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1 How Mathematicians Study Symmetry

Example 1.1. Consider an equilateral triangle with six symmetries. Rotations about O through

angles 0, 2&, 4™ and three reflections about axial lines Iy, I, and 3.

» 7373

Definition 1.1 (Isometry). A function f : R" — R™ is called an isometry if it preserves distance,
Le. [[x =yl =[f(x) = f(y)|l for any x,y € R".

Definition 1.2 (Symmetry). Let FF C R™. A symmetry of F'is a (surjective) isometry 7' : R" —
R™ such that T'(F) = F.

Proposition 1.1. Let S, T" be symmetries of some F' C R™. The composite ST : R” — R" is
also a symmetry of F'.

Proof. Let us check that ST is an isometry for x,y € R". ||[STx — STy| = ||Tx — Ty]| (S is an
isometry) = ||[x—y|| (7 is an isometry). So ST is an isometry. Also ST(F) = S(F') (T is onto) = F
(S is onto). So ST is indeed a symmetry of F.

Let G be the set of symmetries of F' C R".

Proposition 1.2. G possesses the following properties:
(i) Composition of functions is associative, i.e. (ST)R = S(TR)
(i) idgn € G, recall idgnT =T = Tidgn for any T € G
(iii) If T € G, then T is bijective and T7' € G

Proof. (i) and (ii) are fairly easy exercises. For (iii), we have that T € G is surjective by definition,
so only need to check one to one. Forx,y e R" Tx =Ty = 0= ||[Tx—-Ty| = ||x—y|| = x =Y.
So T is bijective, and T~ is surjective. T~! is an isometry since for x,y € R", |7 'x — T y| =
ITT'x — TT 'y|| = |x — y||. Lastly T-Y(F) = T-Y(T(F)) = F. So T~' € G.

*The following notes were based on Dr Daniel Chan’s MATH3711 lectures in semester 1, 2006
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The proposition is used to motivate abstract definition of a group.

Definition 1.3 (Group). A group is a set G equipped with a map p : G x G — G, where for
g,h € G, u(g, h) is abbreviated to gh, called the multiplication map, satisfying the following axioms

(i) Associativity, i.e. g,h,k € G, then (gh)k = g(hk)

(ii) Existence of identity, i.e. there is an element denoted by 1g in F called identity of G such
that 1gg = g = glg for any g € G

(iii) Existence of inverse, i.e. for any g € G, there is an element denoted by g~! € G called inverse
of g such that gg ! =g lg=1

Example 1.2. For F' C R"”, the set G of symmetries of F', equipped with multiplication map equal
to composition of functions is a group by Proposition 1.2. It has identity 15 = idg~» and the inverse
in group is just the inverse function.

Proposition 1.3. Here are some properties of a group.

(i) When you multiply three or more elements in a group, it does not matter how you bracket
the expression

(ii) Cancellation law, i.e. for elements g, h, k in a group, gh = gk = h =k

Proof. (i) Mathematical induction as for matrix multiplication. (ii) By associative law, gh =
gk = g lgh =g lgk = h =k.

2 Matrix Groups

Let GL,(R) and GL,,(C) be the set of real and complex invertible n x n matrices respectively. Note
that we will often identify matrices with the linear transformations they represent.

Proposition 2.1. GL,(R) and GL,(C) are groups when endowed with matrix multiplication.

Proof. Note that product of invertible matrices is an invertible matrix. Just check axioms. (i)
Matrix multiplication is associative. (ii) Identity matrix I, satisfies I,M = M = M]I, for any
M € GL,(R). So GL,(R) has identity 1 = I,. (iii) For M € GL,(R), M~ € GL,(R) satisfies
MM~ =1, = MM where I,, € G. So inverses exist too and GL,(R) is a group.

As for matrix multiplication, we have ...

Proposition 2.2. In a group G

(i) The identity is unique, i.e. if 1,e € G satisfy 1g = g = g1 and eg = g = ge for all g € G,
then 1 =e

(ii) Inverses are unique



(iii) For g,h € G, (gh)™' = h71g™!

Proof. (i) By definition, 1 = le = e. (ii) Suppose a,b are inverses of h, then using associative
law, a = alg = a(hb) = (ah)b = 1gb = b. (iii) Also using associative law, (h='g~')(gh) =
hfl(gflg)h =h'1h=1=glg ! = ghh tg7' = (gh)(h"'g~'). Thus by uniqueness of inverse in
(ii), (gh)~" = h~g™".

Definition 2.1 (Subgroup). Let G be a group. A subset H C G is said to be a subgroup of G,
denoted by H < G, if it satisfies the following axioms.

(i) Existence of identity, 1 € H
(ii) Closure under multiplication, i.e. if h,k € H, then hk € H

(iii) Closure under inverse, i.e. if h € H, then h™! € H

Proposition 2.3. In this case, we have an induced multiplication map uy : H x H — H, such
that (h,k) € H x H = hk € H by Definition 2.1 (ii), which makes H into a group.

Proof. Just check axioms. (i) gy is associative since p is, i.e. (gh)k = g(hk). (ii) For any h € H,
lgh = h = hlg, so 1g = 1y, i.e. identity exists. (iii) For h € H, its inverse h~! in G lies in H
by Definition 2.1 (iii). Since hh™! = 1g = 1y = h™'h, the inverse in H is inverse in G. Hence the
inverse exists and the result is proved.

Proposition - Definition 2.1. Set of orthogonal matrices O,(R) = {M € GL,(R) : MT =
M~} S GL,(R) forms a group, namely the set of symmetries of an n — 1 sphere, i.e. an n
dimensional circle.

Proof. Check axioms. (i) Know I, € O,(R). (ii) For M, N € O,(R), have (MN)" = NTMT =
N='M~' = (MN)~'. So have closure under multiplication. (iii) For M € O,(R), (M~1)T =
(MT)"' =M = (M~")~". So closed under inverses. Since O,(R) & GL,(R), we have a subgroup.

Proposition 2.4. Other basic observations include
(i) Any group G has two trivial subgroups, namely G and 1 = {15}
(i) If H <G and J < H, then J <@

Proof. Similarly check axioms ...

Here are some notations. Given group G and g € G, write

(i) g"=gg...g (n times), n € Z*

(ii) ¢° = 1¢
(iii) g™ = (¢7")" = (¢")~* (proof by mathematical induction)
(iv) For m,n € Z, we have ¢g™¢" = ¢™*" and (¢™)" = g™"

Definition 2.2. The order of a group G, denoted |G|, is the number of elements in G. For g € G,
the order of g is the smallest integer n such that ¢” = 1. Say infinite order if no such n exists.

1 0

Example 2.1. <0 q

) € GLy(R) has order 2. More generally any reflection has order 2.



3 Permutation Groups

Definition 3.1 (Permutation). Let S be a set. The set of permutations on S, Perm(S) is the
set of bijections of the form o : S — S.

Proposition 3.1. Perm(S) is a group when endowed with composition of functions for multipli-
cation.

Proof. Just check axioms. Composition of bijections is a bijection. The identity is idg and group
inverse is the inverse function.

Definition 3.2. If S = {1,2,...,n}, then the symmetric group (set of symmetries) on the n
symbols is Perm(S) and is denoted by S,,.

Two notations are used. With the two line notation, represent o € S,, by

(0(11) 0(22) U??)) . a?n))

(o(7)’s are all distinct, hence o is one to one and bijective). Note this shows |S,| = n!.

1 2 3 4 1 2 3 4
Example 3.1. ¢ = 9 3 1 4 € S, and 7 = (4 5 3 1) € S;. We have o7 =
1 2 3 4 4 (1 2 3 4 B B B -
4319 and o' = 51 92 4 ) Note that o7(1) = 0(4) = 4, 07(2) = 0(2) = 3,
or(3)=03)=1,07(4) =0(1) = 2.
With the cyclic notation, let s1, so,...,s; € S be distinct. We will define a new permutation o €

Perm(S) by o(s;) = sj41 fori=1,2,...,k —1, o(sx) = o(s1) and o(s) = s for s & {s1,2,..., Sk}
This permutation is denoted by (s1s3...s;) and is called a k-cycle.

Example 3.2. For Example 3.1, 0 does 1 —— 2 +—— 3 —— 1 and 4 fixed. So we have 3-cycle
0 =(123). 7 does 1 — 4 +—— 1 and 2, 3 fixed. So we have 2-cycle 7 = (14).

Note that an 1-cycle is the identity. The order of a k-cycle o is k, i.e. rotate k times before getting
back to the original position. So o* =1 and o0=! = g%~ 1.

Definition 3.3 (Disjoint Cycles). Cycles (s1s2 ... sg) and (¢1to ... ¢;) are disjoint if {sy, s2, ..., sk }N
{tl,tg, R ,tl} = @

Definition 3.4 (Commutativity). Two elements g, h in a group are said to commute if gh = hg.

Proposition 3.2. Disjoint cycles commute.

Proof. Clear from any example such as g = (12), h = (34). Then gh and hg bothdo 1 +—— 2 +—— 1,
3 +—— 4+ 3, i.e. swaps irrelevant of order. So gh = hg.
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Proposition 3.3. For S| a finite set, any o € Perm(.S) is a product of disjoint cycles.
1 2 3 45 6
2 46 15 3
o = (124)(36) since (5) is the identity.

Example 3.3. 0 = > does 1 — 2+—4+—1,3+—— 6+ 3 and 5 fixed. .".

Proposition 3.4. Let S be a finite set and ¢ € Perm(S) then S is a disjoint union of cer-
tain subsets Si,S5s,...,S5, such that ¢ permutes elements of .S; cyclically for each i, i.e. o =
(s10(s1)0%(s1) ... )(s20(52)0%(82)...) ... (8,0(s,)0%(s,)...) for s; being an element of S;.

Definition 3.5 (Transposition). A transposition is a 2-cycle.

Proposition 3.5. Two important observations
(i) The k-cycle (s182...8%) = (s15k)(515k—1) - - - (S153)(5152)
(ii) Any permutation of a finite set is a product of transpositions

Proof. (i) The right hand side does the following: s; —— s (consider the first transposition);
Sg —— §1 —— s3 (the first two transpositions); s3 — $; — $4 (the second two transpositions); . . . ;
sk — s1 (the last transposition). This is the same as (s12 ... s) as desired. (ii) By Proposition 3.4,
o € Perm(S) has form o = oy05...0, with o; cycles. But by (i), each cycle is a product of
transpositions, and so can rewrite each o; as product of transpositions, hence giving (ii).

4 Generators & Dihedral Groups

Lemma 4.1. Let {H;};c; be a set of subgroups of a group G. Then (., H; < G.

Proof. Same as for subspaces. Just check axioms. For example, with closure under multiplication,
if h,h' € (\;e; Hi, then h,h' € H; for every i. But H; < G = hh/ € H; for every i by closure
under groups. Hence hh' € (., H; as desired.

Proposition - Definition 4.1. Let G be a group and S C G. Let J be the set of subgroups j < G
containing S.

(i) The subgroup generated by S is (S) = [),c; < G, i.e. it is the unique smallest subgroup of
G containing S.

(i) (S) is the set of elements of the form g = s1s5...s, where s; € S and n > 0; define g = 1
when n = 0.

Proof. (i) Follows from Lemma 4.1 that (,.;j < G. (ii) Let H be the set of elements of form
g = s152...8,. Closure axioms = H < j, Vj € J. .. H C (5) = [);;J. Suffice to show
that H D (S), or by part (i) that H is a subgroup containing S. H O S by definition. So
only need to check H < G by checking axioms. For example, suppose si,Ss,...,8, as in g =
$189 ... 5n, then (s189...8,)7 1 = s;1s;1,...s7' € H since s;' € S Vi. So H is closed under
inverses. H is closed under multiplication by the associative law, i.e. s1So... 58, tits...t, € H =
(5182 ... 8m)(tite. . . t,) = 8182...Splity. .. t, € H. Finally, s,s ' € S# 0 = ss ! =1g € H. So
we have the identity.



Definition 4.1 (Finitely Generated & Cyclic Groups). A group G is finitely generated if
there is a finite set S C G such that G = (S). We say G is cyclic if furthermore we can take S to
be an one element set, i.e. generated by one element.

: [ cos(%E) —sin(%)
Example 4.1. Find the subgroup generated by o = ( Sin(%ﬂ) cos(%’r) € GLy(R) and

0 —1
symmetries of regular n-gon are either rotations or reflections. Any element of (o, 7) has form
oiriigizriz  girrir. Note it must be finite. But we have relations ¢ = 1 = 72. So we may as
well assume iq,7s,...,4, € {0,1,...,n — 1} and j1,Jo,..., 7 € {0,1} through multiplications of
appropriate numbers o™, 0", 72,772, Also it is easily checked that 7o77! = ¢!, Thus we get
skew commutativity 7o = o~ '7. Hence we have

o ( L0 ) for integers n > 2. These are both symmetries of a regular n-gon. Note

T0' = TO0O0...0

Proposition - Definition 4.2. (o, 7) is the dihedral group. It is denoted by D,,. Its elements are
D, ={l,0,...,0" Y 7,07,...,0" 7} and | D,| = 2n.

Proof. Note 70! = o~ allows us to put all 7’s to the right without changing the number of total
7’s in the expression. So push all the 7’s in o“7/tg®2772 . g% 79" to the right. This shows that
elements in D,, have form above. It remains only to show that they are distinct. Now det(c?) = 1

and det(o'7) = —1 for all i. By cancellation law, to show o’7’s are distinct is same as showing o,
1=0,1,2,...,n — 1 are distinct. But these are easily seen to be distinct rotations through matrix
multiplication.

We will see D,, is the complete group of symmetries of a regular n-gon.
5 Alternating & Abelian Groups

Let f be a real valued function in n real variables.

Definition 5.1 (Symmetric Function). Let o € S,,. We define a new function o.f as follow:
o.f(x1,22,..., %) = f(To), To2), - - Tom)). We say f is symmetric if 0. f = f for any o € S,.

Example 5.1. f(z1, 22, 23) = xizixs and (12).f(xy, 29, 23) = z323x3. . f is not symmetric. But

f(z1,9) = 2223 is symmetric in two variables.



Definition 5.2 (Difference Product). The difference product in n variables is A(xy, za, ..., x,) =

Hi<j(xi — ;).

Example 5.2. For n =2, A = x; — x5 is not symmetric. But what symmetries does it have?

Lemma 5.1. Let f(z1,2,...,2,) be a real valued function in n real values. If o,7 € S,, then
(o7).f =o.(7.f).
Proof.

(o(T.f)) (@1, 22,.. ., 2n) = (T.f) (@) To@)s- -+ Tom)) (by definition)
= fWr@)Yr @ -- - Yrm))  (Where y; = 25(;))
= [(Zo(r(1)): To(r@)s - - - Ta(r(n))
= (@), Ten(@) - - Torm)
= ((o7).f)(x1,29,...,25)

Proposition - Definition 5.1 (Odd & Even Permutations). Let o € S,,. Write o = 175 ... Ty,
with 7;’s transpositions. Then

S A A if m is even (say that o is an even permutation)
= | —A if misodd (say that o is an odd permutation)

Proof. Need only to prove m = 1 case, for then Lemma 5.1 implies that
oA =1 (ra(73. .. (Tono1 (7. A)) .. ) = T ((=1)™*A) = (=1)™A  (by induction)

So we mat assume o = (ij) with ¢ < j. Examine three cases. (1) o(z; — ;) = z; —x; = —(v; — x;j).
(2) For i, j,r, s distinct, o(z, — z5) = x, — xs. (3) For 4, j,r distinct, we have three more cases. (i)
r<i<j,o(r,—z;)(r,—x;) = (xv,—x;)(x,—z;), i.e. nochange. (ii) i <r < j, o.(x;—x,) (v, —2;) =
(xj — ) (2p — ;) = (x5 — x) (@ —xy). (1) 0 < j <7, 0.(2; — ) (x5 — x) = (7 — 2,) (2 — ).
So no changes in (i), (ii) and (iii). Multiply (1), (2) and (3) together to find 0.A = —A.

Corollary 5.1. Even permutations are products of even number of transpositions and odd permu-
tations are products of odd number of permutations.

Proposition - Definition 5.2 (Alternating Group). The alternating group is A, = {o € S, :
0.A = A} which is the subgroup of S,, generated by {7 : 71, 7 transpositions}.

Proof. Just note (r72)"! = 7, '7; ! = 77 since inverse of a transposition is itself. Since the

inverses do not add anything new to the generating set, we have {m75 : 71,7y transpositions}
generates all functions of the form 77 ... 7, where m is even.

Proposition 5.1. Group of symmetries of anti-symmetric functions is A,,.



Definition 5.3 (Abelian Group). A group G is abelian or commutative if any two elements
commute.

Example 5.3. G = Z is an abelian group when endowed with group multiplication equal to
addition. The identity is 0 and the group inverse of m is —m.
Often for abelian groups, we switch notation and terminology as below.
(i) Product gh to sum g+ h
(i) Identity 1 to zero 0
(iii) g™ to ng

)

(iv) Inverse g~ ! to negative —g¢

Example 5.4. Let V be a vector space. it is an abelian group under its additive structure. Also
any subspace is a subgroup.

Example 5.5. Let F' be a field, e.g. C,R,Q, then F* = F — {0} is an abelian group with
multiplication in the group equal to usual multiplication in the field.

x |1 -1
Example 5.6. For {1, —1} < R*, the multiplication table is 1 1 -1
-1/-1 1

6 Cosets & Lagrange’s Theorem

Let H < G be a subgroup.

Definition 6.1 (Coset). A (left) coset of H in G is set of the form gH = {gh: h € H} C G for
some g € G. The set of left cosets is denoted by G/ H.

Example 6.1. Let H = A, < S,, = G for the alternating group for n > 2. Let 7 be a transposition.
We claim that 7A, is the set of odd permutations. To prove this, we see that elements of 7A,
have form 7o where ¢ is a product of an even number of transpositions. So 7o is an odd number
of transpositions. Suppose conversely, p € S, is odd. Then p = 7%p = 7(7p) since 72 = 1 for
transposition 7. But 7p is product of even number of transpositions. Hence p = 7(7p) € 7A,, and
this proves the claim.

Example 6.2. Let G = Z. The set of multiples of m, mZ, is a subgroup of Z. Using addition
notation, the left cosets are r + mZ = {r +mq : ¢ € Z}, the set of integers whose remainder on
dividing by m is r. Using this notation, 27Z is the set of even integers and 1 + 2Z is the set of odd
integers.



Theorem 6.1. Let H < G. We define a relation on G by g = ¢’ if and only if g € ¢’H. Then = is
an equivalent relation with equivalence classes, the left cosets of H. Hence G' = |J,.;9:H (disjoint
union) for some g; € G.

Proof. Let us check reflexivity. ¢ = g1 € gH since 1 € H for subgroup H. .. ¢ = g. Symmetry,
suppose ¢ = ¢', so g = ¢'h for some h € H. Now ¢’ = gh~! € gH as a subgroup is closed under
inverses, thus ¢’ = g. For transitivity, suppose g = ¢, ¢ = ¢”. Say g = ¢'h, ¢ = ¢”"h’ where
h,h' € H. :.g=¢'h=¢"hh € ¢"H due to closure under multiplication of a subgroup, i.e. g = ¢".
This completes the proof of the theorem. Note that subgroup properties of existence of identity,
closures under inverses and products give the respective properties of reflexivity, symmetry and
transitivity.

Note 1H = H is always a coset of G and the coset containing g € G is gH.

Example 6.3. H = A, < S, = G. S, = A,UrA,, ,ie. union of the set of even and odd
permutations, where 7 is an odd permutation, e.g. a transposition.

Lemma 6.1. Let H < G. Then for any g € G, H and gH have the same cardinality.

Proof. Cancellation laws implies that map m : H — gH; h —— gh is injective, i.e. gh = gh' —
h = h'. It is clearly surjective by definition. So it is bijective and we see that any two cosets of H
have the same cardinality.

Definition 6.2 (Index Of Subgroup). Let H < G. The index of H in G is the number of left
of cosets of H in G. It is denoted by [G : H].

