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CHAPTER O

INTRODUCTORY MATERTAL

I The impatfent rasder should starc tn cH. 0, 51, then ch. 1, 43, etec.

and perhaps read the prior paragraphs only if and when he needs.

FOREWORD

Thage mploe Lars srimarily written from fooc pasandings of GROTEENPIETE e lectures during
s wisti ap SUNZEE th the Smar of 1971, Boupver, thege resordings wem sugp Lman tod by
gzarcisss, rafcrencea o elazsical atgrocsid gaamstiy,; histsrioal eorments ond concrete
quotationa of sush Mpiblag® as 30, £G4, AT

GROTUZNOIECK hiralf coes mal gszund & ruspeneibility far the publication of Shesa noies;
I baligue hougver tast siice no acdesuate "testbooks” S=iat today and the original o] Yoat fgna
resent comaiderable diffimultivg b tho, pagirnan & publisatist of thin kind il halz ¢ muoh
tHder oudiodes. Thid 1F {ntanied as an incroderiion to g edurces SGA, EUA ixsi WIZh Soncretd
raferinoss to Che, t and paje murhér, D Rawa i-'-‘"'l;‘ii:!ud tha biblisgreshy by raferring fo othar
introductory publicailons aush & the JIEUDOSNE arsiales, prernam'y leoture notas, €. Noat
of thom gontzin sketpiy or nd preofs at all, e taey o gidragsed fo 2 differant t;.-eu of
readon, cf. MACITTALL-Senenrd, widuagred bo clasateai gloedrdis gc:;u_.-.,.zr_a.l". I fope 2kzs phesa
lecture notas, dirssrsd sromirily 20 bugiruring graducte gludencs, vill bridge the gop, betsam
the mrwuiousiy mgntioned leoturs moles ard shs sourcgs. To acd ERe mewoomar, tha reader vill

find many mopa daz=ily thaw ik curco=zry 1 informzl publicasions of this type. I took advan-

e e : .
”‘l:ﬁw bracketa T _] tn taxt nafar w0 ¥ interpolatizta (F. Gxelals

fﬂim namas o aubthore andfor stloe of bocks, popers, #22. bessan " " rafer to tha
Bibliogmapng. |
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' soms of the oral fetions 2o insert "yirrarias™ ot che baginning of most

ﬁtﬂ “wﬂfw m—ﬂ;?.‘ﬂ#d lectures, or my am intiiative tf I could nov find any batier
#ource). Thare cra mawy complete procfs, and othars cre almogt compiets with very fau, really
trivial datolly laft to the recdar.

¥o knouledge of “old-time" or "slassiocal® alzebralc gaometry was cagumed although

CROTEENDIECK himmelf gove ¢=plas bwolving ploe ::l{nbm{a CUFDES or surfaces, eto. In mow
pointa, eapecially in the dmereduciion for future applisd mathgmaticlang and tn tha Semery of
the cowruw, I tried to butld some bridzes with "old-time” algabiaio gaomotry based om the study
of algebraie variatien {nstead of scheres. If this mizht sawm contrary to GROTRENOIECK's
mathamaticol apiris, ¢ 12 defini vely Mok unfoithful to ain currane patlosophioal or eocic-
logioal worrias. In his prior visid t2 Buffale, and in Faty other plocas as sell, GROTRENDIECE
esTpaioned ingt gzmart bnoylec=s ond technology. Hew fun U¢ Ignome that many pecple faal
disappeinted if thay do ror sve aﬁ.mri:a!gtbmamur-waumpuguminmﬂgsbmia
Ceomatry tezt? Or they comploin "z priori”, Gust by “hecreay " & there {2 a Lot of algabre
end eategorica! lenguage but - yhare fa the geomeiry? I bry to overcoms thiza peyohelogueal

1 £ € 1 Entroduced by

I hape that vary scom after o final pevision of the whole courss tha second part decling
with the sategory of achemas will appear.

I Impm-ﬁnlmmm:hwm&rﬁ&uhﬁmmﬂd@wuhm
these notes, moinly: J, Dusicdin, 3. Fall, L. (wgtx, B. Borwher, ¥. Lazarinaff, N. Blun,

Ie Qzeld, P. 0. [n, &, Schoiuel, 6. ﬂmn?&:. Hﬂﬁ Ey umu#?;q il k_iﬁ'.f?fgin ¢
mistaken, typegrevhisal, linmuiatis, matheme g on sspacially grate o
all to r:?mﬂmm uha’m 8o I:;‘ndlm!::h -uuyba@_mﬂ g0 gemargus with ais tima, Ha lectured
#wvaral $imes for pariods of zimos: meven howre, with only a faw ghort Brecks. Who om
beliave that W ia not intereoted in Mothamotics anymora?

.lowt Pbut not least, I’mw;g mhlﬁmhﬂnﬁpﬁl}m. G:ﬂ!ﬂ::‘:{, for her 1
e=sallont job and har ongelic potience, eorreeting oud retyping tha mmuscript dozeng of timen
and naver gnoe protesving,

AUFPALO, Juna 1574

TEDERICO GAETA
(£ ' ‘—'

r;. FROFACANDA FOR APPLIED MATHEMATICIANS. Not more chan.one eenfucy ago tha distinccion

batusen pure and applied machematics was to & large extend srtificlal and unieporesns. For
loacance KLEIN's little book On Blemann's Thaoew of Algebrate Funstlons And their intexrais
(1880}, (Dover, 1963 (cf. sample teproduction of the indax), incroducod the scudy &f

Riemann sucfaces hy considering the praceical physieal pesblem of lamlmar fluid flow in & plans
or arbletracy surlace, Ha avan quotas MAXWELL's treazcise oo page one!

The nacuzal concinuation of sueh "sramscendencal #pproach” (n our times is tha atudy of
eo=plex algebratc manifolds, developed by considering compace KRHLER manifolds of the HODCE
Eype. Although this cype of analysis provides ona of the mosc beautifl “sncramees” ea the
vdifica called Algebraic Cacomatry Lt L3 not consadered as sia Eost fundiments! one, The main
Pentranca” during mAny yeats, sftar MAX NOETHER (atound 1970) was the frus "algebratlc-gaomecric®,
originally relaced o cha study of discinguishad projective mmdels of slgabraic varieties and
somsequantly to the ueory of immariancs. The clasaieal papar of SRILL-BOETHER (Mach. Aan., [974)
laid tha foundacions of "gecmetry on an nlgabrsie evrva" ficm the bizacions! poine of mux‘”ln

Spproach the applicabilicy and SOnC=aCanads \ms 3till yery clmar and never quescioned,
Gradually the {nfluence of algebra, painly cossuracive dlgebra became zore and more impoctane
and focreasingly more and sore abstrace, The prasentation of the fopics bacime mors and mors
decached From the applisations, ;

ﬁ}: ®n particularly gracaful to N, Barry Fall for meny valushlas Bugzestions io writing this §0.
Two ll'ﬂduqibtmlﬂﬁp:u VATiacies srm blrationally equivalens 116 their flelds of raclonal

RE ate Lsomorphic. Classiesl algebrat scme tdered sain!
atf Leraducible slgebraic vaciaries, 5 . T salaly blractonal classes

0-0-1




| Today, for miny colleagues, CAOTHEWDIECR's Algebralc Gacmetry locks like one of tha most
shatrace and yrapplicable products of cusTent machemaeical chought. This pre judlcs cauzsd hars
aves befors the students of racthemacies within the U.S. were wortied about the searcicy of
seadente positions..s « [E they ever hessd CROTHEMDIECK doliver one of his Susvaval calks sgd)
sodern Sclance; cesmarch, cechnolegy, #c.,40s thelr worries mighc become unbearable. Whan hi
asked the audience abouc the usofulness of those chings [ recall che classiesl examplar how o
LR formulate his laws oo Celescial sachanics Lf the Greek would paver study the conle swed
gleetromagnetisn vas also gporioned, énd ics patencial harmful conssquences discussed. He 13
yeey libaral min aod Lo spite of that he slloved us £o use plency of Lape pecorders.

¥e wvant to ghow that alchough CROTHENDILEGK's origimal presanzacion looks very abstraec
and seldom deals wich possible applicarions, his tnspiracion 18 Very concrete-

1o eontrast with Algebrale Geomatry, che popular beliefs regarding Diffevencial Geomatzy
ara totally diflerenc. pifferancial Gecmatry nevar loat iEM flaver of applicadilicy, For
propaganda, 1 would like to show in this ineroducrion chat such pricfical sfructuras &s
differanciable =anifolds sre matural sxamoles of locally vineed spices. Thus, LE & reader 1o
sequainted vith diffevencisdle manifolds, GROTIHENDIECK'S schenes eimnot look so terridly
abstTaCt.s» = [If i# True, wi do DOt assume knovledts of differencizbla panifolds as a logiczal

rereauistee far this course, buc 4 grudenc Intsresnad spplicasi shoold be incarese =

differsnt iable mani folds.

The purpoas of this infor=al {ntroduction is Lo davelop an anslogy between these nav
sathematical objeccs {nrroducad by GROTHEWDIECH and cartaln objects within the acructurs of

Mathematical Fhysicsa
1 will salect an applicacion which is of interest to m=. Conslidar che "configuration spi

!‘ or the “phase spaca” W of an holonemic dynmamical system with "nedegreas of fraedon™)
although old beooks ara meos vexy pracise, it Lz clear cthac for sany problma conceruing 'n =
should cnly consides local Functions £: T+ R dafined within an cpen et TS LA For

{pstance & lagranglan coosdimaze function qg (L = 1,2,...,8) &3 only définnd locally for =
d

eereain coordimate chere . The Lagrange squations of macion —=& %"—1] - .§.th. =0 arevalld
; : .
caly in certain loeal coordinice aystams (qt,...,qnj + To examine ths dehavior of the
dynamical syste globally we mastc picce cogether local funceions corresponding to different o
sutz U .
This iy schisved by first verifyiog that the set of functions [£: U<« R| 09V ] form
ek woit usdes polacwise additicn and sultiplicacfon for aach T . Denots

commiitative riong vi
sing by TfD . 1f V< U chan there {3 a pstural sestriecion map t:; TN +T(V - The'm

t: gaaigns co evary B¢ 0 -E Lits rescrictiom witn respact to ¥ , i.a t:fJ;:] - q:l'lil': vT=R
In other vords the local ¢"—differsaciabla funceicos on U form 4 "oresheaf™ [ef. 4, III).

* gext we gusc cousidar the "germ™ of F: U =R acawy polne x €0 . Let £: 0 -+H a2
= ¥+R be locil functions; then E and & aru equivalent funecions, £~ g , {f cheyageaeons
W un yisxime germ of £ aciche pafac x g W desoted by € s the squivalence class of
funccions detarmined by this relacion. Hote that this definirien appesrs Implicitly L= elams

"complex andlysis” Ln one wacriable.

Tt {a sasy to verify that the germa :l' for all = €W form e local ring (in che =ode
technical gense). Thus, with cthe addicion of cercain gopalegical sophisticaticns, we define
Syhanf of germs of loeal c®d{fferenciable funcilons on H" , denoted by & m: {n tha tax

I & topologleal space), as the disjoint sum ue of the local ringa, & , far every
:EH Hl"‘ H,:
polat of M . Thus che differantiable sanifold V. or Y of Classical Mechanlca (o= fot

0-0~2



[Ehat matter any diffarenclable =anlfold) (s an examply of s locally ringad space {z,al] . e
# topological space X with 4 ¥tructure sheaf 8, »

Inm spite of this heavy teralnoloyy, & shest of peras {5 real]
| ¥ &n old des which ha be
Preclar through & new and uzefyl sophistication. Thage abgtracr idesy aTe noc :ul::nl::
:hunc:. H:hﬁush they ean be introdueed in an abstraer minner, thay can ha discovered
experimentally by working wigh classical exanplay,

Sheaves were (ncroduced o provide 2 transiciog from local po global proparefas. In thia
ragard, the global 2edy of cutvos which solve the elaggica] Bquacions of wotlon (g difficuls
Problexm) has baan simplified by the incroduction of sheaves, Lf ve sgree wirh LICHERoWice
,Ehat the mase concreta model of differenciable =nifolds {3 ghe "configurarion space"”, then shaaf

PPaars o framaform a concrets problem inre 4 Srcifieially sbsprges one, purely for
technical or astharic feisonz, However, Rzcording td the modarn SPproach, nan-singulac

the “Figld of tationzl functiong” of an ( reducible algabraje variecy ¥ by the shaaf of germy
of locsl regular funecions of § (which no longer need to irTeduciblgl CROTHERDIZCK 5 schasy

kra 4lso locally finzed spaces {x,glj. i)

It would by dishonase eo ignore hare cercain mew tomplicacions: 4 diffarentiabla manifold
ia BAUSDORFF, & scheme 5 iz not gven 1‘1 s LE L8 Juse Tﬂ v L8, for gny soupla of polats

=,y €5 there exist an opan peighbarhood of vom of them which d0 nor concain the other, biye
this Telazienship fs noc sy=ma in  x.y . 1In other vords = singls poins x € 5 iz zpe
Becessarily closad; thacloyure i:I af fx} =y be vary big... We ghall coms back ro ehis
fa Vol.lI. pn this Vol. I we shall deal zainly wvich tha budlding blogks of Ehe schemes, che
#o=-called affine Scheaa(Ch. 1IT)(or affine algabrais Apacas, cf. Ch, u.i

1. PREREQUISITES Ve shall assvme familisrity wich the basic llﬂ&llc stTucturas: groups,

rings, fialds; che volumea of "BOURIAKT - COMMUTATIVE ALGERRA™ contain everythiog we are
EOIDg B0 uss, The treaciss of "CARISKT-2AMUEL", although sowewhat ofd Eaphioned, iz glse
Bsafil. We asaume familiaricy with che mlemsnrs of guneral copology, fopological spacas,

Iz addition, the resdar 15 Buppaded to de familiar sith the Language of Satégory thaory:
(£.4. Etha definirion of category, of functoes From a SACEROTY Co another, the category of
funetors betwesn fwo glven categorims,,..and alpg perhaps the mociom of an &djoint functor,)
Tha concept of a L 4 fun of a catugory C o cha catagory of sate, as well ig
the category of covariamc Tapresancabla funcrars O « Sets, Plays a Big role 1o cthys course
from the very begloning. 1 tnclode the minimm noeded bo follew GHDTHEMDIECK's leccures in #1

of Chapeer I_.J
[2. smousy or vor, 1
In spite of all GROTHENDIECE's revolutions, algebraie Eeometry ia

stlll a "geometrieal theory of equations”, Thia is made clear in Ch. T
starting with a very general system of polynomial equaticns g -[fJ (T,) = 0] with

arbicrary index sets I,J with coefficients i{a a Rround ring k (commutacive,

with unfe) (2}. We shall conslder solutions (a,) (i € I) with coordinates a; belonging

n}'ﬂu: fpaces are callad um_:-rtul fpices by DE MAZURE-CABRIFL bacause those which do pat
bove gn ix 42 sot sdes o bave soough gromecrical inceresc.,,

ﬂ}m Fiogs conatdernd hare will be commitstive rings with gnie, Any ring hoscsarphim
£1 A48 preserves che unic {tﬂ‘} - ll} « Cf. Ch. [, 82,

0-2-1
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l’!lril:l‘..lﬂ with categories £2 1asrn the o

'J* &) courage the resdas with licele
| :'lﬂx':’ “-::-hu Iﬁ:n:l:q:: tn this Mgﬂ__&.!l Tha face thic we 4o not use u*
| | ' particulas propercy o tha saceglcy E‘ s very leifs cE. Cus I, §1 fo2 !m:'lhﬂ: {nfo
k ' waloy ¥ = L Ttk 60
- e v aocatiom scands Iﬂ {ltphnhﬂ "rn'im i Ilﬂluﬂih un -ul, oge deal mtu-H
f  with theam old subjectd. .of lt.ud.r of tul ﬂnhni:r [+ y AT ul.u. ph‘y 4 con
' darabls ﬁﬂtﬂﬂ- col®ast 1L T : i - t‘;“r-" r-_'t L" W i i ”-':._.1
“’u the ciss k= Z, 3 12 uudu'w (= ovac IT'MM
L 1 = y T TR
F - T T Ll
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[ e+ ~2w +2m  raw - e PO =1 p(a) = xpga) D
A€k

AS a consequence, we have these three trivial facts:

a) the set of k"-valuad points IA&') i3 the same as Hom (Ak"):
- k-alg

B (k') = Hom ((A,k") .
k-alg

b) cthe map k'« %, (k") defines a covariant functor G, + Sets

€) to any homomorphism h: A + B of k-algebras, thers corresponds

a map i{n the opposite dirscrion:

B 3,0) +%,0)

defined by composition in the only sensible way, a), b) redefines tha

functor of solutions k' s Iat‘l:'} in an intrinsic way: IA is the (covariant)

representabls functor G.k_ < Sets represented by A . @) #xpresses the fact
that the covariant representable funectors IA (A € ﬂbﬂk) form a category

equivalent to the opposite catagory E; of Gk and the map A = IA definas
4 contravariant functor Gk - G.l: .{IJ

The previous ecategorical properties do mot tell us anything specific
about the category of k-algebras G) o lts "geometrical interprecations".
On the contrary, in Ch. III we shall attach a geometric obiect, the so-called
affine scheme defined by A= (x,el} which 15 a particular case of 8 so-called

locally ringed sgacesi} to the funcror IA + Before summarizing this,

W1 tta tosks “tos abatract® comalder cha emdeddtng 2, (") G k'T | huck thae the coor
disatas of P" are the weluss F(5,) of & syscam of * gavarators sod chas dizragard the

h."!ﬂ- Froparey is crea s snv estegory G .

halﬂl'hﬂinu foorseta.

wj. ringed spaca (,I,!I] L2 & paiy eomaistiog of a topological speca I plus & seructurs
shasf .x on X . Moot of the geomatrieal ptructures Ln modarn nu:-_:-u.u ars ringed
Bpacas; for ioscance aoy kind of =anifolds (copolagleal, diffavencisble, somlyeic). They
aTe topological spices I with a shesf of ger=s of loesl fuoctions of the corrasponding

Eyve (eomticucus, differenciabla, anulyeie;«.<)s "Locally ringed” meems that che stalks
ore local rings. Gf. . III, §7 for furrher decatls.
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I: ghall very briefly recall here what the geomerrical meaning of k-algebral

{s, in order o firmly eatablish the links between old-time algebratc

geometTy, Cegmetry as a whole, and current applications.

1n classical algebraic GeoemtTy k ia the Field of complex numbers:

x = L and we look for sclutions in 2 (n= #1)£l} The ser V = vs{t} i

defined as an Mglgebraic variety" and the restrictions E|V te V of

t® » ¢ forma finitely generatad C-algebra 4 .

A is lsomorphic FD E[Tl,...,I“]LJE where JE' denotes tha tadical of |

() a5 & consequence A 1is sn algebra wichou

(HILBERT's Mulls rellensatz)-

pon-trivial nilpotent elements.

polynomial funccions E:

Conversely if A 1is a finitaly generata

A can be identified with the t-algebra of E-valuad

zeduced C-algebrd,
polynomial functions om an algebraic variety (for instance in :3 if Vv

of Finitely many {rreducible surfaces, finitsly many Lrre

ducible curves and finitely many points. Im

v conalsts

particular ¥ __1is trreducible £ff 4 is an iy

dmnalnfm In classical Algebraic Gacmecry th

e .

finitely generated g-algebras with non crivia

T nilpotent alemnn:scs) had no geomerric status

E8VETr. CROTHENDIECK opposes this view, becaus

u.,n-mn § has finlza or infinlte glesanca has oo izportance because of tha fact that che
1deal 37 geoerated by 5 has a flotce besls, afrec HILSEAT's Jazlssici

lIJ'ﬂ“ radical J; of tho tdeal o of A s the get: ﬁ - [a & Al3n E‘E+Il. €dl ;
radteal tdeal L£F ¢ = /3 « 1Tn particular i e the

obviously .ﬁ 0. o ilaw
wtlpadical of A , depocad by NLL(A] .in this courasi 4 1z peduced LEF HWIL A= 0, Lo
e onty milpotent elumen af A ards (ch Wi

“"m eriginal agscement (good for any slgsbraic elomed
all tha "sscos” {Mullgcellen) of the jd=al g thasm = £a tfor soma pomitive lnCeger B

(4)
A commtaciva ring vith unic is an tntegral domain LT A = o] i &4
le. LEA=(0), a,bEA=~(0]=ubpo. (0] ts muletplicorively close
&)

An elesent F of tha ring A 1a called nilpotenc 1ff @ =0 for sope iuteges =2 0

{ef. foocnoce (2) of page 4). Applisd mathemaciciany, en
. p npinaers, stc. Lntreduce ail
alezmenca any cime chey distegird "Infinlcesiml qu.lu;.:in" of w:-dnr xh, by wftﬁ:““

h a "lh. Diwns

fiald %) is cthat 1f £ vantshes 1]
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' algahras repregant infinites;ﬂs_;l obiacts,,. (c£. ch. I, §13).

Thus to halp his Eeometrical intuicion the Teader ghould think of any
k-algebra (not necessarily finitely generated over gp arbitrary ground ring
k, ag befora) as 4 natural Beneralization of the algebra of Polynomial

funetions on vy » (the problem 1g te "recovar v from A4 gq Some sense'),

homomorphi sm Av -*.hu of the corredponding rings of polynomia) functions
en V and w, But since hon-reduced algebras had neo Status, eh;nica;l
algebrafe gedmetry could not pe "Funetorial® (functors were not explicitly
defined, but were "uged"” implicicly Teépeating often larolerably, long

SteLements, ss)a

The geometrical obi{sar fx,aI) s the affine gchems attached to any
A ﬂtﬁ‘.k ¢ 9T equivalently the affine algebraic Space :A Tepresented by

A 15 a very POWETful refinement of the old netion of algebraic variery,
The spaca x is the Shectrum of 4 ; Spec A where Spec A 4,4

the set of a1l Prime ideals of A) (X =g 4rf A=0) , The

topology of x ia defined ip Eerms of the radieal ideals of 4 in 3 munner
inspired by the ZARISET topology of affine Spaces, (Cf I, §14). Spac (A)
dlone doss not allow us ro T8coOver A because Spec A is hemeomorphi ¢

“ith Spee(a/Nil 4). Thus, in order to construce SE2SETa 1t {5 sufficient
Eo restrict ourselves t0 reduced algebras. The Structurs sheaf &, together
wvith x enables ys ¢o recover A because A= T{J{,Ex)- = 30{1,15:} » Llom,

A4 i laomorphic with the ring of global sectiong of the sheaf Gx ® A

ts the 0% cohomotogy k-algebra of X , with coeffictents tn 8. mn_’

0-2-5
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definition of Gx iz guite technical but we can mention hara that th2 sta

af every peint B € Spec A 13 thae locsl ring &‘ . Actually all the
constructlons make sense in the category & of commuitative rings with un:

(1)

Hote that k has no tole in the conspruction” ~ ...

