S be any ring and I0, I1, I2, . . . E S be such that I0 ⊆ I1 ⊆ I2 ⊆ . . . Then
I =

⋃
j∈N Ij E S.

Proof. Let x, x′ ∈ I. We can assume x ∈ Ij and x′ ∈ Ij′ and WLOG, assume j ≥ j′. Note
0 ∈ I0 ⊆ I (subgroup) and −x ∈ Ij ⊆ I. ∵ x′ ∈ Ij′ ⊆ Ij ∴ x + x′ ∈ Ij ⊆ I (closure of subgroups).
So I is a subgroup of S. Further for s ∈ S, sx, xs ∈ Ij ⊆ I. Thus I E S by definition.

Theorem 28.1. Any PID R is a UFD.

Proof. It is sufficient to show that for any r ∈ R − 0, not a unit, we can express r = p1p2 . . . pn
with pi ∈ R irreducible, hence prime as shown in Proposition 28.2. We will assume this is false
and derive a contradiction. Suppose r not a product of irreducibles, i.e. r cannot be irreducible
itself. ∴ r reducible and we can write r = r0 = r1q1, with q1, r1 not units. WLOG, r1 is not a
product of irreducibles (if q1, r1 are both product of irreducibles, then so will be r = r1q1). Can
similarly factorise r1 = q2r2 with q2, r2 /∈ R∗ and r2 not a product of irreducibles. We continue
to define inductively q3, q4, . . .; r3, r4, . . . /∈ R∗ with rk = rk+1qk+1. By Proposition 28.1, we get a
strictly increasing chain of ideals 〈r〉 = 〈r0〉 = 〈r1q1〉 $ 〈r1〉 = 〈r2q2〉 $ 〈r2〉 = . . . Let I =

⋃
j∈N〈rj〉.

But R is a PID. So by Lemma 28.1, I = 〈r∞〉 for some r∞ ∈ R. But r∞ ∈ 〈rj〉 for some j, as
r∞ ∈ I =

⋃
j∈N〈rj〉. So I = 〈r∞〉 ⊆ 〈ri〉 ⊆ I. So 〈rj〉 = I and the chain of ideals must stabilise in

the sense 〈rj〉 = 〈rj+1〉 = . . . This contradiction proves the theorem.

Definition 28.2 (Greatest Common Divisor). Let R be a PID. Let r, s ∈ R − 0. Then a
greatest common divisor for r, s is an element d ∈ R such that d | r and d | s, and further given
any other common divisor, i.e. c ∈ R such that c | r and c | s, we have c | d. Write d = gcd(r, s).

Proposition 28.3. Let R be a PID and r, s ∈ R − 0. Then r, s have a greatest common divisor,
say d , such that 〈d〉 = 〈r, s〉.
Proof. Since R is PID, 〈r, s〉 = 〈d〉 for some d ∈ R. We will show it is a greatest common divisor
of r and s. Note 〈d〉 = 〈r, s〉 ⊇ 〈r〉, 〈s〉. ∴ r, s ∈ 〈d〉 =⇒ d | r and d | s, i.e. ∃ k, l ∈ R such that
r = kd, s = ld. Consider another common divisor c, i.e. c | r and c | s =⇒ 〈c〉 ⊇ 〈r〉, 〈s〉, since
r, s ∈ 〈c〉. ∴ 〈c〉 ⊇ 〈r, s〉 = 〈r〉 + 〈s〉 = 〈d〉. So d = mc for m ∈ R, i.e. c | d. Hence the greatest
common divisor for r and s is d.
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29 Euclidean Domains

The motivation here is to give a useful criterion for a commutative domain to be a PID and UFD.

Proposition 29.1. R = C[x] is a PID.

Proof. Let I be a non-zero ideal. Note that I = 0 = 〈0〉 is principal. Pick p ∈ I − 0, which is
minimum degree. We know I ⊇ 〈p〉. We show in fact I = 〈p〉. Let f ∈ I. Long division shows
that we can write f = pq + r, where q, r ∈ C[x] and deg(r) < deg(p) if r 6= 0. However f ∈ I and
pq ∈ 〈p〉 ⊆ I. ∴ r = f − pq ∈ I. Minimality of deg(p) =⇒ r = 0. So f = pq ∈ 〈p〉. Hence I is
principal and C[x] is a PID.

This is the same proof for Z is a PID. Define Euclidean domains to be rings where this works. More
precisely . . .

Definition 29.1 (Euclidean Domain). Let R be a commutative domain. A function ν : R−0 −→
N is called an Euclidean norm on R if

(i) For f ∈ R, p ∈ R − 0, there exists q, r ∈ R with ν(r) < ν(p) and f = pq + r if r 6= 0, (ν is
like a degree function)

(ii) For f, g ∈ R− 0, ν(f) ≤ ν(fg) (just like a degree function)

If R has such a function, we call it an Euclidean domain.

Example 29.1. Let F = ring. Then we can define the degree function deg : F [x]− 0 −→ N. If F
is also a field, then the usual long division works to show ν = deg is an Euclidean norm. Note that
if F is a field then F [x] is a commutative domain.

Example 29.2. ν : Z− 0 −→ N;n 7−→ |n| is an Euclidean norm on Z.

Theorem 29.1. Let R be an Euclidean domain with Euclidean norm ν. Then R is a PID and
hence a UFD.

Proof. Let I E R be non-zero (note 0 = 〈0〉). Pick p ∈ I − 0 with ν(p) minimal (minimum exists
in N). Note I ⊇ 〈p〉. We show I = 〈p〉. Let f ∈ I. Using Definition 29.1 (i) to write f = pq + r
with q, r ∈ R, ν(r) ≤ ν(p) if r 6= 0. But I 3 f − pq as pq ∈ 〈p〉 ⊆ I. ∴ r ∈ I. Minimality of
ν(p) =⇒ r = 0. So f = pq ∈ 〈p〉. Hence I = 〈p〉 and R is a PID.

In number theory, often look at small over-rings of Z, where over-rings are rings containing another
ring.

Lemma 29.1. Consider function ν : C −→ R; z 7−→ |z|2 so ν(z1z2) = ν(z1)ν(z2) for z1, z2 ∈ C.

Let R be one of the following subrings of C: Z[i],Z[i
√

2],Z[1+
√

3i
2

],Z[1+
√

7i
2

],Z[1+
√

11i
2

]. Then

(i) ν takes integer values on R
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(ii) For any z ∈ C, there is some s ∈ R with ν(z − s) < 1

Proof. We will only do case R = Z[i
√

2]. R = Z[i] is similar. other cases require simple modifi-
cation of the argument. What is R = Z[i

√
2]? It is the Im(εi

√
2 : Z[x] −→ C; p(x) 7−→ p(i

√
2)).