Theorem 6.2 (Lagrange’s Theorem). Let H < G, where G is finite. Then |G| = |H||G : H],
e. [G: H) = |G/H| = {5 So in particular, |H| divides |G|.
Proof. By Theorem 6.1 and Lemma 6.1, we have
(G:H] (G:H] [G:H]
G = U g;:H (disjoint union) = |G| = Z lg:iH| = Z |H| =[G : H||H|

Example 6.4. Again A, < S,,. [S,: A, =2. - |A,| = ‘S—Q"| = % i.e. half of the permutations are
odd, the half even.

In the problem sheets, there is a right handed version of everything above. Right cosets have form
Hg = {hg : h € H}. Set of these is denoted by H\G. All theorems and lemmas hold for these
right cosets. Also the number of left cosets equal the number of right cosets always.



7 Normal Subgroups & Quotient Groups

Study of a group G may be done by studying some H < G and G/H. This however requires
G/H to be a group also. Suppose G is some group and J, K < G. Then the subset product is
JK={jk:jeJ ke K} CG.
Proposition 7.1. Let G be a group.

i) fJCJCG, KCG, then KJ'C KJ

(ii) If H < G then H> = HH = H

(iii) For J,K,L C G, we have (JK)L = J(KL)

Proof. (i) is clear. (ii) H = 1H C HH by (i), since 1 C H and HH C H by closure under products
for H < G. (iii) Using associativity of products in G, (JK)L = J(KL) ={jkl:je€ J ke K,l €
L}.

Proposition - Definition 7.1 (Normal Subgroup). Let N < G. The following conditions on
N are equivalent.

(i) gN = Ng for all g € G, i.e. left coset equals right coset
(i) g7'Ng= N forall g € G
(iii) g7'Ng C N forall g € G
(iv) We say N is a normal subgroup of G’ and denote this by N <G

Proof. (i) = (ii) gN = Ng = g 'gN = g7'Ng = N = 1N = g"'Ng. (ii) = (i) is similar
by reversing the steps. It only remains to show (iii) = (ii) since (ii) = (iii) is obvious. Suppose
g 'Ng C N then gg-'Ngg™t C gNg~! = N C gNg~' = (¢g7')"'Ng~!. But as g runs through
all of G, g~! also runs through all of G. Hence N C g~ 'Ng for all g too and so (iii) = (ii).

Example 7.1. If G is abelian, then any subgroup NN is normal since gH = Hg is always true due
to commutativity.

a; ¥ K% ... % by *
0 ay x ... =x 0 by -
Example 7.2. Matrix computation. Consider L , . . =
0O 0 0 ... a, 0 0 0 b,
-1 -1
arby  x  x ... % a; *  x * ay * *
0 agby * ... x 0 ay * ... =% 0 ayt % ... x
. and . ,2 ) ) = ) 2 ) ) We
0 0 0 ... apb, 0O 0 0 ... a, 0 0 0 ... a;t

have B = {M € GL,(C) : M is upper triangular} < GL,(C) (check axioms). The set of unipotent
matrices, U = {M € B : generalised eigenvalues are all 1, i.e. only 1’s on the diagonal of M} < B
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aiz 0 0 ... O a; k x ... *
0 a; 0 ... O 0 ay * ... =

(check axioms). Now we have o } U = set of o ) , where
0O 0 0 an, 0O 0 O an,
aq 0O 0 ... 0
0 (05} 0O ... 0
o i € GL,(C) multiplies row ¢ of matrices of U by a;. We also have that
0O 0 0 ... a,
aa 0 0 ... O ap k% ... % ap 0 0 ... O
0 a9 0O ... 0 0 Ao * L. X 0 as 0O ... 0
L . = set of L .|, where L . €
O 0 0 ... a, O 0 0 ... a, 0O 0 0 ... a,

GL,(C) multiplies column i of matrices of U by a;. Hence all left and right cosets of U in B
coincide, and U < B. Note that U 4 GL,,(C).

Proposition - Definition 7.2 (Quotient Group). Let N < G then subset multiplication is a
well defined multiplication map on G/N which makes G/N a group. It is called the quotient group.
Furthermore, for g, ¢ € G, we have

(1) (gN)(¢'N) =gg'N
(i) 1gnw = N
(i) (gN) ' =g N
Proof. (i) By Proposition 7.1, we have both closure and associativity of multiplication, i.e. subset
product of cosets is a coset and multiplication is well defined. (¢N)(¢’N) = g(Ng')N = g¢ NN =
gg'N. (ii) Using (i), NgN = INgN = (1g)N = gN = N = 1g/y. (iii) (¢N)(¢"'N) = gg~'N =

IN = N = lg/y and (g'N)(gN) =g 'gN =1N =N = lg/n. So inverse exist with (¢N)™' =
g 'N. Hence G/N is a group.

a; * k... %
0 as * ... Xk
Example 7.3. Multiplication in B/U. Cosets of U are of the form {| . = . =
0 0 O an
a; ok * ... % by x x ... aby  x %
0 ay x ... = 0 by * ... * 0 aghy * ... % _
{ R : H TR : F=A : . : }, ie. clo-
0 0 0 ... a, 0O 0 0 ... by 0 0 0 G by,

sure under multiplication.

Example 7.4. Let m € Z*. Z > mZ since 7Z is abelian. Z/mZ = {mZ,1 + mZ,...,(m — 1) +
mZ} = {0,1,...,m —1,}. Note G is abelian, so G/N is also an abelian group by Proposition -
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Definition 7.2. What is addition in the quotient group Z/mZ?

i+j = (i+mZ)+ (j+mZ)

(i +j) +mZ

{m ifi4+j<m
itj—m ifi+j>m

This recovers modulo arithmetic.

Example 7.5. Let G = R? and N <G, where N is the “z = 0” plane. Cosets have form (0,0, a)+
N, ie. “z=ad" plane. In G/N, we have partition of “z = a” planes. Addition is “z = a” plane +
“z="b" plane = “2 = a + b” plane.

8 Group Homomorphisms I

Example 8.1. Let G = {0 € Sy : 0(4) =4} < S4. G looks like S3, but technically G # S.

X 1 -1
Example 8.2. Consider groups {1, —1} < R* and Z/27Z, with multiplication tables 1 ‘ 1 -1
—-1]-1 1
+ | 2z 1+2%Z
and  2Z 27 1+ 2Z . If we identify 1 «— 27Z and —1 «— 1427, then the multiplication

14+27Z | 1+ 2% 27
tables are the same. We wish to say that the groups are essentially the same. More generally, we
want to be able to compare groups.

Definition 8.1 (Homomorphism). For groups H, G, a function ¢ : H — G is a group homo-
morphism if for any h,h' € H, we have ¢(hh') = ¢(h)p(R).

Note that group homomorphisms are structure preserving maps like linear transformations of vector
spaces.

Example 8.3. ¢ = det : GL,(R) — R* is an homomorphism, i.e. det(AB) = det(A) det(B) for
all A, B € GL,(R).

Example 8.4. exp : R — R* is an homomorphism, since e™® = e%® V a,b € R. Note that in R,
the group multiplication is addition, while in R*, it is multiplication.

Example 8.5. A linear map T : U — V is an homomorphism of the underlying abelian group,
ie. T(x+x)=T(x)+T(y).

Example 8.6. ¢ : {1,—-1} — Z/2Z;1 — 2Z; —1 —— 1427 is an homomorphism in Example 8.2.

12



Proposition - Definition 8.1 (Isomorphism & Automorphism). Let ¢ : H — G be a group
homomorphism. The following are equivalent.

(i) There exists an homomorphism ¢ : G — H such that ¢¥¢ = idy and ¢y = idg.
(ii) ¢ is bijective.

In this case, we say ¢ is an isomorphism or G and H are isomorphic. Write G = H. If H = G, in
this case, we say ¢ is an automorphism.

Proof. (i) = (ii) clear due to existence of inverse. (ii) = (i), suffice to show ¢ = ¢! is a
group homomorphism, i.e for g, € G, need to show ¢~ (g¢') = ¢ (g9)9o7'(¢) <= gg =
d(hh')  (where h = ¢~ (g), W = ¢ 1(¢)) < d(h)p(h') = ¢(hK'). This is clearly true as ¢ is an

homomorphism.
Example 8.7. In Example 8.2, ¢ : {1, -1} — 7Z/27Z is an isomorphism.

Example 8.8. idg : G — G is an automorphism.

Example 8.9. Recall from Example 7.2 that U = {( (1) {f ) :a € C} < GLy(C) (set of unipotent

matrices). Claim ¢ : C — U;a +—— ( (1) Cll
Suffice to check it is an homomorphism, i.e. for any a,b € C, ¢(a + b) = ¢(a)p(b). LHS =

1 a+b (1 a 1 b\ (1 a+bd . .
(0 1 )andRHS(O 1)(0 1)(0 1 ).SostudypropertlesofgroupUls

the same as studying group C.

) is an isomorphism. Why? Clearly ¢ is bijective.

Proposition 8.1. Let ¢ : H — G be a group homomorphism. Then
(i) o(1n) = 1e
(i) 6(h1) = (¢(h)~" for h e H

(iii) If H' < H then ¢(H') < G

Proof. (i) l¢o(1g) = ¢(1y) = ¢(1gly) = ¢(1y)o(ly) = 1 = ¢(1y) (cancellation law). (ii)
d(h)p(h™") = ¢p(hh™') = ¢(1g) = 1¢ from (i). .. ¢(h™") = (¢(h))~" by uniqueness of inverses. (iii)
just check axioms. 1 = ¢(1y) € ¢(H') as 1y € H'. Let h,h' € H'. So ¢(h)p(h') = ¢(hh') € ¢p(H')
as hh' € H' due to closure of subgroups. Since ¢(h) and ¢(h') are any elements of ¢p(H’), we have
closure under multiplication. Also (¢(h))™* = ¢(h™') € ¢(H') as h™! € H', i.e. closure under
inverses in subgroups. Thus we have closure under inverses and ¢(H') < G.

Proposition 8.2. If ¢y : I — H and ¢ : H — G are group homomorphisms then ¢ : I — G
is also an homomorphism.

13



Proposition - Definition 8.2 (Conjugate). Let G be a group and g € G. We define conjugate
by g to be the function C, : G — G;h — ghg™'. Then C, is an automorphism with inverse
Cy-1. Let H < G and g € G. Then Cy(H) = gHg™* < G is called the conjugate of H.

Proof. Check first C, is an homomorphism. For h,h' € G, Cy(hh') = ghh'g™! = ghg gh’ =
Cy(h)Cy(Rh'). Now check Cy-1 is the inverse. Cy-1Cy(h) = C,-1(ghg™") = g 'ghg~'(¢7*)~! = h.
This holds for all g, so we are done.

Proposition 8.3. Let f : S — T be a bijection of sets. Then Perm(S) = Perm(T').

Proof. Show there is an isomorphism ¢ : Perm(S) — Perm(T);0 —— f oo o f~! with inverse
¢! : Perm(T) — Perm(S);7— f~lo7o f.

9 Group Homomorphisms II

Definition 9.1 (Epimorphism & Monomorphism). Let ¢ : H — G be an homomorphism,
we say ¢ is an epimorphism if ¢ is onto; monomorphism if ¢ is one to one.

Example 9.1. Let G be a group. ¢ : G — {1} is an epimorphism. Since for g, ¢" € G, we have
#(gg") =1 =12 = ¢(g9)¢(g’). This shows ¢ is homomorphism, and it is clearly surjective.

Example 9.2. Let H < G then the inclusion map n : H — G;h —— h is a monomorphism. It
is one to one and an homomorphism, i.e. n(hihy) = hihy = n(hqy)n(hs).

Definition 9.2 (Kernel). Let ¢ : H — G be a group homomorphism. The kernel of ¢ is
ker(¢) = ¢7(1) = {h € H : ¢(h) = lc}.

Proposition 9.1. Let ¢ : H — G be a group homomorphism.
(i) Let G’ < G then ¢ 1(G') < H
(i) Let G’ <G then ¢~ 1(G') < H

)
)
(i) K =ker(¢p) < H
(iv) The non-empty fibres of ¢, i.e. sets of form ¢~!(g) C H for some g € G, are the cosets of K
) ¢

(v

Proof. (i) Just check closure axioms. ¢(ly) =1 € G' = 1y € ¢~ (). It h, I/ € ¢~ (G') then
d(hh') = ¢(h)p(h') € G’ by closure of subgroups. So hh' € ¢~'(G’). By closure under inverses
of a subgroup, ¢(h™') = (¢(h))™ € G = h™' € ¢~YG'). Thus ¢~ *(G') < H. (ii) Suffice
to show for any h € H, ' € ¢~ Y(G'), we have h™'h'h € ¢~ Y(G"), i.e. W 1¢~YG)h C ¢~ H(G).
S(HIR) = S(ho(W)6(R) = (o(h)"S)o(h) € (6(h)C'd(h) = G' due to normality of
G'. . h'Wh e o7 G) = ¢ (G') < H. (iii) When you put G’ = 1 and note 1 < G, ker(¢) =
¢ (1) < H. (iv) Let h € H be such that ¢ = ¢(h). Suffice to show hK = ¢ !(g). Now

¢ is one to one (monomorphism) if and only if K =1 = {14}
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B(hK) = B(M(K) = 6(h) = g as 6(K) = 1.+ hK C ¢7'(g). Suppose ' € ¢~(g) then
SR = (b Ho(l) = (p(h))to(h') =g lg=1. Thus h"'W € K. .. W = h(h"'W) € hK =
»'(g9) C hK. hK = ¢~'(g) and (iv) holds. (v) By (iv), ¢ is one to one if and only if non-empty
fibres have one element. But cosets of K has same number of elements, i.e. if and only if K, a
coset of K, has one element.

Example 9.3. Let T : V — W be linear, e.g. in R3 T is the projection onto a line L. Fix
w € W, then the set of solutions to T'(v) = w is T~}(w) = v, + K (coset of K). K is the kernel
and v, is any particular solution.

Example 9.4. Special linear group. Consider homomorphism det : GL,(C) — C*. Define
SL,(C) = ker(det) = {M € GL,(C) : det(M) =1} < GL,(C). Similarly define SL,(R).

Example 9.5. There is an homomorphism ¢ : S,, — GL,(R);0 —— ¢(0) defined by ¢(o) :

010 ... 00
1 00 ... 00
001 ... 00
R" — R"; €; — €5(;), e.g. 0(12) = o .. |. Consider composite homomorphism
000 ...10
000 ... 01

Y =deto: S, 2, GL,(R) At R*. Write o € Sp as 0 = Ty ... Ty for transpositions 7;. (o) =

W(1)(12) .. (1) = (—1)™ since ¢ of a transposition is the determinant of the identity matrix
with two rows swapped. Note ¥ ~1(1) = ker(¢)) = A,, <5, and ¢~ !(—1) = set of odd permutations,
which is the other coset of A,,.

Proposition - Definition 9.1 (Quotient Morphism). Let N <G, the quotient morphism of G
by Nism:G — G/N;g+— gN. 7 is an epimorphism with kernel N

Proof. Check 7 is homomorphism, i.e. for g,¢' € G, 7(99") = g¢’ N = gNg'N = w(g)n(g’). .. it is
an homomorphism. Finally, ker(r) = 7~ (1gy) =7 '(N)={9€ G: gN =N} =N.

10 First Group Isomorphism Theorem

How much does an homomorphism deviate from being an isomorphism?

Theorem 10.1 (Universal Property Of Quotient Morphism). Let N 4G and 7 : G —
G/N;g — gN be the quotient morphism. Let ¢ : G — H be an homomorphism such that
ker(¢) > N. Then

(i) If g, ¢’ € G lie in the same coset of N, i.e. gN = ¢’N, then ¢(g) = ¢(g’)

(ii) The map ¥ : G/N — H;gN —— ¢(g) is an homomorphism, called an induced homomor-
phism

(iii) ¢ = ¢ o7 is the unique such function
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(iv) ker(4) = ker(@)/N

Proof. (i) Suppose ¢’ = gn for some n € N, i.e. ¢ € gN, then ¢(¢') = ¢(gn) = ¢(g)p(n) = ¢(g),
since n € N < ker(¢). (ii) ¢ is well defined since if ¢ N = gN then ¢(¢') = ¢(g) by part (i).
For g,¢" € G, we check ¥(gNg'N) = »(gN)(¢g'N). Now since ¢ is an homomorphism, we have
YGNGN) = $(gg'N) = (g9 = d(9)éle") = BlgN)¥(g'N). (iii) Clear from the picture. (iv)
ker(1) = (g - 6(gN) = 1} = {gN : 8(g) = L} = {4 : g € ker()} = ker(6)/N by definition.

G—2 L H

w\« /‘1,11
G/N

g ¢(9)
N /!
gN

Lemma 10.1. Any subgroup N < Z has the form N = mZ for some m € Z.

Proof. If N = 0, can take m = 0. Suppose N # 0, since N is closed under negatives, it has a
minimal positive element m. Suffice to show N = mZ. Subgroup closure axioms = mZ C N, as
any multiple of m will be in N. To show N C mZ, let n € N and write n = mq + r, where q € Z,
ref0,1,2,...,m—1}. -.r=n—mq€ N since n € N and mq € mZ C N. Minimality of m —>
r=0. Son=mq € mZ. Hence N = mZ as desired.

Note that Z/mZ is a cyclic group generated by 1 + mZ, ie. k(1 + mZ) = k + mZ for k €
{0,1,2,...,m — 1}. Further, if m # 0, then 1 4+ mZ has order m since m(1 + mZ) = mZ = Oz/mz
but for i € {1,2,....,m — 1}, i(1 + mZ) =i +mZ # mZ.

Proposition 10.1 (Classification Of Cyclic Groups). Let H = (h) be a cyclic group. Then
there is a well defined isomorphism ¢ : Z/mZ — H;i + mZ —— h', where m is the order of h if
this is finite and is 0 if h has infinite order.

Proof. Define function ¢ : Z — H;i —— h'. It is an homomorphism since ¢(i + j) = At =
h'h? = ¢(i)¢p(j). Apply Theorem 10.1 with N = ker(¢) to get homomorphism v : Z/N — H. By
Lemma 10.1, N = ker(¢) is a subgroup of Z, so N = mZ for some m € 7Z. Using Theorem 10.1
(iv), ker(¢)) = ker(¢)/N = ker(¢)/ ker(¢) = 0, the identity. So ¢ is one to one. Note ¢ is surjective.
So by Theorem 10.1 (iii), i.e. ¢ = o7, ¢ must be surjective too. As an exercise, check h infinite
order case. See order of h = order of ¢~!(h) = order of 1 +mZ = m.

Corollary 10.1. A group H is said to have an exponent n > 0 if either of the following equivalent
conditions hold.

(i) i =1forall he H
(ii) For every h € H, n in a multiple of the order of h

Proof. Use isomorphism 1 : Z/mZ — (h) of Proposition 10.1, to see that h* =1 <= n € mZ.
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Theorem 10.2 (First Isomorphism Theorem). Let ¢ : G — H be an homomorphism. Then
the Universal Property Of Quotient Morphism 7 : G — G/ ker(¢) induces a monomorphism
Y : G/ ker(¢p) — H, which induces isomorphism G/ker(¢) = Im(¢) < H. We can fact ¢ into
¢ : G- G/ ker(¢) (quotient morphism) = Im(¢) — H.

Proof. Same as in Theorem 10.1, The Universal Property Of Quotient Morphism, with N = ker(¢).

So to turn an homomorphism into an isomorphism, we need to first factor out the kernel using the
quotient morphism, so it is one to one. Then we must restrict the codomain to the range to make
it onto.

Example 10.1. T : R® — R3 be the projection onto a line L. Then R?/ker(T) are the planes
perpendicular to L. .. R®/ker(T) = L, the bijection from the plane to the corresponding point on
L.

11 Subgroups Of Quotient Groups & Other Isomorphism
Group Theorems

The idea is that if we know all subgroups of the original group, then we should know all subgroups
of the quotient group.

Proposition 11.1 (Subgroups Of Quotient Groups). Let N <G and 7 : G — G/N be the
quotient morphism.