CHAPTER I

FUNCTORIAL pESCRIPTLON OF riE SETS OF SOLUTTONS
oF SySTEMS OF POLYNOMIAL EQUATIONS

l Queationi...He underscand your vorsies phout exparc knowledge ...y tha wvay,
{f wn try to explain tad layman Yhat algebralc geometzy in it
sagms £6 me chat the eicle of tha old hock of EXRIQUES 13 aeill

l.:lﬂu.l.:iﬂ}: What do you thick?
CAOTRENTIECK's anawet! Yes! but your Maymes® should kngw vhac & syscem

" of algshraic equationt iy, This would cost year3 of scudy Co
FLATa. .|

Questioal.-.1f ghould ba nice to have & licele faich that sfrer two theuasnd
yeary svery good high schoel graduate can urplatscard what az
affine acheme is,.-What do you chinkl.sa?

o-lq-irlt-riliu--!

from & liztle Survival talk with CROTHENDIECK.

spouny, let 5= (fp] G EL &N iodleats an arbitrary syszeal?) of polysomtal
#quaticos t!{'rl‘.l = 0 with cosfiiclants io® commzative grousd ring with unic ki Weu
ghs aat of solucions 'ltgth'} , (KM€ ﬂbﬂk} (3 45 an srbicgary k-algebra. The sap k' v,
definey @ covaziant functort « Sers, Our maio proble= {s to charscteriza these functa:
{up ko aquivalsnce) indepandenc  of any affine e=bedding ?50-‘] 'HI!I . The soluridm ls
functor O, 4 Seta ia eguivelenc to sose #g Lff it Ls sguivalent £0 gcme EN defined b

DU AU Rom, g (AT (1 k' € obdy)

m Thia locks ply:_hnlanul.l? gigrurbing. The ring &f gnefficiencs af our original sysci

squations disappasrs +c1 NOT completaly! Thera L9 slyays & homeserphilss hi o A

(mw orl,) s chug A contsitd & cing ZimE (=) = ket h) vhare m ia ghe chatacts:
of A o " Even chs snamies oF GROTHENDIEGK'S appcoach to algebraic Geometty agrag tha
schiemes &TE Pﬂtl:ﬂlltlj‘ ageful forf s=ithoatlc prnlm-..g plave 3 ynlggzg; rﬁ;..

hlm:quz:: "‘:Lm-:::ut theory of :qu-r.iqng...", not necessary at all o Eollov thism »

@) es, gum=ary of the cOouTaE-
h}ﬂ' 8z, ﬁ'k denores the categsry of k-algabrma. Yor g =2 (ciop of integera) ; GI.
ths cacsgpoTy of commstative rings with unlt.

1-0-1



Il-rh:n: A= rlrp {9 = Fi‘ﬂ ts an fdeal of ths pelyneatlal ting rl " E“iliﬂ}' We say that

3, 1t Teoresenced by A and = functor =+ 5ert As equiveleny s somg W irf {e 45
Ji e r ' 5
L]
rnErugnL:hIf{ ,. (ef. 413 IA L2 called an affine dlgebrale rnace over k . 1n particuler
for A= PI : IP --!I is the standard affine rpaee of gvps
1

1t £3 o purely cateporical
fact that the funcears I, 2re the oblects of & Q;FPHEI L 1
carepory {3‘; af ﬁk = 1n particular for Xk = - Mfz
flots wver B) wffin= alpehrals spaces,
vith tnie,

t

" ALL Ls the category of “sbgoluge"
dpposlce o che eitegory G of commurarive rings

Ve divide Ch. T n two parcs,

gccond rare deals vith some particu
historical nganing.

the firze part daals with the

proaf of \\'ui'fh "E;_ ~ The
Tar subcategories of G, hay

ing dmporrame Eeoneerieal and

REMARK.  ¢h. T Follous thic tapa very clescly. The contents ls almoas
duction to the nau Springer cdicion of ECA=1. No fureher usq of this

Em-ssvrl.ngcrfﬂ] A recall on represencsbile Funetors apd k=alpebras i3
CROTHENDIECK scarted in &1, I

{dentlical o ghe Intro-
batertsl dn pade {n

added in 41, 2.

PART 1

e
THE ISOMORPHTSHM Affk = (Ik

SMARY, 1n order to characterire the V. 33 recreseneahie funceors, we establish phe equiva-
lence \'l = i.r? (2= TI'S} Cet. $8) and Ehen wo prove ¥ = :r.‘ (A = rrfﬂ (cf. 80 becauss.
ef tha unlversal] propercy of A, Converscly say 4 g (:hﬂi £an be obtailned s 4 quotisnt and
any I.n ce=es {roo some vp .

!+ REPRESENTABLE FUNCTORS. CATEGORIES OF FUNCTORS Hon(C, Sets) 4ND
lom(@®, sets) . catecontss s/c anp oy (D) Let A € ObC be a fixaq
chject of the cdtegory C . The map

(1.1) X » HWIC{A,X)

“}H tontalng all the nécesgary Prevequisices on representable funzzors, borrowed from

CROTHENDIECK's Buffaic courses on Teool and algebraie ETOURS.

The lecture notes of wanry Alyo scare with this saag ippraach, however ManIy presanta
coasiderably lesy decalls thao in this course,

( This secctan iz borroved mainly froa the Bulfelo MGrcourse, Ffor several Frasons mainly
[ - .::u a "mpgy” confusing diffarcuc hypochasis 1 peefercad eo rewtice che whols Eopie by
Eyielf. For further reading ve reesemend O-Advances, If rags IT6 {(wichour precfe) op
Fordémcpcs, Page 193-01. X formi Cred tmang 0 dn

L3 piven in ECA-Springes s, 0,31 pa 19,
The eontces are TOUBKY and $oa, 3, 1. i uges, O 0, §1, page |
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| g;aigﬁing ta X the net{n of C-morphisms from A to % 1is functorial

X , L.e, it defines a covariant functor 1?&1 ¢ -+ Sets , which is eall

;-l:"

e

the covariant functor ¢ - Sats represented by A .

"
¥
.; in faet (1.1) defines the map ObC - Ob{Setsl. Besides, if X E T
‘q .i a wmorphism in © then there is @ patural map
: | L
(32} HWE(A,X} S— chm,'n

defined by left composition with £, 1,8. u™ fou , Yu € Hmc{ﬁ,?:] A

gimilarly, we can define & econtravariant functor hﬁl ¢’ {2-*)5“3 by

(1.3) hA(KII = Hmncfilﬁl

£
and hﬁtf}: hﬁ{‘i) » hﬁ.f'x} for every C-morphism X =Y where

X
2
ol
| (1.4) hy () = vef ¥ v € Homy (Y,A)
'ﬁ ha; r_:' 4 Sets is the contravariant fungtor from C to Sets teEreseg;'gi
'::I] bE ﬁ -

REMARKS.

= :nt“-‘.

nﬂf course either one V, , hﬂ can be reduced to the other case

{ntroducing the opposite category e o
2) path types of funcrors Y, , h, appesr very often and maturally

The main examples needed in this course arise in Algebraic Geomatry whe

W) yoe any pair of objacts X,¥ € Oob, ac-n::l,!j 1s s _pet. Wa did met study any lnun!.l:i:m
aspecta of category rheory, for some aacthors OhC i3 & clasa (not necessarily = sac); or
folloving GROTHENDIESR (50A 3), Lz can be & Bij Wet gaciafying certain propecties which Ls
ealled 3 yniverss.

mc 9 {a the oppoaice calegory of 0 {.g. Lt has the sama ebjacts and ths sxms mztows &4 (]
with the dizmction and the ordar of composicion of arrovm cevarsed,

I=1-2
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C 1is the category Gk of k-algebras (where k 1is a fixed ground ring,

Commutative with unit) (ef. §2) or its dual ‘1;(11 « In facr the elemencs

{r{ﬁg homomorphisms) € Hmﬂ (A,k") (k' e ﬂhﬁk} are k'-valued Euintsﬂ
k

of the affine dlgebraic space represented by A ,

A covariane (cnntravarianl:) functor F from C to Sets 4s called

Iépresentable by the object A € OBC (ff p 1s equivzslent to some ?Aﬂ'l.

If this is the case the spresenting obieer A {s datermined Up o {so-

worphism. In order to make clear rhis Statement we need to formalize tha
Previous definition by intreducing l:h.a c2tegories Hom(C,Sets) G_{QE{(E', Se
of cmrilnt'(cnnl:ravariant) functors from (¢ o Sets. According to wall-
known r:nu:.i.pu-.:\:'ﬂJ an ocbjpct of Hom(C,Sets) 1s a covariant functor:

F: C - Seta. 1r F,G € b (Hom (C,Sets)) a morphism gy: F 4 ¢ i3 a

matural transformacion, f.e. for every A € 0bC there exists a map
u(a): F(A) -+ G(A)

such that far every C-motphism f£: A 48 we bave a commutative diagram:

715
POA) — vim)

{115) -ml l‘{l}
G(n
CUr— a(m

In pareicular u is ac equivalence {f the verciesl arrows ufA) are

equivalences for any choica of 4 € obe,

ujnlchgu the faee thag E; n idaney naCyra with the cage af th =ea )l
Sffine algebralc anices o kK_fs che mafn rasal i s
o LiHine slgebrate apaces over | L alnzeaalt of chis ch, 1,

Raivaly: “potags Vith coordinaces {5 k* (vw do mot wane coordicazas..,.).

a)
IfF G0 are Cwo categories Funce (G = B8 (en ta g covariane fune
G0 bay 49 2arphisma :r;- utﬂn.t’f]uurm;inu. X : g

I-1-3
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We lesavye to che reader the case of Hom Kf, getrs), L.e. of the cacege

of gac-valued contravariant functors).

Tha categdry ggg_(ﬂr, sers) will be denotad by € . Consequently
2" = fom (C, Sets). ¢ is a patural enlargement of C obtained by idenci
fying any object % € ob{ with the contravariant functor hy "represente
by X"i hx_ {s the gontravariant functer from € to ssts defined by

hx(‘!} = Hcmcf:r,:{} . 1n fact, the embedding functor

defined by
(1.7) LX) =hy ¥y X € 0bC

ts a Eully fatchful funcgggtl} from C Eo ﬁz which enables ug to coasli

9 -
* as a full suhcategﬂgz(‘} of C .« The objects of the essentisl Imiga{

of C by 1 are the so-called eantravariant regresegtable fUneroTs.

The covariant repreésantable functors, ysed extensively in this Ch.
are obtained by applying the “-construction EO the opposite category c'

1n other words: we cad dafipe dn smbedding

(1) gunctar #: C -+ 8 &s falshful L for evasy palr of obieste AB.E 0bC che duducet
Hom(A;B) Hom(F(A),F(B)) La jnjsecive, & faichful functor i3 colled fullv Faichful 1
for evary cholce of 4,8 the previous map {s bilecgive, LI F i falthiul, Fi0) i3

gubeategory of & » ir ¥ is Kully faichful the sat4gory: F( is a full subcecegor)

§ « (ef. foccnote 23 -

@ e X, ba twe objects of 3 subcacegocy B of 3 category O . Than we have & natut
injection Hmnil,ﬂ & Mpm (XYY ; 2.8, eveET} morphiss io 8 {5 slso & mocphimin &

g is s Full subcategosy of G ULUff For evary patr of cbjests XX £ 0bE the previov
{nelusion i3 3 equalley?
Eﬂlnﬂjﬂ = Homyy x,¥)

E}th ttE=+7F baa fully faichinl Funcior érocm B 2 3 - <ha sezential l=age of
5 is the full slheategory (ef, footnntde (1)) of T whods ol jacea AT equivalsnct o
the image LI} , L. ¥ € ChJF bolongs ke che masencial Lmage of & Lff L EOhI

that r'lr{n .
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(1.8) s v E. L B

of C in the category of covariant functors from € £o sets by (X)) = Iy

being defined aa Y » jx(Y} = HHﬁ:(X;Y) « The covarisnt representabla

functors from C to Sets are those of the essential image of C by § .

We can sunmarize chese considerations as follows:
There are functors hx = Hmuc( :X) and j?: = Hamcfx, ) from C to

Sets of type

{1.9) Yo hx{'r} E Homcli‘f,x] T () = Eomc(x,'f}

£
and fransforming C-morphisms Yy + 2 by composition in the only possible
Way., Thus hx 1s a contravarisnt functor: c - Sets and _1 is a
—Lfgvariant functor;
cavariant functor -+ Sats. We say in both ¢ases that h (resp jx}

15 & contravariant (covariant) Functor from C to Sets Tepresented by ¥ ,

More generally:

A contravariant (covariant) functor F from C to Saets is callad
representable {££ there exists an obiect X € 0bC such that F = hx
(or = 1y) + In both cases we say that X 4s an object of p repre-

senting the functor F . 7t is clear that 1f X' = X 1n ¢ then x!

fepresents F iff ¥ vepresents F . In other words: the Iépresanting

oblect X ia defined up to iaamugp_his::. (1)

REMARK. In most cases & contravariant (covariant) funetor P rapre-
Sented by X will be identified with hx {or jx) on the precadant

botions wi]l ba uufﬂnitnt.{z}

o,

@ Fs laave che Sa0y verification to ths resdar.
This dossn’ £ cause any prablen as long az we are noe concesned sbout untque Laomorphis=.
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L
2
f

[n the more naphixticntud questions it is nacessary to emphasize tha

cholce of 2 distinguished element £ € F(X) which is the image by the seC

gquivnlunce Tf gets - Sets of tha identity ]'K [ HUMG(K,I) = hx{}t}

(= ]x{m} ., In faer in the contravariant case a morphism Y = 2 4n B

induces a eommucative square

(43] 1
b, (2) j——? htu‘.l

X
(1.10) 7 l lyxm vy l

and, in particular, for z2=X we have a map hxl:ﬂ : hx(x} -+ hx('r} such

.that (hx(f'j} (‘Lx} =f ., ¢ has the following universal property:

(1.11) (g (D) (B = FEN©

As a conssguence when we discinguish F from its equivalent hX k

means of the cancrebe equivalence: Y yx(‘!}

(1.11) 7 (0 () 2 FCD

we can say that F 1s complately determined bBY the representing ob fact

X € 0bC and the distinguished glement § = {?x{x}} {11‘1 P

We leave to the reader the consideration of £ in the covariant ¢
as well as the corresponding conclusion that F is uniquely deéemined
% and the universal element & € F(X)

From this more conerste point of view becomes mora correct to defl
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F as representable iff there exists a couple (X,E) (X € ObC) and

E €EFIX)) such that E has the universal PToperty quoted abowea,

In the previous paragraphs the oblect X was fixed. Now we are gaing
to let X move in tha class ObC and we shall consider the previous
reprasentable functors as ob Jecrs af two new categories (whose morphisms

are the natural transformations) denoted by GROTHENDIECK with the generic

name of hase changes (for both variancizss). Let ys distinguish the two

cases:

Contravariant cage: v - Hom(¥,X) = hx{'f} VY € @E

These contravariant reprasentable funerors gir 2 variable X € ghe

are the objacts of a category naturally isomorphic to (with canoniesl

lsomorphism X »s hx » This is a fully fairhrul functor which allows us to

identify € with a full subcategory of the category = Hom(C*, Sets)
of contravariant funetors from € o Sets, )

Covariant case: X =+ Hom (8,1
Similarly the covariant representable functors jx can be i{dentifiaed

with X regarded ag objects of the opposite category e .(2) In other

words: The cpposite care 0 G of G is canonfcally isemorphic wirh
the category of covariant fepresentable funcrors, '

Let X be a fixed object of & category ( » We are going to define

two categories 8/C, C/'S whose objects are Ce-morphisms of source (target)
s respectively snd whoge morphisms are (C-arrows making the eorresponding

triangles commutative

This ceccalcal msbedding [uy A *Babled GROTHENDIECK in Toudy (o2, @. 1T, $1,2) to redice
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gy EOb(5/C) = w5 X, w€0b(Cfs) e u: X, 48
o EAre(s/i0) = S—2X, € Az(e/s) o K —>8
\.La *l/:
X A
upey u=vys “F

whera as usual ObC, ArrC denote rthe classes of objects and of arrows

of C . An object Pa pf ¢ is called an initial gbieet of € 1ff for

svery X € 0bC there mxists just on2 morphism @n X . Ohviously any
ewo initial objects of € are isomorphic. fhe category of Sals has as
initial object the empty set,

pually an object e of C is called & final oblect Liff for every
X € obC there exists just one morphism X =+ & . One-point ssts are
final objects in the category of sets. Any two finsl objects are {gomarphii

Of course &0 initial (final) object of  basomes final (initial) in

1f ¢ has an initial (final) object @r.{e) we can identify C wich

mcf{: (or C/e) in an obvious way.

2. THE CATEGORY Gy OF k-ALGEERAS. Oux scarting polat gtll ba che study of solutis

af a wary genazal sysc= of polynomial equations vith coefficlents in & commutative ground giag
with unlg k « But we capeot TastTies aursslyss to solutions in k , but racher we shall Look
for solutions iz an arbitvary k-sigebra k' . We shall racall what thesa kealgebras sean from

s eategorical poinc of view,

Let G be the category of commutative rings with unit; & morphism
(or "arrow™ in O 152 gult-praserving ring homomorphism £1 A3

(A,B E obG) 5 Lo § satisfies the Ffollowing conditions (2.1), (2.2), C

1-1-8 1-2-1
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I (2.1), (2.2) f£(x+ y) = £(x) + £(y) flxy) = £(x)i(y)
(2.3) £(1,) = 13
Ihe ving Z of integers is ap initial object of C.(@f. §1) 1n

fa-:t, any arrow @: Z - A mapg +1 + 1 + .4?": + 1) in j—{m'lﬁ} » thus

P is unique ang determined by the condition (2.3). ¢ 1is Mot necessarily

injective, QZ) = Zhaz where m(z 0) 1is the characteristi{c of A,
If A is a field, then m = @ Or any prime number,
Let k be any 1'11:1,3':11""'!I of G . The objiects of the tategory of

h
morphisms k - A (1 G) are usually callad, for shore k-algebras, {.e,

dccording to general Categorical procedures We construet the category Gk

of k-algabray z4 follows:

Usually by abuse of language A ig called a k-algebra ang k is

called the StTuctural morphism. We should keep in mind that h should be

&
(2.4) / \

A=y

¢m.tl:eﬂ.
8ince, as we said, the morphism u,v are "clear", the following

terminology is widely used:

To k E A corresponds ap extermal product fexa =+ A defined by
m'ﬂu' ®eans alvays an object of g » Lo & commufacive eing wieh 1danttey, ‘

I=2-2
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2

i {2.5) (h,e) =+ b))a = athy))

In parti:ulnr sinee h(lk) = IA (L,a) —+ & and this scaler multiplication

kA A jg added Lo H"’lﬁ) gs AR pxtra-structure {n such B way that

the Follewing properties

(2.6) X(a + b) = Aa HAb

(2.7) L(ab) = ()b = a (Ab)
are satisfied. Using this approach the category Gk of k-algebras contal

as objects the k-algebras, {.e, rings k' €008 andowod with a structural

morphism ht k= A and @ morphism @ A =+ B of k-algebras i & worphism

of G commuting with scalar multiplications

(2.8) o) = xela) A EA ANEK

Sinee, for a glven k the k-algabras BIE particular cases of Tings

{¢t may look at first gsight that the scudy of k-algebras would be 'more

restrictive'. It 1s not 80 however, because of the fact that Z is an

ipitial object af G &nd every unit preserving ring homomorphism A =B

commutes with Z .muileiplications. In other words,

The category O of commitative rings with unit and unit preserving

ring homomorphisms 18 {dentical with the categoTy ﬁE of @ -algebras

and E*hmmorghisms.
3. IDENTIFICATION OF POINTS IN 1 WTE HOMOMORPHISMS OF k-ALGEBRAS.
sUMMARY, 1f k' € {thﬂi tcEo 413, snd 1 1w ad arbitrary Lndex set, any point = € H'.'.I

(the standard aff{ns gpace of type 1 over k') defines a hommotphism & af k-slgebias:
] - =~ 2
UL Pr k' of the polyncalal ving F = F, = [EcrL!LEt] wioka T, &8 frmily tndexed ¢

1-2-2 1-3-1



+ Conversaly, any much homomor-
"'_\—u—-_._
Phism o decermings 4 Unlqus

pOtRE  (u(r)) € w'l ’

Let us begin by conzidering the usual gea

te of affairs in algebraie
feometry or in arithmetic: Ja¢

k be a commutative ring with unit., In

or complex numbe

of integers or the
Ting of integers in 4 number field

" s a -

In any event, let us fix k for the

the ground ring.

time being and will be referred to as
Let P = PI

*
S8t of indeterminutes T; lindexed by a ger rf },

(3.1) 2 WL

Obvicusly B € 0bg, , i.e. P

is a ﬂlalgahra generated by the T} s 1 €1,
Let x = (y

1J1EI Exi Ek, Y1 ¢ I) bea family of elements of |
indexed by 1 .

of Eypa T ,

Let F ¢ PI be a polynoemial =

1
X 18 called a point of the standard affine Space _EE( )

f defineg 3 funetion kI <+ k , which

Sometimes is denoted with the sama letter, although it might not determine

back f uniquely, Let us calil it now T to avold abuge of language:

F: it *k is defined by d8signing to every x & kI the element f(x) of

k obtained by raplacing the indeterminate 7T by X, for every { g7

More generally ye can define fk., #lso as 2 funetion kT k' where g

I_' wl{; ll"il DOE Ssmume T g5 pa necessarily !iu.il:u, llthnugh
lz &

= [1,2,3),...Caet of Squations in the 4ff{ne line
Beneralipy ¢, Justified laeer by eechnical Feasons, |

4y

' k: La the powsr S5k W gpr of 211 tha sapa: I+,
fatarion fe shortensd by " + In CROTHENDIEQK wordy:
&xponsat t 4f the

forgetful funcror E! vhiich associates ta
underlylog sec.

in miny clessiral cages 1§ = {11,
s plans, J-apace...). Thias

Of course (f 1 » (12,0001 e
is tha Cartesian pover of
evary k! EO0bG, ita

1-3-2
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is any k-algebra.
4 (ex")(r 1 £ 1) define

cf. 82, 12,8

pet us £ix :Ek'll Then the map &+ X

of k-algebras BY E{Tij - E{xi‘;
e 2T, o, €Hom g k)
by the (k-alg) -hemomorphis

a homomorphism By - K
o be written &3 X = &
of the palynnmill £ e 'EI
obtained from § by replacing Ty by X o

that cam als
the image t’-:(ﬂ'

o {s the element I{xi]

YL ET Ian fact, & characteristic propes

we can {mmediately verily th

of a (k-alg.) ~homomorphism for every fixed polat X of the affine spas

(B,,k") defises & ootnt of k'T, fie. 1%

Conversely any U € Homy .19

4. SOLUTION EETS vs(k'} WITH COORDINATES 1IN A k-ALGEBRA.

aoking for E=velued sglucions af o

r:mm‘l. We disregazd the arithpetig probles of 1
pmn dlfELeult”. Scoe juscifieacions ard gis

syaten 3 of polyaomial L being
for the sasiec algebraie geonaszic yTab Lem, atudied by KAHLER and GROTHENDIZCK of ilooking

golucions in arbitzacy k'llllhtltj

consider a certain family of pelynomials (fj) jext where J
{s another fixed arbitrary set of indexes. The usual {aterpretation

of the "system S of polynomial equationa”

(4.1) 8) fj (x) '=0 1 €3

¢ thought abeut the problem of {nvestigating
z £l

comes to mind. ur firs

solutions of such equations consists in looking for the points

such that EJ{:} =0 ¥4 €J; this point of view arcse in the clas:

case of the affine plane over R , [ 4 151} when k 44 fixed inm this ¢

gt us ssmuma Chat 5§ consisca of the tqultim-nl 2 line t and & el
resl plans. 1f L apd © do poc meat Ve "gpeapt” che two compl

lead Fros R FO ¢ at tha wery begins

‘nl'nt gnscance, L
¢ io tha fuclidaan

solugicons € :z.... . Ioterssctios problems,
of claasteal algebraic geomeiTy.