Let p =
∑

j ajx
j, aj ∈ Z. Then p(i

√
2) =

∑
j aji

j(
√

2)j ∈ Z + Z(i
√

2). This is because j

even =⇒ ij(
√

2)j = (−1)
j
2 2

j
2 ∈ Z; j odd =⇒ ij(

√
2)j = i

√
2ij−1(

√
2)j−1 ∈ (i

√
2)Z (as j − 1

is even). ∴ Z[i
√

2] ⊆ {a + bi
√

2 : a, b ∈ Z}. The reverse inclusion is by definition. Hence
Z[i
√

2] = {a+ bi
√

2 : a, b ∈ Z}. (i) For a, b ∈ Z, ν(a+ bi
√

2) = a2 + 2b2 ∈ N. (ii) Look at Argand

diagram. Elements of R form a lattice. The worst case scenario is 1+i
√

2
2

. But pick s = 0, we see

ν(z − s) =
∣∣∣1+i

√
2

2

∣∣∣
2

= 1
4

+ 2
4

= 3
4
< 1. This proves the lemma.

Theorem 29.2. Let ν be the function in Lemma 29.1 and R be one of the following. Z[i],Z[i
√

2],

Z[1+
√

3i
2

],Z[1+
√

7i
2

],Z[1+
√

11i
2

]. Then ν is an Euclidean norm on R.

Proof. Check axiom (ii). for f, g ∈ R− 0, ν(f), ν(g) ∈ N− 0. Hence ν(fg) = ν(f)ν(g) ≥ ν(f) as
ν(g) ≥ 1. Check axiom (i). Let f ∈ R, p ∈ R − 0. Pick s ∈ R as in Lemma 29.1, so ν(f

p
− s) < 1

(f
p
∈ C, s ∈ R). Note ν(r) = ν(f − ps) = ν(p)ν(f

p
− s) < ν(p) as ν(f

p
− s) < 1. So f = ps+ r where

ν(r) < ν(p). Thus ν is an Euclidean norm and R is an Euclidean domain.

30 Fun With Euclidean Domains

For this lecture, R is an Euclidean domain with Euclidean norm ν.

Proposition 30.1. Let I E R be non-zero. Then p ∈ I − 0 generates I if and only if ν(p) is
minimal. In particular u ∈ R∗ if and only if ν(u) = ν(1).

Proof. Saw in the proof of Theorem 29.1 that p ∈ I − 0 with ν(p) minimal =⇒ I = 〈p〉. Suppose
conversely that I = 〈p〉 then for q ∈ R−0, ν(pq) ≥ ν(p) ((ii) of Definition 29.1). ∴ ν(p) is minimal.
Also u ∈ R∗ if and only if 〈u〉 = 〈1〉 = R, i.e. ν(p) = ν(1).

Example 30.1. Z[i
√

2]∗ = {1,−1} for ν(z) = |z|2.

Let f, g ∈ R − 0. We wish to compute d = gcd(f, g). By Proposition 28.3, 〈f, g〉 = 〈d〉. By
Proposition 30.1, seek to minimise ν(x) as x ranges over 〈f, g〉 − 0. How?

Theorem 30.1 (Euclidean Algorithm). Assume ν(f) ≥ ν(g). Find q, r ∈ R with f = qg + r
with ν(r) < ν(p) or r = 0. Case r = 0 =⇒ 〈f, g〉 = 〈qg, g〉 = 〈g〉. ∴ gcd(f, g) = g. Case r 6= 0,
observe 〈f, g〉 = 〈g, r〉 since f ∈ 〈g, r〉 (f = qg+r), r ∈ 〈f, g〉 (r = f−qg). So gcd(f, g) = gcd(g, r).
In this case, repeat first step, with g, r instead of f, g. (Note the algorithm terminates because
ν(r) < ν(g) and N has a minimum at 0).
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Example 30.2. Consider Euclidean domain R = Z[i
√

2] = {a + bi : a, b ∈ Z} with Euclidean
norm ν : R − 0 −→ N; z 7−→ |z|2. What is gcd(y + i

√
2, 2i
√

2)? Note i
√

2(2i
√

2) = −4 as
i
√

2 ∈ R. Using Theorem 30.1, we see gcd(y + i
√

2, 2i
√

2) = gcd(2i
√

2, y + i
√

2− ni√2(2i
√

2)) =
gcd(2i

√
2, (y − 4n) + i

√
2) for any n ∈ Z. ∴ gcd(y + i

√
2, 2i
√

2) = gcd(ȳ + i
√

2, 2i
√

2), where
ȳ ∈ {−1, 0, 1, 2} and y + 4Z = ȳ + 4Z. (i) ȳ = 0 =⇒ gcd(2i

√
2, i
√

2) = i
√

2. (ii) ȳ = 2 =⇒
f = 2i

√
2, g = 2 + i

√
2 =⇒ f

g
= 2i

√
2

2+i
√

2
= 4+4i

√
2

6
≈ 1 + i

√
2 = q =⇒ qg = (1 + i

√
2)(2 + i

√
2) =

2 + 3i
√

2 − 2 = 3i
√

2 =⇒ r = f − gq = 2i
√

2 − 3i
√

2 = −i√2 and ν(r) = 2 < 6 = ν(p). ∴
〈f, g〉 = 〈g, r〉 = 〈2 + i

√
2,−i√2〉 = 〈−i√2(−1 + i

√
2),−i√2〉 = 〈i√2〉, i.e. gcd(f, g) = i

√
2.

(iii) ȳ = ±1 =⇒ f = 2i
√

2, g = ±1 + i
√

2 =⇒ f
g

= 2i
√

2
±1+i

√
2

= 4±2i
√

2
3
≈ 1 ± i

√
2 = q ∴ qg =

(1±i√2)(±1+i
√

2) = ±1+i
√

2+i
√

2∓2 = ∓1+2
√

2i =⇒ r = f−gq = 2i
√

2−(∓1+2i
√

2) = ±1,
i.e. 〈f, g〉 = 〈g, r〉 = 〈g, 1〉 = 〈1〉 = R =⇒ gcd(f, g) = 1.

Theorem 30.2. The only integer solution to y2 + 2 = x3 are y = ±5, x = 3.