(i) If N < H <G then N < H

(ii) There is a bijection {subgroups H < G such that N < H} — {subgroups H < G/N}; H —
n(H)=H/N ={hN :he€ H} and H —— 7~ '(H) is the inverse

(iii) Normal subgroups above correspond

Proof. (i) By definition hN = Nh for all h € G, so hN = Nh ¥ h € H,ie. N < H. For (ii)
and (iii), we check that maps are well defined. Homomorphisms takes subgroups to subgroups.
So m! takes subgroups to subgroups, and so does 7. Also 7 '(H) > 7' (lg/n) = 7 }(N) = N.
Let us check that it preserves normality. Suppose N < H < G, we need to show H/N < G/N.
Consider g € G, h € H, (¢g7'N)(hN)(gN) = (g7*hg)N (N < G) € H/N as g 'hg € H < G. So
H/N < G/N. We now check that these two maps are inverses to each other. Firstly 7 is onto
— 7w(rY(H)) = H. 7 (n(H)) =7 "(H/N) = Upey hIN = H as H/N has elements of the form
hN. So we obtain a bijection.

Proposition 11.2 (Subgroups Of Cyclic Groups). Let m € Z be positive and H < Z/mZ.
Then H = nZ/mZ where n | m for some n. H = (n 4 mZ) is a cyclic group of order ™.

Proof. By Proposition 11.1, H = H/mZ for some H < Z. From Lemma 10.1, we know H = nZ
for some n € N. Also nZ 2 mZ <= m € nZ <= n | m. The last statement is trivial. Note
that H» = Z(n+mZ) =n x 2 4+ mZ = mZ, which is the identity in Z/mZ.
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Suppose H < G, N < G, we apply First Isomorphism Theorem to the following composite homo-
morphisms, since composition of homomorphisms is still an homomorphism.

(i) ¢: H— G G/N

(i) ¢: G2 G/N 5 y g%, since by Proposition 11.1, if N < H < G, then H/N <G/N.

Theorem 11.1 (Second Isomorphism Theorem). Suppose N < H <G and N <G as in above.

Then gy = G/H.

Proof. Since 7y, my/n are both onto, ¢ = my/y o mx is onto also. ker(¢) = {g € G : 7n(g) €
ker(my/y : G/IN — %)} = {9 € G :7nn(g9) € H/IN} = ny'(H/N) = H by Proposition 11.1.

First Isomorphism Theorem says G/ ker(¢) = Im(¢) = G/H = ICZ% This proves the theorem.

Example 11.1. % =7/27.

Theorem 11.2 (Third Isomorphism Theorem). Suppose H < GG, N < G. Then
(i) HNWN <H, HN < G (note if H, N < GG only, we may not necessarily have HN < G)

H ~ HN
NN — N

(ii) We have isomorphism

Proof. By applying First Isomorphism Theorem to ¢ : H — G F—N>G/N and using Proposi-
tion 11.1, it suffices to show (a) ker(¢) = H N N, (b) Im(¢) = HN/N. Check (a), ker(¢) = {h €
H: hEker(wN G—>G/N)}—{h€H hEN} NNH. Check (b), Im(¢) ={hN:he H} <
G/N. By Proposition 11.1, H = ny'mn(H) = ny(H)/N. But nn(H) = Upeyy RN = HN = H =
HN/N < G/N and HN < G. By First Isomorphism Theorem, H/ ker(¢) = Im(¢) = i = ZX.
Tosee HNN < H,note NJdGand HNN < N= HNN <. Since HNN < H < G and by

Proposition 11.1, HN N < H.

Example 11.2. G = S, > A, = N. H = (1) = Z/27Z, where 7 is a transposition. H NN =
(YNA, ={1,7}NA,=1. HN = A, UTA, = S,. Hence -2 = N «—— (7= G /A with

HNN N
1l—— A,;;7—— TA,.

12 Products

Given groups G1, Gy, ..., Gy, recall Gy X Go X ... x G, = {(91,92,-- -, 9n) : gi € G; for all i}. More
generally, for groups G, indexed i € I, we have [[..; Gi = {(g:)ier : 9: € G, for all i}.

Proposition - Definition 12.1 (Product). The set G = [],.; G; is a group called the product
of the G;’s, when endowed with coordinatewise multiplication, i.e. (g;)(g}) = (g:9.)-

(i) 1o = (1g,)
(ii) ()" = (g;")
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Proof. Check axioms, e.g. (1¢,)(g:) = (16,9:) = (9:) = (9:)(1g,).

Example 12.1. 7> = Z x Z. (2,3) + (1,—1) = (3,2) since product of abelian groups is abelian.
Z? is finitely generated by (1,0) and (0, 1) since for all (m,n) € Z*, (m,n) = m(1,0) + n(0, 1).

Let G; be groups indexed by ¢ € I. We define two new maps for any r € I.
(i) Canonical projection: 7, : [[;,c; Gi — Gy (i) — gr

(ii) Canonical injection: ¢, : G — [[;c; Gi; gr = (9i) where g; = 1if i #r; gi =g, if i =7

Proposition 12.1. With the above notation, we have:
(i) ¢r is @ monomorphism
(i) m, is an epimorphism
(i) GF = Go
Proof. (i) is similar to (ii). (ii) 7, is onto, so suffice to check homomorphism, i.e. 7,.((¢g;)(g})) =

7(9:9)) = gr9. = m-((9:))m((g})). (iii) For groups Gy, G, apply First Isomorphism Theorem to
o : G1 X G — (G5 gives the isomorphism.

Note that G; = G x 1, so we can sort of see GGy, Gy as subgroups or factors of GGy x G5. Can you
recognise if subgroups G, Gs,...,G, < G are such that G = G; X G5 X ... X GG, naturally?

Proposition 12.2 (Internal Characterisation Of products). Let Gq,Ga,...,G, < G gener-
ate G, i.e. (G1,Go,...,G,) = G. Suppose that

(i) For 4,j distinct, elements of G; and G; commute
(i) For any i, G; N (U, Gi) =1, i.e. similar to linear independence in vector spaces
Then we have an isomorphism ¢ : G; X Gig X ... X G,, — G; (91,92, -+, 9n) — G192 - - - In-

Proof. Check ¢ is an homomorphism, i.e. ¢((g:)(9})) = 0(g:9)) = 1919295 - - - Gngly = G192 - - - Gn
9195 -9, = 0(g:)¢0(g) (for i # j, g; and g; commute. Check ¢ is onto. This follows from
the commutativity of g;, ¢, for ¢ # j (can write in the form ¢192...9,, g € G;) and the fact
G1,Ga, ..., G, generate G. Suppose (g1,92,-.-,9n) € ker(¢). Then suffice to show g; = 1 for any
i. Now 1= 0(g1,92,- -, 9n) = G102 - Gn => Gi = g5 "95 " .. .g;_llgijrll ... g, ! due to commutativity.
The left hand side is in G; and the right hand side in (UJ,; Gi). Thus g; = 1 since G;N(U,; G1) = 1.

This gives the second proposition.

Corollary 12.1. Let G be a finite group of exponent two, then G = Z /27 x Z/27 x ... X L]27Z
(finite times), where Z/2Z is the cyclic group of order two.

Proof. G finite = G is finitely generated, e.g. generated by G itself. Pick minimal generating set
{91,92,--.,9n}. Note g; has order 2. = (g;) = Z/27. It suffices to use Proposition 12.2 to show
G = (g1) X (ga) X ... X {gn). Let us check the conditions (i) and (ii) hold since (g;)’s generate G.
To check (i), for g,h € G, 1 = (gh)? = ghgh .. gh = g°hgh? = hg as g*> = h*> = 1. So G is abelian
and so is OK. (ii) WLOG, suffice to check (g1) N (92,93, ---,9n) = {1,91} N (92,93, ..., 9n) = 1. If
false then g1 € (92,93, -.,9n). So g1 can be omitted from the generating set. This contradicts the
minimality assumption.
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Proposition 12.3 (Universal Property Of Products). Let H;, G; (i € I) be groups. For
i €1, let ¢; : H— G; be an homomorphism. Then we have an homomorphism (¢;);c;r : H —

HiEI Gy h— (9i(h))ier-
Proof. Check definitions.

Theorem 12.1 (Structure Theorem For Finitely Generated Abelian Groups). Let G be
a finitely generated group. Then G = Z/MZ X Z/hoZ % ... X L/ h,Z x Z*, where hy | ha | hs | ... |
hy_1 | h, for some r, s € N.

13 Symmetries Of Regular Polygons

Recall an isometry 7' : R" — R" satisfies ||[x —y|| = ||Tx — T'y||. Also recall that AO,,, the set of
surjective symmetries 7' : R — R" forms a subgroup of Perm(R™).

Example 13.1. Let x € R”. For this lecture, denote translation by v by 7, : R* — R";x +—
x + v. Ty is an isometry.

Proposition 13.1. Let T' € AO,,, then T = Ty, o T', where v = T(0) and 7" is an isometry with
T7'(0) = 0.

Proof. Let v = T(0). Set T" = T,' oT = T_, o T, which is an isometry, being composite of
isometries. 7"(0) = T_(7(0)) = Ty(v) = v — v = 0 gives the proposition.

Theorem 13.1. Let T': R” — R™ be an isometry such that 7°(0) = 0. Then 7 is linear. Since
T is injective so T is automatically surjective and T" € O,, i.e. T preserves dot product and
orthogonality.

Proof. Tx =Ty = |[Tx—Ty|| =0 = |x —y| = 0 = x = y. The following is an heuristic
argument that is not examinable. Note that 7" is continuous (||[x —y|| — 0 = ||Tx — Ty| — 0).
Check additivity of T'. Sides are all equal, i.e. OA = OA’, OB = OB', AB = A'B’, as T is an
isometry. (|[x—y|| =[7x—Ty|)on 0, Tx, Ty, T'(x+y). ... AOAB = AOA'B’ (SSS). Similarly
AOBC = AOB'C' (SSS). Now AC = ||x —y|| = ||Tx —Ty| = A'C" also. So points OA’B'C" is a
parallelogram congruent to OABC'. So if x # y, then T(x+y) = Tx+ Ty, using the parallelogram
OA’B'C’. -+ T is continuous .". let x — y, T'(x +y) = Tx + y still holds if x = y. Thus additivity
is true for all x, y by continuity of 7. Let us check scalar multiplication is preserved too. Let
x € R" and m € N. Then T(mx) = Tx+Tx+ ...+ Tx =mTx. Put +x for x in the above gives
Tx =mT(+x) = T(ix) = £Tx. Note also 0 = T(0) = T'(x—x) = T'(x) + T(—x) = T(—x) =

—T(x). ... T(A\x) = A\T'(x) for all A € Q. Hence true for all A € R by continuity of 7.
Let V = {v',v? ...,v™} C R" Recall its centre of mass is cy = =(v! + v+ ... +v™).

Proposition 13.2. Consider the following function. The function attains a unique minimum when
X = Cy.

Ey(x) =) Ilx—v'|’
i=1
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Proof. Consider the following. .-. unique minimum when z; = -2 = L 3 ¢ i.e. when x = cy.
J 2a m 1))

Ey(x) = Z(% — U;)Z — Z(x? — Q:Ejv; + (U;)Q) — Z(mx? — ij(z U;) + Z(U;)Q)

1, Y] J

Corollary 13.1. Let V = {v!,v? ..., v"} and T : R® — R" be an isometry such that (V) = V.
Then T(Cv) = Cy.

Proof. T'cy = cy since
Ey(Tey) = Z [Tey —v'|?
i=1

= Z |Tcy — TV'||> (T permutes v'’s)
i=1

m
= D lev =V
i=1

= Ev(Cv> (T € AOn)

Corollary 13.2. Let G < AQO,, be finite. There is some vector ¢ € R" such that T'c = ¢ for ant
T edq.

Proof. Pick w € R" and let V = {Sw : S € G} C R" be as in Corollary 13.1. Note V' is finite as
G is finite. Note T'(V) ={TSw:S € G} CV as TS € G for all T € G. But T is bijective = we
have T'(V) = V. Put ¢ = ¢y in Corollary 13.1 to get this corollary.

Note if G < AO,, is finite. Let us translate in R™ to change the coordinates and make c in
Corollary 13.2 equal to 0. By Theorem 13.1, G < O,,.

Example 13.2. Let v € R" — {0}. Note there is no ¢ with 7y (c) = v + ¢ = c. However
(T,) ={T! : 1 € Z} = {T}y : i € Z} is infinite. This is a contrapositive example of Corollary 13.2.

Let F' be a regular n-gon, V' be the set of vertices and G the set of symmetries of F'. By Proposi-
tion 13.1, any isometry is a composite of linear translation and linear map. .©. Any T' € G satisfies
T(V) =V, since T is a linear translation or a linear map, i.e. T takes edges to edges and vertices
to vertices. Corollary 13.1 = T'(cy) = cy. We change the coordinates so that ¢, = 0. Hence
by Theorem 13.1, G < O (n = 2 for a plane). But O, consists of rotations and reflections. By
symmetry, we get ...

Proposition 13.3 (Symmetries Of Regular Polygons). The group of symmetries of a regular
n-gon is in fact D,,.

Note that if 7', such that 7'(0) = 0, preserves distance, then T preserves dot product, i.e. ||Tx —

Ty|? = lx=y[* = |Tx|* = 2(Tx) - (Ty) + [ Ty|* = Ix|* = 2x- y + |ly|* = (Tx) - (Ty) =x-y
TG = I1T(x) = 0l = |T(x) = T(0)[| = |]x = 0] = [[x[]).
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14 Abstract Symmetry & Group Actions

Example 14.1. (A), (B) and (C) have symmetric groups {1,7}, {1,060} and {1,7} respectively.
Thus the symmetry group is Z/27Z in all cases but (A) and (B) exhibit very different symmetries
while (A) and (C) very similar. So we need more data to distinguish (A) and (B).

Let G be a group.

Definition 14.1 (G-Set). A G-Set S is a set S equipped with a map a: G x S — S; (g, ) —
a(g, s) = g.s, called the group action or operation satisfying the following axioms:

(i) Associativity, for g,h € G, s € S, we have g.(h.s) = (gh).s (note h.s € S, gh € G)
(ii) For s € S, we have 1.s = s

We also say that G acts on S or operates on S.

Example 14.2. Let G = R* (multiplicative group) and S a vector space over R. Then S is a G-set
with group action a.v = av (scalar multiplication, « € G = R*, v € S). In a sense, group actions
looks like scalar multiplication in vector spaces.

Example 14.3. let G = GL,(C) and S = C". S is a G-set with G-action A.v = Av (matrix
multiplication, A € GL,(C), v € C"). Why? (i) (AB)v = A(Bv) and (ii) I,v = v.

Proposition - Definition 14.1 (Permutation Representation). A permutation representation
of a group G on a set S is an homomorphism ¢ : G — Perm(.S). This gives rise to a G-set S with

G-action g.5 = (¢(9))(s) (9 € G, 5 € S, ¢(g) € Perm(5), (¢(g))(s) € 5).

Proof. Check axioms. For s € S, check (ii), i.e. 1.s = s? LHS = (¢(1))(s) =id(s) = s = RHS
since ¢ is an homomorphism. And further if g, h € G, we check condition (i), i.e. g.(h.s) = (gh).s.
RHS = (¢(gh))(s) = (¢(g) o ¢(h))(s) (multiplication in permutation groups in composition of
functions) = ¢(g)(p(h)(s)) = g.(6(h)(s)) = g.(h.s) = LHS. . S is a G-set.

Example 14.4. Back to Example 14.1. G = {1, g} = Z/27, we have the following representations
and G-sets. S =R% (A) = ¢4 : GXZ/2Z — (1) = (( _01 (1) )> «—— GLy(R) — Perm(RR?),
-1 0

0 1)

() O pern) and () = des 6 — @)= ) ) Pem(e)

i.e. permutations of R? are matrices, while ¢4(g) = B) = ¢5 : G — (o) =

Proposition 14.1. Every G-set arises from a permutation representation in this fashion, i.e. every
G-action can be represented in a permutation form.
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Proof. Let S be a G-set. Define function ¢ : G — Perm(S);g — ¢(g) and ¢(g) : S —
S; s — g.s. Check well defined, i.e. ¢(g) is bijective by showing ¢(g~!) is the inverse. For s € S,

(@(g7") 0 d(9))(s) = g7".(g-5) = (g7 'g).s (by associativity) = 1.s = s. . ¢(g7") 0 #(g) = id and
similarly ¢(g) o ¢(g7!) =id. So ¢(g) € Perm(S). Now check ¢ is an homomorphism, i.e. g,h € G,
s €85, (6(gh))(s) = (¢(g) o @(h))(s)? Note checking functions are equal is equivalent to checking
that the functions have the same value for all input. LHS = (gh).s = g.(h.s) = RHS. The
definition ensures the G-set corresponding to ¢ is S, i.e. g.s = (¢(g))(s).

Let G be a group and Si, S; be G-sets.

Definition 14.2 (Equivariance). A morphism of G-sets is a function ¢ : S — Sy satisfying
axiom: for any g € G, s € S, we have g.1)(s) = ¥(g.s) (g.s € S1, ¥(s) € S3). In this case, we also
say 1) is G-equivariant or that v is compatible with the G-action.

Note that equivariant maps are like linear operators preserving scalar multiplication over vector
spaces, i.e. T(Ax) = AT'(x).

Example 14.5. Back to Example 14.1 yet again. Let S, Sp be G-sets corresponding to ¢4
and ¢p, i.e. Sy = Sp = R% Recall G = {1,g}. Claim ¢ : S4y — Sp;(z,y) — (y,7) is
a morphism of G-sets. Check for s € Sy, the axiom holds. ¥(1l.s) = ¥(s) = 1.i(s). Also
U(g-(z,y)) = ¥(Palg)(2,y)) = V(=2 y) = (y, —x) = dal9)(y, x) = g (. y).

Proposition - Definition 14.2 (Isomorphism Of Morphism). A morphism ¢ : S} — Sy of
G-sets is an isomorphism if it is bijective. In this case ¥~! is G-invariant too.

Proof. Same as for isomorphisms of groups.

Example 14.6. ¢ : S4 — Sp is bijective as well, so is an isomorphism of G-sets.

15 Orbits & Stabilisers

Example 15.1. We have a permutation representation of G = O3 defined by G = O3 —
GL3(R) — Perm(R?). R3 is a G-set in this way, A.x = Ax for A € O3, x € R3.

Proposition - Definition 15.1 (G-Stable Subset). Let S be a G-set. A subset 7" C S is said
to be G-stable if for any g € G, t € T', we have g.t € T'. In this case, the group action restricted to
T make T a G-set.

Proof. Same as for subgroups.

Example 15.2. G =03, S =R3. Let T = {v :|v|] <1} C S, ie. T is the unit ball. Now 7 is
G-stable, why? If A € Os, then ||Av|| = ||v||. So unit ball T"is a G-set.

If T"C S is G-stable then the inclusion 7" —— S is a morphism of G-sets. Let S be a G-set. We
define a relation ~ on S by s ~ s if there is some g € G such that s = g.s'.
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Proposition 15.1. The relation ~ is an equivalence relation.

Proof. Check reflexivity. For s € S, 1.s = s. . s ~ s, as 1 € G. Check symmetry. Suppose
s~ s s0s=g.s forsome g€ G. Then s’ = 1.8 = (g7'g).s = g g.8) =g ts = s ~ s
Check transitivity. Suppose s ~ ', s’ ~ §” so say g,¢ € G are such that s = g.5', s’ = ¢’.s". Then
s=g.5 =g.(q.5") = (9¢').s" (by associativity). Hence ~ is an equivalence relation.

Proposition - Definition 15.2 (G-Orbits). The set of equivalence classes are called the G-
orbits. The G-orbit containing s € S is G.s = {g.s : ¢ € G}. Then S is disjoint union of orbits and
the set of orbits is denoted by S/G (perhaps G\S is a better notation).

Example 15.3. O3 acts on R? via O3 — Perm(R). Let v € R? have length d. Let Sy be the
sphere of radius d, centred 0. Since for A € O3 = G, Av € S4. So G.v C S;. But given another

w € 5S4, we can rotate w onto v, i.e. Sg C G.v. Hence the orbit of v is G.v = S;3. Also we have
that R? = (J,50S5

Proposition 15.2. Let S be a G-set and s € S. Then G.s is the smallest G-stable subset of S
containing s.