1-3-3 1-4~1
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whers '

solutions ef thig systam

functor k' vE{k

Betmetry, roughly speaking, will be tha geu

« 24

number of problems arise, which may

be deep and hard to solve, for
instance:

1) Does any solution of the Bystem 8

2) 1If there {g any solution, are the total number of solutions finite
or infinite?

d)  If the former cage, cdn we give gome estimate, elther exact or
approximate, of the number of solutiong?

4) In the latter case, the number of solutions might become finite
1f we

add certain inequalities, or can we glve asymptotic formulas for these
estimates when the parameters fssume certain limit values., [or instanca,

ceéntered at the origin with sides parallel to the Gxes and let us ask about
the asymptotic estimates when the length of side converges to w,,,

The answers that we obtain to these questions will be extremely
diffarent dccording to the nature of the ring k ., For instance comparing
R, € the fact that T 1is algebraically closed and R 1s not makes a
big differance, Further, 1f k is =« finlte

field or if we take &k to be
the ring of integers the

kind of answers we sbtain are considerably different

These problems are the hardest. This is arithmetic. We are going to look

4t 3 somewhat different approach by allowing the solutions to vary not
only in kl » 1.e. "the standard affine space of type I"; but in any Kt
is any k-algebra; and we shall look at the sets Usiﬂ] oF
of algebraic equations for variable k' as a
") with respsct to the vatiable '

» Affine dlgebraic
dy of such {ngg cluseig relaced

I-4~2



functor 8) .

r' The classical device of passing from real solutions to complex solu=

tions for systems of algebraic equations with real coefficients can be

considered as the first step in this direction (k' =R, T wB{1,4),.00,0E

footnote (1) in page 23 ). However, eclassical geometers always thought of
keeplog fixed some field: first L , then any algebrai:nl.lﬁr clogsed field,
accepting variable ngefinition fields" in 2 remedial basis. Without the
functorial langusge, the desecription of the solutions with coefficients in
arbitrary k-algebras, due to KAHLER, and then sgpecially to GROTHENDIECK,

would ba very cmhnrnm;l

5, THE FUNCTOR ‘ETS: E'k. + Sets DESCRIBING THE SOLUTIONS OF B .

SUMMARY £ Alcheugh affine mmbeddings sre gvoided, vary ofcem, ve dafine firae the functor
‘l’ (affina 1inear spaca of £ype 1), Irom k-algebras to sals gasoclacing to any £ E m';t
cha affins spacs !:Iﬂt"} - 'l.'I with ccordinates Lo k' &' -li'I .

Ler 8§ bu az arbiszacsy syatem of polypomial equacicns of type (T,J] with cosfficisncs
{n the ground rimg K - The functor Vg of sclucions (= “slgsbrale varlsty dafined by k)
ean be Lncroduced figer as a subfunstor aof EI: vsfu-l:l v Vg ==p2 every k-slgebza k' toco
‘the set of solucicns of § in the affiae specs litk‘i . (Later we whall gef vid of :Lj

Dalng CROTHEFDIECE's own wordal
_..For a varisble k-algebra K’ [€ obGy , cf, JL| we look at the
affine space II.'I . We would like to interprat h'I as the sst of k-alg

homomorphisms from Py Eo k' [i.e. as Hwtk(?t,k‘_ﬂ {cf. 32),
(5.1) ' 38 (P, k") = (k")

t Og~alg" 1’ ’
where this bijeccion is funcrorial with raespact to k . This functor,
(5.2) E: G, - Sets ,
Feﬂmd by k' = Hmﬁk{PI,k'_]J is called the srandard affine sgu:m of

I-.ﬁ—j 1‘5'1
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type 1 over k . The functor E- is represented by

The points of EI{I:'J are called the k'-valued points of ®*
every k' € nb-ﬂk}.

Now if we have a bunch of polynomial equations

(5.3) fj{x} =0 1€

indexed by &an arbitrary index set J (fj {Til € PI (cf.

and wve look at the set ‘.’S{k'] = EI('I:'} af all points of ‘E]'ﬂ:'J
satisfy § for a variabla k' (e nhﬁk} we obtain a subfuncror k' ~ 'f.f5 (k")

of k'm E'(k') = k'l ,

the k-algebra PI .

V), Y1ed

algebralc geometry is the gtudy of this Ffunetor vs .

Tha study of this bunch of equations S from the point of view of

Even in the classical case, when k 1s a field, for

field R of the resls and the number of equations and ind

instance, the

aterminates is

finite, {t may happen that the sat HE{H} is empty, for Instamce: look

at the case of the single aquaction in ons variable :2 + 1
2 2

= ) or at the

case x 4y =0 ipo the real plane. However we do not consider char

the "variectiea" defined by sither one of these 2quiations are trivial,

because over suitable R-algebras these equations have solutions; for

instance, 1if we take k' =g ¢ Gn (the field of complex numbers) we

obtain the two solutions T 1 1in the first case or the whole continuum

of complex-valued poincs of the imaginary circle in the second. So if we

restricted ourselves to the real case we would have practically no informa-

tlon about the system S {f we are not allowed to consider

wRy. It L8 elear thac we did not use dny particular property of the cace
#1 for the matn deflaltions of representable Funcrors.

1=3=2

a variabls

® The seophyts can reslize hov simple i3 chis motion of represancable funecer in this
" conerats cise needed hare: E&: G, = Sats; wa have k' B K" g (Py k"),
¥ k-alg. sorphiss &' - k" induces Iltuj: En-(rl,k'i - unﬂ:,k"'} an obvious coverisnt

gory G . cf.

(for

which




~2)=

k' £ ﬁbﬂk; the geomstrie properties should be invariant under any base
change (Lo the previous examples the propercy (33 WE{R} being empty L&
got something invariant under base change).

At the end we add some historical motivations to introduce EI s v

instead of restricting ourselves to k , in particular R,T,...

Let us Flrst introduce the standard affine linear space OvVer k¢
type ;{1} to be a funetor E! from the category G‘k of k-algebras 1

the category of sets which assoclates to every k' €obG, (= k' 1is

k-algebra) the affine space k'I , namely
(5.4) E': G- Sets
I L) I-[ L ]
(5.5) E: k! 2k Yk Eﬂhck

Now, let us consider a morphism

(5.6) u: k' = k"

din Gk {f.e., & ;E-alg!rhammorghj.sm. c£. §2.

We have an Induced map:
5.7 B () kT a4k s @), oo @)
Put) ul ®ilier 17Me1

Thus EI is acturlly a functor EI: i."lk -+ Sats.

THE FUNCTOR ".Fs: now, lat us consider the system 35 of equation

(5.1) with coefficients in k , a3 & system of equations with coeffici

o £l will appear scon sa a particular ease of che mosg general affins algebratc spacest
thac ia vhy we wrote ligeas, although afiine linsar may look Tedundast. This tarminala
sgress vich the cussomary consideration of afflne algebraic varierise and affine epaces

CEOTEEMDIECE refara £o it oftsn as che gtandacd afiine soaes of cype X

1+5-3
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in k' and we look for the set of salutions
(5.8) V(k) = [x € k'Iifj{x) =0, v, €]

Then for avary homomorphism (3.4) of k' into k" , and every point

in k' which satisfies s » the image in k"™ satigfies the same sec of

equations, {,e, ?S(ic’) kKoes intg vs(l:"J « Using functorial notations,

we have: k' % k» in the category Ei: goes into
a ' '
(5.9) Vg (u): Vg (k®) » Vg (k™)

in the category of sets,

In other words:

Dur system of equations $§ defines a subfunctor Vs of E! s from
H__-_-—-_-'.__ — e ———

to the ecategory of Sets;
G,
Vs
(5.10) k' 4 (x Ek'I|fj{;} =0, ¥; € 3} cE kY = ]

i.2. ng'J is the set of k'-valuad solutions of § ,

The sat ?3{1:'} is called a clogad dlgebraic subset of the affine

space lEI(k') .ﬂ}

[ExAMPLES AMD WTSTORIEAL HOTIVATION. Beatdes tha faet chas Ehe srichmecic problem (v 2o
find Va(X1) mighe be very difffeule, we saw that in some canas Vo) i3 empey, for instance

fu the cage af the imaginecy Quadrics I:x: +1 tin R . To che {nciusion Re correapoody
i=]
L] V) . It ta obviocus that such trensicions From the zasal to the complex domain are gid

*nd very frequege, Several problems boch algebraic ang drichmatic lead to the ixténsion of tha

Eround fiald % (o2, DIEUDONNE, Adva 1) Then tha new problem arises of ri lots
“ith coordimares g diffarent u&nﬁihl&l k" . They cammcc be :nnp.lndm:: IE f: both
Are oo subfialds of & chird field, A, WEIL introduced hix nivarsal domsin [ (4 Fleld or
infiniee Erdnscendance degrea over Lts primm fiald) Sxruming chat all reedad extanaions are
subfislds of 0 . CROTHENDIECK does not mesd the ground fiald and Tejecta 0O . As & conse

904nce he conafdery the differeus rsﬂu‘.\ for yariable k' (vhere k' 4o k-algebran, after
B nuggescion of KARLER) and Increduces fostasd the Aystematie conaiderscion of the funcror Y s
tfncuncing to the unlqus sat Vg (k) ":Itfhuu variscy” (Hxed k) represanted by §

Coocmetricslly tha keslgebras pley the role of "k-valuad Punceious™ cvar Vg - (The kealg,

Satisfisd £ a5 wvell as the Yeonseant” pointy vith coordinatas i kj. They waru
Soad 1o clapsies] lgebraic geometry under the nams of "Eeﬂiﬂgm": k! = litt.uu{nl

“}“I Ahall soonm ses & mativazion for this tarminology based on the go-called ZARISET topalogy
OB &ffine spaces k! (ef. ch. T, §14).

I-5-4
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of affine preaducible algebralc variecies in cha partlcular case that k Ls a ground fiald,
for inatance k =€ and 1™ [1,2,250;0}) Ffiolte. Then u{;l,...,gnl is a Etnitely gencrated

{pregral domain. gi.:i,...,gn are the coordinates of VAN DER WAERDEN dLgezuine Fune'. k*
{s imoworphic with the guotient ring of tha polymesisl ring "E"l."“"nl by & prims ideal T .
We shall zee that in the general cade of CROTHENDLECK, every k' can ba represented by

11;: where 7 L& an arbicracy {psc necessatily peims) ldeal af the polynomisl Ting I'\I if
an sthitrary sec [Tl]lEl of indecarmizates. For 1 fixed co diffarenc {dsale of P corres-
pood different funetors. 1f ve vanc Just k-valusd points this is False, far inacance

¥ 9
-;"4-,!- 1=0 acd l'.:.l +,=- 1=0 and {,:"4-32 - 12}'-'& define tho Ssms sec complex-
valued solutions for every m 2 1 , thus the principal ideals {lz + :rl - % = L,2,ue)
define all cha sase V_(E) . ct. oext 41 .

6. INTRINSIC STUDY OF V, AND EMBEDDING vsu:m‘ -

SUMMARY. Ourx algabraic-gecmatrice probles haz beon reduced to the atudy of tha subfunctor 'l?s

of EY and ve will sonsider Evo 4iferent questions: a) Intrinale study of Vg , B) Study

of enbaddings V mEY , Thess two polnts of view sre parallel £o dissingulshing lacrinaic
propectiea of =ui-\.ru pr surfaces indapepdanc of sny szhedding kn J-apace (or a-space, n 2 1)
{roa those depending on the curve OF surface and the embedding, in elemencary differencial

geometry.

The subfuneCor ?5 can be viewed in two different waysa: a}El.r:nt as
an intrinsic study of the fumector Us , (conaidered up to isomorphism) ,
which is just the study of a functor from the category ﬁk of k-algebras
to the category of sets. Thus V. aond Vg, (where S' 1is another systex
of equations possibly with different index sats I1',J' defined over the
same ground ring k) and b) cecond as the study of the particular properti
of the embadding Vﬂ'-*EI H

ExAHTLE.{I}An axample of viewpoint a) is found in che study of real
or complex algebraic varieties lying in some affine space of finite dimens:
N , independeant of the embedding (in such a way that for N # N' 4t makes
sense to define an equivalence relation identifying certain pairs of affim
variaties). For instance the reader can think of algebraic curves or

surfaces embedded in real or complex three space., When ws take into accou

some particular embedding of the same varieties, we have an example of b).

) A elassical sxample uhers ono indeed uses outslds polnts Ls the conaldaration of polar
curves, tangent linas, normal linas, .. eic...in the non intrinaic study of slgebraic plana
curves, The incripaic study i3 higher and more sophizcicated.

B 1=5-5 1-6=1
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The new fact ig the functorial approach; [ -il Variable! (instead of
keeping R, or T fixed 28 in elemencary differential or clagsical algabrag
Beometryl The distinetion between intrinsic and excrinsic Ptoperties is old
7. REDUCTION Tn THE CASE OF § = IDEAL oOF PI .
sonttictuncs o ot 51 % of solmomial cocion e T (o e 0, Ml B

L/

’.‘l',: ak - Sepy ire iﬂu}ﬂlgg. )

Lae os ksep T fixed, or vhar iy the suma the "asbigne space? gt « We cam enlarge 3
with all tha finirs Losar combinaedons pr 5111 fenaracing am {des| T w !Its of !I "
er

Then v, - ¢ thus we can rascrice curselves to che study of functors of type ¥ fdmal
-4 9 ] & p

OfF B « Moreover 42 Z 4T (7, T tdesls of 7) =3V, W sze notsquivilens,™

in ochar words: :

Ve shall see pow Ehat thare 15 o tl-li-mrnrpﬂudm batween che subfunceory of II
thas can be described by secs of palynomial equations and Ehe subfunerar defined by all che
ldasls 7 o II :1

Now, whether our peint of view is arithmetic or geometric, a firge

ground ring k op in any arbitrary k-algebra k' , Namely if we taks any

linear combination E.gjfj (with finltaly many coefficients gj 13 PI
JeJ

different from Zero) then any solution x of the 5L 5 is also a solution

S0 we can enlarge 5 i order to include all the finita linear
Lz 3_]!] « But this set of al] such possible linesr comb{-

je
nations {s the ideal T = a's = Pz-s generated by 5 . Thus a8 have for

* IH
every k algebra ' .

-th SRous ehye eVen 1 che case EB2E I (s lafinire mod &k gy 4 COmmICAL ]y fleld, (¢ 14
mm;“ €9 Feserice ourselves co che sreof S Matrs, sines the moat marurs]
OF % is thae 8 18 an idea) af P Bur an {dag] g "1 Ls rarely o finite

twg
Hoveyer L: alansics) algmheale Beometry when & ¢4 8 Pleld apd finice we cay
3 failts ag 4 consequance of tha basls theores of HILBERT for idesals of Fr -




=3l=

(.1 [x € k'I'|fj(!=J -0, Vj €4} ={x e k' |EG@) =0, ¥E €T} .

in fact v?: V. because SCJ . Conversely U, <V, (a consequence of
the previous remark).

Thus, we see that the two functors Vg and Vs (: G + Sets) are

equivalent:

gince many different sets of equations § can define the same set of
solutions for every k' € ahﬁk , choosing the ideal T of the ring L5
in order to define the solution set '.'E(k') is che most natural choice
that comed to mind! As we shall shortly ses, this choice is a canomical
cholce. IE!. footnote (2) in page 3L'+_.|

Let us elsborate on the correspondence between closed algebraic sub-
spaces of the standard affins space II and ideals [ of .'EI 1 . To every
ideal J < PI we assoclate the subfunctor ?F‘—' EI“.J We cl:-:im the idaai

g ean be reconstructed from the knowledge of 'J§ . In fact one gets a

{1=1)~en reasp.ndance

(7.3) g ﬁ

between ideals J < P, and subfuncroers of E' of the type previously
described. How can we recover J from ?ﬁ 1
An element £ & P, belongs to g 1ff for every k' € 0bG,  and

for every k'-valued point x of 'J? (i.e. = E‘li’g(k'], ef. §1) we have

“}A k'-valued poioc u € uu&"hm,t'} Ls mapped to & point of the subgset 'J',{l:'] -nl:I
(= (ufe,))gq) - v?n;'} is tha set of all the points of E' (k') sacisfying the systes
of equations fi(x) =0, VP EZ .

I-7-2



(7.4) f(x) = 0

In fact, te {5 clear that {f £ ¢ ¢ the equation (7.4) is sarigfieqd,
The converse Property is trya: any f € PI such that (7.4) holds for any
k'=yalued point of ?;(E'J rﬁr any choice of k' g ﬂh&!.l belongs to g .
In fact we can take k' = Fr/3 « Then £(x) =0 gor x€P/7 iff £€g
since 7 1s the kernel of this canonical homomorphi sm P 2A= PIJ';I .

Moreover the map 9 pe ?? is order reversin
w

Let gc gt c P, be an inclusion between ideals of P; - Then we

have an inclusion in the opposite direction v nEEEE
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. Conversely, the {nclusion ?F' = v:;t lmplies JC 7' becsuse of the

PTevicus characterization of 7 + In other words:

The map 7= FF is bifective beca_u:u it is order preserving in both

directions,

Thus, we get perface dictionary between the language of {deals ip
PI and the linguage of subfunctors VF‘* E' (= "closed algebraic subspaces"
of PIJ. Therefore we can Say, if we insist iq studying affine algebraic
Spaces embedded {n EI s this study is equivalent to the study of ideals in
PI + That is why "old-timers" gaid that affine algebraic Beometry is just

"the same" Az 1deal thasory in PI' ’_& eriticism of this non-intrinsic point

of view, will e given in §E:__]'

BISTORICAL REMARKS. We pofnted ouc already (cf. Summary of the course, page B ) phae {n

elassical slgebraie geomstry - kﬂ'l. :,....'.l.'u] fa=fl<e) . If k is algebraically

elawed (for tnstance k = £) tha most interesting 1dasls gre ¢ radical {das 7 (e,
foccuots (5), pagn 5 o (= ge Gy, 1a fact, because of HILEzRT's Hullscellansats
A= E[!I.T,,---,!n} 7 1a the ring of polynomial functions f:1 M <k of som algebraic

’ﬂl‘ E'-valued patne £ Hnl:lsm,lt'l Ls mapped to & poinr of che subgsg rgh'} -x!

(u = {“‘1”151’ r V,0') 14 the set of 41l the poines of zl{t'} Sacisfying the sysce
of equations #(x) = 2, vteg.
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variety M (nom nacessarily r.ru:lur.:hh“’] [N+ -,ﬁ . Om the sontrary LE Jf {is sizic
larger than 7 A has siipotent slemants £ ¢ 0 fs 3 fioteger 2>l such chat = = 0)

fc in clear that f cannot tepressnt any funcclon on the slgabraic vaziecy M Tepreseqnced
§ _ﬂ] In spite of this "Forbidding'" sltuscion CROANER made &n -t:mt"“ to eatahltsh o ™
9=V bacvesn arbicrary fdeals and affine algebraic variecies of &7 dlszegarding ctha fai
ghar § and .ﬁ define the same variety (as locus ad k-valued polnts) (che oaly gessscric
pelats allowed in chose times). He was eriticized for being Yequtological" (cf, for imatans

SAMTEL ﬂ]}_ Really the tautdalogy disappsary complacely only with the tntroduction of the
atructure sheaf nx of the specitum X = Spec A (ef. th. III): Then A becom=s the

of glotal sectioma of By (snd ®, can be dafined alusys, whechar or sot thers &re mom &5
ailpotent elementa).

g, THE CATEGORY OF AFFINE ALGEBRAIC SPACES OVER %k .

k=2Z.
CROTHENDIECE a SUMMARY:
Talking mbout ﬂld-tiﬂrl,rct. Summaty of Iﬂ.......hm tha iptrinale point of viaw we are

worklag through now, we dTe not really fncatested in che mmhadding of algebraic spaces into
percicular standard affipa spaces. Thus the ideal J i3 moc so intaresting in itself, Whar

{a interesting ls the quocientc algebra A ™ l':ff since this quotient will represent che
fupctor in which we are interdstad. Pracisely, ve shall sea the functors I:Ik = Sata Lxomorphlc
o functork ¥ characcacizud aa rezentable nr:“} In s l.a. thoss= for wvhich thers

5
exists & k-algebra A , tha raprasenting uhjn::i’ guch chat (8.2) holds,

THE "ABSOLUTE" CASI

{o verms of the ideals of P , wa define 4 23 Ezfjl {.#. ws have the equivelence of
functars G -+ Sexa: V.~ ?F =¥, wvith 7B, 04 =203 % “has the sdvanctege of belng

geandard affine o Conversely any k-slgebrs
, sluce avery A is = quotient EI.F? fur

A
suitabls chofce of 1 and 7 . The functor 3 G EO0bG,) is ealled tha S€fine slgebraie
T k sencad A -
affine shra ol O k form & catsgory lhti—gy_iﬂhn:@' to ths eacegoTy

ﬂ‘ of k-nlpebras.

por k= Z wa obtaln ths calegory af "ibaolure” affine algebraic spaces anti-equivalent
go rha category G = Ez af gommueative Tings wvith uaic.