Proof. Suppose y is even then 2 | y2 + 2 =⇒ 2 | x3 =⇒ 2 | x =⇒ 8 | x3. But 4 | y2 =⇒ 4 - y2 + 2.
So 8 - y2 + 2. ∴ y is odd. Work in PID, Z[i

√
2], y2 + 2 = (y + i

√
2)(y − i

√
2) = x3. Note

〈y + i
√

2, y − i√2〉 = 〈y + i
√

2, y + i
√

2 − (y − i√2)〉 = 〈y + i
√

2, 2i
√

2〉 = 1 for y odd. By prime
factorisation both sides and noting y + i

√
2 and y − i

√
2 have gcd(y + i

√
2, y − i

√
2) = 1, with

Z[i
√

2]∗ = {−1 = (−1)3, 1 = 13}, y + i
√

2 is a cube and so is y − i√2. So can find a, b ∈ Z with
(a+ ib

√
2)3 = y+ i

√
2 = (a3−6ab2)+(3a2b

√
2−2b3

√
2)i. Thus equating real and imaginary parts,

1 = 3a2b− 2b3 = b(3a2 − 2b2). So b | 1 =⇒ b = ±1. b = −1 =⇒ no solution. b = 1 =⇒ 3a2 − 2 =
1 =⇒ a = ±1. Real part is y = a3 − 6ab2 = a(a2 − 6b2) = ∓5. So x = 3 by the original equation.

31 UFDs & Gauss’ Lemma

Lemma 31.1. Let R be a UFD and r, s ∈ R− 0 with factorisation in irreducibles r = p1p2 . . . pm,
s = q1q2 . . . qn. Then r | s if and only if m ≤ n and permuting the qi’s if necessary, we can assume
pi and qi are associates for i = 1, 2, . . . ,m.

Proof. It is clear that if pi and qi are associates for i = 1, 2, . . . ,m and m ≤ n then r | s. To
prove the converse, suppose s = rt and t = r1r2 . . . rk is a factorisation into irreducibles. Then
p1p2 . . . pmr1r2 . . . rk = q1q2 . . . qn. So uniqueness of factorisation gives the observation.

Corollary 31.1. In a UFD, any irreducibles are primes.

Proof. Follows from observation, e.g. q1 | rt =⇒ q1 = upj or q1 = vrl, u, v ∈ R∗ by unique
factorisation. ∴ q1 | pj | r or q1 | rl | t.

Let R be a UFD and r1, r2, . . . , rk ∈ R. A greatest common divisor d ∈ R for r1, r2, . . . , rk is an
element such that d | ri for all i and if c ∈ R with c | ri for all i then c | d. Two greatest common
divisors differ by at most a unit. They divide each other, and hence generate the same principal
ideal.

Corollary 31.2. Let R be a UFD and r1, r2, . . . , rk ∈ R − 0. Then there is a greatest common
divisor for r1, r2, . . . , rk.
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Proof. Just prime factorise (irreducibles are primes in UFDs) each of the ri’s and pull out common
factors (up to associates).

Let R be a UFD.

Definition 31.1 (Primitivity). f ∈ R[x]− 0 is primitive if 1 is the greatest common divisor for
its coefficients.

Example 31.1. 3x2 + 2 ∈ Z[x] is primitive but 6x2 + 4 is not.

Proposition 31.1. Let R be a UFD, K = K(R).

(i) Let f ∈ K[x]− 0, then there is some α ∈ K∗ with αf ∈ R[x] and is primitive

(ii) If f ∈ R[x]− 0 is primitive and also there is α ∈ K∗ such that αf ∈ R[x], then α ∈ R
Proof. (i) Pick common denominator d ∈ R − 0 for all coefficients of f Then df ∈ R[x]. let c be
the greatest common divisor of coefficients of df . Then αf = (d

c
)f ∈ R[x] is primitive as coefficients

of (d
c
)f has now greatest common divisor 1. (ii) Let α = n

d
with n ∈ R, d ∈ R − 0. Then gcd(

coefficients of nf ∈ R[x]) = n gcd(coefficients of f) = n × 1 = n = d gcd(coefficients of ( b
d
)f)

= d gcd(coefficients of αf ∈ R[x]) =⇒ n = multiple of d =⇒ α ∈ R.

Theorem 31.1 (Gauss’ Lemma). Let R be a UFD. The product of primitive polynomials in
R[x] is primitive.

Proof. Let f = f0 + f1x+ . . .+ fmx
m ∈ R[x] and g = g0 + g1x+ . . .+ gnx

n ∈ R[x] be primitive. It
suffices to show that for any prime p ∈ R, p does not divide all the coefficients of h = fg. Pick a
so that p - fa but f | fa+1, p | pa+2, . . . and similarly pick b so p - gb but p | gb+1, p | gb+2, . . . Look at
ha+b = coefficient of xa+b in h = (f0ga+b+f1ga+b−1+ . . .+fa−1gb+1)+fagb+(fa+1gb−1+ . . .+fa+bg0).
∵ p divides all of gb+1, gb+2, . . . , ga+b and p divides fa+1, fa+2, . . . , fa+b, but p does not divide fagb
∴ p - ha+b and h must be primitive.

Corollary 31.3. Let R be a UFD and K = K(R). Let f ∈ R[x] and suppose f = gh with
g, h ∈ K[x]. Then f = ḡh̄ with ḡ, h̄ ∈ R[x] and ḡ = αgg, h̄ = αhh where αg, αh ∈ K[x]∗ = K∗.

Proof. By Proposition 31.1 (i), write g = βgg
′, h = βhh

′ and f = βff
′ where f ′, g′, h′ ∈ R[x] are

primitive and βf , βg, βh ∈ K∗. Then βff = (βgβh)g
′h′ = f ∈ R[x]. By Gauss’ Lemma, g′h′ is

primitive. ∵ f ∈ R[x] ∴ βgβh ∈ R by Proposition 31.1 (ii). So we are done on setting ḡ = βgβhg
′

and h̄ = h′.

Theorem 31.2. Let R = UFD and K = K(R).

(i) The primes in R[x] are the primes of R or primitive polynomials (positive degree) which are
irreducible in K[x]

(ii) R[x] is a UFD
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Proof. (i) Follow from Corollary 31.3. (ii) K[x] is a UFD. Check factorisation exists. let f ∈
K[x]−0. Factorise f = αf1f2 . . . fm in K[x] with fi irreducible in K[x] and α ∈ K∗. By Proposition
31.1(i), can assume all fi ∈ R[x] and are primitive. Gauss’ Lemma =⇒ f1f2 . . . fm is primitive.
So Proposition 31.1 (ii) =⇒ α ∈ R. Now prime factorisation α = α1α2 . . . αn in R to get prime
factorisation f = α1α2 . . . αnf1f2 . . . fm. Check uniqueness. K[x] is a UFD =⇒ fi’s are unique up
to scalar multiples in K[x]∗ = K∗. Proposition 31.1 (ii) =⇒ since these are primitive, they are
unique up to primitives, i.e. R∗.