)

Proof. Firstly "closure 7 axioms imply G.s lies in any G-stable subset containing s. It is suffice
now to check G.s is G-stable. Let g,h € G. Then for any h.s € G.s, g.(h.s) = (gh).s € G.s (by
associativity). ... G.s is G-stable.

Definition 15.1. We say that GG acts transitively on S if S consists of just one orbit.

Example 15.4. Let G = GL,(C). G acts on S = M,(C), the set of n x n matrices over C,
by conjugation, i.e. V A € G = GL,(C), M € S, AM = AMA™. Let us check indeed this
gives a group action. Check axioms. (i) I,,.M = I,MI;' = M. (ii) A.(B.M) = A(BMB™) =
ABMB™'A; = (AB)M(AB)™! = (AB).M. What are the orbits? G.M = {AMA™ : A €
GL,(C)}. The theory of Jordan canonical forms aims to find a nice representation in this orbit.

Let S be a G-set.

Definition 15.2 (Stabiliser). The stabiliser of S is stabg(s) ={g € G : g.s = s} C G.

Proposition 15.3. Let S be a G-set and s € S. Then stabg(s) < G.

Proof. Check axioms. (i) 1.s = s = 1 € stabg(s). (ii) Suppose g,h € stabg(s), (gh).s =
g.(h.s) = g.s = s (by associativity) = gh € stabg(s). (iii) If g € stabg(s) then g.s = s =
g ls=9g'.(9.8)=(g7'g).s =1.s=s. So g~ €stabg(s). ... stabg(s) < G.

Example 15.5. Let G = SO3 = SL;N O5. It acts on R? via permutation representation SO5 —
G L3 — Perm(R?). Let v € R?® — {0}. stabg(v) = groups of rotations about axis through v and
-V = SOQ (R)

Note that isomorphic G-sets also have isomorphic orbits and stabilisers of corresponding elements
equal.

Example 15.6. Back to Example 14.1. (A) has lots of one point orbits, i.e. on the line of symmetry,
while (B) has only a single one point orbit at the centre of mass. Thus they are not isomorphic
G-sets.
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16 Structure Of Orbits & Platonic Solids

The stereotypical example of a transitive G-action is the G-set G/H. Let H < G.

Proposition 16.1. The set G/H is a G-set when endowed with group action ¢'.(¢H) = ¢’gH for
9,9 € G,gH € G/H.

Proof. Just check axioms. (i) 1.(¢H) = ¢gH (ii) Need for any ¢,¢',¢" € G, ¢".(¢'.(¢H)) =
(¢"d")(gH). LHS = ¢".(¢’gH) = ¢"g'gH = (¢"¢')gH = RHS. . G/H is a G-set.

Theorem 16.1 (Structure Of G-Orbits). Let a group G act transitively on a set S. Let
s € S and H = stabg(s) < G. Then we have the following well defined isomorphism of G-sets
v :G/H — S;gH — g.s.

Proof. Let us check ¢ is well defined, i.e. for ¢ € G, h € H, need to check g.s = g.(h.s) =
(gh).s since h € stabg(s). Check v is equivariant, i.e. for g,¢" € G, ¥(¢.(¢H)) = ¢ WV(gH).
LHS = (¢'gH) = (¢'g).s = ¢'.(g.s) = RHS due to associativity. 1 is surjective as S = G.s
(G transitive on S = S is an orbit). Check 9 is injective. So suppose ¢,¢' € G such that
Y(gH) = ¥(g'H) then g.s = ¢'.s = s =g '(¢'.s) = (g7'¢').s. So g~ ¢’ € H, i.e. a stabiliser of s.
5.g € gH = ¢'H = gH, i.e. 1 is injective, completing proof that v is an isomorphism of G-sets.

Corollary 16.1. If G is finite then |G.s| | |G|.
Proof. By Theorem 16.1, G.s = G/H and by Lagrange’s Theorem, |G| = |G/H||H| = |G.s| | |G]|.

Example 16.1. As in Example 15.5, we let G = SOs act transitively on the unit sphere S = S2.
Pick s € S. H = stabg(s) & SO, (rotate about s, —s axis). Theorem 16.1 = S* =2 G/H =
S0O3/S50, as G-sets. Note that the SO, changes with choices of s.

Proposition 16.2. Let S be a G-set and s € S and g € G. Then stab)g(g.s) = gstabg(s)g™".

Proof. Note this is saying that the axis of new points is obtained by changing the coordinates, i.e.
conjugation of the original axis. Suffice to prove stabg(g.s) 2 gstaby(s)g™'. For this result applied
to g1 for g and g.s for s gives stab(g71.(¢g.s)) 2 g 'stabg(g.s)g = stabg(g.s) C gstabg(s)g™!,
which is the reverse inclusion. So we prove that stab)a(g.s) 2 gstabg(s)g™!. Let h € stabg(s), we
need to show ghg™' € stabg(g.s). But (ghg™').(g.s) = (gh).s = g.(h.s) = g.s (h € stabg(s)), i.e.
ghg™! € stabg(s) and stabg(g.s) 2 gstabg(s)g™! holds, giving the proposition.

Corollary 16.2. Let Hy, Hy < GG be conjugate subgroups. Then G/H; = G/ H, as G-sets.

Note the converse is also true and is a good exercise, i.e. if two G-sets are isomorphic, then Hy, Hy
must be conjugates.

Platonic solids are solids where all faces are congruent regular polygons and the same number of
faces meet at each vertex. There are 5 Platonic solids: tetrahedron (T) ha 4 triangular faces, cube
(C) had 6 square faces, octahedron (O) has 8 triangular faces, dodecahedron (D) has 12 pentagonal
faces and icosahedron (I) has 20 triangular faces.
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Definition 16.1 (Group Of Rotational Symmetries Of Platonic Solids). Let S be a Platonic
solid with centre of mass 0, its group of symmetries G < O, (since T' € G = T'(0) = 0, i.e. fixed
centre of mass). The rotational group of symmetries of S is H = G N SOs.

Proposition 16.3. Let S be Platonic solid as defined above and G be its rotational group of
symmetries. Then |G| = number of faces of S x number of edges in each face.

Tetrahedron | Cube | Octahedron | Dodecahedron | Icosahedron
|G| 12 24 24 60 60

Proof. Let FF = set of faces of S. G permutes the faces, so get permutation representation
G — Perm(F), since G is linear. So we get G-set F. Let f € F be a face. Note F = G.f is
an orbit, since we can rotate any faces to any other faces. By Theorem 16.1, G.f = G/stabg(f).
What is stabg(f)? It is the set of rotations about axis through centre of f and centre of S, i.e 0.
(€]

Hence |stabg(f)| = number of edges of f = number of edges in each face. Then |G.f| = EEDECIR

|G|
number of edges in each face”

Hence number of faces of S = This gives the proposition.

17 Counting Orbits & Cayley’s Theorem

Let S be a G-set.

Definition 17.1 (Fixed Point Set). Let J C G, the fixed point set of Jis S/ = {s € 5 : js =
s for all j € J}.

Example 17.1. G = Perm(R?) acts naturally on S = R?. Let 71,7 € G be reflections about lines
Ly, Ly. Then S7 = L; and SUv™} = [, N L.

Proposition 17.1. Let S be a G-set. Then
(1) If Jl Q J2 g G then SJ2 Q SJI
(ii) If J C G then §7 = S

Proof. (i) Logically clear. (ii) Exercise.
Example 17.2. In Example 17.1, S = L, N L,.

Note that fixed point set are the same for isomorphic G-sets.

Theorem 17.1 (Counting Orbits). Let G be a finite group and S be a finite G-set. Let | X]|
denote the cardinality of X. Then

1
number of orbits of S = @ Z |S9| = average size of the fixed point set

geG
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Proof. Suppose S = UiSi, where S; are G-stable, e.g. S; are G-orbits. Then 59 = U¢Sf~ So
LHS =}, number of orbits of S; (since S;’s are union of G-orbits and S;’s are disjoint) while
RHS = 3.2 @l dec |S?|. .. Suffice to prove theorem for S = S; and then just sum over i. But
S = disjoint union of G- orblts so can assume S = S; = G-orbit, which by Theorem 16.1, means
S = G/H for some H < G. So in this case

RHS = Z Ed

gEG

1
= —— x number of (g,s) € G x S : g.s = s by letting g vary all over G

G|
_ \%I S [stabg(s)]

s€S=G/H

Note by Proposition 16.2, these stabilisers are all conjugates, and hence all have the same size.
Since |stabg(1.H)| = |H|, |stabg(s)| = |H| for all s € S. Hence RHS = = |G/H||H| = HGL _ q

\Gl |Gl H] —
and LHS = number of orbits of S = 1 as S is assumed to be a G-orbit.

Example 17.3 (Application To Birthday Cake Problem). Divide the round birthday cake
into 8 equal sectors. Place red or green candle in centre of each sector. Question is how many
essentially different ways are there of doing this? More precisely, let S = (Z/27Z)%. Let o € Perm(S)
be defined by o(zg, z1,...,27) = (1,29, ...,27,20). Note o generates a cyclic subgroup G of order
8. Want to find number of G-orbits in G-set S. Use Theorem 17.1 to compute S9. St = S —
|1 = 28, 87 = {(0,0,...,0),(1,1,...,1)} = |S9] = 2, i.e. all colours the same. Similarly
S = {(0,0,...,0),(1,1,...,1),(0,1,0,...,0,1),(1,0,1,...,1,0)}, i.e. when fixed by o2, x € S is
determined by z and ;. .- |S7°| = 4. Using the same idea, S°° = 5"} = §(© — |57°| = 2,
157" = 24 =16, |S°°| = 2, |S7°| = |S°°| = 4, |S°"| = 2. By Theorem 17.1, the number of orbits
=1(+2+4+2+16+2+4+2) =£(284+8+8+16) =2° +4 = 36.

Definition 17.2 (Faithful Permutation Representation). A permutation representation ¢ :
G — Perm(S) is faithful if ker(¢) = 1.

Theorem 17.2 (Cayley’s Theorem). Let G be a group. Then G is isomorphic to a subgroup
of Perm(G). In particular, if |G| = n < oo, then G is isomorphic to a subgroup of S,,.

Proof. Consider G-set G = GG/1. This gives permutation representation ¢ : G — Perm(G). W
seek to show this is faithful. So suppose g € ker(¢), so ¢(9) = lpam(e) = idg. Note g = g.
(¢(9))(1) =idg(1l) = 1 = ker(¢) = 1 and ¢ is faithful. This shows G is isomorphic to Im(¢
Perm(G). We know finally that it |G| = n is finite, then Perm(G) = Perm({0,1,...,n—1}) =
since G is bijective with {0,1,...,n — 1}.

1:
)S

18 Finite Groups Of Isometries I

Recall that any finite group G of isometries on R" embed in O,,.
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Lemma 18.1. Let H < SO, have order n, finite. Then H is cyclic group generated by the rotation
o about angle 27”

Proof. OK if n =1, i.e. 0 =id. Assume n > 1. Pick ¢ € H, rotation anti-clockwise about angle
0 where 6 is the minimal positive such amongst all possibilities. We first show (0) = H . We
know (o) C H holds by closure. Suppose h € H is a rotation anticlockwise about angle ¢'. Pick
integer m so that m# < 0" < (m + 1)f. Note c~™h € H is a rotation anticlockwise about angle
0 <& —mb < 6. Minimality of § = ¢’ —mb =0s0 0 = ml = h = 0™ € (o). hence H = (0).
It remains to check 6 = 27” Pick an integer [, so 16 < 27 < (I 4+ 1)0. Since 0! € H is a rotation
anticlockwise about angle 0 < 27 — [6 < 6, minimality of § = 27 = [#. We must have | = n so
0= 27” This proves the lemma.

Theorem 18.1 (Subgroups Of O,). Any subgroup G of O, is cyclic or dihedral.

Proof. The subgroups will be described explicitly in the proof. Note that by dihedral, we always
mean isomorphic to the group D,,. If G < O, is finite and is also in SO,, we just apply Lemma 18.1.
Assume G £ SO, and let 7 € G — SO,. 7 is a reflection about say line L. Rotate to change
coordinates so that L is horizontal. This does not change the isomorphic class of G. Then 7 =

< (1) _01 ) Let H = G NSOy < SO,.By Lemma 18.1, H = (o), where o is the rotation

anticlockwise about angle %’T for some n. .. D, satisfies G < D,, as G C (1,0) = D,. Note
G/H = g5, — 02/50; = {S0,,750,} = 7/27 = |G/H| = |2/2Z| = 2. - H € G/H,

reG, 7¢ H..G/H={H,TH}. Hence every element in G has form ¢ or 7¢*, i.e. G < D,, too.
So G is dihedral.

Theorem 18.2 (Subgroups Of SO3). Any finite subgroup of SOj3 is either cyclic, dihedral or
the rotational symmetry group of a Platonic solid.

Proof. The proof of the theorem requires some new concepts.
Recall any G < SOs acts on the unit sphere T C R3.

Definition 18.1 (Pole). A pole of G is some t € T such that stabg(t) # 1.

Proposition 18.1. The set S of poles of G is G-stable.

Proof. By Proposition 16.2, stabg(g.t) = gstabg(t)g™".

We can find all poles of a Platonic solid. Let GG be the rotational symmetry group of a Platonic
solid. It looks like you have face poles corresponding to centres of faces, vertex poles corresponding
to vertices, and edge poles to centre of edges. Also it seems like face poles form an orbit, edge poles
form an orbit and form vertex poles form an orbit.

Lemma 18.2 (Platonic Triples). An integer triple (n,ng,n3) ia a Platonic triple if 1 < ny <

ny < ng and ), ni > 1. The possibilities are (ny,nq,n3) = (2,2,n),(2,3,3),(2,3,4),(2,3,5) for
n > 2.
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Proof. Suppose ny > 3, then n—+—+—3 < 3—|— +— 1 = ny = 2. If ng > 4, then
%+é+%§ %—1— +——1:>n2—20r3 If no = 2, then ng is anything. Suppose ny, = 3. If
ng > 6, then nil + niz + nig < % + % + % = 1. So the only possibilities are those given above. It is
easily checked that they are all indeed Platonic.

Centres of faces of a cube are the vertices of an octahedron. Similarly centres of faces of an octa-
hedron are the vertices of a cube. Hence say octahedron and cube are duals. Similarly icosahedron
and dodecahedron are duals. Tetrahedron is self dual. It is clear that if F', I’ are dual Platonic
solids, their rotational symmetry groups are isomorphic. Why? If T"is a symmetry of F, it takes
centres of faces of F' to centres of faces of F', i.e. vertices of F’ to vertices of vertices of F”.

19 Finite Groups Of Isometries II

Theorem 19.1 (Subgroups Of SO;). Any finite subgroup G of SOjs is either cyclic, dihedral or
the rotational symmetry group of a Platonic solid.

Proof. We consider the G-set S of poles of G and decompose it into G-orbits, i.e. S = G.5;U
G.s3U...UG.s,, we see that each G-orbit is finite later. Apply Theorem 17.1 on counting orbits.
For g € G,

qo _ the two poles of rotation if g # 1
1 S ifg=1

So by Theorem 17.1, we have

r = number of orbits

- @

geG
1
= Il — (2 x (|G| =1)+|S]|) (2 poles of rotation for the non-identity, and everything for the
identity)

2y ! el
e |stabe (s:)| - .S X
Gl ' ; |stabg(s;)| (since 5] = Z G sif = Z |stabg , due to G.s; = G/stabg
(Si))

Hence we can get
T

2 G|
o 2 N~ M
|G| ; stabg(s;)

Since s; is a pole, i.e. stabg(s;) # 1, each summand 1—m > 1—5 = % But LHS = 2— |G‘ < 2.
Thus » < 3. We can also show that r # 1. Suppose r = 1, then RHS =1— W € (0,1). But
LHS € (1,2) as |G| > |stabg(s1)] > 2 = 2 — |é| > 2 — 2 =1. So we have only two case, r = 2

and r = 3. For r = 2 case, stabg(s;)) < G =1 — <1-

G = stabg(s;). But we also have

m |— with equality if and only if
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We must have equality and so G = stabg(s;). So G must be the cyclic group of rotations about s;,
—s; axis. And furthermore, we must have s; = —so, i.e. {s1,5} = {s;, —s;}. For the r = 3 case,
we have

2 1
22— =N(1-—
|G| ;( \stabg(si)\)

Let n; = |stabg(s;)| and reorder so ny < ny < nz. We have 2 > 3 — = — i — i or S0 L

Hence (nq,ng,ng) is a Platonic triple. Note also n; = [stabg(s;)| > 3. From Lemma 18. 2 there

are four possibilities for (n,ny, n3), namely
(i) (

(i) (2,3,3
) (
) (

) (
2,3,4) (claim to a cube or an octahedron)
) (

2,2,n) (claim to be dihedral)

claim to be a tetrahedron)

2,3,5) (claim to be dodecahedron or an icosahedron)

20 Rings

You can add and multiply two integers, polynomials and n x n matrices. Further, addition and
multiplication give similar arithmetic in all three cases. We have abstract common principles in
the notion of rings.

Definition 20.1 (Ring). An abelian group R, say with group addition +, is called a ring when
it is endowed with a ring multiplication map p : R X R — R; (r,s) — pu(r,s) = rs satisfying
axioms.

(i) Associativity, for any r,s,t € R, (rs)t = r(st)

(ii) Multiplication identity, there is an element 1z € R such that for any r € R, we have 1zr =
r=rlg

(iii) Distributivity, for r,s,t € R, we have r(s +t) =rs+rt and (s +t)r = sr +tr

Note that some people do not insist on axiom (ii) and call those rings with (ii) unital. Other
things to note is that we have uniqueness of multiplication identity 1z as usual and for any r € R,
Or =0=r0.

Example 20.1. C is a ring with ring addition and ring multiplication equal to the usual addition
and multiplication of numbers.

Example 20.2. Let X be a set and R be a ring. Let Fun(X, R) be the set of function from X
to R. Then Fun(X, R) is a ring when endowed with pointwise addition and multiplication, i.e. for
f.9: X — Row € X, (f+9)(2) = f(z)+9(x) € Rand (f9)(x) = f(2)g(x) € Ras f(x), g(x) € R
Then 0 = constant map to 0, 1 = constant map to 1. Usually checking the axioms involve checking

the equations hold pointwise. So we can check ring axioms for R implies that we can check ring
axioms for Fun(X, R).
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Example 20.3. Let V' be a vector space over C. Define End¢ (V) to be the set of linear maps
T :V — V. Then End¢(V) is a ring when endowed with ring addition equal to sum of linear
maps, ring multiplication equal to composition of linear maps. 0 = constant map to 0 and 1 = idy.

Proposition - Definition 20.1 (Subring). A subset S of a ring R is a subring if it satisfies the

following closure axioms.
(i) s+ € S for any s,5 € S
(i) ss’ € S for any s,s' € S
(iii) —s € S for any s € S
)
)

(iV 0r €S

(v

In another word, it is a subgroup closed under multiplication and has an one. In this case, the ring
addition and multiplication on R restricted to S make S a ring with 15 = 1j.

lp€ S

Example 20.4. Z, Q and R are all subrings of C. Also the set of Gaussian integers Z[i] = {a+bi :
a,b € Z} is a subring, simply check axiom.

Example 20.5. Fun(R",R) has subring C(R) of continuous functions and C*(R) of k fold differ-
entiable functions.

Example 20.6. Fun(C",C) had subrings C[xq, o, ..., 2z,| of complex polynomial functions in n
variables and R[zq, xs, ..., z,] of real polynomial functions in n variables.

Example 20.7. We know that the set of n x n real or complex matrices M, (R) and M, (C) form
a ring. The set of upper triangular matrices form a subring.

Proposition 20.1. Two useful observations are
(i) Subrings of subrings are subrings
(ii) The intersection of subrings is a subring

Proof. Just check axioms. We will only do (ii) as an example. Let S; be a subring of R, i € I. S; a
subgroup of R == (1), S; is a subgroup. Also 1z € (), S; as 1g € 5; Vi. Alsoif s,s' € §; = ss' € 5,
for each i = ss’ € (), S;. Thus [, S; is a subring.