(D g trreducible 1€2 J (= J7) 1ia prime.
ﬂjm Jgs h{tl,...,‘l'] reprasancs & variscy ¥, but diffarant ideals might reprasent ©
eama M ., However chere (s a bigget ona represanting M, , precisaly J7 . 4127, pag
o S0RaER, Moda algsbratschs Gasmetsie (Dle tdasitheoratischen Crusdlagen), Sprioger
Varlag, Wien uad Lznshruck, 1569,
Ergebnisse dar Math, Banc

N-J‘T, Merhodes d'a Lgihrs abptraite 4n ciombcris alesbrigue,
edicion, L9467 Nusnd & W, CEBO0EKER. .-, candis que s=s "algabralscha Manndgfalzighe
gut 1'air 4'eze 3 peu pria des fdeaux da nalwocmes. pags 128,

(5)[Rammmber the gromerric s=aaing of 2,/ tache cissaieal case vecalled 4t tha end of

“‘»‘_t!. §1. Wa have already found tha capresantable functors la tha plmmfﬂ caan k=
'I‘: rEpresancs the gtandard sffins sosce .

(M, 14 detersioad up €0 Lscmorphisa (ef. Ch. IT, §1).

{'}L.. squivalenc o ths opposica cacegory G ‘of G

I1-7-4 1-8-1
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To say that the functer v; (7] 1deal of PI] is Tepresented by
A= 1’133 is equivalent to express the following universal property of the
canonical homomorphism B Az

Lat x: B, 2 k' be a2 k'-valued point of P (k' € 0bG.) (cf. §2).
Then £(x) = D ; for every f € ¢ Aif and only 4f x factors uniquely

through p , i.e. {f thera is 8 commutative diagram
Py =g |8

(8.1) f, /
A

f.e, x = x,°p with %, uniquely determined by x ,

The map x X, defines a bijection of the ser Vb{k'} of k'-valued
polnts of 1!1 vanishing at g and the set Huuhk (A,k") } Q.e.d. 1in
other words:

.The fuu.:l:gg ?;’: ﬁk * Sets 1is representable by the k-algebra A= PIfjl -

The covarianc representable Functor !!: Ek - Bets defined by

(8.2) k' b X, k") = Emﬁk (A,k") k' € 0bQ,

ig called the affine alpebraic space over k reprezented by the k-algebra A .
_"'———-—-—.-_...._E____g_______

The previous comstruction eliminates EF: apparently there ig a

Testriction om A4 aince A 1s generated by the images a, = pfri} (Vi € 1) .
Actually thers i5 not such a reacriﬁtinu. We can always choose a Eystem of
generatars for A (a5 a k-algebra) (for instance we can tike tha whole
Underlying set of A)., Then we can reverse the procesdure. Following
GROTHENDIECK's own words: We shall see that to give such an embedding

I‘i""‘ EI 88 & morphism from I& to EI Ve must consider as & morphism in
the opposite direction between the Tepresenting algebrags; FI + A . However

thiz 1is equivalent to giving the images a, of the generators T1 (YL € 1) of

I-8-2
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which means thut the homomorphism PI + A uniquely determined by T, !

(4 €1) is an eplmorphism, which in turm {s equivalent to che fact th
quotienc of F, by some ideal J «
We solve completely the problem of characterizing the functors

vS: Gk 4 Sats independently of any affine embedding:

A functor U‘E: G, - Sets represents the solutions of some sys|

nd only 1f V

of polynomisal equations with coafficients in k {if 2 .

reprasentable, {.e. iff V¢ ts equivalent to ¥, for some A £ 0b O

Comversely: for every k-algebra a{*] € 0bG, the rapresentab

functor 1; is uguivalunt [0 SOome ?3 . i,q.

(a,B Eﬂbﬁ,&} {ff A and B are isomorphic,

The reprasentable functors IA(A i ﬂbl'lk] are the objeccs of a ¢

ta aquivalanl Co 15

AEE, uivalent to the opposite catego a’.

mn morphisms in A.ffk are defined in a standard categorical we

as functor morphisms L.=. aatural transformations, l.e. they are the

£ .
induced maps f* obtained from morphisms B =+ 4 in tlk_ -_l
Hum.k_alg{k,k ) = i{pmk“algfﬁjk]

i
by compesition with f: B -fva. k' u=su=f, Yuc€ I.q.(k':' (¥k' €0

In GROTHENDIECK's own words:

(*11a classical slgebraic gecmecry k uvam @ fimld and A was [inicaly genarated of
-“’t'“"‘n] is an incegral domain we ger back che "allgemaine Punktc” of an fere

slgabraie variscy (ovar k) embedded in k' . LE k(gyaeea iyl taa raduced alg

tha field % atill we can give 4 classical interpracacicn (ef, Summary of the co
in ths genaral case thaze (3 no glzssical incarprecstion 4t &ll...

resson i was not s nd be Finite sopesrs clesy nod, HE 3
of k-alésbras, mot lusc the finiecely gengrated cnes, Flalce dimensional AFl

spacas appear just when I is Einice,

(*")eg. oh. 1, 41 for furthec '
3 . categorical alaborstions. Tt £ i
apecific p;up"ty of cha cacegory G‘ a R T

1-8-3
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F. §1

" ¥)

If ¥, ' are affine algebraic spaces over k represented by k-algebras

A, A" the morphisms % =+ ' 4 the category Aff, correspond bijectively

(in the opposite direction) to the homomorphisms of k-algebras:

m"‘ffs: (%,3') 3 Hoty 16 (A7,4)

This is just the usual sorites of representable functors!: Arrows
between the funcrors correspond to arrows between rhe objects. (Cf, lagt

footnote),

REMARK. These facts look too formal, or tautolegical. The really
interesting facts come from the assoclation (in a functorial manner) to
every A (= eavery %h} of a certain geometric object: the affine schems
defined by A: (a certain locally ringed space (Spec A,R) 5 (ef. Ch. TIY),

For the time being we have the equivalence of categories:
Aff, 30 . For k=2 we obtaln the catagory Aff = AFf, of “absolute"
affine algebraie fpaces, anti-equivalent to the category @ *(%Z of commy-
tative rings with unir. We feel this 1s a geometric theory due to the

geometrie meaning of all the constructions involvad:

If ' 4% ‘in a morphism in Aff, everv k'-valued point {n %' goes
to a k'-valued poinc of % (cf. §2) (Just by pull-back of homomorphisms),
In particular this is true for k' = Kk . i'ci I is injective 1i£f the
c0rrespending f*: A+A' 1s surjective, thus we come back Lo the initial
Temarks that f* Tepresents a restriction frem % to % + In particular
We can choocse a IS EI 23 before, In the classical case one is parti-
cularly interesred in the case that k' is a reduced algebra (Nil k' = )

°F it is an integral domain, or in particular a fleld, Besides (k') is

I-8-4
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a closed algebrale subsat of some 1&1( {f we want to use affine embeddings

again, alrthough we tried often to avoid them). In the next gecrcions we

ghall study these particular kind of "ooines" of % , in particular when

the ring A representing X belongs to one of these spudial types. Then

(¢ k' is a field the "geometric points" (cf. mext §9) will give us back

the intuition of the classical case.

PART II

RESTRICTION TO PARTICULAR TYPES OF k-ALGEBRAS
(k' = k fixed, k' =G, k' a fleld, k' raduced,...)

9. ['Tsmnt. ¥a coms back to the systsa 5 of polynomial squacions !1{'!‘_} =0

(L€1, | €N , vwich coefficients in & ground ring k (ef. §1), burc {oacesd of taking arhi
trary cest algebras LA osg, , ve Jhall rsstrict k' Eo gercain subcategories of O

which have a particulsar incarest for soma teascn, gecmetriec, historieal, imporcanc for the
Toundacions of algebralc geomaizy. Actually cheao cases halp to updaracand GROTHENDLECK's

simplificagionz. The malo cases ars: -

1) k'=k fized, L.eve fixa subcacegory Fix k with puly one object L.a ve allow only
k-salued poinca, IE &s the grichmerig poine of view agais, ef. s~

n KemI, & full subeatsgory of G, whose objects are flelds)

3) The kealgebras k' ars zeduced (i.e. %' eoncains no ailpotent elemaccs #0), Ha =m
still reduce, 4s befors the caze of an arbiccary $ to the case of su Ldsil 7 ot By

byt tha relacion between the J and ?? {s oot quits so sizple as ia the genazal case

16 tne casa 1) if &k inx the fiald of complex mmbors #I.Mdll‘lﬂllmlu
. In tha case of fiolte I,I:h.hn:mn!r.hl-lnnbhcr.:

slgsbraic vartacy V.(E) €€ .
STEMANN, Max MOETHER and then cha Icaliana,

of scudy of cha plonsacs of che Ix™ cancury:
atz. Tha agudy of irredugible (affine or projeccive) algebraic varietliss vaz cousidesed as
THE objegt of clagsical algebraic variecy. Lat us follov GROTEENDIECK's ove umrd_l_:_[

.s.Now let us see what happens if instead of taking arbitrary algebr
k' and k we took only certain types of algebras, for instance in the
first naive point of view we restricted ourselves to the case k' =k
(x' Eixed) (cf. case 1) j; for inmstamce fnitially we can assume k' =Kk
(the field of real numbers) and then the next step would be tha algebraic

geometric over the fiald T of complex numbers (and we shall not move It

T“m affize V (€) wvare considerad for local problems. Tor global problems, classleal
algabrale variessies wecm always tha projactive coes.

1-8=5 1-9-1
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any more) “J; this Ls the classical case, cf. §10 ; or also we can take

only algebras k' over k which are Just fields or we can consider ounly

reduced algebras k' (2)

10. FIELD VALUED POINTS:

SUMHARY: We shall resccice tha functor W

to tha full
subcategary ak ef E’t consigting of flelds vhich ars k~algabras, Fracisaly for avery ideal
g of P, we define vp‘: J, < Sets as the testriction
yayg
3 * Yl%
Than the bifscrive mp J- vj iz lost; vhat we get im che following:

Ivg idesls g.3" of Py Hafine the same funcror {Ef J and 2 have the ssmg radieal:

'&' j-- “« JgJ7
Ar 3 conzequence thers fs & bijeccive map bacumen

funistars &' »

9-.&-?5{- ?‘:EJ

The proof requires the le=ma ngp

= WLl A equiting two definicions of tha ollradical
of AL DESpecA

The proof of the Bijection baruess the sacs of radical {desaly of Py and functors V*

are reduced (ar, tn parcicular
')+ Anyhow the statement for fields is parciculacly
nee of the peopotele polnts, of. next il

can be extonded o other cases, for Instamce whan tha Kk’

vhen the k' are tnregral domsims
signifisant bacausn of tha importa

*++50, if we look at points of the affine space k'l with k' a

field k' € b3 > @ full subcategory of G ) , we restrict the
functor vg: G, * Sets to the funcror

(10.1) v‘,} - ;I:Jk: 3, + Sets

Boing from the ‘category ‘.'lk of fields k which are k~algebras to the
Category of sats,

e

{2)

So we shall look at points of an affine space EI{'I:'}

the classical eise reen.led in cha Hmtr;

Les. without nilpotent elements # 0 s ef. footnoca (1), page 9

I=9-2 I~10=1

radical nls:
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-39+
with coordinates im 2@ fisld k' E{}hﬁﬂi {f £E PI and wa ZsSume

um)m = 0 Ffor some positive integer m (x € k'li we have F(x) =0 .

fhis implies that if a power of = polynomial vanishas at all the points o

?&&') (x' €0b3F,) then £ itself vanishes {dencically on V75, (k") .

)]
This means that if we replace the {deal J by its radical JE LJE':
than we have

- onate)
(10.2) ‘?9 ‘{f?

Taking the ideal Jﬁ agsociated to F just means that 1f I look
at the quotient ring Plff ; then Jj is the inverse image of the nil-

radical of P,/ - 89 what we did in terms of these quatient rings is

divide out P /7 Dby its ailradical WNil(P /P , in such a way that the

quotient (PIf;]fﬂiliPIfg} is reduced:
(10.3) 2 /7 = (B /) INLL(Ry /D)

Now let us see what that means! We can check easily that 1.1'5 = ‘ifil. if
4@T'C:JE . Then if we take rthis For granted we obtain 2 bijective, orc
reversing correspondenca between the set of radical ideals of P, and
sub functors: vé: B * Sers coming from bunches of polynomial equatio
In order EO ;zt this relation we have to see how to recovar Jﬁ' in te
of V' . WNow let us sxpress this fact in terms of commutative algebra

7

Lat us look therefors it the gquotient ring A = ?Tfﬁ , Let us vecall

u}ﬂ- footnote (2) pape %<

(2) 1. other words, wa sre allowed now afrer rescriecing G to J Aot waly to const

the ideal § of sll the k-linear conbinations of polynomials of § . We can go furt
hers, we can also consider the polynomial £ such that & suitable powes £ mez’
an squation also!

1-10-2



the points u of V) with values fn k' are just the homomorphisms:

7

(10.4) u: A + k! (v k' € 0b3,)

Then the property I stated can be rephrased ag follows:

An element £ of Pl has zero image by any homomorphism (10.4),
Therefore what we are looking for just means thac the intersection of all
the kernels of homomorphisms u of type (10.4) is just UE « HNow this
Statement i{s equivalent to s well-known lesma of commutarive algehrn‘“}
The kernels of homomorphisms of type (10.4) are precisely the prime i{deals

of ﬁ.{z). In other words: the mentioned lemma expresses that:

The f{ntersection of all the prime ideals of A is equal to the
ideal of nilpotent slements of A (= the Nilradical of A):

Np = NilA
pPESpac A

It is ules;r that £f f 45 nilporent, f € p ; Yp € SpecA. The opposite
implication is less clear. It requires the axiom of choice or ZORN's Lemma.
It can be seen as follows: if £ €A 4s not nilpotent the localization
with respect to the multiplicative set 8§ = {f“ln = 0} (ecf. ch. 111, § 8)

1s & non zero ring S 'A , thus there exists a maximal tdesl m €5 A

(KRULL's Th.) and the inverse imsge p= p_lm € Spec A by the canonical

homomorphi sm p:r A= 5-11 is 3 prime fdesl such that £ F'ﬂ C

12 r Ls an elemant of the ring A € OG guch that u(f) = 8 for every homcmorphism
WA (k €£3,) then £ is nilpotentr. This 18 & wall-known result of Commitative

Mlgebra thas, 1tke many others of thia typs can ba deduced formally from DMULL's thaores)
1€ 440 eaen A conraing ar lesst one msximal Ldesl.

“‘]m ideal p of A (€ 0bG) L3 prize 152 Afp is= an fategral demiin ef, footoote (4) 1o
Pdge 3. 1o particular A 1s never prime because A/A = 0 L3 mot an inceégral domain. The

t8re fdeal of A i3 prime L£f A 1is an integral domain.

I-10-3
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11, THE CLASSICAL CASE: k TFINED ALGEBRAICALLY CLOSED.
SUMMARY: . ..for Lnstance, let us sssuma k'(€ m;k) to be fixed, squal to X . Thes we

ehtaln some nice Tasults Ly the casa thae k 1 slgebraically closed and che sat
i"'". 11‘,':;,...,In| af indetersinatcs of our bunch uf equaticns {3 fioits.

Let us call Vjj che subset of I here all the polynomials of the idea

g of FI vanish ( k-valued solutions of §!). Then it is still true ths

- y"  depends only on ,ff

7
(11.1) v; = vja FC kT ,Typeee ,Tn] (k alg. closed, n< =) .

Therefore it is true that 1f 9,3' are two ideals of HTL*"'-"Tn]
which have the same radical the correspondiag v;, V;. ate equal:
(11.2) ﬁ-.}?“:v;-v;, c k"

This is true because J;_T can be reconstructed from the knowledge ¢

the algebraic closed subset v" of k" . This is (essentially) the so-¢

7

HILBERT's Nullstellensarz. In other words, we can reconstruct (in terms
v;,p , not the ideal J but its radical fdeal J7 , by showing that .7

the ideal of all the polynomials of HT.'..’TI"”-‘Tu] vanishing on the se

'IE Classically 'L'E was called the affine algebraic varisty defined by
the ideal J of k[T;,T,,.0.,T,] &Ln the affine space K" .

We have, in other words, the following classical situation : Aoy
ideal g of k[Tl,--.,TnI defines an affine algebraic variary v;{k} =

(k fixed). The ideal o alvnomials vanishing at eve oint of v; 1

precisely the radical .ﬁ of J.

This is the classical version of HILBERT's Nullstellemsatz. So we

chall see what that means in an intrimsic language :

I-11-1



Let 7 an ideal of PI = k[Tl,Iz,...,Tn] « The points of K& can
u
again be identified with k-algebra hememorphi sms Py *k (cf. §2) and
those satisfying the bunch of equations {f(x) =0, v ¢ ¢ 7] ,(have the

Property ker u o 7 Jactors through the quotient A= PIJ".'.? making commu-

Cative the diagram:

The statemsnt 1s that 1if 4 pelynemial £ g PI belengs to the Intersection

of all the kernels , ker u, of algebra homemorphisms - P2k vanishing
at 'FE (kex u © ) then & certain pover f* m 2 1) belongs to ? s t.e,

the fmage of ¢ in A is nilpotent. Since a la a finitely generates

k-algebra (k alg. closed) the Hullstellensats says thar:

: *
m‘.la-[EEa,f“-n for some mEZ }= M ker o
uEEmk-nlg: fPI;k) sk maj
This statement =an be decomposed into two (both regarding a finitely

Benerated k-algebra s Wth Lk algebraically closed field) :

a) 1f & n-m,a-h
Mllstallenzars =

B EIL= g m
nEMax s

2) is por fautologieal because gur assumptiong i‘%
13 finiraly fenerated ag k-module, This ingredient of the Nullstellensaps
shows yus that the bypothesis thar & is algebraically closad 18 essencial]

1n orlsr phae 4) remains rrue, Otherwise a) would be false for AT¥ non
Erivia] finire field extension of k ,

The Property b) expregues the faer that Nil A which {3 known o bae

R '."['Jl mrisel! (deal or 4} hull-:t:h-uﬂ._-__! Epestoum of A ,
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the intersacciom of all prime ideals of A ia also [;:cauﬂe of our strong

assumptions on f_J the intersection of something that can be imagined to

pe larger. b) 1ls a very gpecial properly of algebras finitely generated

over fields; it tends to be “extremely false" in general, for instance for

local rings where thers 1s just one maximal ideal.

The implication = 15 clear, &) comes from the fact that {f A 1s

4 Field and 'u: A = k 15 & k-alg. homemorphism A decomposes in k+ keru

but keru =0 thus A= k . b) is & consequence of the fact that tha

maximal ideals m of A are charsccerized by the comditiom thar A/m La

5 Field, Bur A/m 18 2 finitely gensrated k-algebra and since k is

algehruxcniiy closed A/m= k . Thersfore vhe maximal spectrum Max A is

mapped bijeccively inm the set Hamk_nlg{h,k] .

Max A - Hamk_a]g{a,k}
conversely Lf a) and b) are true the {ntarsection of all the maximal

ideals of A 1is ths same as the {ntersection of kernels of k-alg homomer-

phkisms of A 4into k and therefore the Mullstellenmsatz is verified.

REMARE. We noticed already that a) cammat be generalized Lo fields

whereas b) is true for every fiald k .

which are nok aIgghrnicnlty closad,

{.a. the intersection of the maximal ideals of A (finitely generated

over k , k net necessarily algebraically elosed field) is equal to the

gilradical of A . This is not difftcult to deducs From the case of Kk

algebraically closed. s) can be replaced by a')
a'y EE A (Finlcely generated k-algebra) 15 a Field then A 1s &

¢inite algebraic field sxtension of k , i.e; A {4 also finltely gencratt
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28 a k-module. &') can be rastated also as follows:

If £ belongs to the intersection of all the kernels of k-alg homo-
morphisms from A to a finitely generated field extension then £ _1s
nilpotent,

For proofe of the Nullstellensatz m we refer to ZARISKI-SAMUEL or
BOURBAKI's Comutacive Algebra,

12. MQUIVALENCE CLASSES OF POINTS OF %. GEOMETRIC POINTS.,

To begin with let us consider a K algebra A , and let % be the
affine algebraic space represented by A , {,a. the representable funecor
I =V, assigns to every k algebra k' the affins algebraic ser Hm&-alg{"’k
We are going to introduce an equivalence relation betwean k'-valued points
P: A= k', for variable k' ,

A k'-valued point, i.e. a k-alg. homomorphism
PF: A=+ k"'

Ls not necessarily surjective. It defines a surjective map PS: A+ P(A) ,

vhere P(A) 1s a sub k-algebra of k' , which might be strictly amaller.