Corollary 31.4. Let R = UFD. Then R[x1, x2, . . . xn] is a UFD.

32 Simple Field Extensions

Definition 32.1 (Ring & Field Extension). Let F be a subring of E. Then we say E is a ring
extension of F . Suppose further E and F are both fields. Then we say F is a subfield of E, or E
or E/F is a field extension of F .

Let E/F be a field extension and α1, α2, . . . , αn ∈ E. Recall subring F [α1, α2, . . . , αn] ⊆ E, which
is a domain. By Proposition 26.1 (ii), F (α1, α2, . . . , αn) = K(F [α1, α2, . . . , αn]) is a subfield of
K(E) = E. It is called the subfield of E generated by F, α1, α2, . . . , αn.

Proposition 32.1. Let E/F be a field extension and α1, α2, . . . , αn ∈ E. Let F1 ⊆ E be a subfield
containing F, α1, α2, . . . , αn. Then F1 ⊇ F (α1, α2, . . . , αn).

Proof. F1 is a subring containing F, α1, α2, . . . , αn so F1 ⊇ F [α1, α2, . . . , αn]. But F is a field, so
it contains all fractions in F [α1, α2, . . . , αn]. ∴ F1 ⊇ F (α1, α2, . . . , αn).

Example 32.1. i ∈ C, Q(i) = K(Z[i]) = {a+ bi : a, b ∈ Q}.

Let E be a commutative ring extension of field F . E is a vector space over F with addition equal to
ring addition and scalar multiplication equal to ring multiplication (F ≤ E as rings). The degree
of the ring extension E/F is [E : F ] = dimFE. We say E/F is finite if [E : F ] is finite.

Example 32.2. [C : R] = 2, so C/R is finite.

Let E be a commutative ring extension of field F . Let α ∈ E. Recall F [α] = Im(εα : F [x] −→
E; p(x) 7−→ p(α)).

Proposition - Definition 32.1 (Transcendental & Algebraic). With above notation, exactly
one of the following occurs.

(i) εα is injective, i.e. α is not a zero for any polynomial in F [x] other than p(x) ≡ 0. In this
case, we say α is transcendental over F .

(ii) ker(εα) 6= 0. But F [x] is Euclidean domain with degree norm, hence is a PID, i.e. ker(εα) =
〈p(x)〉 where p(x) ∈ ker(εα) is chosen to have minimal degree. So p(α) = 0 and p is minimal
with respect to degree. In this case, we say that α is algebraic over F and p is called the
minimal or irreducible polynomial for α over F .
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Example 32.3. The minimal polynomial for
√

2 is x2 − 2 over Q and x−√2 over Q[
√

2].

Definition 32.2 (Algebraic Field Extension). Let E be a commutative ring extension of field
F . We say E/F is algebraic if every α ∈ E is algebraic over F .

E is always algebraic over E as ∀ α ∈ E, we have x− α ∈ E[x].

Example 32.4. C/R is algebraic for if a, b ∈ R, then x = a+ bi satisfies (x− a)2 + b2 = 0 ∈ R[x].

Proposition 32.2. Let E be a finite commutative ring extension of field F . Then E/F is algebraic.

Proof. F [x] and E are ring extensions of F , hence are vector spaces over F . Let α ∈ E. But εα :
F [x] −→ E is F-linear since it preserves addition and scalar multiplication, i.e. εα(ap) = εα(a)εα(p)
(ring homomorphism) = aεα(p) for a ∈ F, p ∈ F [x]. Now dimFF [x] = ∞ and dimFE < ∞. So εα
is not injective and α is algebraic.

Proposition 32.3. Let E be an algebraic commutative ring extension of field F . Suppose E is a
domain. Then E is a field.

Proof. Let α ∈ E and p(x) ∈ F [x] be its minimal polynomial. p(x) = pnx
n+pn−1x

n−1+ . . .+p1x+
p0. So pnα

n+pn−1α
n−1+. . .+p1α+p0 = 0. Note p0 6= 0, otherwise α(pnα

n−1+pn−1α
n−2+. . .+p1) =

0 =⇒ pnα
n−1 + pn−1α

n−2 + . . . + p1 = 0 (α 6= 0 and F [x] is a domain). So α is a zero of p(x)
x

.
This contradicts minimality of deg(p). ∴ p0 6= 0 =⇒ α(pnα

n−1 + . . . + p1) = −p0 =⇒ α−1 =
−p−1

0 (pnα
n−1 + pn−1α

n−2 + . . .+ p1), i.e. α is invertible and E is a field.

Let F be a field. A finitely generated field extension of F is a field extension of form F (α1, α2, . . . , αn).
A simple field extension is one of the form F (α).

Theorem 32.1. Let E/F be a field extension. Let α ∈ E.

(i) If α is algebraic then F (α) = F [α] ∼= F [x]/〈p〉, where p is minimal polynomial of α. Also p
is irreducible over F [x].

(ii) If α is transcendental then F (α) ∼= F (x) = K(F [x]).

Proof. (i) Let p = pnx
n + pn−1x

n−1 + . . . + p0, pn 6= 0. F [x]/〈p〉 ∼= F [α] (First Isomorphism
Theorem) is spanned by {1+ 〈p〉, x+ 〈p〉, . . . , xn−1 + 〈p〉}. ∴ F [α]/F is finite. By Proposition 32.2,
F [α]/F is algebraic and hence is also a field. F (α) = F [α]. Now F [x]/〈p〉 is a field =⇒ 〈p〉EF [x],
〈p〉 6= F [x] is maximum =⇒ p ∈ F [x] irreducible, i.e. if p = rs, r, s ∈ F [x], then p ∈ 〈r〉 =⇒ 〈p〉 ⊆
〈r〉 =⇒ 〈p〉 = 〈r〉 as p is maximum =⇒ s is a unit for 〈p〉 = 〈r〉 or r is a unit for 〈r〉 = F [x].
This gives (i). (ii) is clear as εα : F [x] −→ F [α] ⊆ E is an isomorphism, due to bijectivity from
transcendency. This gives isomorphism F [x] ∼= F [α] =⇒ K(F [x]) ∼= K(F [α]) =⇒ F (x) ∼= F (α).
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33 Algebraic Extensions

Theorem 33.1. Let K ⊇ E ⊇ F , E/F and K/E be finite field extensions. Then K/F is finite
and [K : F ] = [K : E][E : F ].