Proposition - Definition 20.2 (Invertibility). An element u of a ring R is a unit or invertible
if there is some v € R with uv = 1 = vu. We write R* for the set of these. Usually we write u™!
for v since we have uniqueness of inverses and R* forms a group under ring multiplication.

31



Proof. We prove only here R* is a group. For u,v € R*, uv € R* since v 'u luv =v"lv =1 =

wov~tu~t. Hence ring multiplication induces group multiplication map R* x R* — R*. Existence
of inverse is hypothesised, i.e. u € R* = u™! € R*. 1 is the group identity. Associativity is from
ring axioms.

Example 20.8. Z* = {1,—1} and Z[i]* = {1, —1,i,—i}
Definition 20.2 (Commutative Ring). A ring R is commutative if rs = sr for all r, s € R.
Definition 20.3 (Field). A commutative ring R is a field if R* = R — 0.

21 Ideals & Quotient Rings

Let R be a ring.

Definition 21.1 (Ideals). A subgroup I of the underlying abelian group R is called an ideal of
for any r € R, x € I, we have rx € I, xr € I. Then we write [ < R.

Note that I may not contain 1, so it may not be subring.

Example 21.1. nZ < Z is an ideal of Z. It is a subgroup as if m € nZ then rm € nZ for any
integer 7.

Example 21.2. Let Y C C". The ideal of polynomials zeroon Y is I(Y) = {f € Clz1,z2,...,2y) :
fly) = Oforally € Y}. Then I(Y) < Clxy,2o,...,2,]. Check that this is a subgroup of

Clxy,z2,...,x,]. Let f € I(Y), p € Clay,x9,...,2,], y € Y then (fp)(y) = f(y)p(y) =0 =
(pf)(y) as f € I. So by definition, fp € I(Y) and pf € I(Y'). Thus I(Y) is an ideal.

Generating ideals are similar to generating subgroups and spanning vector spaces.

Proposition 21.1. Let [; < R for i € I then (), I; < R.

Proof. Just check axioms as for subgroups or subrings. [; < R —= [; < R = ﬂl I, < R. Now
for z € (", I;, r € R, we have z € I, for i € I. Hence zr,rxz € I; for all i as it is an ideal. Hence
zrore € (), =), i < R.

Corollary 21.1. Let R be a ring and S C R. Let J be the set of all ideals I < R containing S.
The ideal generated by S is (S) = (e, 1.

Note that (S}, unique smallest one, is an ideal of R containing S and (S) is contained in any I € J.
To compute this, we use ...

Proposition 21.2. Let R be a ring.
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(i) Let I, J be ideals of R. The ideal generated by ITUJis I+ J={i+j:i€l,j€ J}.
(ii) Let x € R and R be a commutative ring, then (x) = Rz = {rz :r € R} C R.

(iii) For R commutative and z1, zs, ..., 2, € R, we have (x1,2s,...,x,) = Rr1+Rxo+. ..+ Rx, =
set of all R-linear combinations of xq, xs, ..., z,.

Proof. Note (x) O Rx by definition. x € Rz, so since (z) is the unique smallest ideal containing
x, it suffices to show Rz is an ideal containing = and then we will have (xr) C Rx. Check it is a
subgroup. (a) 0 = 0.z € Rz. (b) If ;s € R, then rx + sz = (r + s)x € Rx. (c) If r € R, note
(—r)x+rx=(—r+rr=020=0= —(rz) = (—r)r € Rr as —r € R. Thus Rz is a subgroup.
Check Rz is an ideal. let r € R, so rx € Rx. If s € R then s(rx) = (sr)zr € Rx. Hence by
commutativity, Rx < R and (ii) is proved. (i) is proved similarly by showing I + .J is an ideal. (iii)
follows from (i) and induction on (ii).

Example 21.3. The ideal generated by n € Z in Z is nZ = Zn.

Example 21.4. R = Clzy,xo,..., 2, = (X1, 22, ..., 2,) = Clz1, 20, ..., 2,21 + Clay, 29, . .., 2]
o+ ...+ Clxy,x9,. .., 2|2, = set of polynomials with constant term 0 = {f € Clzy,x9,..., 2, :

f(0) =0} = I(0).
Note that the ideal I < R is also a normal subgroup of R since R is abelian.

Proposition - Definition 21.1 (Quotient Ring). Let I < R. The abelian group R/I has a very
well defined multiplication map u: R/I x R/I — R/I;(r+1,s+1)— rs+ I, which makes R/I
a ring called the quotient rig of R by I. Also 1g/; = 1g + 1.

Proof. Check p is well defined, ie. z,y € I, we need rs +1 = (r+z)(s+y) +1. RHS =
rs+axs+ry+azy+I=rs+1 asxs,ry,zy € I. Note that ring axioms for R/I follow from ring
axioms for R.

Example 21.5. Again Z/nZ is essentially modulo n arithmetic, i.e. (i + nZ)(j + nZ) = ij + nZ.
Thus Z/nZ represents not only the addition but also the multiplication in modulo n.

Example 21.6. R = Clzy, 3, ..., 2], [ = (21, %2,...,2,). Note Clay, 22, ..., 2] = e (a+]) =
union of set of all polynomials with constant «. Thus R/I = {a+ 1 : a € C}. For a, 3 € C, the
ring operations are (o + 1)+ (8+1) = (a+ 3)+ 1 and (a+ I)(f+ 1) = af + 1. Ring R/I just
look like ring C, i.e. R/I and C are isomorphic rings.

Example 21.7. Again let Y C C". We define C[Y]| = Clzy,zo,...,2,]/I1(Y). Let f,g € C
[T1, 29, ..., x,) with f+ 1Y) =g+ 1Y) < [f—-—9gelIlY) < (f—g)(y) = 0 for all
y €Y <= fy = gy (functions with domain restricted to Y’). This shows C[Y] arises naturally
as a subring of Fun(Y, C), i.e. restrict domain to Y.
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22 Ring Homomorphisms I

Definition 22.1 (Homomorphism). Let R, S be rings. A ring homomorphism ¢ : R — S is
group homomorphism ¢ : R — S of the underlying abelian groups such that

(i) ¢(1r) =15
(ii) For 7" € R, ¢(rr') = ¢(r)o(r')

Example 22.1 (Quotient Morphism). Let I < R, a ring. The quotient morphism 7 : R —
R/I;r — r+ I is a ring homomorphism. Why? We know 7 is a group homomorphism. Check
now (i) 7(1g) = 1g + 1 = 1gy; (ii) for r,7" € R, check n(rr’) = n(r)n(r'). LHS = rr' +1 =
(r+1)(r"+1) = RHS, since [ is an ideal, i.e. rI,r'] C I.

Example 22.2 (Evaluation Homomorphism). Let S be a subring of Fun(X, R) where X is
some set and R some ring. Let z € X. The evaluation map ¢, : S — R; f —— f(z) is a ring
homomorphism. Why? Note (i) £,(1g) = €, (constant function 1) = 1. For f,g € S, we check (ii)

e(f+9) = (f+9)(x) = f(z) +g(x) = e.(f) + ex(9) and (iii) e.(fg) = (f9)(x) = f(x)g(z) =
5x(f)5x<g)'

Lemma 22.1. Composites of ring homomorphisms are ring homomorphisms.

Proof. Easy exercise.

Definition 22.2 (Isomorphism). A ring isomorphism is a bijective ring homomorphism ¢ : R —
S. In this case ¢! is also a ring homomorphism. We write R = S as rings.

Example 22.3. ¢ : C — Clz,y|/(z,y); a — a + (x,y) (coset of all polynomials with constant
«) is a ring homomorphism, because we saw ¢ is bijective and for o, 3 € C, (a + ) + (x,y) =
(a+ (e, 9) + (B + (&, 5)) and (a+ (&, y)) (B + (2, 4)) = (&) + (z,y) and 1+ (z, ) is the identity

Proposition 22.1. Let ¢ : R — S be a ring homomorphism.
(i) If R’ is a subring of R the ¢(R’) is a subring of S
(ii) If S’ is a subring of S then ¢~'(S’) is a subring of R
(iii) If 7 < S then ¢~ (1) < R (ideals)

Proof. Just check axioms. Let us do (iii). Suppose I < R. ¢~ !(I) is a subgroup of R. Suppose
r € ¢ 1(I) and r € R. We need to check that rz,zr € ¢~1(I). But ¢(rz) = é(r)p(z) € I as
d(x) € I (an ideal), ¢(r) € S. Hence rz € ¢~ (I). Similarly xr € ¢~*(I). Hence ¢~1(I) < R. Note
that I < R does not imply ¢(I) <5, i.e. the image of an ideal may not be an ideal.
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Corollary 22.1. Let ¢ : R — S be a ring homomorphism. Then Im(¢) = ¢(R) is a subring of S
and ker(¢) = ¢~1(0) is an ideal in R.

Proof. Just note R is a subring of R, so must be ¢(R) of S. 0 < .S since it is a subgroup and for
s€S5,s0=0=0s€0. Hence ¢~ '(0) < R.

Theorem 22.1 (First Isomorphism Theorem). Let R be aring and /<R (ideal). Let 7: R —
R/I be a quotient morphism of rings. Let ¢ : R — S be ring homomorphism with ker(¢) 2 1.
The induced group homomorphism ¢ : R/I — S;r + I —— ¢(r) generated by the Universal
Property Of Quotient Groups is also a ring homomorphism. In particular, setting I = ker(¢), we
find R/I = Im(¢) as ring isomorphism.

R—2% .5
7r\ /‘w
R/I

r ———— o(1)

N /!
r+1

Proof. we know v is a group homomorphism, so we shall only check the ring homomorphism
axioms. (i) ¥(1r/r) = ¥(1g + 1) = ¢(1g) = 1g. (ii) For ;7" € R, check ¢((r + I)(r' + 1)) =
Y(rr' + 1) = ¢(rr') = ¢(r)o(r') = Y(r + I)Y(r' + 1) as ¢ is an homomorphism for rings. Hence
theorem is proved.

Example 22.4. C = R[z|/(z) (R[z] is polynomials in R with real coefficients) . Consider evaluation
homomorphism ¢; : R[z] — C;p(z) — p(i). Note if p(z) = ax + b, a,b € R, then p(i) = ai + b.
So &, is surjective. By the First Isomorphism Theorem, it suffices to show that ker(g;) = (2% + 1).
Note 2% — 1 € ker(g;) as i* + 1 = 0. So (x* + 1) C ker(g;). For the reverse inclusion, suppose
p(z) € ker(g;), ie. p(i) = 0. Write p(z) = (22 4+ 1)q(z) + ax + b, where a,b € R. ¢(x) is a real
polynomial, i.e. ¢ € R[z]. Now 0 = ( ) =q(i)(i* + 1) + ai + b = ai + b. Hence both a, b are zero.
Hence p(z) = q(z)(z* + 1) € R[z](z* + 1) = (* + 1) and so ker(g;) = (2% + 1).

23 Ring Homomorphisms II

The idea is that knowing everything of a large group should give you everything about the quotient
group. Now what about for rings?

Proposition 23.1. Let J be an ideal of ring R and 7 : R — R/J be a quotient morphism.
Then {ideals I 9 R such that I 2 J} — {ideals I QR/J}; I +— 7(I) = I/J and I — 7~ '(I)
are inverse bijections. In particular, every ideal in R/J has form I = I/J, where I < R such that
I12J.

Proof. Very similar to classification of subgroups of quotient groups. In fact ideals are subgroups
so that classification of subgroups of quotient groups say I —— 7(I), I —— 7~'(I) are inverses as
long as they are well defined. If I < R/J then 7~1(I) < R, so [ — 7~ Y(I) is well defined. Let
I < R with I O J. We need now only show I/J < R/.J so I — w(I) is well defined. We do know
I/J is a subgroup of R/J. Let x € I, r € R. Then (r+J)(x+J)=rx+J € [/J as rx € I (since
I<R), forr+JeR/J,x+Je€l/J. Similarly (z+ J)(r+J) = ar+ J € I/J. This proves the
proposition.
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Definition 23.1 (Maximal Ideal). An ideal [ < R, with I # R, is maximal if it is maximal
amongst ideals not equal to R, i.e. if J <R with I C J then either J = I or R.

Example 23.1. 10Z < Z is not maximal as 107Z ;Cé 27, < 7Z.. However 27 < Z is maximal.

Proposition 23.2. Let R # 0 be a commutative ring.

(i) R is a field if and only if every ideal is maximal, i.e. 0 ideal is maximum

(ii) I < R, with I # R, is maximal if and only if R/I is a field

Proof. (ii) follows from Proposition 23.1 and (i). R/I is a field = R/I contains R/I and 0 ideals
only = R has ideals R and I only = [ is maximal. Conversely I < R, I # R, is maximal
= R/I has ideals of the form J/I where I IJ < R = J =1 or R as [ is maximal = R has
only ideals R and 0, and hence is a field by (i). Let us prove (i ) Suppose R is a field. Suppose
I <9 R, is non-zero, so contains x € I — 0. Let r € R then rz™' € R (z7! exists as R is a field)
= r =rx 'z € I. Hence I = R. Conversely suppose every ideal of R is trivial. Let r € R — 0,
then the ideal (r) = Rr # 0. So by hypothesis, we must have R = Rr. Hence we can find s € R
with sr =1 € R. Since R is commutative, r is invertible, i.e. R* = R — 0. This shows R is a field.
Note this is useful for constructing fields.

Let y € C". Recall we have evaluation ring homomorphism ey : Clzy, 2, ..., 2,] — C; f — f(y),
which is surjective (since V a € C, we can let f be the constant polynomial of value «).

An exercise would be to check this map agrees with the quotient morphism C[zy, zs, ... ,z,] — C
(1,22, ...,2,]/1(y) = Cly] C Fun(y, C). We claim under these identification Clzy, z, ..., x,]/I(y)
= Fun(y,C) = C. The fact is I(y) = ker(m) = ker(ey) is maximal since by the First Isomorphism
Theorem, Clzy, xa,...,2,]/I1(y) = Im(ey) is a field and Proposition 23.2 now shows /(y) is max-
imal. The converse is also true, but is not proved here. It is part of Hilbert’s Nullstellersatz. So
points in C" gives maximum ideals of Clzy, zs, ..., x,].

Theorem 23.1 (Second Isomorphism Theorem). Let R be aring. /<R and J C I be another

ideal. Then I;L//j =~ R/I as rings.

Proof. Same as Second Isomorphism Theorem for groups except we apply First Isomorphism
T1/J R/J
/7"

Theorem for rings instead for groups to R % R/.J —>
Theorem 23.2 (Third Isomorphism Theorem). Let S be a subring of R and I < R. Then

S + I is a subring of R and SN I < R. Also Sil = % is a ring isomorphism.

Proof. Both are ring quotients since SN/ <Sand I < S+ 1, I AR = I <15+ 1. Same as Third
Isomorphism Theorem for groups except we apply First Isomorphism Theorem for rings instead for
groups to S — R R/I.

Example 23.2. S = CJz] is a subring of R = C[z,y]. Let I = (y) < C[z,y| and apply Third
Isomorphism Theorem. SNI = Clz]N(y) =0. S+ I = Clz] + (y) = C[z,y]. Clearly Clz] + (y) C
Clz,y] and for p(x,y) € Clz,y], we have

ple,y) =Y aya'y! = awa’ + Y aya'y’ € Cla] + (y)
4,7>0 i 7>0

7 = 5 — Cla] = Clz,y]/(y).

Thus we get ring homomorphism 27 =
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24 Polynomial Rings

Let R be a ring and = an indeterminant.

Definition 24.1 (Polynomial). A polynomial in = with coefficients in R is a formal expression of
the form p = Zizo r;x' where r; € R and r; = 0 for ¢ sufficiently large, i.e. p = roz’+rzt+. . . +r 2"
for some n. Let R[z]| be the set of such polynomials.

Proposition - Definition 24.1 (Polynomial Ring). R[z] is a ring, called the polynomial ring
with coefficients in R, when endowed with ring addition >, ra'+Y .o riat = > .o (ri+7})z" and
ring multiplication (3,0 7i2") (3,50 7i2") = Y ps0(X it ik rirh)ak. Also Oppy = 0+02+022+... =
0 and 1R[x] =140z+022+...=1.

Proof. The proof is really boring, but is not hard, i.e. check axioms.

Proposition 24.1. Let ¢ : R — S be a ring homomorphism.

(i) R is a subring of R[x] when you identify elements of R with constant polynomials, i.e. coef-
ficients of x, 22, ... are 0

(i) The map ¢[z] : Rlz] — S[x]; 30,50 mit" —— D50 @(r3)2" is a ring homomorphism

Proof. More boring check of axioms. Let us check some of these for (ii).

(S ra) (Y riah)) = (SlD(D_( D rarf)a®)

i j ko itj=k
ko itj=k
— Z( Z gzﬁ(rzr;)a:k) (ring homomorphism)
koitj=k
=SS et
koitj=Fk

Also ¢[x](1,12)) = ¢(1r) = 1g = 1lg5). As an exercise, check others as you feel like.

Let S be a subring of R and r € R such that rs = sr for all s € S. Define the evaluation map or
substitution e, : S[z] — R;p = >0, s’ = D50 81" = p(r).

Proposition 24.2. The map ¢, above is a ring homomorphism.
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Proof. Note 5r(18[m]) = g(lg + 0z + 022 +...) = 15 = 1g as S < R. For polynomials

Zz>0 Si z' Zz>0 Szx [x], we have

5T(Z STt + Z sty = 5T(Z(Si + s5)z")

i>0 i>0 i>0
— Z(Sl —+ Sg)ri
i>0
— ZS rt 4 Z r*  (distributive law)
>0 >0
= (> _(s:)2)e (D _(s)a")
i>0 i>0

So g, is a group homomorphism.

Qs sia)) = (D (D sis)a®)

1>0 1>0 k>0 i+j=k

- X3

i>0 i+j=k

= 3 3 (aee) (a5 r =)

k>0 i+j=k

= (Z siri)(z sir!)  (distributive law)

i>0 §>0

= (D _(s)a")e, (Y _(sha?)

i>0 >0

Hence ¢, is a ring homomorphism. Note checking pointwise gives . ..

Corollary 24.1. If R is commutative then the map ¢ : S[z] — Fun(R, R);r — function sending
r to p(r), i.e. polynomials to polynomial functions, is a ring homomorphism.

Note the map ¢ is not necessarily injective, so R[z] may not be naturally identified with a ring of
functions.

Example 24.1. S = R = Z/2Z. Consider p = 2> + 2 = (1 + 2Z)z + (1 + 2Z)2* € (Z/27Z)[x].
We have ¢ : (Z/27)[x] — Fun(Z/27,7/2Z). Find c(p). c(p)(0 + 2Z) = p(0 + 2Z) = 0>+ 0 = 0.
c(p)(1+2Z) =p(1+2Z) = 1%/22 +1z00 = 1+ 22+ 1427 = 2+ 27 = 0z/9z. .. ¢(p) is the zero
function, i.e. outputs 0 for all input values. So it is the zero polynomial function but is not the
zero polynomial.

Let S be a subring of R and x1,x9,..., 2, indeterminants. We can define polynomial ring in
determinants 1, xs,...x, as before or inductively as S[z1,xs,...x,] = (... ((S[x1])[z2]) .. .)[zs].
Similarly if ri,79,...,r, € R are such that r;r; = r;r; and r;s = sr; for all 4,j with s € 5, we
have a ring homomorphlsm by substitution or evaluation &, ,, : Sy, x9, ..., x] — Ryp =
D s iposin>0 itz A - D it iisin >0 8“7127,_%7“?7“;2 . .r’" =p(ri,ro, ..., 7).