If P, is surjective, then Pﬂ' Alker B,

PS with the canoniesl map & a + ker Fﬂ which i3 defined jusc by the

and it is possible to identify

kernel, The equivalence relacion that we have in mind is defined by
P=~P' & ker P = ker P! » OF what 1s the same P ~ P' 41ff the corres=

pondent surjective points B, — Pé are equivalent, In other words the

Bat of thesa equivalance clagsas of polots of A corresponds bi jectively
2 the set of all ideals of A » oF what is the same with 21l homomor-
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phic imagesl A/a and their canonical surjective homomorphisms P: A = A
We are particularly interested in the so-called gecmetric points, l.e,

those with values in k-algebra k' which is a field. Then P is geome

fff P(A) © P is an inregral domain = ker 2 =ker P is a prime id
p - Conversely: for every prime ideal p € A , the canonical projection
A+ A/p defines an equivalence class of geometric points. Among the

geomeivric points defined by p thera is & "minimal™ one (cf. che field ¢

fractiona K(p) of the integral domain Afp}. A!p ig ieself 2 Fiald €1

P 1is a maximal ideal of 4 ,

13. CRITICISMS ON NILPOTENT ELEMENTS:

(ROTHENDIZCN's SPEECH:

sa-f0, wa see that fn cercain problems, Inscead of faking all the k-algebrzs k' as
"test-algebraa” (in which wwo take coordinaces of poince of algabraic spaces) we pook cercals
types, mirthar Fialds, or incegral decaina or reduced rings, or fields vhich ara finite exten-
sions of k or if k is algebraically clossd ve took k" = fixed = &k . The price for dolag
»o is chac we will mo 1 © be able to distinguish (in geoewtiric terma) batween an ideal 2
af !1 and its radical « 1o other words |Lif we tajsce again 2ffins enbrddings | and we

thiok Lo termd of [unetors, iatrinsically viewed, wva look st funcrors I‘ (with A= I'.I!:,l}

ropresanted by A . Then, becauss of our restriccions om the k' we cannor distinguish A
from ics quocienc A/MilA OUHLI{A/NELA) = 0). Bo, the fact of working only with Zislds

gt with svwe types of flelds k' dopliss cachnically cthar we work only with reduced rings A
[aa represancing cbjeccs in the LA been & wmry uneil

fifcesn vears agol 0OF course, pacple working In Commcitive :lgqbt- lm' ac Tings vhich wore
oot reduced [for instance BJ“:,I'I.F «we | bug, in Gecmeczy in 4 way e refused co
] rre
1

coosider geomstric intarpracztions of rings unless they wers reduced! A very unplesssnc
aitustion: KAHLER was the first one to gyacematically build up & concayc in which to associace
geometric objectcs to tings which may have nilpoteac elements. DIEUDOWRE and I conciousd §n
the same dirsccion. 3o ie ls nou quite evident from great mmber of developmancs thae bave
been dons Lo the last fifteen years thac, in fact, im Algebraic Gacmatry, working only with

reduced rings does not glve us 4ll the resules thas ome would expect. In zany questioma the
nilpotent elemenc -are tha erux of the mitter. In mamy problams, for (natance in (nfinitesimal
quu:im.:hn pilpotent eleseors play & conaiderable zole.

Therefore I think we ghould retaln as 4 general principls that wve Whall nor rescriss our
algebras k' over k in any wey vhatavar, certaialy not Awsuming that chey are reduced
algebras, i.s. the k-algebra A will naver be confused with A/NilA, Lo stder to eliminate
ailpotent elements, sines che milpocent d¢lements carry very valusbla informacion concarning
the ting A .

n}ﬁf- foernote (1) In page 4L. According to an old~fashionsd defiaition (p prime = 2 gy,

bE€p = ab £p) A vis comsidered as prime. It L3 lmportant to keep {n mind thae we
follow CROTHENDIECK's thevry, bacsuse of the irportance of the set
Spec A = [p]p prime ldeal of A] (the spectrum of A)

{ef. CH, III). Thus Specd =@ = A =0 (KHEL's theorem),

I=12=2 I-13-1
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’z—mid 1ike to comment why classical algebraic gecmeters did not consider
ol lpotent elements. I1f & is algnb:a!nally closed (k = £, classically)
the affine algebrajec Space (= affipas variety considered 4t that time wag
identified with the maximal spectrum Max A. Then, for every f £ A we
a7 associate the function ¥: £ m = ?(m} = image of £ i the residue
field of &mt" k) and this funetion can pe considered as 3 "polynomial
funetion’:

gh;giullz A was regarded ag he ring of pol omial funecrio 1‘!‘{1:} y
(vhich are continuous in the ZARISKT topology cf. next §14),

4 1s not reduced r S funcrional inp retation failg-

If we insist {q calling a nilpotent fTEA(F¥0) a "Funcrion" ye
have the paradoxical sitvation that £ _is pnoe £8ro_bur -.E i3 identically
Z8T0. Withour the invention of sheaves Lt would be hard ro overcome thig

objection,

but {p 18 wrong to eall the elements of @x &8rms of fumetions, In Ch. ITT
GROTHENDIECR will tell us how for ARy commutative ring with unit A (€ obG ,
<f. 52) by Teplacing Max A by the full spectrim Spec & it 1s possible l
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to carry on &ll the constructions: the ZARISKI topology and the sheaf 6

I

ol ]=

b |
{t is not possible to get good résults with the maximal spectrum.,...

14, THE ZARISKI TOPOLOGY.

SmOUEY: The family U(k®) of algebrale varieciex fn Kk (k algebratcally closed
#1eld) concaiva the sspty sac ¢ and %" and it s scable by £inlte unicos snd arbltcary

ipterseczions, Thus uex™ ts cha Eamily of closod secs iz a kopelogy in " known s the
IARISEL copalogy.

Let us assume that the system of equations & consiscs of only ome
constant polynomial e . For ¢ =0 every point of k" 1s a solution.
¢ # 0 no peint of k" 1is a solutiom. Thus @ , k® € u(k™ (cf. Summar:

Let [vu}uEH be an indexed set of algebraic varisties in K"
represented by systems of pnlypmnial equations 5, (w EN) . Let
§= (U 5§ be the union of all these r.qu;ti::mﬂ. Then S represents the

vEN
set-theoretic intersection of the ‘J’u

(14.1) Vo= N V
5 yesV

The previous remstrks hold actually for an arbitrary commutative ring
with unit # . Now if k 1s an integral domain and S,,8, are two syst

of polynomial equations we can see immediately that the system of equatio
(14.2) s=[gE|E €8, E, € 5, ]
rapresants Che sat-theoretic union:

(14.3) Vg = ?EIU?EE

In faet \Fs U 'ﬂ‘s = ‘Is {s eclear (for any k). OUn the other hand £
1 2
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i (14.4) x € VS {flfz.'l (x) = “1 (x}]fztx}--ﬂ = either £1 () =0 or fz(x} =0

(k 1s an integral domain).

Property (14.3) is extended tg arbitrary finite unions by induction,

All thase trivial properties were well-knownm in classical I:imu,u} but
for many years this ZARISKT topology was nmot taken seriously because of
the following highly undesirable properties:

1) It is very coarse!

2) The closed sets are very "thin".

2") Equivalently the open sets are "wery large™,

3) The closure of any non empty open set is the whole space.

4) Any two non empty open zets 0,V interseer: UNV # ¢ !

4) Implies that the ZARISKI topology is non-Haussdorff for any n> 0 .

It is T, however, i.s. every ome-point ser is closed (it is the intersection

of ©m linearly independent hyparplanas.');'

The ZARISKI topology Is coarser than the usual topology of &t } the
pioneers used topological considerations based on this m;tu:ul topology,
for instance in conjunction with transcendental methods related to the
theory of analytie functions.

SERRE'S FAC paper (1955) used ZARISKT topology instead of the natural
topology of analytic manifolds, showing that many methods used before for

a@nalytic coherent sheaves can be extended to rhe purely algzbraic case.

{IJH' for instance HODGE-FEDOE treacinme: 2 of algehralc gecmsc Cazbridgs Un. Preass,
1947, Vol. II. The proparcies mentionad in the texc ate checked but oo smocion Ls made of
the fact that this chacactarizas closed sees in & copology. incldeocally chs sams proparzies
Sr® Erue In projecelve space, vith cha only necessary med{f{cacion chat the polyocmials of
3 need to be homogenoous .
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gense still preserves a meaning in much more general
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We shall see in Ch. ITI how the ZARISKI topology in this original nai

gsituation, where poin

prime ideals of some commutative Ting with unlt A . In fact (14.3

becomes, ina natural sense

(14.3)" "(flfz}{'p} = 0" = either “E]_{p} = 0" or “fztp}"

where £(p) =0 is used as a conventional notation for §€p or £=0

CHAPTER 11
S IN THE ICORY__APF
OF

AFFINE ALGEBRAIC SPACES

[Ch. II can be omitrted in the firsc reading. GROTHENDIECK needed thi
macerial for his_course om algebraic groups. The construction of the afi
gcheme (Spec a,i} attached to any commutative Ting with unit A does 3
require any material in Ch. II. We advise che beginner to tead Ch. 111

First.)

.. .84 ua hive set up the basic languaga concerning Affine algebrals mpaces ler. one 1, §t
and we could pracusd mew in twe dirccriens! dither cairacing phé nocion in w differant way

thut will allaw us o glus togeiher sffins places and defim more general algebralc spacea whis
{1

den't nead to b affime, L.e, olilch don"E weed ta ba cepresantoble-by k-mlgebras,’ " or va couly
alpernacivaly flcpe work & lictle big more Ln chin =ategoTy '7*”1 af vascricted objects
defining such cpocacions A4 produccy, Eiber neoducts, kemnela; [ct. 31, !_l o Singe ke aze gol
e introduce affine group ohjnct:f“ L., group objeces bn ALS, wm choose thils wecond altecn
cive bufore plobalizing these notions [fafinad ta Vol. TL.

|s_mm‘r. Chapter I1 4z sainly devoted co tha study of Limits (cf. §2) En che cacegory
.ufk af aifine alpebralc spaces cver k (K E ObG) 47 in patticulae, for k= 2, In Ehe
Mabioluce case™: AZE = AfT, .

An object of Aff was alrezdy dafined in Ch. T as the fonctor of solucions, vhen wva got

(L) hieh laezds us ce dafine the specttum X = Sped A and cha gtrucfurs aliaaf ‘I sl Ehs

wé glue togecher aeveral affine pieces [Vol. T1) .
ﬂjm' will te handy for dafining geowp ebjecte [n the categary Azg, r-.:ndm.t in his course

on 4ffina aigebrale groups taught sismulcanscualy im JURY ac Buffalo, Sumaer 1973, ef, AAC-
Buffalo course.|
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rid of the afCine emboddings by replacing § by 4 and then by A (& Dbﬂk), wigre A = Plfjl p
apd ve weee lad Lo Ldencdfy such & Funcror with ehio reprogunteble functoy ¥ = v k' n iﬁfl:')
k' & OBG.) whaee & is "tho k-dlpubra repredenting 1,

The' saudisnce roguested 4 purely catogorical review af the (undamental eoneepts 6f Lnversa
ard direct ldmicy, an enll o the reduction Lo soue simple particular casen (trosted Fivst 1o
b1,2,9,  Steve fin graduate teaching fn commirativa plgebrd anld topology (Loth foint-p=t and
elgebralc) bacoucs lucreasingly cateporieal thare are winy chonces that o knowledgeablo foadar
might skip the flzst purely categorical purt wdileh takes mach more spuce than the actual
spplications co tha two dual enzogosies AE  and i, » lowover it would be revarding to get

acqualnted with thuse notions Chrouglh GROTHENUIECK s vary esnerete {ntroduction .tb-nbud on
TOHOEY) . 1 fourd |t puch esster co rend HACLANE'R gradiuate Bext oun éntugorics after resdlng
EhaED niaLes.

PART 1
CATEGURICAL PREPARATION

REFERENCER.

For further details cf, KU, Springer, Ch. 0, §1, puge 19, ; ef. also TOHOKY, 1.7d), SGA, 3, 1.
Quicker Lutredietions without proofs ean be found fn DIRUDONNE, Advances, II. A mors tachnical
sxpoaition of this materinl b given In MACLANE's eategery Lext.

1. PRODUCTS, KERNELS, FIBER PRODUCTS. [We shall review these catégorical nocians,
First in a purs st thestatio way, then in vericus simple topological or algebraic geomatric

{but cloasical) comtexts. FPipally GRUTHEMDIECE will tell us how theas notfons in their original
sac-thaoreric form con bo charactecized and vedefinad Just In torms of arcows (m=aps, marphlsms) ,
in o uny thar the saoe daflairivhe will saks sanis Lo an urblitrary eatsgory C . These produce
comviruckions will appear ao particuler cases of lovorse liedey (ef. §2) and ehey will lielp us

Eo understand the gonaral definitions; that can be scoced In Cerms of the ootion of reprasontiblo

fungtor (ef. Ch. I, ¥1) by & reduction to the set-thueretic uu-“} It (s Llmportent to keop in
nind, thet this raduction is done via guty of porphisme (o . Pracisely, we are going to usa
the Lncluslon:

(1.1 £: CC R = fom(e”, Sots)

by replncing svery ohject X € Ob( with the capresantable functer 4(X) = het C < Seta.

Thuz Lf we know whar the got-theoretic product AXB or kear{u,v) wesns for » doubls
Set-thioratie arrow s.;n o than Z = Xx'¥ or 2= kerfu,v) For x§ ¥ M,z Emecy
¥ € Are Q)  ALE for u:nl_ry T E€OBC we hava:

£1.2) Mom, (T,2) = iloay, (T,X) % Hom, (T, ¥)

Lo

(1.3 Il.nmc(‘r,?!] = kerlu,v,)

by
vhere u .y, ars the induced naps fom, (T,X) 3 Hom,(T,¥) . OF courss (1.2), (1.3) miks seuse
1!"“

wﬂg’tt s ) Ere sors.

The imporcant construction of Fibar produces can be reduced to the ordinary product and
o kery{ , u

(i
]""'1' often, kut noe alpays, wn object of C© {a.a ssc % wich some kind of sddicional seris-
Eute (for Lnztance o group, ring, topelogical structure), thus there s an undeclylng wet. Wa
da pok uye cha Poinca of thoese underlying sete... (which do not appesr In the categerical

Sxlomp...}: phis dufiade Dous nee @ pursly categorical, As ¥ counteraxsmpie remember
EhAt any preordored sat baooees & chtegory, (Whota the objects are aot secs with an addiftonal
Structure).
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PRODUCTS ;
Let us atart by recalling the defini clon of the usual Cartesian P

XXY of two sets X,Y as sar of pairs (x,y):

(1.4) XY = [,y |x €%, vy e ¥)

Thers are two maps p,q: KXY ﬂ X and XX¥ Si Y , usually callad .

projections on the first (second) factor definad by

(1.5) p(x,y) = x 9=,y =y Vix,y) €Xx¥
FERNELS :
u
Let u,v be two maps X 3 ¥ . The karnel of the pair (u,v) is
v
defined by
(1.6) ker (u,v) = [x € X|u(x) = v(y)]

The set of fixed soints of a map f: X + X 1is obviously given by

ker (f, lx:l .

. DEMARK. The wsual ker, so frequant in homalagieal #lgebra i3 acruslly & pacciculasr csam wi
tha sacoud map v 13 equal to “zero”, im'the following semse, Lt us sisume that we raply

tha category of amca by the category Sec  of poinced sets, {.&. an object i 2 pat (¥ al

with & discinguighad baca eleswac O and che morphisms are basa presacving sec =apa X =+
i.a. sapping l:II in ht « The map Loducsd (& the tndaclying s#aca for abelian EEOupE,

modules, vings ars discinguished Ln the sense char the rerc elememe in dlsciaguighed, In
Sat_ the sero map X ¥ L aluays deflosd apd ker £ = ker(£,0) iz cha aense of tha

pravicus definition.
FIBER PRODUCTS
An imporctant related notion {s the fiber product AX-.B of two sec

£
theoreric maps: If A=C, B L € are two maps on the category of sets

the fibre product Excg denoted usually by axcn for shorc (although

£,8 play an essential role) is the subsat of the usual product AXB

I¥-1-2



characterized by;

(1.7 Ax,B

An {mportant particular case ef the

of two subsets of ¢ » when

BsC .,

" Let A= {G,n € CxClx = v} be the diagonal of CxcC .

have

(1.8)

vhers (pl,pzj denote tha

The previous diagonal case
the intersection when A = B =g,

=32~

= [(a,b) € axsle@) = g)]

fiber product is the intersection A B

£,g become the canenicsl injecrions AG (g I

We obviocusly

A = ker (py,p,)
P1
two projeccions Cx¢ 2 ¢
P2
can be intarpreted as a part{cular case of

E-I‘Ic-

There 13 a natural (bijective) diagomal map 8: C A (xm (x,x) ),

€EqQ .

Then the intersacrion

(1.9)

The Cartesian

ANB 1is exprassed as follows:

3AnB =axsnas®

product. XX Y of two sets ecanm be trivially {dentified

with Zx[.}!‘ wvhers [a] is 2 one-polot set. @

iy

¢ 7Im Classteal algebraie eomacry thls conatruction hus idvancagesvhen A& Dbaeeses & linear
Subspace of CXC (for inseamed Lf € i3 an affing spacs), Thiy redicelon co ths diasonal
X ey S el

TRriscies,

n}'l'i.’ll will have & cacegorical analog
thar {4} !

i3 a final obisct in che

la the iocersecrion theory of clasaicxl algebraic

for more ganaral cacegories, depending on the fact
category of Seea, (Cf, 1 £1),
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Of course, these pure set theoretical notions becomé more sxpres:

when the $ets have some additional structure. For instance, if XX =

ropological spaces, XX Y 1is usually understood to be Ehe Cartesian

product of the underlying sets endowed with the product topology. If

X,7 are veetor spaces over a field k of finite dimensions m,n , X
can be naturally identified with X&Y . 1In classical algebraic Geom

{f X,Y¥ are irreducibla projective algebralc varieties over & so L
¥%x Y and the irraducible subvarieties of XXY are by definmition th

{rpsducible correspondences betwesn X and Y .

Thers is another interpretation of the Eilber product xxs*r as
base change (widaly used by GROTHENDIECK) whichwe nesd to discuss. Le
E(X g $) be a fiber space of some sort (X is the cotal space, § ¢

base space, p the projection).

£
Let S' 4+ § be a concinucus map (base changs). We want to comstr
the inverse lmage f‘]‘(E} (or pull-back) as follows: For avery ="'
we assign as fiber over x' the fiber of E over £(x') =x (L.e. "

back the fibers' . In order to formallze snd to introduce the topolo

structure on E' = f‘I{E] , we comstruct Eirst the topological product

X% 5' and then we restrict it to xxss'; conversely any AX,B cam

1T-1=3



interpreted as a pull back of B =+ C by the base change A 4 C . MNow let
us ses how all these comstructions might be introduced inm an arbitrary
category C...,Let us consider two objects X and ¥ of 0bC and let

1.;.'4 see what we can say about the product XxY (that might not exise...)
If XxY exists, it is a new objeet (€ 0bC) . In order to define it
axicmatically up to isomorphism, we shall examine first products of sets:

1f X,Y are objects of the category Sets, the main categorical property

of XXY 1ia the existence of the cwo projections (1.5) in such a way thact,

i
for any other sec Z pgiving a map Z - XXy 4is essentially the same thing

a8 glving two maps Z = X, Z 4+ Y such that che diagram
IxY
(1,10 1l
Efa
Y
commutes. In other words we have a bijection u » (p» u,q» u)

(1.11) Hom(Z2,X X ¥) 2 Hom(Z,X) X Hom(Z,Y)

(ef. (1.2)) which associstes cthe morphism u with the ordersd pair of

morphisms peu aud gqeu. ® We shall write u = (psu) X (gqsu) = (peu,qeu) .
The propercy (1.12) will be taken as dafinition of tha product

XXY for any category C: Precisely:

The object XXY € ObC together with two arrows Pyq: XXY A X, IxY 1y

18 called a product of che objects X.Y (both € OBC) when P,q are

t_tnhtzul with respect to all ways of mapping any Z € ObC into XX¥ .

R
-~ WY the usy, {f 2 ia reduced to a polse (@] this juse mesns thee 2 cota
- T L

the pates  (x,y) (x €%, y€Y), becsuss to define a sap [e] =z “x“ ehmu.:.p::n:l:l

Ziand in particular, [e] + XXY amouncs to choowing a palr (%,5) jan-

1114
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{.e. 1£f for every Z + XxY che map defined by u =+ (psu, geu)
petwaen Hom(Z, XXY) and Hom(Z ,X) % Hom(Z,Y) L= bilective.

REMARK. Since Hom(Z,X% 1), Hem(Z,X), Hem(Z,Y) are sets, essentially,

the dafinition of & product as = solution of a universal problem is redu

to the particular case of the catagory of sets, This solucion is define

@p to isomorphism, i.e. if (Xx¥)' 1is a second product, one can find a
arrow U: (XxXY)' = (X,¥) commuting with the projections; reversing the

role of XxY and (XXY)' we sse that this is indeed an isomorphism.

One interesting problem on any category which we may consider,is ¢
find out whethar or not there exiscts such a categorical product XX ¥

any pair of objects X,¥ of ObC. This product might exist or mof b

1
if it exiscs ic is unique up to iamrphiﬁm.{ )

Namely, we considersd the cases of two cbjects before; but we can a
cake a family of objects X, € OBC depending on one index 1{(2 I) and

to defins the product [l Ki of tha Hi + This should be endowed
i€l

with a family of morphisms Pi of tha produet into each aof the ,g*:

i pi
(1.5) 12111 + X,
anod this would have the universal property that, for every z[e OB, th
map which goes from Ham(Z,tIéI:Ii} into the product igam(z,xi) y wh

associates with a morphism wu: Z = I i, the syscem of all composita
icl

should be bijective. In symbols, we have:

(1,11)" Bom(z, T X )% 0 Hom(Z,X )
1FI LET

“]T_hh product [ormition {9 & poredoulay cage of the construction of the so-called ipverss
limfes s a cavagory, (Of. 41 for the genscal definlecicn).
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T So this is the case of the preduct of 20 arbitrary family! One can
) wonder whether or not this product exists in C , but if {t does exist, i¢ ¢

defined up to a unique isomorphism.

By the wvay, when the family {s empty rf-ﬂ we can wonder whethar

such a "product of an empty family exists™ ﬁ:: order that (1.11)" still hel

conversaly: it is €asy to show that the product becomes a fingl object,
]

143 __.= {nr. Ch. I, #1).