Proof. Let e1, e2, . . . , en be an F basis for E and k1, k2, . . . , km be an E basis for K. It suffices
to show B = {eikj : i = 1, 2, . . . , n; j = 1, 2, . . . ,m} is an F basis for K. Check B linearly
independent over F . Suppose

∑
i,j αijeikj = 0 where αij ∈ F . ∴ (

∑
i αi1ei)k1 + (

∑
i αi2ei)k2 +

. . . + (
∑

i αimei)km = 0 where
∑

i αijei ∈ E for all j. But ki’s are linearly independent over E
=⇒ ∑

i αijei = 0 for each j. But {ei} are also linearly independent over F . ∴ αij = 0. So B is
linearly independent. Check B spans. Let k ∈ K. We can write k = α1k1 + α2k2 + . . . + αmkm
where αi ∈ E. But each αi is F linear combination of ei’s, so we are done.

Proposition 33.1. Let E/F be a field extension and α ∈ E algebraic over F with minimum
polynomial p(x) ∈ F [x] of degree d. Then [F (α) : F ] = d.

Proof. Suppose p(x) = pdx
d + . . . + p1x + p0, pd 6= 0. It suffices to show B = {1, α, α2, . . . , αd−1}

in an F basis for F (α). Note pdα
d + pd−1α

d−1 + . . .+ p1α + p0 = 0 =⇒ αd is a linear combination
of αd−1, αd−2, . . . , α, 1. So {1, α, . . . , αd−1} spans F [α] = F (α) (F [α] is a field). Check B linearly
independent. But any linear relation amongst {1, α, . . . , αd−1} gives a polynomial p(x) with p(α) =
0 and deg(p) < d. This contradicts minimality of deg(p) = d. Hence B is linearly independent and
hence a basis. So property proved.

Example 33.1. Q ⊆ Q(
√

2) ⊆ Q( 4
√

2) as ( 4
√

2)2 =
√

2. [Q(
√

2) : Q] = 2 as minimal polynomial is
x2 − 2. [Q( 4

√
2) : Q(

√
2)] = 2 as minimal polynomial is x2 −√2. ∴ [Q( 4

√
2) : Q] = 22 = 4 and the

minimal polynomial for 4
√

2 over Q is x4 − 2.

Corollary 33.1. Let E/F be a field extension and α1, α2, . . . , αn be algebraic over F . Then
F (α1, α2, . . . , αn)/F is finite.

Proof. Just use induction on Theorem 33.1 and use Proposition 33.1 on F ⊆ F (α1) ⊆ F (α1, α2) =
F (α1)(α2) ⊆ . . . ⊆ F (α1, α2, . . . , αn), i.e. [F (α1, α2, . . . αn) : F ] = [F (α1, α2, . . . αn−1)(αn) :
F (α1, α2, . . . αn−1)][F (α1, α2, . . . αn−2)(αn−1) : F (α1, α2, . . . αn−2)] . . . [F (α1) : F ] and each term is
finite, equal to the degree of the corresponding minimal polynomial (α1, α2, . . . , αn are all algebraic).

Theorem 33.2 (Eisenstein’s Criterion). Let R be a UFD and f = f0 +f1x+ . . .+fnx
n ∈ R[x].

Suppose p ∈ R is prime and p | f0, p - fn, p2 - f0, p | fi for 0 < i < n, then f is irreducible.

Proof. By contradiction. Suppose f = gh where g = g0 + g1x+ . . .+ grx
r ∈ R[x], h = h0 + h1x+

. . . + hsx
s ∈ R[x] and r, s > 0. p | f0 = g0h0 but p2 - f0, i.e. p does not divide both g0 and h0.

So we can assume p | g0 but p - h0. We will derive a contradiction to p - fn by showing p | g. We
show p | g by induction on i. For i < n, fi = g0hi + g1hi−1 + . . . + gi−1h1 + gih0 ∈ 〈p〉 as p | fi. ∵
p | g1hi−1, p | g2hi−2, . . . , p | gh−1h1 ∴ p | gih0. But p - h0 ∴ p | gi. This completes the proof.

Example 33.2. Different ways of showing minimum polynomial for 4
√

2 over Q is x4 − 2. Let p
be minimum polynomial for 4

√
2. So p | x4 − 2. Eisenstein’s Criterion with p = 2 =⇒ x4 − 2 is

irreducible. So p and x4 − 2 are associates.
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Proposition 33.2. let φ : F −→ R be a ring homomorphism with F a field and R 6= 0. Then φ
is injective.

Proof. φ not injective =⇒ ker(φ) 6= 0 =⇒ ker(φ) contains units =⇒ ker(φ) = F (ker(φ) is an ideal
with units, φ(1) = 1 = 0) =⇒ id = 0 map on R =⇒ R = 0, which is a contradiction.

Proposition - Definition 33.1 (Algebraic Closure). A field F is algebraically closed if one of
the following equivalent conditions hold.

(i) Any p(x) ∈ F [x] has zero in F .

(ii) There are no non-trivial algebraic extension of F (the trivial extension being F/F ).

Proof. (i) =⇒ (ii). Use contradiction. Suppose E/F is an algebraic field extension and α ∈ E−F .
Let p ∈ F [x] be minimum (irreducible) polynomial for α over F . Also deg(p) > 1. But p(x) has
zero, say γ in F . So by factor theorem, x− γ is a factor of p(x). This contradicts the irreducibility
of p(x). Note deg(p) = 1 =⇒ α ∈ F , so α ∈ E − F =⇒ deg(p) > 1. (ii) =⇒ (i). Let p ∈ F [x].
Replacing p with prime factor =⇒ can assume p is irreducible. Consider F [x]/〈p〉. ∵ F [x] is an
Euclidean domain hence a PID. 〈p〉 is maximal, so F [x]/〈p〉 is a field. So by Proposition 33.2,
we see F −→ F [x]/〈p〉 is injective. So F [x]/〈p〉 is a finite field extension of F . So F [x]/〈p〉
is algebraic. Given (ii), it must be trivial. By Proposition 33.1, degree of extension is p, i.e.
F [x]/〈p〉 ∼= F [α] = F (α) =⇒ [F [x]/〈p〉 : F ] = [F (α) : F ] = deg(p). So deg(p) = 1, i.e. linear
polynomial in F =⇒ p has a zero in F .

Theorem 33.3. Any field F has an algebraic extension F̃ which is algebraically closure of F and
is unique up to isomorphism.

34 Ruler & Compass Constructions

Bisection of an angle, constructions of an equilateral triangle and a regular hexagon can all be
carried out easily with a ruler and a pair of compasses. Can you trisect an angle or constrict a
regular pentagon in the same way?

The following is known as the Ruler and Compass Game. Start with subfield F ⊆ R and set of
points Pt0 in R2 with all coordinates in F , i.e. Pt0 ⊆ F 2 ⊆ R2. Set LC0 = ∅. Construct inductively
set of points Pti in R2 and LCi, set of lines and circles in R2, suppose Pti−1 and LCi−1 defined.