With notation as above, we define the subring of R generated by S and ri,79,...,7, to be
Im(gpy rg,.mn 2 S[T1, T2y ..oy @) — R) = S[r1, 72, .., 1)
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Example 24.2. S = Z, R = C, Z[i] = Tm(; : Z[z] — C) = {3 a4’ : a; € Z} = {a +bi :
a,beZ}. -

Proposition 24.3. With the above notation, let S’ be a subring of R containing S,rq,72,..., 7.
Then S" O S[ry,79, ..., 7], 1.e. S[ri,72,...,7,] is the smallest such 5.

i €5, closure axioms = SivigoinTiTs2 .. 7in € S, This applies to

..... i17i27---77;n
any Zil,iz 77777 i SiviinyinT1' TS oy € Im(ery gy Ly Slxy, w9, ..., x,] — R). So S[ri,7r9,...,1rs] 2

25 DMatrix Rings & Direct Product

11 T12 oo T1p
. . . . o1 T2 ... Ton . . . .
Let R be a ring with the identity. (r;;) = ] ] ] is an n X n matrix with entries
1 Th2 .. Tnn

from R. M, (R) is the set of all such matrices.

Proposition - Definition 25.1 (Matrix Ring). M, (R) is a ring, called the matrix ring, with
addition and multiplication defined by (a;;) + (bi;) = (ai; + bij) and (a;;)(bi;) = (ci;) where ¢;; =

10 ...0
01 ...0
> o Gikbrj. The identity is Ing = | . . '
00 ... 1

Proof. Very obvious, just check axioms.

Example 25.1. In M,(Cl[z]), ( 0 2 ) ( 4 5 ) = ( 3 BV E

Let R;, i € I, be rings. Since each R; is an abelian group, we have that

[[R =R xRax...={(ri,m2...)}

el

Proposition 25.1. J],.; R; becomes a ring with multiplication defined by coordinatewise via
(Tl,’f’g, .. .)(81, S9, .. ) = (T181,7”282, .. )

Proof. All fairly obvious, e.g. associativity, ((r;)(s;))(t;) = (risi)(t;) = ((r38;)t;) (by definition)
= (r;(s;t;)) (since each R; is a ring and is associative) = (r;)(s;t;) = (r;)((s:)(t;)). Note the notation
used here (r;) = (r1,7a,...).

If all R; are commutative so is [[,.; R; since multiplication is done componentwise. So [[,.; R; is
a ring. Could it be a field if all R; are fields? No. (1,0)(0,1) = (0,0). So there exists zero divisors,
i.e. in a field, ab=0=a=0or b= 0.

Define for each j € I, m; : [[,.; Ri — Rj; (ri) — r; is the projection on R;.
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Proposition 25.2. Two important observations
(i) Each ; is a ring homomorphism.

(ii) Given ring homomorphism ¢; : § — R;, define ¢ : S — [[,c; Ri by ¢((s:)) = (di(si))-
Then ¢ is an homomorphism.

Proof. Tedious but based on Universal Property Of Product of groups and monomorphisms of
groups, €.g. Wj(ll'l,-eIRi) =m;((1r,)) = lg;; T ((1:)(8i)) = mi(risi) = rjs; = mi((ri))m;((s0)-

Lemma 25.1. Suppose R is a commutative ring and Iy, I, ..., I, <R (ideals) such that I;+1; = R
for each pair of ¢,j. Then I} + (o, I = R.

i>1+1 —

Proof. Pick a; € I; and b; € I; such that a; + b, = 1 for i = 2,3,...,n, since I; + I; = R. Then
1 = (ag + as)(ag + b3) ... (a, + by,) = (babs...b,)+ terms each involving a;’s (distributive law)
€ It + ;o Ii (by properties of ideals). So R=1 + (5o iasVr € R, rl =1 € I + (59 Li-

Theorem 25.1 (Chinese Remainder Theorem). Suppose R is a commutative ring and Iy, I, ..., I,
<R (ideals) such that I; + I; = R for each pair of ¢,j. Then the natural map R/(\_, I, —
R/ x R/Iy x ... x R/I;r + (Vo i — (r+ 11,7+ I, ...,r + I,) is a ring homomorphism.

Proof. Induction on n. Let n = 2. Consider ¢ : R — R/I} x R/Iy;r — (r + I,r + I3), a ring
homomorphism. Clearly ker(¢)) = {r : (r+I1,r+12) = (Og/1,,0r/1,)} = {r:r € I1,r € I} = [LNI,.
We now show 1) is surjective. Hence by the First Isomorphism Theorem, 1.12[2 ~ R/} x R/I5. Let
r,79 € R. Choose z1 € I,z9 € Iy with 21 + 29 = 1 (can do this since I + [ = R). Thus
W(roxy +rime) = (rowy + 1129+ Iy, 79wy + 1129+ I5). Consider roxy + 1o+ 1. 19wy € Iy as xy € Iy
and rixe = r1(1 — z1) = r; — rz (distributive law), with 1 € [} = roxy + Mz + L = 1 + 4.
Similarly roxy + rixe + Is = 19 + I5. So ¥(rowy + mxa) = (r1 + I1, 72+ I3). Hence v is onto. Using
Lemma 25.1, we have the n = 2 case R/(_, I = R/I1 x R/ (i, I; £ R/ x R/I, x ... x R/I,
(by inductive hypothesis).

Example 25.2. mZ + nZ = 7Z if and only if ged(m,n) = 1. Hence Z/mnZ = Z/mZ x Z/nZ, i.e.
the usual Chinese Remainder Theorem.

26 Fields Of Fractions

This lecture works only with commutative rings.

Definition 26.1 (Domain). A commutative ring R is called a domain or integral domain of for
any r,s € R with rs =0, we have r =0 or s = 0.

Note that in a domain, if u € R—0 and v,w € R then wv =uw <= u(v—w) =0 <= v—w =
0 <= v =w, i.e. domains do not have zero divisors.

Example 26.1. Z,Cxy,xo,. .., x,] are domains. Z/6Z is not a domain, e.g. (2 + 6Z)(3 + 6Z) =
6+ 6Z = 6Z = Oz/6z. In fact Z/pZ is a domain if and only if p is prime. And any field is a domain.
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Let R be a commutative domain. Let R = R x (R —0) = {( Z ) ca € R,b € R— 0} Define a

5 /
relation ~ on R by ( Z ) ~ ( Z, ) if and only if al/ = d'b, i.e. like equalities of fractions.

Lemma 26.1. ~ is an equivalence relation on R.

Proof. Immediate that ~ is reflexive and symmetric. For transitivity, suppose that ( Z ) ~

/ / "
a
and

b b ~ b
ba"t = V' (ab”) = U/(a”') by commutativity. Hence since R is a domain, and ¢ # 0, we get

a a//
ab” = a"b, so ( b > ~ ( L )

In terms of notations, let § denote the equivalence class containing ( Z > and write K(R) for

Then ab’ = a'b and a’'b" = a"V. So ab'b’ = a'bb" = bad't’ =

R/ ~, the set of all such fractions.

Lemma 26.2. The following operations give well defined addition and multiplication on K (R).
© §+§-
(@) 35 = %
Proof. (i) Exercise. Note bd # 0 since b # 0, d # 0 (R is a domain). (ii) Commutativity of
multiplication means it suffices to check that if ( ; > ~ ( cci/’ ) then ( Z; ) ~ ( Z;: ) But

ac ac

1y ! ! / ~
dd = cd = acbd' = ac’bd. So bd bd'

) as required.

Theorem 26.1. The ring addition and multiplication maps in Lemma 26.2 makes K(R) into a

field with zero % and 1ggr) = %

Proof. Long and tedious, and mostly omitted. Most of the tricks used for Q have analogous

in K(R). In particular, any two fractions §, § can be put on a common denominator, § = ad

' b bd>

< = Z—fl. Also § + % = “d;gbd = “T*b. Hence to check associativity of addition it suffices to check
(%—i—%)—l—— ——i—(b + <), Note K(R) is a field since if ¢ # 2, then a # 0, so £ € K(R) and
(4)~' = 2. As exercises, prove some of the other axioms for K(R) to be a field.

Example 26.2. K(Z) = Q, K(R[z]) = set of real rational functions Z75. Write for I, K(F[z1, 22,
S Tp)) = Fxy, 29, ..., 2p).

Proposition 26.1. Let R be a commutative domain.

(i) The map ¢ : R — K(R);a —— < is an injective ring homomorphism. This allows us to
consider R as a subring of K (R).
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(ii) If S is a subring of R then K (S) is essentially a subring of K (R).

Proof. (ii) is fairly clear. (i) 4% =24% = (a+b) = 1(a) +¢(b). So ¢ is a group homomorphism.
ab — @ je. y(ab) = u(a)u(b). Also 1 = ¢(1) = lg(r). So ¢ is a ring homomorphism. Finally
= % <= a=al =bl =b. So ¢ is injective.

Proposition 26.2. Let F be a field. Then K(F) = F.

Proof. If suffices to check the map ¢ : F' +—— K(F);a — ¢ is surjective as we know it is an

injective homomorphism. But we know ¢ = 2= = ¢(ab~') as al = aab~'b. So we are done.
Example 26.3. What K(Z[i])? Guess Q[i| = {r + si : r,s € Q}. Note that Q[i] C K(Z[i]) as

[
4 4 £ = adtbei ¢ [0(7Z][i]) But Q[i] is a field, given r, s € Q not both zero, (r+si)~! = §+8;2 € Qlil.
So by Proposition 26.2, K(Q[i]) = Q[i]. But also by Proposition 26.1, Z[i] < Q[i] =

K(Z[i]) <
K(Qli]). Hence K(Z[i]) = Q[i]. This is true more generally, i.e. K(R) is the smallest field

containing R. Prove it as an exercise.
27 Introduction To Factorisation Theory

Here, we introduce factorisation in arbitrary commutative domains and work with commutative
domains over the next few lectures. Let R be one such.

Definition 27.1 (Prime Ideal). P 9 R, with P # R, is prime if and only if R/P is a domain.
Equivalently, whenever r, s € R are such that rs € P = Ogr/p, then r € P or s € P.

Example 27.1. Z/pZ is prime if and only if p is prime.
Example 27.2. (y) < C|z,y| is prime because Clz, y]/(y) = C|x] which is a domain.

Example 27.3. If M < R, with M # R, is maximal then M is prime because R/M is field, thus
a domain. So all maximal ideals are prime ideals.

Definition 27.2 (Divisibility). We say » € R divides s € R, write r | s, if s € (r) = Rr, or
equivalently (s) C (r).

Example 27.4. 3 | 6 as 6Z C 3Z.

Proposition - Definition 27.1 (Associates). We say that r,s € R — 0 are associates if one of
the following two equivalent conditions hold.
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(ii) There is a unit v € R* with r = us

Proof. (ii) = (i) Suppose that r = us, where u € R*, then r € (s), so (r) C (s). But also
s =u'r (u € R*). So by the same argument, (s) C (r). Hence (i) follows. (i) = (ii) Since
(ry = (s), we can write r = vs, s = wr for some v,w € R. Then r = vs = vwr. So since R is a

domain and r # 0, vw = 1, v,w € R*, giving (ii) (as R is also commutative).

Example 27.5. (—2) = (2) JZ, so 2 and —2 are associates.

Definition 27.3 (Prime). An element p € R — 0 is prime if (p) is prime. That is whenever
r,s € R such that p | rs then p | r or p | s.

Note that (p) is prime <= R/(p) is a domain. So rs € (p) <= p|rs < rs+ (p) =

(P) = Orjppy = (r+(P)(s+(p)) == 7+ (p) = Orjp) or s+ (p) = Oryyp) <= 71 € (p) or
se€(p) < plrorp|s.

Example 27.6. +2,+3, +5 are primes in Z.

Definition 27.4 (Irreducibility). A non-unit p € R — R* is irreducible if for any factorisation
p = rs, we have r € R* or s € R* (note we cannot have both r,s € R* as that would imply
p=rs € R").

Proposition 27.1. In the commutative domain R, every prime element is irreducible.

Proof. Let p € R be a prime. If p is prime, how do we know that p ¢ R*. p prime = (p) prime.
If p € R* then (p) = (1g) = R. But prime ideals are proper by definition. .. we know p ¢ R*.
Suppose p = rs where r, s € R. Since p is prime, WLOG, p | r, Hence r = pq for some ¢ € R. So
p=rs=pgs = qs =1 as R is a domain and p # 0. By commutativity of R, s € R*, making p
irreducible.

It is important to note that primes are always irreducible but the converse is not true. Apparently
this created a hole in early proofs of Fermat’s Last Theorem.

Definition 27.5 (Unique Factorisation Domain). A commutative domain R is factorial or a
unique factorisation domain (UFD) if we have both

(i) Every non-zero non-unit r € R can be factorised as r = pyps ... p, with all p; irreducibles

(ii) If we have two factorisations of the same element r = pips...py = q1¢2 - . . g with all p;, g;
irreducible then n = m and we can re-index the ¢; so that p; and ¢; are associates for all 7,
i.e. equal up to unit multiples

Example 27.7. Z is a UFD.
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Lemma 27.1. Let R be a commutative domain in which every irreducible elements is prime. If
r € R can be factorised into a product of irreducibles as in Definition 27.5, then the factorisation
is unique in the sense that it is equal up to unit multiples.

Proof. Suppose that » € R, satisfies that r = p1pa...pn = Q12 . .. ¢, With p;, ¢; irreducibles and
hence are all primes by assumption. We use induction on n. For m = 1, the result is true by
definition of irreducibility. If n > 1, we have p1 | 12 . . . ¢m, S0 D1 | g; say (as py is prime). Re-index
the ¢;’s so that 7 = 1. Then ¢; = pyu for some u € R. We must have u € R* since ¢; is irreducible.
So p; and ¢, are associates. Cancel p; to obtain psps...p, = ugeqs...q,. Since u € R*, we have
(uge) = (g2) which is prime. So ugs is also prime thus irreducible. The inductive hypothesis finishes
the proof, i.e. paps...pn = G5q5 - . . Gm, Where ¢y = ugo is prime.

Example 27.8. R = C[z] then Clz|* = C*. Any complex polynomials factor into linear factors,
so the irreducible elements of C[z]| are of the form a(x — ), where a,3 € C, a # 0. Now
(a(z—p0)) = (x—p) (ais aunit) = I(F) = set of all polynomials with root 3. As I(/3) is a maximum
ideal, I(3) is a prime. Hence a(z — (3) is prime. So all irreducibles are prime. Lemma 27.1 gives
that C[z] is a unique factorisation domain.

Example 27.9. In R = Z[v/—5], we have 2 x 3 = 6 = (1 + v/—=5)(1 — /=5), i.e. factorisation
is not unique. So need to show 2,3,1 + /5,1 — /5 are irreducibles, then Z[/—5] is not a unique
factorisation domain.

28 Principal Ideal Domains

The motivation here is to give a sufficient criterion for a commutative domain to be a UFD.

Definition 28.1 (Principal Ideal Domain). Let R be a commutative ring. An ideal [ is principal
if I = (x) for some z € R. A principal ideal domain or PID is a commutative domain in which
every ideal is principal.

Example 28.1. R = Z is a PID since every ideal is of the nZ = (n) and is thus principal.

Proposition 28.1. Let R be a commutative domain and r € R — 0, s € R. Then (r) = (rs) and
equality occurs if and only if s € R*.

Proof. The only unknown fact is (r) = (rs) = s € R*. Suppose (r) = (rs) = R(rs). So r € (rs)
or r = rst for some t € R. Since R is a domain, so we can cancel to get 1 = st = ts (commutativity)
and hence s € R".

Proposition 28.2. let R be a PID. Then p € R — 0 is irreducible if and only if (p) is maximal.
In particular, any irreducible element in R is prime, since maximal ideals are always prime ideals
(the quotient is a field which is always a domain).
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Proof. Assume first, p not irreducible. Say p = rs. By Proposition 28.1, (p) = (rs) C (r). So
(p) is not maximal. Suppose p is irreducible. Let I < R be such that (p) C I. Since R is a PID,
every ideal, including I, is principal, i.e. I = (q) for some ¢ € R. Hence (p) C (q), thus p € (q),
i.e. p = qgr for some r € R. But p is irreducible, so either ¢ or r is a unit. Suppose ¢ € R*, then
I ={q) = Rq= Rl =R ({(q) = (1) = R, as ¢ and 1 are associates, i.e. ¢ = ¢ql). Suppose r € R*.
Then gr = p and ¢ are associates, so (p) = (¢) = I. Hence by definition, I is maximal.

Note that by Lemma 27.1, factorisation in a PID is unique if it exists, i.e. every irreducible is a
prime.

Lemma 28.1. Let S be any ring and Iy, [, I5,... < .S be such that Iy C I; C I C ... Then
I = UjeN I; 25,

Proof. Let z,2" € I. We can assume x € I; and 2’ € I; and WLOG, assume j > j'. Note
0 € Iy C I (subgroup) and —z € I; CI. "» 2’ € [;; CI; " v+ 2" € I; C I (closure of subgroups).
So [ is a subgroup of S. Further for s € S, sx,xs € I; C I. Thus I < S by definition.

Theorem 28.1. Any PID R is a UFD.

Proof. It is sufficient to show that for any » € R — 0, not a unit, we can express v = pips...pn
with p; € R irreducible, hence prime as shown in Proposition 28.2. We will assume this is false
and derive a contradiction. Suppose r not a product of irreducibles, i.e. r cannot be irreducible
itself. .. r reducible and we can write r = ry = r1qy, with ¢y, 1 not units. WLOG, r; is not a
product of irreducibles (if g1, m are both product of irreducibles, then so will be r = r1q;). Can
similarly factorise 1 = gore with go,79 ¢ R* and 75 not a product of irreducibles. We continue
to define inductively g¢s, qq,...; r3,74,... ¢ R* with ry = rpi1qe1. By Proposition 28.1, we get a
strictly increasing chain of ideals (r) = (ro) = (riq1) G (r1) = (raga) & (r2) = ... Let I = ;5 (r)-
But R is a PID. So by Lemma 28.1, I = (r,) for some ro, € R. But ro € (r;) for some j, as
Too € I =;jen(rj). So I = (re) € (ri) € 1. So (r;) = I and the chain of ideals must stabilise in
the sense (r;) = (rj41) = ... This contradiction proves the theorem.

Definition 28.2 (Greatest Common Divisor). Let R be a PID. Let ;s € R — 0. Then a
greatest common divisor for r,s is an element d € R such that d |  and d | s, and further given
any other common divisor, i.e. ¢ € R such that ¢ | r and ¢ | s, we have ¢ | d. Write d = ged(r, s).

Proposition 28.3. Let R be a PID and r,s € R — 0. Then r, s have a greatest common divisor,
say d , such that (d) = (r, s).

Proof. Since R is PID, (r,s) = (d) for some d € R. We will show it is a greatest common divisor
of r and s. Note (d) = (r,s) D (r),(s). ..r,s € (d) = d|rand d| s, ie 3 k,l € R such that
r = kd, s = ld. Consider another common divisor ¢, i.e. ¢ |7 and ¢ | s = (¢) 2 (r), (s), since
r,s € (c). . {c) D(r,s) = (r)+ (s) = (d). Sod = mcform € R, i.e. ¢|d. Hence the greatest
common divisor for 7 and s is d.
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29 FEuclidean Domains

The motivation here is to give a useful criterion for a commutative domain to be a PID and UFD.

Proposition 29.1. R = Clz] is a PID.

Proof. Let I be a non-zero ideal. Note that I = 0 = (0) is principal. Pick p € I — 0, which is
minimum degree. We know I DO (p). We show in fact I = (p). Let f € I. Long division shows
that we can write f = pq + r, where ¢,r € C[x] and deg(r) < deg(p) if r # 0. However f € I and
pg € (p) CI. -.r=f—pg € . Minimality of deg(p) = r = 0. So f = pq € (p). Hence [ is
principal and C[z] is a PID.

This is the same proof for Z is a PID. Define Euclidean domains to be rings where this works. More
precisely . ..

Definition 29.1 (Euclidean Domain). Let R be a commutative domain. A functionv : R—0 —
N is called an Euclidean norm on R if

(i) For f € R, p € R— 0, there exists ¢, € R with v(r) < v(p) and f =pg+rifr #0, (v is
like a degree function)

(ii) For f,g € R—0, v(f) <v(fg) (just like a degree function)

If R has such a function, we call it an Euclidean domain.

Example 29.1. Let F' = ring. Then we can define the degree function deg : F[z] — 0 — N. If F
is also a field, then the usual long division works to show v = deg is an Euclidean norm. Note that
if F'is a field then F[z] is a commutative domain.