' . "_,‘ Thus, among the objects obtained h]rlprlndu:t famtinns,w- also have the
= "_,é_n.gtrm:tian of final objects! OF course, when 1 contains just one element,
_-,t-

- product over I always exiscs in any C , but this is not so For #]I] >1.

ebunn, 1f che product exists for any pair of objects, then we can always

the existance of produccs of n obJects (for amy finite n) by

£
-assocfativity considerations.,

Row let us see how we can sxtend to any C the notion of kernel of a

_E_L-T;ﬁ e ATTow: Let us assume that we have two arrows xE T in a cacegory

&=

q
l'-il the sam= source X and the same target Y . We want to dafine the

T 1 K of these two arrows (where K & O0bC) , by a reduction to the set
R (L
l \

sueg ﬂi# case involving arrows onlv, A kernel would be an ob ject ErE- ﬁht;[

= 4..' T with' a morphism 1i: E =+ % (as an extra structure). Composing
lill the two given arrows, we have two morphisms from K fnte Y

LI

: t P*i = qei apd we want this arrow i eo be univarsal, for all

=

8 vith target in ¥ » *elative to the property that the composites
2 and q are equal. T will make this more explicic: for l;!r object

i h we lock ac r.lu set Hom(Z,X) of all morphisms from Z iato IK :
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by composing with 1 this is mapped Linto the set of morphisms from Z Ec

x: £» isf ; and composing again with p and with q , I get two maps

peiof, qei=-f from 2 {nte Y . Then (E.,1) {s a kernel for the pair

(p,a)* 3{5 Y , iff for every choice of Z(€ 0bC) the sequence
q

Hom (% ,K) = Hom(2,X) 3 Hom(Z,Y)

is exact, i.e. the firstc arrow - is injective and its image consists of

the morphisms from z to X whose composition with both p and q are

the same.

IMPORTANT REMARR. Im the previous eonstructions of XX Y and of
ker(k 3 ¥) by means of solutions of universal problems, we raduced the
case of an arbitrary category C to the category of sets by replacing t
cbject X € 0bC DbY¥ the secs Hamcl:?,xj (for amy Y €0bC) . In othe
words, we were able Co reduce the problem for an arbitrary C , to the
category of sets just by the subscitutions X1+ Hom( A 2 -

Now, I will give twa specific examples. Lat us take the cacegory

of groups for inscance. Here, there are produccs (the usual products of

P
groups) and there are kernels also, because if X3 ¥ represent two g
q p
homemorphisms the set [x € X|px = qx} is a subgroup K= kar(3) ,
q

which turns out to be & kernel in rhe cacsgorical sense:
Now let us give a third construction which is important.
FIBER PRODUCTS IN C : Ler us assums that wa have two objects X,

lying over a third one S 1.2. e have two structural morphisms £,g

(c£. ch. I, §1):

11-1-7
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1 T
(1.12) \ /
]
We want to define a third object of C lying also over § , which we call

the fibre product of X and Y with respect to 5(1); and we denote by

IKSY ; which for the category of sets, }[)QS':' should be the subset of the

ordinary set-theoretic product X XY consisting of all pairs which have

the same projections by f and g (CE. (1.7)). KKET is noching else

as the wsual producr in the catagory (/5 . 1In other words the Fiber
product; denoted usually by xxs Y for short is actually a morphism

XX X 4 § 1a C meking commutative the laft diasgram below

.19 \.l/ ‘{J?

in such a way thar for every 2 + S in C making commuctative the righe
diagram above it is possible to £illin the dotted arrow below ln a unique

Wiy to construct a commuicactive diagram

oo

NV

O

(1.14) I 41

N

REMARES:
n'thl fibar product Ixs Y ean ba defined in terms of products and

kernels. If we have x-fts, r-sos we construce XXY in C (if (¢

u’ﬁ-i-l Ls &n abuze of language (#nd XX, T an ebuss of cotagiom), £ end § ars sssencial,

I1-1-8
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(£x £)ep
axists) and then we construct (if possible): ker (XX Y) Ei Sx8 .,
(gxg)*q

Thus the existence of products and kernels imply the existence of fiber-

products
1’(}::]11!’&1’5&1? {f arbitrary fiber products exist in C , there exiac

final object C (» product of an empty family of objects of C , ef. pag
56) and them XXY = F{xe‘f. gimilarly we can see that there also exists
arbitrary products. If arbitrary Einite producta and fimite products
exist in € we can define the diagonal ax = X xxx , the diagonal morphi

ﬁf X~ Ax - The silly commutative diagram below

(1.15) If;l;‘

I 'x ¥

IIII

shows that ﬁl is bijective and we have two canonical maps inverse to

u -
each other X - By + Now the pair of arrows X 3 ¥ csn be transformed |
(u,v) v

the unique arrow X =+ ¥Xx¥Y and we can close a commutative diagram be’

by completing the dotted arrows:

? _—}1
]
' a_,1)
(1.16) v 'y
— Ty
{u"}

Then K = ker(u,v) = RHH,‘T with respect to the two morphisms (u,v)
and (]’Y’I'r) . This is an abstract version of the diagomal trick (inter

section of the graph of (u,v) sand the disgonal. |
‘Tmr let us see how fiber products can be interpreted &s base change

I1-1-9
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In &n arbitrary category, following GROTHENDIECK's own words: |

Let us interpret the fiber Products alternacively as being an eperation
of base change. Lét us consider two objects X,8' (which will not play
the same role) lying over § Ea. we conslder two morphisms as shown in

the diagram below:

X s Where X can be viewed as a kind of "fiber space over §"
§'—3y 5 and S' 135 viewed as & "new basis" (cf. the set-theoretic
pull-back interpretation), Ler X' = X¥. S8' be the fiber product of X

s
asd S' over S, There sre matural arrows of X' over X and over s’

Ikai.ng commutative the diagram

'- zx.l' —_—
(1.17) 2, l
= ‘5" -—

The arrow X' + §' dafines x' as an "obiect lving over §", M 1 want

to characterize X' over §' {n this yoga [for ' =+ g fived and X

variabl_e_]. The solution will be a kind of tautological reformulation |of
the definicion of xxss_‘J when the "optic" has been changed a little bie.
I look at the cwo categories (/5 and ¢/s « [ef. cn, ) iv EL[ { there

4re two natural functors @0 going in opposite directions:

(1.18) c/s' f{:.ﬂs cxﬂ gz Ez}
"

a
wherse @ is the composition functor C/S' = (/S » Lie. whenever I have an

object z' 4 8' over §' I map 1€ inco the compos.te @(2') 4+ 8 as

u'.hl- socamathing ¢orresponding to the fotultion of & fiber apsce over I' .

II-1-10
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¢ndicated below (i.e. Z" 4 8' pgoes to (2' E S) = @(Z") (11. How the

construction Knss' ‘can be viewed as a right adicint of

z!

@
‘L;\'ﬁ? g Precisely, wa have the adjunction relation
5  —

Homy ;5 (23, %) 3 Homg e (2, 60)) D

we leave the trivial verification to the reader; the important peint th
CROTHENDIECK wants to make clear f£s the following:

Lat S'" 4 S be a fixed morphism [ "base chanea" fin an arbitrary
category C). Then the composition funetor g/s' +C/s (= 2' 2 ¢(
has a right adjolnt 4;‘::33[ + $x) =x' = xxss' which 43 the fibér prod
or pull-back .

In other words inm any C anv fiber products can alwavs be interpr

(4)

as a base change.

[Z.  REDUCTION OF ANY INVERSE LIMIT TO THE PREVIOUS PARTICULAR CASES.

SIMMARY. We ere going to daflne tha Lloversa llml.:ﬁ} of an achitrasy dlagrim in the cotegocy

¢ . BSuch diagrams appear as concrace reslizations fo € of so abutract disgeam 0 of
wartices amd arrows. The previous conatrustlons of Ix Y, .'I‘.:la ¥, karf{u,v) will appasc as

particulsr cazes. The inverse limit of any disgeann D in € , F = U= D zhemys exizzz ia
i

“}m comaideracion of che disgram §' 33 » I 2z asymmatzic...

ﬂ’m @ £3 & kind of forgeeful funscow (forgeccing §' Zfor tha besefl: of %),

O) fi. reades should zeczll thas tha notaetons X,2' are sbusive. Really the obfecsts of
s, /8" are secucture srvows X =3, '3 .

m'[i'uﬂu the (offictally vell-kacwn) morien of adjenceion. Let ¥,d be &30 funccors
rurning io opposite dirsccions becween cwo fixed cacegories §.2:
r
ot -
s

L4F o assuma that for every pair of objects D E Ol , E € 082 there Ls & functorial
Bjection (called adfomecion):

q},lt lﬂ;ﬂ-ﬂﬂ) = !ﬂ:ﬂm? X
» Then we say chat F (&) fsssight (lefi) adjolatco g (F) . COsually &z iz clesre

socogh (as iz che géxt and LE (2 oof madeexplicic, CF, HACTANE's Citegory cexts ©h. IV
Adfotary, page 71|
() pull-backs in Americas categorical parlancs.
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the enlecged category ¢ s BUC le dasy moe need to bs an clilece of .
varisnt funceor from € Eo Sets. When F balongs ta
the inclusion L: C%C , ig othee words whan F is

(X € ObE)) them we wripe X = 13'5;. -

It fa fusc & contra-
the eseential lsape of € 1n (o by
fepresencable (for inscande F = b.x A

but then X% becomes an objact af ¢ decernined up po
{scnocphlon,

We shall show how the genaral (rvarss Units in C can be caduced to the cases of §i.

ABSTRACT DIAGRAMS,

Let us start with a disgram D , which is just a set
_,ﬂ - L]
I of vertices Dy and a certain set of arrows o, "joining

cartain pairs of D," (something very abstract!) and two

maps from DI. into Dﬂr

-5
(2.1) b, 30,

associating to every arrow two vertices (its origin and irs extremity)

Tespectively, also fraquently called che source and the target of the

Arrow, This is what we call a modsl for the -i'i.ugramfu)

Now, 1lét us consider a category C . Then a diagram of type D 1in
C iz just a pair of waps, the first one associating with every vertex of
D an object of 2 Dﬂ <+ 0BC and the second ons associates with every

mbetract arrow of B 4 morphism of ArrC= ¢ ) preserving sources sad

E.}'- for ::;i“r Fesding MACTANE Cabpaory III Undversals and Tim| pagn 33.
UTHEND Uked in his eoursa Ehe terminology loversa and dicece liefed, The followi
‘”'—‘“Wrr can be uzeful; =
inverse Limtet = projective limic = Halt = lafe roots = Lin
& Piress limic = Induceive limit = colimis = TiEhE ToOCs = 1_1‘1:
N:.IEHEIEEI uzgd tha Frapeh :.m.tnolu;;r (prejaceive, inducrive Iimits) Ln Wis original
#: QL. for instsnce $GA.-I, Exposa I (Prifalpceaux)
“]Hu
ek 2
‘:“;l_::‘tr*“-"- *“*'II‘.F-II!I- BT NACTANE'Y Griaphe (lLoe. elc, IT, §7, p, 40, "Bvory category
agrgep,on (T (= dinpran) forgeeeing wiideh arrovs are composteas and whiich s,
‘h-:ua--lb = Chmvorea Iy | hary Wi mazs Lo “Wieveruts™ carafrries frpmy diagreug by fegaly
R argave i B =g OF, Ir=. oelr. for deralls.
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targets, l.e. {n such a way that the following square commutes

E'I. = prrl - DI
il 11

2.
(2.2) o, =8 v 2

EXAMPLES. ULut us first consider the case of two points: = & (,
no arrows). A diagram of this type in C consists ig glving just two
objects X and Y , in the category C .

E}Cunsidar a diagram with two points and two arrows in the sams
direction: =3 = | 1¢ corresponds to a pair X,Y together with two
worphisms from X inre Y : X3y

3JIIn order to defins fibre products Ixs'f we shall consider thres
vertices 1,2,3 and two arrows 1-3 and 2-3 with the same cargat,

1 2

(2.3) \' / I\ f'

5

corresponding to three objects X,¥,8 of ¢ .

| I summarized hera the previous examples of §1:

’ FRODUCT KERNEL ﬂm
Mln‘rn:n; - 8 o . g “igl
.
PGRA i ¢ (O | 3y X{'
5
= Ixy Eeker(X 3 ¥) Xxgy I
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Now we want to defige tne inverse |imir of any type of diagrams in

the category C, o abscrace diagrams | I will now use small latters

d-‘dﬂ’dl te dafinm Cypmes: of disgramg and capitals U’Dﬂ'nl to describe

effective diagrams,

Let D be a diagram of type d in the category € . D 4is defiped
by @ssociating with any 1 (€ dp) an element D) €0bC and with every
arrow @ (€4d,) a morphism D) € Arec | satisfying the commutativity
property (2.2).

We call inverse 1{mit ﬂ.i.m D) of such g disgram D an object
L € 0bC togaether with a fam{ly ufi) ,

u(l)

(2.4) L = i) iEdu

of morphisms of L ineo the D(i) satisfying the following axiom: -
For every object 2z € gbe of the Fategory and every morphism 2 - L

we define a map

(2.5) Hom(Z,L) - drr Rom (D, D (1))
0

by composition of arTows

u(i)
L = - 1(4]

(2.6) I/

in sueh a way that (2,.35) is Injective and the image should be exactly the
sef of 3]l morphisms from 2 into the various 0(i) which ig compatible

vith all the arrows of the diagram, 4.s, 1 D(i) =+ D(1) belongs to D
then the triangle

11-2-4



o) )
DLy ——0())

(2.7) I/r

is commutstive,
A set of morphisms Z < p(i) satisfying the previocus comutacivity
condition for all tha D(p) € Dl is called a coherent ser of motphisms.
Then, we can express the previous property stating that q’g,s; defin

a bijective map becweén Hom(Z,L) and the sat of coherent sets of

morphisms in 0 , {.e.

(2.8) Hom(Z,L) & 1 Hom(Z,D(1))
.l.E-:I';.l
coherent
This can be sald also in the following way, by reducing the general
case to the category of sets as follows:
Let us assume C = Sets ; then all the D(f) are sets and the morph

D(i) b D()) are maps betwsen the corresponding sats. Then we can look

at the subset of the product of the Hom(Z,p(i)) which consists of sets
of morphisms compatible with the arrows of D and commutes for every
D(p) of the rliagrm.}. Then the universal property dafining lém of any

diagram D of type d 1In a category ( can be stated as follows:

An objeet L € ObC is the Lim D(1) of the diagram D of typs d

iff there 13 a bijective correspondence with the limit of the Hom(Z . D(i)’

(of type D) (In the category of sate) ;

IX~2+=5



(2.9) Hom(Z,L) S5 1&m Hem (Z,D(1))

for every choice of the oblect 2 of @bC .,

Now, we are golng to prove the reduetion :henrzms:fn

Let C be an arbitrary categorv. The following propartiss ars

equivalent:

Ygruterary inverse 1imivs exist in (64

2}{: contains arbitrary products and arbitrary kernels for pairs

of arrovs.

3}§ contains Eu‘bitrnrg products and arbitrary fibre products,

PROOF: 1t is sufficient to remark the existence of a Functorial

Lgomorphism

¢
(2.10) mDs ker( 0 D() 3 0 D(targer of 1)
% L1ed, v isd,

for a diagram D , where the two products are takan over dy (set of

vertices) and d1 (set of arrows). The two arcows of (2.10) ara

defined, by replacing with unique arrows u.v v tha two sets of arrows
Frl:air.-.'gem: i |
I p{i) =———— p(target j)
iEdn

and the composica of

pr
source | Dl
0 p(i) s=———> D(scurce 1) = D(rarget j)
ied
0

REMARK, Singe the condirions 2), 3) are satiafied in the category of Rets

rﬁ';_"'—-.__
IM:I:T the explicic dsseripeion of this reduction from SCA-4-I, Exposé 1, page LL. fe
B taken with the usual grain of salt becauss we do not care here abvut che foundaetfana

af & X
m:‘:;!‘ﬁ‘“? Ehaory, unlversas, sec, Besides the sbstract dlagrama d can be veplacad by o
& Tgma] | “iCegory § and che soscrece diagra=s by Succcoss & + O ,

TT=Pei



Ek‘““ the existence of arbitrary inverse limits in the category of get

Now after this preparation, we recognize sasily that, for any given

eategory (C tha liu D always exists in the category ¢ , since the
construction is reduced elementwise to the category of sets. We say tha
l'i_m D exists in € Aiff the limit of D in C is re resentabla, {,e,
633 'li:n D belongs to the essential {mage of 1: Cee® . Let

'I'I_n D - hL (L € ObC) . Then the object L (defined up to isomorphism 11

C) is called an inverse limit of D in € and we shall abuse the notat:

by writing L = lim D .
-

]Z DIRECT LIMITS. The direct limits in a category C (cf., foormote (1)

II-2-2 page 62) correspond bi jectively to the inverse limits in the ODPOE

category C . These duality considerations dre particularly {imporcanc si

the main result of Vol. I is that the category Aff of affine algebraic

spaces (that will be identified im Ch. IIT with the category of affipe sel

is isomorphic wicth che oppesite category G of the catspory G of COommu-
tative rings with unit.

Because of this fact, although we could honestly leave to the reader
the main facts regarding direct limits, we shall elaborata a lirtle bit or
certain basic notioms, by dualizing explicitly the constructions of (I1.1)
aod (I1.2), i.e, we shall start by duslizing products, kernels, fiber
products as sums (= coproducts), cokerns=ls and amalgamated sums.

SIM = COPRODUCT. The basic set theoretic remark is the discovery b
the pioneers that the disjoint sum of two sets A,B  (union of two disjoin
copies): A +B (» A OB) has the dual properties of AXB, L.e. to the

projections AXB + A , AXB + B correspond the canoniecal injections:

IX=2=7 I1-3-1



-68-

| ASA+B , B9 A+ B and the {dentificarion (II, (1.2)) 1s replaced by

(3.1) = (1.2)" IIWE{A + B,C) = IID%(A,C} b Hmcl’ﬂ,ﬂ}

defined by filling {n che dottal arrow below in order to make commutative the dia
/ﬁ\

(3.2) A+ B mmmeae)

B A

(dualize (I1-1-10) or (II-1-11)). The property (3,1) is

taken as the definirion of A+ B (= Al B) of the sum (= coproduct)

of two objects A,B in any categoery C ,

The extension to any family [xi.}i.EI of objects in C 4is done

dccordingly by dualizing (1.11)°

E (3.3; Hcmc{lglxi,zj zlglﬁmcmi,z,)

As for the product one can wonder whether or not rhe sum exists in C

but if it does exist, it is defined up to 8 unique isomorphism.
R DUALIZATION OF THE KERNEL (COKERNEL = COEQUALIZER = coker (x :i_: Y)). The
universal injective arrow K 5t X :t; ¥ [Fef = pei) 4w dualizng in our case
X :i-f Y (sense of the arrows rnvarged} by a pair (Q,p: Q + X) such that

40 m

to
Y commutes and For any commutative diagram Z E X £Y there should exist

Q=x

O 4

= # B
¥ ® Unique morphism Q 4+ Z such that p' =@+*p . In other words Q. leooks

Like & universal quatient, The corresponding pairs of dual disgrams indicate

clearly the names equalizers and coequalizers given by professlonal categorists
= .L«h E0 kernels and cokermels. Ceometrically ker (X 5 Y) arises by considering
’ B

k-

i
e x|eey = g0x)] + We would like to change the role of X and Y . ‘

-

iy = II-3-2

L
ik

3 =
&




i
P
X (K= X)is a quotient object Q (Y =+ Q) such that the compositions of

£ F
the two arrows X + Y, X 5 ¥ with p become identical: I:r:q Loty f
2

' This is not literally possible. What we obtain({nstead of a subset K o

DOALIZATION OF FIBER FRODUCTS: AMALGAMATED SUMS. The dual of a fiber

Y (= & product of two objects in the eategory (/5) will

8 —

product XX

be 2 sum in the category 8/C . It is usually called an amalgamaced sum

in C . The best example is the usual union A U8 of two subsets A<
BS 8 of aser S . We can obtain AUB dividing out AU B by the
equivalence relation defining the identification a ~b @ E A, bEB {8
a=h).

The extensions of these notions to arbitrary families {xijiﬁl can |
done directly, i.e. dualizing (1.5)', (1.11)"' (cf. page 55)

X, Hom( O X,,2) 3 0 Hom,(X,,2)

!i = 1
i€l el

1€l

and the sum of an empty family of objects of C i3 an initial object

(ef. I, §1).
A good exercise would be to see how the existence of arbitrary finits

sums and cokernels imply the existence of amalgamated sums, stc., and
finally the reductiom of arbitrary direet limicts to the previous particula
cases.

The device of reducing the L.I:m in any category C to the category c
sets is done by enlarging C to the category ¢ of contravariant functor
C + Sets , where every X € 0bC was identified with the functor hI
represented by X . A similar approach in C enables tha reduction of

the atudy of direct limits te the case of sets.
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LIMITS IN THE CATEGORY AFF,

BLROARTY . The inverse limit canstruccions In "‘Hl: Bre deducnd by dualfcy from tha direar

linits in tha opposice category ﬂk » The m2in property 4o the exlotence of achi trary sums

{= copreduces) in G, coming essontislly from the rensor produce A B (= cacegorical sum
of A and B, 4B E MG ). of. §6. 1a L. s acbicracy cokernels of piirs of srrevw exise.
(ef. 13), A# & consequsnce, in AEf,  mzhitrary produces and kernels k(X3 Y) of azbitrary

pairs of srrows exist and, because of the reduction thearsm of 42, ve can prove the existenza
of arbitrary inverse 1imits in the cacegory u‘t‘h C

Regacding direct limies I_I.u X tn Cw ka o U8 knou that Ehey cortespond to Inverss
timiea Lim A, ]"::l “ %y LEL in the opporits catagory G . ﬁl Edhd, , i€ 1
Thess inverse limies sluays exfac in r,:ll ¢ *ince the sec-thaoresie limie
of the underlying sacs of the 4; alumys exisc and tha algebratle structure carries over, Tha

Erouble arlses vhan e “ant to interpret them (g ehe oppoaice category © , fis. che dual dirsar
li=its ta C sre oot coo reascmablel For inscance Paffdage to quotisnts in AEL  glves pache-

loglesl resules bazause 12 wvould be oot the same 4% passsge to quocients {n the more general
eategory of schames (cf. Volr II).