1. Either draw a line through 2 points in Pti−1 and add this to get LCi or draw a circle with
centre in Pti−1 and passing through another point in Pti−1 and add this circle to LCi−1 to
get LCi.

2. Enlarge Pti−1 to Pti by adding in all the points of intersection of all lines and circles in LCi.

3. Repeat steps 1 and 2 as desired.

A figure is constructible from F if you can get it from the Ruler and Compass Game. Say it is
constructible if F = Q.

53



Suppose in step 1 of the Ruler and Compass Game, you only add lines. Then Pti ⊆ F 2 always for
Pt0 ⊆ F 2, i.e. points always have coordinates in F . By induction, suppose a, b, c, d ∈ Pti−1 ⊆ F 2.
New points arise from intersecting lines such as ab and cd. To compute points of intersection, solve
a+λ(b− a) = c+µ(d− c) for λ, µ ∈ R. This corresponds to system of liner equations in F . Hence
λ, µ ∈ F , so must be coordinates of the points of intersection.

Proposition 34.1. Suppose in the Ruler and Compass Game, Pti−1 ⊆ E2 for some field E.

(i) Any line (circle) in LCi is defined by a linear (quadratic) equation with coefficients in E.

(ii) The point of intersection of two circles in LCi has coordinates in E (quadratic terms cancel).

(iii) Let L,C be a line, a circle respectively in LCi. Then there is some ∆ ∈ E such that
coordinates of point of intersection of L and C lie in E(∆) (due to the quadratic formula).

Proof. (i) By induction, suppose C is a circle with centre (a, b) ∈ E2 and passing through (c, d) ∈
E2. Then C is defined by (x− a)2 + (y − b)2 = (a− c)2 + (b− d)2 which is quadratic in x, y with
coefficients in E. Case for lines is similar. (ii) is similar to the proof of (iii). (iii)By (i), can assume
L,C given by C : x2 + y2 + a1x + b1y = c1 and L : a2x + b2y = c2. Assume b2 6= 0 (since at least
one of a2, b2 is non-zero, else swap roles of x, y). Use equation of L to eliminate y from equation
of C. This gives a quadratic in x with say discriminant ∆. Quadratic formula =⇒ x ∈ E(

√
∆).

From equation of L, we see y ∈ E(
√

∆) as well. Note E(
√

∆) = E if and only if
√

∆ ∈ E, i.e. ∆
is a square in E. [E(

√
∆) : E] = 2.

Theorem 34.1. Suppose in the Ruler and Compass Game, p ∈ Ptj for some j. Then there is a
tower of field extensions F ⊆ F1 ⊆ F2 ⊆ . . . ⊆ Fn, where Fi+1 = Fi(

√
∆i) for some non-square

∆i ∈ Fi and such that p ∈ F 2
n . Note [Fn : F ] = [Fn : Fn−1][Fn−1 : Fn−2] . . . [F1 : F ] = 2n.

Proof. Use induction on Proposition 34.1.

Theorem 34.2. It is impossible to trisect angles using rulers and compasses in general.

Proof. We will prove the impossibility of trisecting an angle of 60◦. Start with F = Q(
√

3). Pt0 =
{(0, 0), (1,

√
3), (1, 0)}. Suppose trisecting line L of a 60◦ angle is constructible from F . Then add

unit circle. We see there is a field extension Fn/F as in Theorem 34.1 with (cos 20◦, sin 20◦) ∈ F 2
n .

Seek contradiction. What is minimum polynomial of α over Q? Recall cos 3θ = cos3 θ− 3 cos θ. So
4α3 − 3α = cos 60◦ = 1

2
, i.e. α satisfies 8α3 − 6α − 1 = 0. We can show this is irreducible over Q

by noting the following are not roots ±1,±1
2
,±1

4
,±1

8
. So 8x3 − 6x− 1 is not reducible over Q. So

8x3− 6x− 1 = 0 is minimum polynomial for α. Hence [Q(α) : Q] = 3. But [Fn : Q(α)][Q(α) : Q] =
[Fn : Q] = [Fn : F ][F : Q] = [Fn : Q(

√
3)][Q(

√
3) : Q] =⇒ 3k = 2n × 2 = 2n+1. But 3 - 2n+1. So

contradiction gives impossibility of trisecting 60◦ with rulers and compasses.

35 Finite Fields

Example 35.1. Let p ∈ N− 0 be prime. Then 〈p〉E Z is maximal, so Z/pZ is a field denoted Fp.

Proposition 35.1. Let F be a field.
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(i) The map φ : Z −→ F ;n 7−→ n = 1 + 1 + . . .+ 1︸ ︷︷ ︸
n

is a ring homomorphism.

(ii) Exactly one of the following holds.

(a) φ is injective and so induces an injection of fields φ : Q −→ F . In this case, we say F
has characteristic 0 and write char(F ) = 0.

(b) ker(φ) 6= 0, i.e. ker(φ) = 〈p〉 (ideal), where p ∈ N − 0 is prime. In this case, we say F
has characteristic p and write char(F ) = p. Induced map φ̄ : Fp = Z/pZ −→ F makes
F a field extension of Fp (φ̄ is injective).

Proof. (i) Check definition. (ii) Easy exercise, using fact that Z/nZ is domain if and only if n is
prime.

Example 35.2. char(R) = 0, char(F̃p) = p. For a field F , the algebraic closure is denoted by F̃ .

Proposition 35.2. Let F be a finite (as set) field. Then char(F ) = p > 0 and |F | = p[F :Fp], i.e.
any finite field has prime characteristic.

Proof. F finite =⇒ Z not a subset. So in this case, we have case (b) of Proposition 35.1 (ii). Also
as F is a field extension of Fp, then F is a vector space over Fp of dimension [F : Fp] = d. Hence
F ∼= Fp × Fp × . . .Fp︸ ︷︷ ︸

[F :Fp]

as vector spaces, i.e. |F | = |Fp|[F :Fp] = p[F :Fp].

Let p ∈ N−0 be prime and n ∈ N. Write Fpn for any field with pn elements. We can show existence
and uniqueness of Fpn .

Proposition - Definition 35.1 (Frobenius Norm). Let F be a field. char(p) > 0. The map
φ : F −→ F ; x 7−→ xp is a ring homomorphism called Frobenius norm.

Proof. φ(x+ y) = (x+ y)p = xp +

(
p
1

)
xp−1y+

(
p
2

)
xp−2y2 + . . .+

(
p

p− 1

)
xyp−1 + yp. Now

(
p
1

)
,

(
p
2

)
, . . . ,

(
p

p− 1

)
are all divisible by p and 0 in F . So φ(x+y) = xp+yp = φ(x)+φ(y).