Example 29.2. v:Z — 0 — N;n — |n| is an Euclidean norm on Z.

Theorem 29.1. Let R be an Euclidean domain with Euclidean norm v. Then R is a PID and
hence a UFD.

Proof. Let I < R be non-zero (note 0 = (0)). Pick p € I — 0 with v(p) minimal (minimum exists
in N). Note I O (p). We show I = (p). Let f € I. Using Definition 29.1 (i) to write f = pq+r
with ¢,r € R, v(r) < wv(p)ifr #0. But I > f —pgaspg € (p) C 1. . r € I. Minimality of
v(p) = r=20. So f =pq € (p). Hence I = (p) and R is a PID.

In number theory, often look at small over-rings of Z, where over-rings are rings containing another
ring.

Lemma 29.1. Consider function v : C — R;z —— |z|? so v(2122) = v(z1)v(z2) for 21,29 € C.
Let R be one of the following subrings of C: Z[i], Z[iv/2], Z[H’g/gi], Z[H;ﬁi], Z[1+‘2/ﬁi]. Then

(i) v takes integer values on R
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(ii) For any z € C, there is some s € R with v(z —s) < 1

Proof. We will only do case R = Z[iv/2]. R = 7Z[i] is similar. other cases require simple modifi-
cation of the argument. What is R = Z[iv/2]? It is the Im(e, 5 : Z[z] — C;p(z) — p(iv2)).
Let p = Y. a7, a; € Z. Then p(iv2) = Y, a;i(V2)) € Z + Z(iv/2). This is because j
even = i1(v2)7 = (=1)225 € Z: j odd = ¥(v2)! = iv2i 1 (v2)! € (iV2)Z (as j — 1
is even). .. Z[iv2] C {a + biv2 : a,b € Z}. The reverse inclusion is by definition. Hence
Z[iv2] = {a +biv/2 :a,b € Z}. (i) For a,b € Z, v(a + biv/2) = a> + 20> € N. (ii) Look at Argand
diagram Elements of R form a lattice. The worst case scenario is # But pick s = 0, we see

_ )1+zx/‘ =14 2 =2 < 1. This proves the lemma.

v(z — i

Theorem 29.2. Let v be the function in Lemma 29.1 and R be one of the following. Z[i], Z[iv/2],
Z[H;@], Z[Hgﬁi], Z[H‘Q/ﬁi]. Then v is an Euclidean norm on R.

Proof. Check axiom (ii). for f,g € R~ 0, u(f),u(g) € N — 0. Hence v(fg) = v(/)(g) > v(f) as
v(g) > 1. Check axiom (i). Let f € R, p € R—0. Pick s € R as in Lemma 29.1, so 1/(]{ —s)<1

(% € C,s € R). Note v(r) =v(f —ps) = V(p)l/(% —s) <v(p) as 1/(% —s) < 1. So f = ps+r where
v(r) < v(p). Thus v is an Euclidean norm and R is an Euclidean domain.

30 Fun With Euclidean Domains

For this lecture, R is an Euclidean domain with Euclidean norm v.

Proposition 30.1. Let I < R be non-zero. Then p € I — 0 generates [ if and only if v(p) is
minimal. In particular u € R* if and only if v(u) = v(1).

Proof. Saw in the proof of Theorem 29.1 that p € I — 0 with v(p) minimal = I = (p). Suppose
conversely that I = (p) then for ¢ € R—0, v(pq) > v(p) ((ii) of Definition 29.1). . v(p) is minimal.
Also u € R* if and only if (u) = (1) = R, i.e. v(p) = v(1).

Example 30.1. Z[iv/2]" = {1, -1} for v(2) = |z|?.

Let f,g € R—0. We wish to compute d = ged(f,g). By Proposition 28.3, (f,g) = (d). By
Proposition 30.1, seek to minimise v(z) as = ranges over (f,g) — 0. How?

Theorem 30.1 (Euclidean Algorithm). Assume v(f) > v(g). Find ¢,r € R with f =qg +r
with v(r) < v(p) or r =0. Case r = 0 = (f,9) = (qg9,9) = (g9). .. gcd(f,g9) = g. Case r # 0,

observe (f,g) = (g,r) since f € (g,7) (f =qg+7r),r € (f,9) (r = f—qg). So gcd(f, g) = ged(g,7).
In this case, repeat first step, with g,r instead of f,g. (Note the algorithm terminates because

v(r) < v(g) and N has a minimum at 0).
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Example 30.2. Consider Euclidean domain R = Z[iv2] = {a + bi : a,b € Z} with Euclidean
norm v : R —0 — N;z — |2]2. What is ged(y + iv/2,2iv/2)? Note iv/2(2iv/2) = —4 as
iv/2 € R. Using Theorem 30.1, we see ged(y + V2, 22\/5) = gcd(?iﬂ, y+iv2 — m\/§(2m/§)) =
ged(2iv/2, (y — 4n) + iv/2) for any n € Z. .. ged(y + iv/2,2iv/2) = ged(y + iv/2,2iv/2), where
g€ {-1,0,1,2 and y +4Z = g+ 4Z. (i) § = 0 = gcd(2iv?2,iv2) = iv/2. (i) 7 = 2 =
f=20V2g=2+iV2 =L = 20 - BB x 1 4iV2 =g = g9 = (1+1V2)2+iV2) =
24+3ivV2-2=3iV2 =1 =f—gqg=2ivV2—-3ivV2 = —iv/2and v(r) = 2 < 6 = v(p). ..
(f.9) = (g.r) = 2+ V2 —iv2) = (=iV2(-1 + V2),-iV2) = (iv2), ie. ged(f ) = iV2.

(i) = +1 = f = 2iv2,9 = 41 +iv2 = £ = 202 — 403 o 1 44\/2 = g - qg =

(1+iV2)(£14+iv2) = £1+iV2+iV2F2 = F1+2V2i = 1 = f—gq = 2iv/2— (F1+2iV/2) = £1,
Le. (f,9) =(g9,7) =(g,1) = (1) = R=ged(f,g9) = 1.

Theorem 30.2. The only integer solution to y? + 2 = 23 are y = &5,z = 3.

Proof. Suppose yis even then 2 |y? +2 =2 |23 =2 |z =8 | 23. But 4| > = 4+t ¢y* + 2.
So 8 + y>+2. . yisodd. Work in PID, Z[iv?2], 3> +2 = (y +iV2)(y — iv/2) = 2. Note
(y+ivV2,y —iv2) = (y +iv2,y + ivV2 — (y — iv2)) = (y +iv2,2iv/2) = 1 for y odd. By prime
factorisation both sides and noting y + iv/2 and y — iv/2 have ged(y + iv2,y — iv/2) = 1, with
Z[iv2]* = {1 = (=1)%,1 = 1°}, y + i/2 is a cube and so is y — iv/2. So can find a,b € Z with
(a+ibVv/2)? = y+iv2 = (a® — 6ab®) + (3a*bv/2 — 2b°1/2)i. Thus equating real and imaginary parts,
1 = 3ab — 203 = b(3a®* — 2b%). Sob |1 = b= +1. b= —1 = no solution. b =1 = 3a®> — 2 =
1 = a = £1. Real part is y = a® — 6ab® = a(a® — 6b*) = F5. So x = 3 by the original equation.

31 UFDs & Gauss’ Lemma

Lemma 31.1. Let R be a UFD and r,s € R — 0 with factorisation in irreducibles r = p1ps ... pp,
$=q1q2-.-qy. Then r | s if and only if m < n and permuting the ¢;’s if necessary, we can assume
p; and ¢; are associates for i =1,2,...,m.

Proof. It is clear that if p; and ¢; are associates for ¢ = 1,2,...,m and m < n then r | s. To
prove the converse, suppose s = rt and t = riry...7r, is a factorisation into irreducibles. Then
PIP2 - - PmT1T2 .. . Tk = ¢1G2 - . . . S0 uniqueness of factorisation gives the observation.

Corollary 31.1. In a UFD, any irreducibles are primes.

Proof. Follows from observation, e.g. ¢ | rt = ¢ = up; or ¢; = vry, u,v € R* by unique
factorisation. .". ¢1 | p; | ror q1 | 7y | t.

Let R be a UFD and ry,ry,...,7, € R. A greatest common divisor d € R for rq{,rs,...,7 is an
element such that d | r; for all 7 and if ¢ € R with ¢ | r; for all ¢ then ¢ | d. Two greatest common
divisors differ by at most a unit. They divide each other, and hence generate the same principal
ideal.

Corollary 31.2. Let R be a UFD and ry,rs,...,7» € R — 0. Then there is a greatest common
divisor for r1,79, ..., 1.
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Proof. Just prime factorise (irreducibles are primes in UFDs) each of the r;’s and pull out common
factors (up to associates).

Let R be a UFD.

Definition 31.1 (Primitivity). f € R[z] — 0 is primitive if 1 is the greatest common divisor for
its coeflicients.

Example 31.1. 322 + 2 € Z|[x] is primitive but 622 + 4 is not.

Proposition 31.1. Let R be a UFD, K = K(R).
(i) Let f € K[z] — 0, then there is some a € K* with af € R[x] and is primitive
(ii) If f € R[x] — 0 is primitive and also there is a € K* such that af € Rz], then o € R

Proof. (i) Pick common denominator d € R — 0 for all coefficients of f Then df € R[z]. let ¢ be
the greatest common divisor of coefficients of df. Then af = (¢)f € R[z] is primitive as coefficients
of (2)f has now greatest common divisor 1. (ii) Let @ = 2 with n € R, d € R — 0. Then ged(
coefficients of nf € R[z]) = nged(coefficients of f) = n x 1 = n = dged(coefficients of (%) f)
= d ged(coeflicients of af € R[z]) = n = multiple of d = o € R.

Theorem 31.1 (Gauss’ Lemma). Let R be a UFD. The product of primitive polynomials in
R]x] is primitive.

Proof. Let f = fo+ fix+...+ fmx™ € Rlz] and g = go+ 12+ . .. + g™ € R[x] be primitive. It
suffices to show that for any prime p € R, p does not divide all the coefficients of h = fg. Pick a
so that p{ f, but f | far1,D | Pasa, - .. and similarly pick b so p 1 g, but p | gos1,P | gp+2, - - - Look at
hap = coefficient of ™ in h = (fogars+ [19atrv—1+- - -+ fac19o41) + fago+ (far190—1+- - -+ fas90)-
. p divides all of gy11, gpr2,- -, garp and p divides foi1, faro, .-, fars, but p does not divide f,gs
2.t hayy and h must be primitive.

Corollary 31.3. Let R be a UFD and K = K(R). Let f € R[z] and suppose f = gh with
g,h € K[z]. Then f = gh with g,h € R[z] and g = a,g, h = ay,h where ay, o), € Klz]* = K*.

Proof. By Proposition 31.1 (i), write g = 8,9',h = Bk’ and f = B;f" where f',¢', 1/ € R[z] are
primitive and (¢, By, Bn € K*. Then Brf = (B,6n)9'h = f € R[z]. By Gauss’ Lemma, ¢'h’ is
primitive. .* f € R[x] .". B,0, € R by Proposition 31.1 (ii). So we are done on setting g = 3,6n9'
and h = h'.

Theorem 31.2. Let R = UFD and K = K(R).

(i) The primes in R[z] are the primes of R or primitive polynomials (positive degree) which are
irreducible in K|[z]

(ii) R[z]is a UFD
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Proof. (i) Follow from Corollary 31.3. (ii) Klz] is a UFD. Check factorisation exists. let f €
K[z]—0. Factorise f = afifs... fn in K[z] with f; irreducible in K[z] and o« € K*. By Proposition
31.1(i), can assume all f; € R[z] and are primitive. Gauss’ Lemma = fifs... f,, is primitive.
So Proposition 31.1 (ii) = a € R. Now prime factorisation & = ajas...q, in R to get prime
factorisation f = ajan ... anfifa... fm- Check uniqueness. K[x] is a UFD = f;’s are unique up
to scalar multiples in K[z]* = K*. Proposition 31.1 (ii) == since these are primitive, they are
unique up to primitives, i.e. R*.

Corollary 31.4. Let R = UFD. Then R[z;, xs,...x,] is a UFD.

32 Simple Field Extensions

Definition 32.1 (Ring & Field Extension). Let F' be a subring of E. Then we say F is a ring
extension of F. Suppose further E and F' are both fields. Then we say F' is a subfield of F/, or
or E/F is a field extension of F'.

Let E/F be a field extension and a1, s, ..., a, € E. Recall subring Flay, as, ..., «,] C E, which
is a domain. By Proposition 26.1 (ii), F(a1,as,...,a,) = K(F|ay, a,. .., ay]) is a subfield of
K(E) = E. 1t is called the subfield of F generated by F, oy, s, ..., qy.

Proposition 32.1. Let E/F be a field extension and oy, as, ..., a, € E. Let F} C E be a subfield

containing F, oy, ag, ..., a,. Then F} D F(ay, e, ..., ap).
Proof. F} is a subring containing F, aq, o, ..., a, so Fy O Flag, as, ..., a,]. But F is a field, so
it contains all fractions in Flay, ag, ..., a]. . F1 D Fag, ag,...,qp).

Example 32.1. i € C, Q(i) = K(Z[i]) = {a+ bi : a,b € Q}.

Let E be a commutative ring extension of field F'. F is a vector space over F' with addition equal to
ring addition and scalar multiplication equal to ring multiplication (F' < E as rings). The degree
of the ring extension E/F is [E : F| = dimpE. We say E/F is finite if [E : F] is finite.

Example 32.2. [C: R] =2, so C/R is finite.

Let E be a commutative ring extension of field F'. Let a € E. Recall Fla] = Im(e, : Flz] —
E;p(x) — p(a)).

Proposition - Definition 32.1 (Transcendental & Algebraic). With above notation, exactly
one of the following occurs.

(i) e is injective, i.e. « is not a zero for any polynomial in F[z] other than p(z) = 0. In this
case, we say « is transcendental over F'.

(i) ker(eq) # 0. But F[z] is Euclidean domain with degree norm, hence is a PID, i.e. ker(e,) =
(p(z)) where p(x) € ker(e,) is chosen to have minimal degree. So p(a) = 0 and p is minimal
with respect to degree. In this case, we say that « is algebraic over F' and p is called the
minimal or irreducible polynomial for v over F'.
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Example 32.3. The minimal polynomial for v/2 is 22 — 2 over Q and 2 — v/2 over Q[v/2].

Definition 32.2 (Algebraic Field Extension). Let E be a commutative ring extension of field
F. We say E/F is algebraic if every a € E is algebraic over F.

E is always algebraic over F as V a € E, we have x — a € El[z].

Example 32.4. C/R is algebraic for if a,b € R, then z = a + bi satisfies (z — a)? + b* = 0 € R[z].

Proposition 32.2. Let E be a finite commutative ring extension of field F'. Then E/F is algebraic.

Proof. Flz] and E are ring extensions of F', hence are vector spaces over F. Let o € E. But ¢, :
F[z] — FE is F-linear since it preserves addition and scalar multiplication, i.e. £,(ap) = €n(a)en(p)
(ring homomorphism) = ag,(p) for a € F,p € Flz]. Now dimpF[z] = 0o and dimpFE < 00. So g,
is not injective and « is algebraic.

Proposition 32.3. Let E be an algebraic commutative ring extension of field F'. Suppose F is a
domain. Then F is a field.

Proof. Let o € E and p(x) € Flx] be its minimal polynomial. p(z) = p,2"+p, 12" ' +...+p1z+

Po- SO P +p,_ 10" 4. .+ pra+py = 0. Note py # 0, otherwise a(p,a" ! +p, 10" 2+.. . +p;) =

0= pa" ' +p, 10" ?+...+p =0 (a # 0 and F[z] is a domain). So « is a zero of I@.

This contradicts minimality of deg(p). .. po # 0 = a(p,a” '+ ...+ p1) = —pp = o ! =
—1 n—1 n—2 . . . . .

—py (Pt + pp1a™ 4 .. 4+ p1), Le. «is invertible and E is a field.

Let F' be afield. A finitely generated field extension of F'is a field extension of form F(ay, ag, ..., ay).
A simple field extension is one of the form F(a).

Theorem 32.1. Let E/F be a field extension. Let a € E.

(i) If « is algebraic then F(a) = F[a]
is irreducible over F'[x].

I

F[z]/(p), where p is minimal polynomial of a.. Also p

(ii) If « is transcendental then F(«) = F(x) = K(F[z]).

Proof. (i) Let p = p,a™ + pp1z™ '+ ... + po, pn # 0. Flz]/(p) = Fla] (First Isomorphism
Theorem) is spanned by {1+ (p),z + (p), ..., 2"+ (p)}. .. F|a]/F is finite. By Proposition 32.2,
Fla]/F is algebraic and hence is also a field. F(«a) = F|a]. Now Flz]/(p) is a field = (p) < F[],
(p) # Flz] is maximum = p € F[z] irreducible, i.e. if p =rs, r,;s € Flz], then p € (r) = (p) C
(ry = (p) = (r) as p is maximum = s is a unit for (p) = (r) or r is a unit for (r) = Flz].
This gives (i). (ii) is clear as ¢, : F[z] — Fla] C E is an isomorphism, due to bijectivity from
transcendency. This gives isomorphism F[z| & Fla]| = K(F[z]) = K(F[a]) = F(x) = F(«).
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33 Algebraic Extensions

Theorem 33.1. Let K O E D F, E/F and K/FE be finite field extensions. Then K/F is finite
and [K : F] =K : E|[E : F].

Proof. Let eq,es,...,¢e, be an F basis for E and ki, ks, ...k, be an E basis for K. It suffices
to show B = {e;k; : i = 1,2,...,n;5 = 1,2,...,m} is an I basis for K. Check B linearly
independent over F. Suppose ), ajje;k; = 0 where ai; € F. . (30 ainei)ki + (D2; cvig€i) ko +
oo+ (2 @imei)km = 0 where Y aye; € E for all j. But £;’s are linearly independent over E
= > .ayje; = 0 for each j. But {e;} are also linearly independent over F. . a;; = 0. So B is
linearly independent. Check B spans. Let k& € K. We can write k = a1k; + asks + ... + ap ki,
where «; € E. But each «; is F' linear combination of e;’s, so we are done.

Proposition 33.1. Let E/F be a field extension and a € E algebraic over F with minimum
polynomial p(x) € Fx] of degree d. Then [F(«) : F| =d.

Proof. Suppose p(x) = pgz? + ...+ pix + po, pa # 0. Tt suffices to show B = {1, a,a?,..., a1}
in an F basis for F'(a). Note pac® + pg_1a® M+ ..+ pra+po = 0 = a? is a linear combination
of a1 a?2 ... a,1. So {1,q,...,a% '} spans Fla] = F(a) (F|a] is a field). Check B linearly
independent. But any linear relation amongst {1, a, ..., a? !} gives a polynomial p(z) with p(a) =
0 and deg(p) < d. This contradicts minimality of deg(p) = d. Hence B is linearly independent and
hence a basis. So property proved.

Example 33.1. Q C Q(v/2) € Q(v/2) as (v/2)? = v/2. [Q(v/2) : Q] = 2 as minimal polynomial is
2% — 2. [Q(v/2) : Q(v/2)] = 2 as minimal polynomial is z? — /2. .". [Q(v/2) : Q] = 22 = 4 and the

minimal polynomial for v/2 over Q is z* — 2.

Corollary 33.1. Let E/F be a field extension and aj,as,...,a, be algebraic over F. Then
F(oy,aa,. .., a,)/F is finite.

Proof. Just use induction on Theorem 33.1 and use Proposition 33.1 on F' C F(«;) C F(ay,a9) =

Flai)(ag) € ... € Flag,ag,...,0p), ie. [Flag,ao,...qp) @ F] = [Flog,qe,...an1)(a,) :
Flag,ag,...on 1)][Foq, a0, ... ap 2)(an_1) @ Flag,qe,...an_2)]...[F(aq) : F| and each term is
finite, equal to the degree of the corresponding minimal polynomial (a, s, . . ., ay, are all algebraic).

Theorem 33.2 (Eisenstein’s Criterion). Let R be a UFD and f = fo+ fiz+...+ fo2" € R[z].
Suppose p € R is prime and p | fo,pt fn, 0?1 fo,p | fi for 0 <i < n, then f is irreducible.