Thars Ls Just one operation, wvhich is alwvaya Feasonable:! tha finics sum operation [ 5
[T = (L2,...,8] fintee todex sec| (n che cetegory C of affine algebraic spaces giertSl
E that we are going to describe io degail below,

4+ [CATEGORICAL GENERALITIES ON AFFINE ALGEBRAIC SPACES. The two cate-
gories Aff, (Affk_) of affine algebraic spaces (a.a. spaces over &k >
k € 0bG) have been dafined already in Ch. I by a canonical identifica-
tion with the categories G" (G.;J opposite co the categories (0, (G'k)
of commueative rings with unit (k-algebras, (k € o0bG) .) P-!uru pracisaly

G’ and E; are identified with the categery of covariant representabls

functors (ef. ch. I, 81)!
(4.1) I‘: G -+ Sets (or G S‘utu)

for every A € 0BG (or l.E.ﬂbﬂk). Besides we have aff-lﬁffz.

-
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categorical nature regarded as "general abstract nonsenss" 3 I summarized

From these definitions follow many simple consequences of a purs

-a few of them, just to show how easily we can daduce so many properties
just by "reversing arrows". But T am well awara that some old=fashioned
reader will ask, why this is called g&nmutr_?: The most beautiful answer
is the introduction of the affine scliemes (ef. Ch, III), 1.2, by giving anc
interpretation of iﬁ by a geomectrie object, biljectively attached to i_&
the affine scheme Sch A = (Spec A, A) (a cercain topological space: the
Spectrum of A (Spec A) with a structurs sheaf of local rings 4). But
even without that, it {s possible, just in the Fframework of Tepresentable

functors, to answer to all criticsms by showing how all the speeific

properties of the categories (, G'k have geometrical interprecations
lacking in other cﬁtngm-ies.

1) GENERAL ABSTRACT NONSENSE: The map A - Eﬁ is a bijection

- £
ObQ = 0Ob Aff . If A=+ B is a morphism in E’E:IB-.!i is a morphism

in Aff. A ]'!i A poes Inro the ldenrity of Iﬁ + Ceompesitions are "anti-
preserved": A -ft B 5 C = ica:?.ﬂgiﬁ » In other words, thare i5 a
contravariant functor (0 -+ Aff which defines actually an {somorpnism
betwean Aff and the opposite category G . (Similar situstion ak -+ AfF
for any k € ObQ) .

The relationship between G and G‘Ir. is a parctieular case of what we
stated in §1 for any category C . Precisely Eh is tha same as tche

category k/G whose objects are the ring homomorphisms k + A wich

variable carget A (£ 0bG) . Thus rhe algebraic spaces over k can be [

IT-4-2
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u
1dentified with relarive objects of Afﬁi’k « Precisely, dualizing k = 4

g
we have I* -+ :k (and conversely). In other words Ik is the final

gbject of the category af.ﬂk s since 1t 15 the dual of the inicial object

of G, . (Cf. th. 1, §1).

2) GEOMETRY: We will appeal o geomatrie intuition (I still 1ike

thatl) o determine what the polnts of this space Z, are? let us

recall Ch, I, §3:

An R-valued (R € GbG) point x of %, is aring homomorphtsm
xX: A+R and cmﬁelg. (CE. §1) The "value" of any £ €A ar the
point x 15 given by the silly formula. £(x) = 2(f) . Ta make applied
mathematicians happier, we can assums R tobe R, or p... The functor
!A 455igns to every ring R the set of R-valued points of the space

E 1

A? B E (R) = Hom_(A,B) (functorial 1o gy, D

I I am afraid rhar this still did por convince the hypothetical (D
eld-fashioned reader becsuse in any category £ I can fix an obfece
AEOLC, and nobody forbids me £o call R-valued points of tha "Spacs"

I, the arrows 4 =3 i sure! but I would Iike to have local coordinates;

any X should be embeddable in some affine space 'IEI = !k

4 (T )ier

(= existence of 3 surjective map R - A)., 3Bue if we want eo have cnnrdimtﬁn,

they should be elemencs of a ring at every poinc... To be brief: we are

going to use Specific proparties of the cdtegory G , both {n II-5

(recovery of A from I‘} and i{n §6 as well: the constructions of the funda-

mental inversas limirs: Cartesian producta, fibar products, intersections,

UJH-‘, selaer & sat of generucors [’,g‘_‘}iEI in B, x hay eoordinaces £ lx) = x(r,) failly

formils) in Clie effine spico E. . CROTRENDIECK does not like to azsume I &0 ba finite far
achmical rcasons, but he i3 tolerant: IF I = [1,2] er (1,2,3] ve mighc discover thae

1‘. haw polucs wich ecoordinntey in !2 af R uae
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kernels, Every time we shall raplace the category Aff wich its dual by
reversing arrows and then e shall transform the problem in Aff lorp a3
problem in 4 . Thig Problem in A {nvolyes BOURBAKI 'S commutacive algat
Then we duslize the solutions coming back ro AFL ...’ we use geometrie

intuition to do that... The first instance of this construction is ro

fecover the ring A in terms of the affins algebraic space IA .

GROTHENDIECK, will canvinee us that the set of morphisms Eamﬁff[IA,Ei)
i )
1 =
of the space Ia Iq the affine iine @ !k[T] has a natural riag
Structure snd moracyer there {s a canonical i somorphism

. 1 (1)
(4.2) umﬁfk (1#,1: VI

Let us follcow GROTHENDIECK s own worde;:...
—

3+ RECOVERY OF A FROM 1&"”' and we want to give an interpretarion -} 3

the ring 4 in teris of the affine algebraic space £ over k.. 1e. in

terms of the rapresentable funector Iﬂ (A € ﬂBGkJ defined by
' w2l '
(5.1) k' IAI.’I-; ) Eamk_ﬂg{a,k )

We can do it, actually, in a very intriosic and formal way. Let us

look into the gat

(5.2) Emafft (£,,EY (Bl= lk[‘i‘] the affine line over k)

mm. La ehe clopese thing ve can imaging to the clasnlcal cage invalviag the clasgical taicriceian
cflD, 1 A= I:r;...-,:ul, Hii A = g, k algabratealiy closed, A bacemes ch ing of on 1

& af the slgehraic variecy Max A, buc Palynomisl funceions qre mEpe  Max A .-z"m., i
ROTRENDI ECk Tecovered chis sicudtion mmn vlien  Aedy Ve vizh unies
mighc have no subfiaeld & p LA may be wd,_ T, ® absviuce caga

Aff = J[fz and E! = lxn.] v
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of morphisms of IL into the affine line over k . Since F* 1is representeq

by the polynomial ring in one variable T , we have the sat equivalences
(5.3) Em“fkfzﬁ,m'} 3 Hom(kIT],A) 5 A

obtained by arrow-reversal in the two opposite categories, where the last
=+ 1s a consequence of the fact that any (k-alg)-homomorphism u: k(T] + A
is ﬁniquﬂly determined by u(T) €A and for any a € 4 there axise a unique

such that u(T) =3 . In orher words the underlying sec of A is

recovered from the set (5.,2). But let us recall that T' i the forgecful

functor assigning o every k-algebra k' fits uonderlying sec. But k' hasa

1
k-algebra structure. Thus our functor E! has a k-algebra strux:tu.rt( J.

Iﬁ. FIBER PRODUCTS AND EFENELS IN A.FFh -
BUMMARY. fhe lnverse linita of any type In .Mfl
correapond bijeccively to the dual direct lsles in the opposits catogory Q‘_ (ef. %3}5‘”
Because of the reduction of §2 it would be sufficient to exeablish either

”Iha existenca of srbiteary products inm nr{’ (inoluding the tristense of o final ob jece Ii.

in Aff and (ther producta :x’r for any patr X1 +5 , Y5 in AfL) .

ar
) B exigtence of srhitra weks in and kermals of frbierary paira of morphd sme
11y,
By dusliey wa peed co check the existence of arbitrary coproducts (sums s amalgamated sume)
12 EI: and gokernaly of srbitrary paics of srcrowa A B . Both type of verlficacions ara

¥
Erivial for & rcadar with an adagquate background {n comsurative algebra. The finice sums eanm
alvays be reduced to the cane of tyg k-algebras AE . Their cotegorical sum in Ek is the

I o
LECK quoced hiy pravicus lecture ef. Adg, In the mesntims the resdsr |
DIRUDOMNE , Advances, IT, pagedicor ERA-Springar, fovipage 1, " T

ﬁ,nl s=bedding (: pes (ef. Ohe I, §1) fdencifies sy IA EHC wich a contravariane
fanctor from 0 4o sers or equivalantly with o ‘comriamt functor from |‘.'|.k £o pats:
L]
e k-alg k), W' EG . Ve kmow (ot §2) 40 & purely categorical face chae 4 i

compatible wich Loverse limies (cf. 22). In 4ther vords: if wa have & dlagras in ¢ ey
3 li-.‘l.ﬂl] always exiscs in O # = sy that it belongs o G Ler 15._- ”‘a"

able,
gy m‘l‘hl:th- l_i:n In & udlmw:utmtmumu! the
Feprasency obje of C . Then the OCLANE statement sade is rhae if im hdve
a C und ¥e taks the {overse limie I.nl% » EBIS igverse Lioic 1g alvayy ;m-gg:::,hf“rﬂ.
h-u]', limi ATY T¥pm c in tha of k-algebran,
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fensor product A® B . In geoaral ic ia possible co define A for an arh v Fami |
& a arbitrary v
atl

of k-algebras. On the other hand coksr (A S8 s glven by the cinonical surjeccive (k-alg.)
v

bemomorphizms A =+ AT vhare
T = (ideal of & generated by the zet w(b) = v(b), Y. € 8) —

Lat [xu}uﬂ be a family of affine algebraic spaces %, (E0be, Vo
indexad by a set I (noc necessarily finita). Then | Ia can alwayg
@€l
be defined (up to isomorphism) (ef. §1) as an object of C . This is

equivalent to saying,

In the category G of k-algebras,che sum of an arbitrary Eamily
of objects always exists. Precisely: It is the tensor produce & ﬁa .
&I

In other words:

Let I =% (Vo € I), 1i.a. £, is the affine algebraic space

o A
(]
represented by the k-algebra A £0bGG, . Then 0 % 13 represanted
a k a€r &
by the tensor product:
(6.1) a_glaa - IA 4 A= ﬂk &a
a€I

becausa A 1s the categorical sum of tha aa (cf. $3). The verification

of this property is just a rephrasing of the well-known universal property

(1)
’Ek .
In order to show that A 1is a categorical sum we shall show that the

al

injections (= "coprojections, cf. 3 iu: .Aa'l A (Ya €1) given by

De, SOURBALT, Linear algebrs, §3, page 75.
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= ThH-

&
(6.2) ia{l} =12...21@:2...01 (Ya € A)

(with a factor 1 for every index g # o), have the well known universal
property of the sum (cf. §3),
Let us check First the sum proparty for two factors: ;'@ka"
(A')A" € 0bC) . Then the injeccions are definad by: a'-'-S"ﬂLI as Is a"
Finally when the set of indices 1 i3 infinite, we observe that the
family of finite subsets I' =T form a filtering direct ystem and thac
for every finite I'C 1 ye can define A(I) -&I')\a « Besides if
I'ci"er @ finire) there is an {nducad k-algebra homomor-
phism A(I") 4 A(I"™ . Then we can define A(I) = 1_1rm A(T") . In faet
the direct I.I.mi!:(“} of the underlying sets exists aod the I' finltac 1
k-algebra structure carries over,
,_ The existence of -Eiber: products (ef. §1) X% Y for any pair of
morphisms I-rrs, fﬁs in JVL.-‘EEk 15 the same, as we know, as the
ususl product of these two objects in the cataegory affkfs « This category
ﬁff.kfs is opposite to the category G, where A {s the k-algebra

Fepresenting 5 . In fact, let us assume

I'IE Y-Ic B-ia

Then we have k-algebra homomorphisms (going in the opposite direction as
w E

£,8) A f—' B, A% C compatible with the k-slgebra Structure, {.s, defining

commutative diagrams

A= c

(6.3) 1-/ 7‘

{ j& short incredueeion om Oirsec limics for algebras can be found (n Exarcise 14 of ATTYAH- ‘
HACDONALD baok puges 32, 11,
I1-6-3
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r_[uhe.rg the vartical arrows are the structure morphisms of A as a k-algebra
(cE. Ch. I, §2) , As a consequence B,C become A-algebras, Xy, ¥

exists and 1: Tepresented by the tensor product B@ﬁc « We have:

The fiber produet IHS‘." of K-EI'S, ‘155 exists and s equal
to E, , yhers D= BE, C is che A-algebra deduced from the two algebras,
* x
Bc deftasd by Eam o) =

The two pravious verificationms and the first raduction of §2 proves

the axistence of arbitrary dinverse timi=s in Aff.k ‘

An aleernative way of proving the previcus statement {s co show the
sxistence of kernels 1& 4 I‘B of arbitrary pairs of arrows A g B 4in the
category of k-algebras, i.e, we want to prove the existence of a cokernel
(A E B) 1o ﬂk , f.=. we want to construct a unlversal arrow A : k!

v
(k' € uhﬁk} making commutative the diagram

(6.4) k'+~AalsB

“TTe

in the category G’k ; (& weu = gyey) ., This means that for every b €8

ulb) = v(b) = we(u(d) = v(b)) =0 For every b € B . In other words:
(6.5) u(b) - v(b) € kerw Yb €38

Conversely amy w of G satisfying (6.5) makes commutative (6.4).
But (6.5) implies kerw> 7 = [ideal of A generated by all the differences

u(b) - v(b), Vo € B} . Then it is well known that A/J together with the

ﬂ]m reader con eaaily sheck ; JUAS by saveraing srrowe, how the fiber product diagram' (tn the

lefs) comms from the temsor product disgram (om che right),
¥ 7
4

: t
{F "%, /'J.
I}\'_,l‘l(' “ B :}\‘/}

1i=6=y
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: P
canonieal surjective homemorphism A = A/J 1s the cokarnel that we sre
looking for, f.e. for every w making commucative (6.4) we can £i1]

dotted arrow below making commutative the diagram
(6.6) - .

3. FILTERING INVERSE LTMITS. DIGRESSION ON NOETHERIAN RIHGE"+"1H= us
give a last example of inverse limics ri—n c= Hﬁu. Let ug
filtering loverse system of objects [xi}ia ‘31 €0bC, VL ¢ 9
indexed by a filcering orderead ser I (or a filtered category). Of course

the inverse limir X = I‘I;m X, correspond to 3 filtering direct 1imit in
the category (G, of k-algebras. We are going to check that thig is one
_ sxample where the pure set-theoretical comstructions carry u-;," the

k-algebra structurs, i.e. the underlying set of A = Iiﬂ A; is the direct

€1
Limit of the underlying sets of the A, (VL €1) . Bue, because of the

fileering the structure of k-algebra is preserved...

Tachnically che previous construction is used in algebraie gecmecry
to reduce the case of an affine algebraic space %, over k rtepresenced
by an arbitrary k-algebra A to the case of finitely geperarag k-algebras
nemely ;& 1; the faverse limit of a filtering {averse system of Iﬁ 3

i

where tha A, are the finitely gemerated subalgebras of & : more

i
precisely: A Is obtained as a filtering unlon of k-algebras which ars
finitely generated over k , {.e. 4f A", A" are two finirely generstad
subalgsbras of ‘A rheir union is also finitely generatsd, Thurefum,

Il.'r_yr duulit_y_l the affine algebraic space IA over k Is the filtering

11-6-5 I-7-1
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inverse system ;ﬁi y where Ay TUDS phecugh the family of finitalw geney

k=-algebras.

In many situations statements which are first proved in the Finita
type case can be carried over to the general case by a limit process.

Let us now make a little commenz about the ;ﬁ of finite type

over k!:

An algebra 4 over k is of fipite tvoe ovar k TT? finitely
generated ovar EJ if and only {f A = k[Tl,Tz,...,Tquﬂ s Lee. 1FF A
is lsomorphic to & quotient of a polynomial ring with coefficients in &
in finicely many variables Ti’TE"“’In +« To give such an isomorphism is
the same as to give a set of n generators of A 28 a k-algebra. 1In
other words -A is described by a polynomial ring together with a bunch
of equations I?:rl,rz,...,rn} =0, £ €3] and it fs sufficient ro rake
any family of generators of this ideal T . In order that the datum of A
over k could be considered alrogether as a datum of finite type iC is
comvenient that J has a finite number of generators. So, we will say
that A 1is of finite presentation {f A = B/T with I finite and 3

Einituly_gennrn:edfl}

There is another thecrem of HilBERT FEEE Basissatz | vhich says that

in many cases avery idesl in such a polynomial ring kai,Té,.;.,Tn] is
finitely genarated, in other words che algebras of finite Eype are already

of finire presentation.

(1) i
It can be easily showm i an exersise chat 4f T ix flnlealy raced for the prasesczcis
A= !1!3 » the same happens for any ochar fresencacion A = Pre U f’.ut‘;’p’": E'.:hq

muat ba alse !l.nl.tliz fenerated.
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Precisaly:

If k is 4 field (in thae classical cage k=R pr E) than dny fdan]

A ting in which every ideal ig Finitely generateq is called 3 Noetheria;
ring. This means that the Basissatz of HILBERT can be expressed by saying

thar any Eulm_ui.ial fing in Finitaly mdny variablpg over a field is
Ho&tgian. ":11

Of course a fielg k 1z trivially a Noetherian ring. The faer that

k[T] is Noetherian comes from the fact thas k[T] is & Principal idaa]

domain, 2) A batter way of expressing the Basissats 1{s the following:

If k is already a Noetherian Iing then k(7] i also Nostheriap,

(¢E« BOURBAKT, or ZARISKI-saMyEL,)

Then, by induetion we see thae 1r x {3 2 Nootherien ring s finieely
generated algebra over | is the same as an algebra of finite Presentationm,
In other words, this means that for every closed algebraic subspaca

X% E® represented by A= trrl,'rz,,..,rnm- » X can be described by a
finite number of equations, ()

8. prrecr LIMITS IN ﬁFFk-

CROTHENDIECK ' SIMMARY :, , regarding direct lim{ry Uax o cw ALL  we know that they
= I
Enrrespond to {nverge Iimicn 1'1.': "i ﬁ; I*l' Yi'e I| in the opposita category

ﬂt El € ob Gps Y1EI]. These inverse limics slvays extic in @ , sines the sét-theoretic

(1) = .
Buivalencly (afcer Emy NDETHER) the 2scending chaln condicions (hic.e.) for fdeals hold:
flu sequenice of ideals ll:Cit::u-ﬂI.ﬂ-" of & mmm.qru; A ia

[ $tacfonary = %m, such thee % e ar striee] 8in of idas |

%G el Hae - ' ‘
But for I-.t:l:t,,rr'l Lt 18 mora difficult to sas,..

w)
Bue CROTEERDIRCY a¥pressed sgmin his raluctance ro Umnécangary Fastricciona, The canonica]
chotcs for fuoarators of T is T itewlf Viich i rarely finice!

L
s )
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lmic of the underlying sets of the Ay mluays exist end the algebraic geruciuce sarries aver,

The troubla arises when ve Hanet ta Lntezprat them iy Eha dpposite category 5 35ee Ehe dugl
divect linlts {5 € are moc oo ressonabhle! For instanca, PRESASR to quotients 1n “Et ELvas

pathologieal resules becsuse (& ¥ould be noc the same 33 Pas3age to quotleats (o cie moTe
gemeral category of schomes (cf. Vol 17y, (42

Therd 1s juzc ere opetation, which 14 sluays ramsonable; e finfce sum operacion
U X [d= (1,2, ;m) " Hnire Index set| {in the cAtégory € of ##fins sizobraic Spacas

ter *
ovis k that we are Bolng to discribe in decell balogws,

Let xi = I"“i EOBC, Yi €T be & finits family of affine algebraic
Spaces over k representad by the k-algebras 4 (e Gy V. E1) . We are

going to prove the existence of the categorical gsum (e coproduct, eof,

§3) 1 xi » equivalenc ko che existence of finite Products in the
ier
opposita category LT.k + 1In fact the produce A = 1 A, &f these finiraly
ot Attt L e 1 e 4

many k-algebras is rhe cacegorical product and we hava

(8.1 LE =F e A= QT4
jer by & er *

i1.2. the sum of the n k-algabras Ai is reprasentad by the product

k'ﬂ.lgﬁb ra A .

Il.ul: Us prove that A = 10 A, 1s the categorical pPreduct of the g
igl
k-algebras .&1: First of all an element of A 13 an ordered n-tuple

{;lfaz,...,an} {ui (3 Ai, i=1,2,...y0) withk the dum and product of rwo
elements defined elementwise, the unit elament of A being (L,1,...,1;

and the structure morphism k = A glvan by 1(‘11,42,...,%} -
= o‘al’l"z"“’l’n} (M Ek) . We have a decomposition of | &8 a sum

of orchogonal idempotents: I

(”Thil Gomes from che fsct that che yoga we used so far r:nheﬂdiu 1: 20 of che sategory C©

of affine algebraic spaces over % 1in the category nf COonETavariant functors from O to aaEa,
or squiveleacly Lo che Eategory of dovarisnt functors from &, %o seck | L3 coopacible with

iaverss limits buc ¢ i5 mar compatible at all with direce limicy,

II-8-2



£
®.2) 1xge af-ei-{G,G,...,ﬂ,l,ﬂ,...,ﬂ) e =0 145,
€1 (1)

There are n Projections Pis A =+ A/a(1 -ui} o Aiﬁf €EI) where

A(l - 2.) denotes the ideal of 4 Benerated by | . e » For any § EG‘I:

we have a bijection:

(8.3) Hmak{a,A} S 121 Hmh_km:,ai} ‘J
|

r:mx. The esteporical nm of 5 fami |y [511151: of sats in tha ESERROTY of soky {4 the disfoine
unlen t‘ + The antyral uestlon arises if for variable ' ¢ I'."I::ﬁIl the sep L") i

3 S
tha disjoint unien of che sary I‘*l{k'J €. 1¢4s Ea¥Y Mo conatryce fouRterexamplian Ln phg

f
framévork of claskical algebraic BEoMeEry. The snalysis of this maiya azsumpeion lead

CROTHERDIECK to study the norign of Eanncccodncss (n che cdCogory “Ek""

*++00W ¥R want to see how the k'-valued points of k' e &) look

like, The Previous surjective mApS A - A, correspond tq injectiya mapsg

A A
_{ -
X = I ,x= IAJ. For every k' we have an injeccive map K (k') 4 xk)
L
defining a map of the disfoint uniom 1 X (k") ino X(k"
ier1
(8,4) I X (") + xa)

1€1
The question is to check whether (4) 1s an igmnrghim. {CE. the

footnota -f-»} below to show that {¢ f4 noe Necessarily so0). We shall now
f=3

check an ANALOGY wrrh TOPOLOGICAL SPACES . e have & direct sum x = g X,
% {€1

“}ﬁu—- ars alse sec-theoretic _h_jldll.m L Hhad m,ﬂ,--.,al,-...ﬁ} but they ars goe
ﬂh"lm'punu bacauas tha uple o8 A, Eoms o the idesporgor €, which {s nop Ehe umie of 4

]
szntad by Axp Is che disjotne unlén of tha

k-wulued potncs of i and- ¥, ¥ I1=.I:I Joy

are irreducible subvarieciss Iud im gk =va lied

Peint of XY vhare Ls tha restricriog
k-algebra of AXB ta IuJ_:J

Yings on Lr, apg the ans] I am going to make 4 quice ralavane
hln'ﬂlut I:n-u. L
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of topological spaces xi E 0BT in the category of topelogicsl spaces. X
a topological space which admits the xi as open topological subspaces
which are mutually disjoint and cover X . Thus set-theorstically X
is the disjoint union of the 31 and che topology of X 1is the unique
one in which every X, is open and the induced topology on each xi L8
the given one. 1In other words U (CX) is epen in X 1£€ U'N xi is
open ‘In xi for every 1 ET .