Also φ(xy) = (xy)p = xpyp = φ(x)φ(y). Lastly, φ(1) = 1 = 1p, so φ is a ring homomorphism.

Lemma 35.1. Let E/F and K/E (F ⊆ E ⊆ K) be algebraic field extensions. Then K/F is
algebraic.

Proof. Suffice to show α ∈ K is algebraic over F . K/E algebraic =⇒ αn+en−1α
n−1+. . .+e0 = 0 for

some en−1, en−2, . . . , e0 ∈ E. Now F (en−1, en−2, . . . , e0)/F is algebraic as F (en−1, en−2, . . . , e0) ⊆ E.
Using Corollary 33.1, F (en−1, en−2, . . . , e0)/F is finite. Also α is algebraic over F (en−1, en−2, . . . , e0) =⇒
F (α, en−1, en−2, . . . , e0)/F (en−1, en−2, . . . , e0) = F (en−1, en−2, . . . , e0)(α)/F (en−1, en−2, . . . , e0) is fi-
nite. Using Theorem 33.1, F (α, en−1, en−2, . . . , e0)/F is finite and hence α is finite over F . So we
have transitivity of algebraic field extensions.

Proposition 35.3. A finite field of characteristic p is a subfield of F̃p.
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Proof. F ⊆ F̃ with F̃ /F algebraic by definition. F̃ /Fp is finite and hence algebraic. Lemma 35.1
=⇒ F̃ /Fp is algebraic. But F̃ is algebraically closed, so uniqueness of algebraic closure =⇒ F̃p ∼=
F̃ ⊇ F as desired.

Theorem 35.1. Let φ : F̃p −→ F̃p;x 7−→ xp be Frobenius norm. Let Fpn = {α ∈ F̃p : φn(α) = α} =
set of zeros of xp

n − x in F̃p.

(i) Fpn is a subfield of F̃p.

(ii) |Fpn | = pn.

(iii) Any subfield F of Fp with pn elements is equal to Fpn .

Proof. Do (iii) and (ii) first. Let F be as in (iii). Lagrange’s Theorem on F ∗ =⇒ |F ∗| = |F | − 1 =
pn−1 (exclude 0). So for any α ∈ F ∗, αpn−1 = 1 (order pn−1). So αp

n−α = 0 for any α ∈ F , i.e. α
is a solution to xp

n−x. Hence F ⊆ Fpn . Using factor theorem, xp
n−x factors into linear factors in

F̃p[x]. ∴ number of zeros ≤ deg(xp
n − x) = pn =⇒ |Fpn| ≤ pn. But |Fpn | ≥ |F | = pn, so |Fpn | = pn

and Fpn = F . So (iii) holds. To finish proof of (ii), suffice to show zeros of xp
n − x are distinct.

xp
n − x = x(xp

n−1 − 1), so x = 0 is not a multiple root. Check another zero α is not multiple by

changing variable to y = x−α. xp
n−x = (y+α)p

n−(y+α) = yp
n
+

(
pn

1

)
yp

n−1α+. . .+αp
n−y−α

(note

(
pn

1

)
,

(
pn

2

)
. . . are all zero, as they are all multiples of p) = yp

n − y (as αp
n − α = 0

by assumption) = y(yp
n−1 − 1). As y is not a multiple factor, x − α is not a multiple factor for

xp
n − x. So xp

n − x has pn distinct zeros and (ii) holds. Alternatively, using Galois Theory, note
d
dx

(xp
n − x) = pnxp

n−1 − 1 = 0 − 1 = −1 6= 0. So no multiple root exists. (i) To show Fpn is a
subfield, suffices to check closure axioms for subring because then it is a finite field extension of Fp
which is a domain. Check closure under addition. Note φn is ring homomorphism, begin composite
of such. Let x, y ∈ Fpn . Then φn(x + y) = φn(x) + φn(y) = x + y ∈ Fpn . Other closure axioms
similarly proved. This shows Fpn = Fpn .

36 Conjugation & p-Groups

Let G be a group. Define Aut(G) to be the set of automorphisms φ : G
∼−→G ≤ Perm(G).

Proposition 36.1. Aut(G) ≤ Perm(G).

Proof. Straight forward, just check axioms.

Conjugation aims to study groups via internal symmetry. Let g ∈ G, we redefine conjugation by g
to be the map Cg : G −→ G;h 7−→ ghg−1. Recall from Proposition 36.1 that Cg ∈ Aut(G).

Proposition 36.2. The map C : G −→ Aut(G); g 7−→ Cg is a group homomorphism.

Proof. g1, g2, h ∈ G. Cg1g2(h) = g1g2h(g1g2)
−1 = g1g2hg

−1
2 g−1

1 = Cg1(g2hg
−1
2 ) = Cg1Cg2(h). So C is

a group homomorphism.
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Note that the Propositions 36.1 and 36.2 gives composite group homomorphismG :
C−→Aut(G) ↪−→

Perm(G). So we have permutation representation of G on G. We say G acts G by conjugation.
There is a corresponding G-set with G-action for g, h ∈ G , h.g = Ch(g) = hgh−1.

Let group G act on G by conjugation. We define the G-orbits to be conjugate classes and they have
form G.h = {ghg−1 : g ∈ G}. We define the centre of G to be the fixed point set. It is denoted by

Z(G) = {z ∈ G : gzg−1 = z for all g ∈ G}
= {z ∈ G : gz = zg for all g ∈ G}
= {z ∈ G : conjugate class G.z with just {z}}
= {z ∈ G : zgz−1 = g for all g ∈ G}
= kernel of conjugation map C : G −→ Aut(G); g 7−→ Cg

Proposition 36.3. Z(G) EG (since kernels are normal subgroups).

Definition 36.1. Let p ∈ N − 0 be prime. We say G is a p-group if |G| = pr for some r ∈ N.
Suppose |G| = prq for some q with gcd(p, q) = 1. A subgroup H of G is a Sylow p-subgroup if
|H| = pr.

Example 36.1. G is the dihedral group. Dp with p odd prime. Say G = 〈σ, τ〉 with σp = 1 = τ 2,
τσ = σ−1τ . Then |G| = 2p and 〈σ〉 is a Sylow p-subgroup. 〈τ〉, 〈στ〉, . . . , 〈σp−1τ〉 are Sylow
2-subgroups.