Proof. By contradiction. Suppose f = gh where g = go + 1z + ...+ ¢g,2" € R[x], h = hg + hyz +
...+ hex®* € Rlx] and 7,8 > 0. p | fo = goho but p* t fo, i.e. p does not divide both gy and hy.
So we can assume p | go but p{ hg. We will derive a contradiction to p { f, by showing p | g. We
show p | g by induction on i. For i <n, f; = gohi + g1hi—1 + ...+ gi1h1 + giho € (p) as p | fi. -
plgithio1,p| 92hi2,...,0| gho1h1 . 0| giho. But pf ho . p| g;. This completes the proof.

Example 33.2. Different ways of showing minimum polynomial for v/2 over Q is z* — 2. Let p
be minimum polynomial for v/2. So p | 2* — 2. Eisenstein’s Criterion with p = 2 = 2* — 2 is
irreducible. So p and x* — 2 are associates.
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Proposition 33.2. let ¢ : ' — R be a ring homomorphism with F’ a field and R # 0. Then ¢
is injective.

Proof. ¢ not injective = ker(¢) # 0 = ker(¢) contains units = ker(¢) = F' (ker(¢) is an ideal
with units, ¢(1) =1 =0) = id = 0 map on R = R = 0, which is a contradiction.

Proposition - Definition 33.1 (Algebraic Closure). A field F is algebraically closed if one of
the following equivalent conditions hold.

(i) Any p(z) € Flx] has zero in F.
(ii) There are no non-trivial algebraic extension of F (the trivial extension being F/F).

Proof. (i) = (ii). Use contradiction. Suppose E/F is an algebraic field extension and o € £ — F.
Let p € F|x] be minimum (irreducible) polynomial for « over F. Also deg(p) > 1. But p(z) has
zero, say 7y in F. So by factor theorem, z — v is a factor of p(z). This contradicts the irreducibility
of p(z). Note deg(p) =1 = a € F,soa € E—F = deg(p) > 1. (ii) = (i). Let p € F|x].
Replacing p with prime factor = can assume p is irreducible. Consider F[z]/(p). *.- F[z] is an
Euclidean domain hence a PID. (p) is maximal, so F[z]/(p) is a field. So by Proposition 33.2,
we see ' — Flx]/(p) is injective. So F[z]/(p) is a finite field extension of F. So F|x]/(p)
is algebraic. Given (ii), it must be trivial. By Proposition 33.1, degree of extension is p, i.e.
Flz]/(p) = Fla] = F(a) = [Flz]/(p) : F] = [F(a) : F] = deg(p). So deg(p) = 1, i.e. linear
polynomial in ' = p has a zero in F'.

Theorem 33.3. Any field F has an algebraic extension F which is algebraically closure of F and
is unique up to isomorphism.

34 Ruler & Compass Constructions

Bisection of an angle, constructions of an equilateral triangle and a regular hexagon can all be
carried out easily with a ruler and a pair of compasses. Can you trisect an angle or constrict a
regular pentagon in the same way?

The following is known as the Ruler and Compass Game. Start with subfield F' C R and set of
points Pt, in R? with all coordinates in F, i.e. Pty C F? C R?. Set LCy = (). Construct inductively
set of points Pt; in R? and LC;, set of lines and circles in R?, suppose Pt;_; and LC;_; defined.

1. Either draw a line through 2 points in Pt;_; and add this to get LC; or draw a circle with
centre in Pt;_; and passing through another point in Pt; ; and add this circle to LC;_; to

2. Enlarge Pt;_; to Pt; by adding in all the points of intersection of all lines and circles in LC;.
3. Repeat steps 1 and 2 as desired.

A figure is constructible from F if you can get it from the Ruler and Compass Game. Say it is
constructible if F' = Q.
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Suppose in step 1 of the Ruler and Compass Game, you only add lines. Then Pt; C F? always for
Pty C F?, i.e. points always have coordinates in F. By induction, suppose a, b, c,d € Pt;_; C F?.
New points arise from intersecting lines such as ab and cd. To compute points of intersection, solve
a+Ab—a)=c+u(d—rc)for X\, u € R. This corresponds to system of liner equations in F. Hence
A, i € F, so must be coordinates of the points of intersection.

Proposition 34.1. Suppose in the Ruler and Compass Game, Pt;_; C E? for some field E.
(i) Any line (circle) in LC; is defined by a linear (quadratic) equation with coefficients in E.
(ii) The point of intersection of two circles in LC; has coordinates in E' (quadratic terms cancel).

(iii) Let L,C be a line, a circle respectively in LC;. Then there is some A € E such that
coordinates of point of intersection of L and C' lie in E(A) (due to the quadratic formula).

Proof. (i) By induction, suppose C is a circle with centre (a,b) € E? and passing through (¢, d) €
E?. Then C is defined by (z —a)? 4+ (y — b)® = (a — ¢)® + (b — d)* which is quadratic in z,y with
coefficients in E. Case for lines is similar. (ii) is similar to the proof of (iii). (iii)By (i), can assume
L,C given by C : 22 + y> + a1x + byy = ¢; and L : asx + boyy = co. Assume by # 0 (since at least
one of ag, by is non-zero, else swap roles of x,y). Use equation of L to eliminate y from equation
of C. This gives a quadratic in x with say discriminant A. Quadratic formula = x € F (\/Z)
From equation of L, we see y € E(v/A) as well. Note E(v/A) = E if and only if VA € E, ie. A
is a square in E. [E(VA): E] = 2.

Theorem 34.1. Suppose in the Ruler and Compass Game, p € Pt; for some j. Then there is a
tower of field extensions F' C F; C Fy, C ... C F),, where F;,; = F;(v/A;) for some non-square
A; € F; and such that p € F2. Note [F,, : F| = [Fy, : Fp_1][Fn_1: Fps]...[F1: F] =2

Proof. Use induction on Proposition 34.1.

Theorem 34.2. It is impossible to trisect angles using rulers and compasses in general.

Proof. We will prove the impossibility of trisecting an angle of 60°. Start with ' = Q(v/3). Pty =
{(0,0), (1,4/3), (1,0)}. Suppose trisecting line L of a 60° angle is constructible from F. Then add
unit circle. We see there is a field extension F),/F as in Theorem 34.1 with (cos 20°,sin 20°) € F2.
Seek contradiction. What is minimum polynomial of o over Q? Recall cos 30 = cos® @ — 3 cos 6. So
40® — 3o = cos60° = 1, i.e. « satisfies 8a® — 6cv — 1 = 0. We can show this is irreducible over Q
by noting the following are not roots +1, i%, :i:}l, :I:%. So 823 — 62 — 1 is not reducible over Q. So
823 — 6z — 1 = 0 is minimum polynomial for a. Hence [Q(a) : Q] = 3. But [F, : Q(a)][Q(«) : Q] =
[F,: Q] =[F,: F[F : Q] = [F, : Q(v3)][Q(v3) : Q] = 3k = 2" x 2 = 2""L. But 312" So
contradiction gives impossibility of trisecting 60° with rulers and compasses.

35 Finite Fields
Example 35.1. Let p € N — 0 be prime. Then (p) <Z is maximal, so Z/pZ is a field denoted F,,.

Proposition 35.1. Let F' be a field.
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(i) Themap ¢ : Z — F;n—n=1+1+ ...+ 1 is a ring homomorphism.
—

n

(ii) Exactly one of the following holds.

(a) ¢ is injective and so induces an injection of fields ¢ : Q — F. In this case, we say F
has characteristic 0 and write char(F') = 0.

(b) ker(¢) # 0, i.e. ker(¢) = (p) (ideal), where p € N — 0 is prime. In this case, we say F’
has characteristic p and write char(F) = p. Induced map ¢ : F, = Z/pZ — F makes
F a field extension of I, (¢ is injective).

Proof. (i) Check definition. (ii) Easy exercise, using fact that Z/nZ is domain if and only if n is
prime.

Example 35.2. char(R) = 0, char(F,) = p. For a field F, the algebraic closure is denoted by F.

Proposition 35.2. Let I be a finite (as set) field. Then char(F) = p > 0 and |F| = plf"™! ie.
any finite field has prime characteristic.

Proof. F finite = 7Z not a subset. So in this case, we have case (b) of Proposition 35.1 (ii). Also
as I is a field extension of F,, then F' is a vector space over F, of dimension [F' : F,] = d. Hence
F =T, xF,x...F, as vector spaces, i.e. |F| = |F,|*Fe] = plFFs],

[F:F,)

Let p € N—0 be prime and n € N. Write F,» for any field with p” elements. We can show existence
and uniqueness of [Fn.

Proposition - Definition 35.1 (Frobenius Norm). Let F' be a field. char(p) > 0. The map
¢: F — F;x +—— 2P is a ring homomorphism called Frobenius norm.

Proof. ¢(x+y) = (x+y)P = 2P + ( i))xply—i— ( g)xp2y2+...+(p§1 )xypl—l—yp. Now

p—1
Also ¢(zy) = (xy)P = 2Py? = ¢(x)p(y). Lastly, (1) =1 =17, so ¢ is a ring homomorphism.

< 11) ) , ( 12) ) ey ( p are all divisible by p and 0 in F. So ¢(z+y) = 2P+y? = ¢(x)+o(y).

Lemma 35.1. Let E/F and K/E (F C E C K) be algebraic field extensions. Then K/F is
algebraic.

Proof. Suffice to show a € K is algebraic over F. K/E algebraic = a"+¢, 10" '+...+¢ey = 0 for
some €, 1,6, 9,...,e0 € E. Now F(e,_1,€,_9,...,€)/F is algebraic as F(e,_1,€n_9,...,60) C E.
Using Corollary 33.1, F'(e,_1,€n_2, .., €0)/F is finite. Also « is algebraic over F(e,_1,€,_2,...,€) =
Fla,en_1,en-9,...,€0)/F(en_1,6n_29,...,€0) = Flen_1,6n_2,...,€0)()/F(en_1,€n_2,...,€0) is fi-
nite. Using Theorem 33.1, F(«,e,-1,€n-2,...,¢€0)/F is finite and hence « is finite over F. So we
have transitivity of algebraic field extensions.

Proposition 35.3. A finite field of characteristic p is a subfield of Fp.
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Proof. F C F with F/F algebraic by definition. F/ [F, is finite and hence algebraic. Lemma 35.1
— F /F, is algebraic. But Fis algebraically closed, so uniqueness of algebraic closure = IF =
F D F as desired.

Theorem 35.1. Let ¢ : IF‘B — F,; 2 — 2” be Frobenius norm. Let Fn = {a € F,, : ¢"(a) = a} =
set of zeros of 27" — z in F,,.

(i) F,n is a subfield of F,,.
(ii) |Fpn| = p™
(iii) Any subfield F' of F,, with p” elements is equal to Fpn.

Proof. Do (iii) and (ii) first. Let F' be as in (iii). Lagrange’s Theorem on F* = |F*| = |F| -1 =
p"—1 (exclude 0). So for any o € F*, a?"~! =1 (order p"—1). Soa?" —a =0forany a € F,i.e. a
is a solution to zP" — x. Hence F C F,n. Using factor theorem, xP" — x factors into linear factors in
F,[x]. .. number of zeros < deg(z?" — ) = p" = |Fju| < p". But |Epn| > |F| = p", 50 |Fpn| = p"
and F,» = F. So (iii) holds. To finish proof of (ii), suffice to show zeros of 2¥" — x are distinct.
2?" —x = x(2?" ! — 1), so x = 0 is not a multiple root. Check another zero « is not multiple by
pn

changing variable toy = r—a. 27" —x = (y+a)?" — (y+a) = ypn+< 1 > v ot o —y—a

1 2

by assumption) = y(y*" ' — 1). As y is not a multiple factor,  — « is not a multiple factor for
2?" — x. So zP" — x has p" distinct zeros and (ii) holds. Alternatively, using Galois Theory, note
L(g?" —z) =pha?" ' —1=0-1=—1+# 0. So no multiple root exists. (i) To show Fp is a
subfield, suffices to check closure axioms for subring because then it is a finite field extension of F,
which is a domain. Check closure under addition. Note ¢™ is ring homomorphism, begin composite
of such. Let z,y € Fjn. Then ¢"(x +y) = ¢"(x) + ¢"(y) = v +y € Fyn. Other closure axioms
similarly proved. This shows Fjn = Fpn.

(note ( P ) , ( P > ... are all zero, as they are all multiples of p) = y*" —y (as o —a = 0

36 Conjugation & p-Groups

Let G be a group. Define Aut(G) to be the set of automorphisms ¢ : G — G < Perm(G).

Proposition 36.1. Aut(G) < Perm(G).

Proof. Straight forward, just check axioms.

Conjugation aims to study groups via internal symmetry. Let g € G, we redefine conjugation by g
to be the map C, : G — G;h —— ghg~'. Recall from Proposition 36.1 that C;, € Aut(QG).

Proposition 36.2. The map C': G — Aut(G); g — C, is a group homomorphism.

Proof. gi,92,h € G. Cy,g,(h) = 91920(9192) " = 919295 ' 97" = Cy, (9ahgs ) = Cy,Cyy(h). So C'is

a group homomorphism.
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Note that the Propositions 36.1 and 36.2 gives composite group homomorphism G : <, Aut(G) —
Perm(G). So we have permutation representation of G on G. We say G acts G by conjugation.
There is a corresponding G-set with G-action for g,h € G | h.g = C},(g) = hgh™".

Let group G act on G by conjugation. We define the G-orbits to be conjugate classes and they have
form G.h = {ghg™' : g € G}. We define the centre of G to be the fixed point set. It is denoted by

Z(G) = {2€G:gzg7" =z forall g€ G}
= {2€G:gz=zgforall g€ G}
= {z € G : conjugate class G.z with just {z}}
= {2€G 29z =gforallge G}
= kernel of conjugation map C': G — Aut(G); g — C,

Proposition 36.3. Z(G) < G (since kernels are normal subgroups).

Definition 36.1. Let p € N — 0 be prime. We say G is a p-group if |G| = p” for some r € N.
Suppose |G| = p"q for some ¢ with ged(p,q) = 1. A subgroup H of G is a Sylow p-subgroup if
[H| =p".

Example 36.1. G is the dihedral group. D, with p odd prime. Say G = (o, 7) with 6? =1 = 72,

7o = o~ '7. Then |G| = 2p and (o) is a Sylow p-subgroup. (7),{o7),...,(cP"'7) are Sylow

2-subgroups.

Lemma 36.1. Let G # 1 be a p-group acting on a finite set S. Then
i) p| 1S =59 =15-15¢
(ii) Z(G) # 1 (not trivial)

Proof. (i) The elements of S¢ are precisely the one element orbit of S. Hence we have S =
SEUG.51U. .. UG.s, by grouping one point orbits together. But s; ¢ S¢ means stabg(s;) S G. So
|G.si| = |Stabg(si) = \statl)il(sm —> power of p > 1 = |G| = |G.s;||stabg(s;)], i.e. p | |G.si| =
p| > |G sil = |Gs1UGseU . . UGs,| = |S—SY|. (ii) Apply (i) to G acting on S = G by conjugation,
p S| =12(G)| = |G| = |Z(G)|. But p | |G|, so p | |Z(G)| = Z(G) # 1.

Corollary 36.1. Let p € N — 0 be prime. Let G be a group of order p?. Then G is isomorphic to
Z)p*Z or Z/pZ x L] pZ.

Proof. Suppose G is not cyclic, so there are no elements of order p?. Lagrange’s Theorem says that
orders of all non-trivial subgroups and non-identity element is p. Lemma 36.1 =— Z(G) # 1. So let
us pick z € Z(G)—1. zisorder pso (z) = Z/pZ. Pick y € G—(z) and again (y) = Z/pZ. 1t suffices
to prove G = (z) X (y). We use internal characteristics of direct products, i.e. Proposition 12.2. We
check the conditions of the proposition. (i) (z,y) 2 (z) so [(z,y)| > p = (z,y) = G as (z,y) < G.
So z and y generates G. (ii) (z) N (y) is a proper subgroup of (z) = Z/pZ, which has only two
subgroups, so (z) N (y) = 1. (iii) Now (z) C Z(G), so elements of (z) certainly commute with all
elements of G, hence (y). This shows G = (z) x (y) = Z/pZ x Z]pZ.
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37 Sylow’s Theorems

Lemma 37.1. Let G be a group of order|G| = p"q and let S be set of all subsets of G with p”
elements. Then pt[S| = ( prq )

p
Proof. For i € N and | € {1,2,...,p" — 1}, we have p’ | [ if and only if p' | p"q — 1. |S| =
prq(p;f(;i)_"l'gfrg;fmrl). By pairing pr+_l for [ € {1,2,...,p" — 1}, all powers of p in numerator cancels

with powers of p in denominator. Hence p 1 |5)|.

Theorem 37.1 (Sylow’s Theorem). Let p € N—0 be a prime. Let G be a group of order|G| = p"q
where r € N, ged(p, q) = 1.

(i) There exist Sylow p-subgroups and let P be one such.

(ii) If H is any p-subgroup then H is contained in a conjugate of P, in particular two Sylow
p-subgroups are conjugate.

(iii) Let m be the number of Sylow p-subgroups, then m | |G| and p | m — 1.

Proof. (i) Let S be set of all subsets of G with p” elements. We define G-action of S by ¢.5 =
{gs : s € S} for g € G,s € S. Check it is a G-set. 1.s = 1s = s and g.(h.s) = g.hs = ghs =
(gh)s = (gh).s. Hence S is a G-set. Decompose S into G-orbits, S = G.s;UG.s9U...UG.s,. By
Lemma 37.1, we can pick S; with p 1 |G.s;|. We now need only prove claim P = stabg(s;) has
order p". p1|G.si| = %, i.e. p" | |P|. Suffices to show |P| < p". Pick an element s;. Note
P = stabg(s;) means any s; satisfies PS; = S;. In particular, Ps; € S;. Hence |PS| < |S;| = p".
This shows |P| = p". So P is a Sylow p-subgroup. (ii) Let P < G be a Sylow p-subgroup. Let
H < G be any p-subgroup. Wish to show H C conjugate of P. Let S = G/P. Define H-action by
h.(gP) = (hg)P (h € H,gP € G/P). As an exercise, check it is an H-set. In fact, it comes from
G-set G/ P by restricting action to H. By Lemma 36.1, p | [S| — |SH|. But |S| = |G/P| = % =q
not divisible by p = p 1 |S#|. So S¥ # 0. Let P € S¥. this means for any h € H, we have
gP = h.gP = (hg)P = P = (g 'hg)P for all h € H <= g 'hg € P for all h € H. Hence
g 'Hg C Por HC gPg!. Hence H is contained in a conjugate of P, giving (ii). (iii)Prove
that m | |G|. Let S = {Py, P»,..., P,} be the Sylow p-subgroups of G. Define G-action on S by
g.P, = gP,g7! for g € G. Note |gPg~'| = |P)| = p", so gP;,g~* € S. As an exercise, check S is a
G-set. Sylow’s Theorem (ii) says all elements of S are conjugate of P; say. So S is a single G-orbit.

5] = |smops| = m | G

Theorem 37.2. Let p be an odd prime. Then any subgroup G of order 2p is isomorphic to D, or
Z7]27.

Proof. Suppose G is not cyclic. Lagrange’ Theorem = non-trivial subgroups have order 2 or
p. Also non-identity elements have order 2 or p. Sylow’s Theorem (i) = there is a P < G with
|P| =pand [G: P| = % = 2 = P isnormal in G = P <G, P # G. Sylow’s Theorem (ii)
= P is the unique subgroup of order p. p = |P| prime = P = (o) with ¢” = 1. Pick 7 € G— P.
Order of 7 is 2. Otherwise it generates distinct Sylow p-subgroups. Similarly 7o has order 2. Note
[G : P] =2. We have G = PUTP = {1,0,0%,...,0"" Y 7,70,...,70P71} with 0? = 72 = 1. Also
(r0)? = 7070 = 1 = o7 = 70~ !. Using these relations, we can determine multiplication for G.
So D, and G have same multiplication table, so are isomorphic.
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