Lemma 36.1. Let G 6= 1 be a p-group acting on a finite set S. Then

(i) p | |S − SG| = |S| − |SG|
(ii) Z(G) 6= 1 (not trivial)

Proof. (i) The elements of SG are precisely the one element orbit of S. Hence we have S =
SG∪̇G.s1∪̇ . . . ∪̇G.sr by grouping one point orbits together. But si /∈ SG means stabG(si) � G. So

|G.si| = | G
stabG(si)

| = |G|
|stabG(si)| =⇒ power of p > 1 =⇒ |G| = |G.si||stabG(si)|, i.e. p | |G.si| =⇒

p|∑i |G.si| = |Gs1∪̇Gs2∪̇ . . . ∪̇Gsr| = |S−SG|. (ii) Apply (i) to G acting on S = G by conjugation,
p | |S| − |Z(G)| = |G| − |Z(G)|. But p | |G|, so p | |Z(G)| =⇒ Z(G) 6= 1.

Corollary 36.1. Let p ∈ N− 0 be prime. Let G be a group of order p2. Then G is isomorphic to
Z/p2Z or Z/pZ× Z/pZ.

Proof. Suppose G is not cyclic, so there are no elements of order p2. Lagrange’s Theorem says that
orders of all non-trivial subgroups and non-identity element is p. Lemma 36.1 =⇒ Z(G) 6= 1. So let
us pick z ∈ Z(G)−1. z is order p so 〈z〉 ∼= Z/pZ. Pick y ∈ G−〈z〉 and again 〈y〉 ∼= Z/pZ. It suffices
to prove G ∼= 〈z〉×〈y〉. We use internal characteristics of direct products, i.e. Proposition 12.2. We
check the conditions of the proposition. (i) 〈z, y〉 % 〈z〉 so |〈z, y〉| > p =⇒ 〈z, y〉 = G as 〈z, y〉 ≤ G.
So z and y generates G. (ii) 〈z〉 ∩ 〈y〉 is a proper subgroup of 〈z〉 ∼= Z/pZ, which has only two
subgroups, so 〈z〉 ∩ 〈y〉 = 1. (iii) Now 〈z〉 ⊆ Z(G), so elements of 〈z〉 certainly commute with all
elements of G, hence 〈y〉. This shows G ∼= 〈z〉 × 〈y〉 = Z/pZ× Z/pZ.
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37 Sylow’s Theorems

Lemma 37.1. Let G be a group of order|G| = prq and let S be set of all subsets of G with pr

elements. Then p - |S| =
(
prq
pr

)
.

Proof. For i ∈ N and l ∈ {1, 2, . . . , pr − 1}, we have pi | l if and only if pi | prq − l. |S| =
prq(prq−1)...(prq−pr+1)

pr(pr−1)...2×1
. By pairing prq−l

l
for l ∈ {1, 2, . . . , pr − 1}, all powers of p in numerator cancels

with powers of p in denominator. Hence p - |S|.

Theorem 37.1 (Sylow’s Theorem). Let p ∈ N−0 be a prime. LetG be a group of order|G| = prq
where r ∈ N, gcd(p, q) = 1.

(i) There exist Sylow p-subgroups and let P be one such.

(ii) If H is any p-subgroup then H is contained in a conjugate of P , in particular two Sylow
p-subgroups are conjugate.

(iii) Let m be the number of Sylow p-subgroups, then m | |G| and p | m− 1.

Proof. (i) Let S be set of all subsets of G with pr elements. We define G-action of S by g.S =
{gs : s ∈ S} for g ∈ G, s ∈ S. Check it is a G-set. 1.s = 1s = s and g.(h.s) = g.hs = ghs =
(gh)s = (gh).s. Hence S is a G-set. Decompose S into G-orbits, S = G.s1∪̇G.s2∪̇ . . . ∪̇G.sr. By
Lemma 37.1, we can pick Si with p - |G.si|. We now need only prove claim P = stabG(si) has

order pr. p - |G.si| = |G|
|stabG(si)| , i.e. pr | |P |. Suffices to show |P | ≤ pr. Pick an element si. Note

P = stabG(si) means any si satisfies PSi ∼= Si. In particular, Psi ∈ Si. Hence |PS| ≤ |Si| = pr.
This shows |P | = pr. So P is a Sylow p-subgroup. (ii) Let P ≤ G be a Sylow p-subgroup. Let
H ≤ G be any p-subgroup. Wish to show H ⊆ conjugate of P . Let S = G/P . Define H-action by
h.(gP ) = (hg)P (h ∈ H, gP ∈ G/P ). As an exercise, check it is an H-set. In fact, it comes from

G-set G/P by restricting action to H. By Lemma 36.1, p | |S| − |SH |. But |S| = |G/P | = |G|
|P | = q

not divisible by p =⇒ p - |SH |. So SH 6= 0. Let P ∈ SH . this means for any h ∈ H, we have
gP = h.gP = (hg)P =⇒ P = (g−1hg)P for all h ∈ H ⇐⇒ g−1hg ∈ P for all h ∈ H. Hence
g−1Hg ⊆ P or H ⊆ gPg−1. Hence H is contained in a conjugate of P , giving (ii). (iii)Prove
that m | |G|. Let S = {P1, P2, . . . , Pm} be the Sylow p-subgroups of G. Define G-action on S by
g.Pi = gPig

−1 for g ∈ G. Note |gPig−1| = |Pi| = pr, so gPig
−1 ∈ S. As an exercise, check S is a

G-set. Sylow’s Theorem (ii) says all elements of S are conjugate of Pi say. So S is a single G-orbit.
|S| = | G

stabG(Pi)
| =⇒ m | |G|.

Theorem 37.2. Let p be an odd prime. Then any subgroup G of order 2p is isomorphic to Dp or
Z/2Z.

Proof. Suppose G is not cyclic. Lagrange’ Theorem =⇒ non-trivial subgroups have order 2 or
p. Also non-identity elements have order 2 or p. Sylow’s Theorem (i) =⇒ there is a P ≤ G with

|P | = p and [G : P ] = |G|
|P | = 2 =⇒ P is normal in G =⇒ P E G,P 6= G. Sylow’s Theorem (ii)

=⇒ P is the unique subgroup of order p. p = |P | prime =⇒ P = 〈σ〉 with σp = 1. Pick τ ∈ G−P .
Order of τ is 2. Otherwise it generates distinct Sylow p-subgroups. Similarly τσ has order 2. Note
[G : P ] = 2. We have G = P ∪̇τP = {1, σ, σ2, . . . , σp−1, τ, τσ, . . . , τσp−1} with σp = τ 2 = 1. Also
(τσ)2 = τστσ = 1 =⇒ στ = τσ−1. Using these relations, we can determine multiplication for G.
So Dp and G have same multiplication table, so are isomorphic.
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