Now, on the other hand if we look at an arbitrary topologiezl spaca
Z we have a map
.5 1 %@ =@

icl

1 wonder whether (8.5)is bijective. This means that any continuous map
7 + X can be faetored in just one way through one of the X , i.e.
there exist one and only one index 1 € T such that the diagram
2
.

—_—

commultes.

Now thisz is certainly true If Z 1is connected. Buc if Z conrains

geveral connected components we can map two of them in different xi's
and the previous property would be fa13352’
Ez;ning beck to Affk we should axpect that (5) should be bijective

in this category Lff Z is comnected, This leads us to make explicic,

mﬂ- wotaticn T{Z] L3 shors for Emz{?.‘,lj s heee 4t L9 tha wet of contiouous =aps 2 = 7%.

2) [EE. this scatomant with che classfcal algebraic-geometric situscion deseribed {n the feoocnoce
(2) of page Li-8+3.]
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the notion of compectedness in the category ALL, .

CATEGORICAL DEFINITION OF CONNECTEDNESS. A topological space X 1ia
connected Lff any sum decomposition X = X'OE" (X' nx" =g implies
that one of the summands X' (or X") 1is the empty setr ¢ , Reecalling

that ¢ 15 an inicial object in Sets, we have che following generalization

£o0 an arbitrary category O .

An object X € ObC is said ro be connected {ff whenever X s written

48 & sum of two objects X', X" £ ObC;
X=X"Iox"

this implies that x' (ox X™) is an initial object of ( .{1}
An initial object in the category Affk is called, by analogy, an

empty affine algebraie space over k . It should be represented by a Finsl

object in the catagory Ek « The zero ring 0 iz such an object (i.e.
the product of an empty family of k-algehrns}.fz}

The initial object in Affi y Iﬁ Ls the functor assigning to evary
k-algebra k' the sat of morphisms 0 + k' . This set is empey {f k' # 0
(I.e, if 140 4n k'}fs}.-- ** and it has just one element, the
identity for k' =0 , Eu is called the emoty algebraio sgdc&.(ﬁa

Now we can define connectedness in the category Affi R AT %ﬁ is
called connected iff any sum decomposition X = X'I ¥ implies that eirher

X' or X" is the empty algebraic space, L.e. 1ff any product decomposition

iﬁu. recall thae ¢ iy the inicial object in chs catagory T of topologleal spaces ag well,
(27 La. for avery k-algebra k' thare fs one sad ouly ans hosomorphism from k' to 0 ,

mlllllht Bt 4n £: 0w k' in should have the proparty £{0) = 0,,£(1) = 1 and ehis
s taporsibia 1f | A0 (n k! 7% ’
(Y Bovaver I, 1s not the ampry Funcror,

contalny slvayw the identicy 11

For any 4!*.‘!1&,!‘ is maver empcy since AL
I A= & .

I1-8-5
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A= Atxpm lmplies thae either 4! . A" 13 the #ero k-algebra, W
doas thie mEAN in terms of commutarfyg dlgabra? We knoy that tq 8ive 3
decomposition of 4 Ting &' ad 4 Product of EWo rings AT, A" g 2qui

to define a sum I =gargy e" of the unic elemenc LA 4a 4 sum of p
Etz "

orthogonal idﬁmputents-“} el ettt o ", glam

We shall S8y thac 4 E Dbf.'ik iz Connsctad (= Iﬁ is Sounectad) &

abuss of language {¢¢ every decomposy 1oy L=gr g el o2 e, et o '

ele" = p 4o trivial, 1. a, either o' . or e" =g (Every idemporer

1s either equal pq ZETr0 or pg one),
EXAMPLE, Eveﬂ f.nl:egrnl domain ta connecrad. Otheruiga 1f
e 1'e iy an {dampotent 1 - q 15 also an {dempotene and a'¢1 o e') =

Wileaglag,
The Pravious Bxample showg 2gain the well=known ralanonahip {euming

from “51g4 time" Algebraic Gemetry) betuean integrs] domaing and irreductipy
If ap "algubraie variecy'" X can be decompogay
(non Erivizlly) 28 4 undop X = AUB of two

Proper SUbvariarias it is Possible ¢q censtruce

3 Polynomiai funetions I,8 with £(z) Vanishing

idnnticﬁlly In 4A(m) but nop In B(A) ; the Product fe vnuishqs in x bug

Ed0, g40 « Thisg "reducibuu::.r” Implies the @Xistence of divisors of

2€ro. In Ch. 111,85 e shall see how the o4 Uotion gf lrrﬁdudbilizy iz reaij



[ Che TIT 15 {ndependent of cp. . Inka, 1, cn, 1, g page 79

GROTHENDIECK startsg Algabraic Gaomerry uipy the definitisn of affina Schemes
—-_“-—*-

(which dq RAE requira Snvthing from Ch, T as 3 logical Prerequisite). th, 1

| #re build.tng blocks of 21l the schemes (CE. vol, [I, ch, V.

Space. Sinca thiz Fac macterisl was he main Pretequisits of another Buffaiy

Will inelude & Summary of gyech theory at the begin.uing of Vol, 11, |

ser.The gwomstrie Leogusge wapd Previougly |e Afscclated wipy rh, Taprasmntably funcroe
'] Gi. *Sate, I(k') - V&) = ""'k‘-lxu'i,’ L4 tha wer of it Wilusd poiney &' g m

(Cf, ch, e We shall now uge adnochar Btcmacrica] l..ln.umu, which AvROciates to phe funceor (= ﬂ"}
enTCalin topalogieg| Spaces which have apn mn-ﬂmetun, che F0-called af ch » (ne
TAdson we do chisy i, thet affine sehemns dllew ug gg define mopy BenBral slgabeg . obiects, eha

8003 |1pd 2chemas Schamey gry obfained by Elung cogechpr CBrtain 4ffine" pisces {the
affing Scheses), 14, Process s paraily) £0 the conseruseion of profective Blgebraie varietisy,
le tormy of CEILAin affine Pléces (affing Algabrajeq varlecion), Thess projaceivs algebraie
varisties (for instanes che complex onpa ) tefuse o ba enbeddable in an 85fine space, Bealdey
thers are oeher SyR of glugng Eoguther affine 4lgabraic VArieting or wffing Schemes. g asnd o
davelope 4 Process o glug Ehede differan: Plecas togethar, Ote of the poge intuiciveg wuys of
doing 5o eploys the ¢ DL shéavea, As 4 Sonasquence, ws ars E0ing to srudy topalogicy]
£ 8

TTT-A =
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[Sietany. The funcear affine algebrale spece I sver k , or tquivalenely the k-algebrs
A wvhich represencs I (I = 'Fll has the serfous lmconvenisnca af not Attzzhing ta A g single

geccatrie ohjact bur a family of gecmacric obfeats v“[k.'] wmrying "‘.’.i_’i"' » We ave going

Lo sttach to A (and chus to ) & secmatric objece, the affine ;LR'E‘_ {iliie.'#,'i‘.t..ﬂi Ve
thall scudy separacel ¥ the copological spEca X = Spac A defineq A certain apectrat copology
{ €f §2 pS9), maturally described by the rsdfesl {deals 4 -.,‘;h'_u[ Al

I2f there exiots & radical idpal 8=.J5  sush thae TEFT » Pe :-;2(:”, As .:mm.,

Spec A = Spac(A/HELA) . Thus Ghe camnot recover A frem X l:lluifiim mttﬁ:l: ourzelves
to feduced alsebres, {.e. to the case Nil A= 0 (f.e. zevo is the ooly 2tlpotant elemenc of A}

In ordes to recover A we need to defina che struceure sheaf Ux"i ef X . Thes

(X,6y) gives back A because A becoses Lsomorphic with the k-algebra of globul seccions on
X, Le. vith the 0% cohomology group, A = T(x8 = &°(X9y) .+ 4n fotecesting stde remark

is chac k does not pliy any privileged rola in the :niulh::tiun[_wl'- only ussd the sTTuctuse af
4 comutstive ring vith unit A& . Thus the funczor AW {(Spae AA) shovs that the affine

schesas (Spec 1,1‘: dctéched o A can ba fdenctFied wighy the ob ju:; 'u!"_':'hi:' cacagary (7
opposits fo the catagory (i of commrative tings with unlc apd A=+B goexto

- P - P Ve
(Spec B, B} + (Spac A,A) l

PART I ——
THE FUNCTOR Spec: G 3%

r:rTJIﬂl‘l. In thin Parc T we study the contravarisut fupcror épnn which goas From tha
categary G of commucacive rings with units snd Uit praserving ring homomorphisms to Ehe
cacegory T of topological spaces and contimucus “E'—'l

The set Spec A = (p|p prime ideal of Al appeared before saveral
times (cf. ch, I, page 10), Spec A has a natural Fa;lmluﬁr- ulled the spectral

topology or also the ZARISEI Eopology of A ﬁauusq At 18 & natural

———— ¥

intrinsic version of the topology already studied in Ch. 1, §1ﬂ The map
(0.1) Spec ¢: Spec B + Spec A

induced by a morphism @: A % B in the category ( of commutative rings

wWith unit {s continuous, thus Spec is a contravarfant functor from Q@ ¢q

the category T of topological spaces and continuous maEps. : ,

(1) L '
€. Summary of Vol T - Seec A, che Spectrum of A (s tha underlying ¢ 1
4 1s che structure sheaf on Spee A, The goupla (Spec A1) 1s & l.cfﬂur,- m::‘:"“'
(%) lim.lllilh-lﬂflucuﬂmﬂﬂr Spac A .

fury glenent p# Spec A s wriccan wvith & doubls notztion :fp‘ sccarding eo the face
“hat we regard it as & potnc = € Spac A OF a8 & prims ldesl LS AL
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§1 provides the link wich Ch, I (although a direct and very elemen-

tary check suffices to establish this relation.)

1. LOCI OF A. THE SPECTRUM OF A. The loci of A , were introduced {n

Ch. 1, 88 as equivalence classes of geometric points, The quotient sat

ia Spec A that can be defined directly as the set of all prime ideals

of A .

We want to make clear why the ground ring k doas not play any parti-
cular role in the construction of Spec A, Max A , or even later (cf, §2)
in order to introduce the so-callad gpectral topology of A . let h: k =4
be the structural morphism of A (b EG) as a k-algebra. Ler A £B be an
atbitrary morphism in G . Then B. acquires a well-defined structurs as
a k-algebra Just by taking foh “- struccural morphlasm. We are going to
dssume k = Z, i.e. in the sequel we identify U with 't:r.z .

Let A be a ring homomorphism (€G) . Let b be any ideal of

B. Then the following properties hold.

D e inverse image u'lfh) is an ideal of a

Z}If b is prime wﬁlthi is also a prime ideal of A

3}1'11 particular £{f m {is & maximal {deal of B, q:'ltm} is rime

ideal of A, buc ﬂ'l (m 1is not necessarily maximal (Cf, counter-

exampla below).

1) Wa leave the verification to the reader.
The property 2) implies that Spec can be regarded as a contravariant
functor: @ + Sets, whera Spec @ (cf. 10,1) is defined by b {1{5; g

Check functor properties! We shall see {n §2 that Spec @ is con-

tinuous when we introduce in A and B the spectral topology, In other words:

(IT-0-1
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Spec will be regarded as a contravariant funetor from G to rhe category

T of topological spaces and continuous maps.

COUNTER~EXAMPLE for Max(A) . Let 1i: Z9Q be the natural {nclusion

of Z 1inro the field of rational mmbers, Max(§) = Spec(W) = [0] s a

one-point set containing fust the zero ideal, I']‘{DJ is the zero ideal

of 2 ;E-l_!(ﬂ} € Spec(Z) , L.2. the zero ideal of Z is prime = Z s

an integral domain. But 1.-1 (0) 1s not maximsl: For any prime p>1 wa

have the inclusion (0) = (p) .

This functorial misbehavior of A , lead GROTHENDIECK to reject
Max A as a kind of intrinsic replacement for the varions (k') (k' € ob(@)
fn apite of the fact that if k 1s an algebraically closed Fleld and k)
ts embedded in k" we can establish a (1-1)-map betwesn the maxtmal ideals

of A and the k-valued poincs of this affine model.

2. THE SPECTRAL TOPULOGY.

[The mwceriul of this § Ls developed in full detail in BOORRAKT's
oM. ALG., 1290, ¥XVIL ¢h. II, Localisarion, §3, page 124. The origlual axposition of
CROTHENDIECE In EQA, I, [HES haz been suppreased In ECA-Springer (Ch. I, §1, 1.1, page 194)
whare only a few complessnrary prmartua are dsveloped in full. EGA-Springer
starts with che acruccure asheaf.'*'In chis course GAOTHENDLECK cimsldered "Elrst" thar A i

ao algebrs over the ground ving & . Acruslly this hypochesis i= noc rescriccive baciuwe avery

A can be vegavded a5 4 W -algebra by wmeans of the dﬁu- sctrupocural sorphiss T+ A _J
SUMMARY. We conatruct and study the propercies of che contravariant functor Spec from the

eategory of k-algabras to the category of topological spsces, A closed set ¥ of cha copalogi-

cal space X = Spec A cam he characcerized ss sets of all volurions of arbitrscy eystems
1: ffj(u} = 0) but we nesd to glve so intrinaic moaning o !1{11.} im order to show that che

wanishing ﬂ?lﬂdl unl{ on the loet of & . (cf. I, 38). 1T (s proved thae 5 can be & cadical
idaal o = Jo unicuely deterwined by Y' ROTHENDIECK cemoved mll the oldéf veaccice

D other quick introduetions (without procfs) can be found in MCDONALD, DIEUDOMNE - Advances

1 of. also MimFoeD's coces. CE. wlso LANG, ATITAH-HCDURALD, Tha alsmencarcy approach
scarcing wich mystems of equations given in the Introductlion o ZGA-Spricger ls not used
in the body of the book zlchough it appears scactersd in EgaA. 1 could noe Flod Lt slas-
whars except in MANIN's-MT'Y nores,

f&}ﬁ“ agress with the elasaical case (k & field, A & flnicaly generaced k-algebrea withour

odlpotent alsmenca): IE & i» the ving aof polynomisl funceionx of m varlecy V and W
is & gubvariety the ring of polynmial

funccions oo W , the restriction B = AlwW

iw dafloed by 8 = Afa o =, s Ldesl of all
functions of ¥ vanishing ar ¥ . Essencially,
this geometric considaracion diccaces che
choica of cha tnpuLu_p_'I

I1I~-1-13 IEI=2=1
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Eloas en A (in particular & dissppears showing that all the essencia] {
In other words: The family of clessd mets in chis topology can ba d““u::q::;:::.:, mn.}

terma of the radlcsl ideals. As & consequence X = Specih) Ls homeomor

fc with .
A subset YO X da glosed L8F Y Ly the sac of Lnversa {mages SpeciA/a) '“l:l“:p::;’:ﬁiui
fdeal g = o of A by the canoniesl projection A = Afa . (Of fobuile 1y sy g P52,

Spec(A) L# & EOLMOGOROFY spdce (l.ne Lt sarisfies she T -eeparation axics *bu: SpeaiA)
is wor T, , sud (of course:) Lt Ls even lesw T, (= HAUSDORFF) sxcept in erivial cagas. ™

Spec(A) 13 auast-compace. ™|

For the time being Spee A is just a set:

(2.1) X =Spec A = {p|p prime tdeals of A)

We are going to describe the family of closed sets of X = Spec A in

a certain topology, called the spectral or ZARISKI topology of X (cf, Ch. I, !

Ler V(S) be the subset of X defined by
(2.2)  V(S) = [Sat of loél of u € E(k")|£, (w) = 0, Ve, €8] 1é€g

where fh denotes the contravarianc functor c'l'. - Sets represenced by A .

in other words I is rhe affine algebraic space over k represencted by A
u: A+ k' 1is a geomatric point of % , i.e. the k-algebra k' is a field

(CE. ch. I, §8).

m!;um:u- axicm (ROLMOGOROFF) : For svary pair (x,¥) of pointa of tha copologieal

space ar least one of them bas an opan neighborhood stilch does not contain ths othar, L.a,
Iﬂl opan !‘:,jl‘l'l'f. or Iﬂr open Hy,:lﬂr.

I;*scpavacion axicm (FRECHET). For both =x,y =s before 2 U, 2x, snd y E'II‘ and
10,37 ,x¢ U, {bach |:|:-_.,ll‘r opea). T, s squivalant co the property chac avery onm-
point set (=] i3 closed, T, (HAUSDORFF): 3 disjolae open saighborhoods u':,u,
apem £L: u,n =

{"j.l topological space I 1s guasi-compact Lff any open covering X = “1 Xy open in
L1l
I, Y1 E€TI) econtalne & Fimlrs subcovering. 1 dompact = X fquasl-compact and

HAUSDORFF. Tha topological spaces appear in this course will sot ba HAUSDOR
o rrivial cases. - " Ll

I1I=-2=2



If £EA, u€%k') £(u) €K' is defined by
(2.3) fu) = u(g

thus (2.2) makes sense, expressing that u satisfies a "system of equations"
[filiE -

On the other hand (2.2) is compatible with the equivalence relation
defining the loci of 4 » 1.e. Lt is independent of the representatives,

It depends only on the loei, In other words, 1{f we have a k-algebra

homomorphism k' + k" (necessarily injective since k', k" are fields)

then E(u)'ﬂ = f{v}-u where v is the image of u by:hﬂlndlfff—?

wap, i.e. since f (u) = u{f} =0 . This means chat fi belongs to the

kernel of u . Lat P=keru € SpecA . We see that V(S) 1is fust the

gat of all orime idgh ) containing §:

(2.4) V(8) = [z € Spec Alp, = 5]
Of course p o Es (the ideal generated by S). Thus we have
(2.5) V(s) = ?ms]'

But since a prime ideal P 1s alvays equal to its radical: P =
v(s) = v{:r) does not change If we raplace .T by its radieal 45_ i.e,

we have

(2.6) v(s) = V) = vcﬁ; y*)
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prime ideals containtrme the radical .ﬁ; of the ideal :TS gencrated by § ,

Now we can't go any furcher, because we can recover JI  from Vi)

by the formula:

2.7 A= 0o,
xEV(T)

Lt because of the pProperty that .,;E is the intermection of all the prime

ideals of A conraining J(*).

Therefore we proved the following property:

Ihe sets that can be written in thes form V(S) are identicsl with
sets of type V() with x -ﬁ and § 1is recovered from V() by the
formula (2.7),

In cther words we checked that the family of sets of Spec A of rype

V(S) for some S , (called in the s:equul algebraic subsecs of X , are in
[ ]

(1-1)-correspondenca (raversing inclusions) with cthe radical idesls of A ,

lee if T=F, 9=./7 and :rfg = v{p}:vm -

Now we are going to see how thess algebraic subsets behave with respect

to unions and intersections. To do this we are going to write down two
formulas (2.8), (2.9). First

(2.8) N Vg =V g,) =vE3,)
€1 7 & 1

In other words: The intersection of an arbitrary family of algebraic
subsets of Spec(A) iz still an algebraic subset of A .,

Now, let us lock for finite unions! Then we have:

(*)
We can sea rhhlry"l:lb:ln:r.n A h:r-uuu.frhunml,up A2A/fT=gy the propercy
that W1lB«= [sac of &1l alipocenr slesencs of B} = inrersection of all prime (deals of § .

I1I-2~4
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(2.9) vingd)= u ‘-’{Eli
l<i<n lsi=n

(2.8) 1s quite evident.(2.9) can be proved as follows: First the embedding

I 74 =3 leada to the opposite inclusions V( Il ) = V(Z) , for every 1
i=isn l=i=n

(2.10) V(ng) s U v
1<i<n l<isn

Comversely we want to prove that x € V(I %) implies x € \Ff;!i}
l<i=qn

for some {1 . Otherwise if pz:ﬁ ;.!i for { =1,2,...,n there exists
f, €7y with £ £ b « However £ f,...f € P, in contradiction with the
fact that L is prims.

Obviousiy, we havye

(2.11) % = V(A) X = v(0) = v(NilAa)

This, together with the previous rematks, tells usthat the family of
secs defined by V(I) (= /) contains ¢ and X and Lt is stable by
arbitrary intersections and by arbitrary finite unions. In other words:

The family V(I) @ = ﬁrndh:al ideal of A) satisfies the axioms

for closed sets for a topology om X = Spec A . This topology is called

the spectral or ZARISKI topology of X = Spec A ., This notation will denota
{n the sequel, the corresponding topological spaca.

Let us prove now that X is quasi~compact ) in other words we want

to prove thac if X = |J U'i (Ei open, Vi € I, I arbitrary), there
i€r
exists a finite subfamily coverimg X . Now In terms of closad sets, this

property is equivalent to the fact thar if HlleI {8 an arbiczary

M or, Satinteion 1s tha fooreots of page M-2-32.

— I11-2-5



family of closed sets with 4n empty intersection:

n Yi =@ there axists
ieg

& finite subfamily whoge incersection is empty already, Lar 7y be ideals

of A , sueh that YL =v({) . The sm £J =3 of these ideals repra-
fsent § , l.e, V(7 = empty. This 4ig equivalent to the face that 3 is
not contained in any prime {desl whatever! Then by KRULL's theorem

(which says thar any non-zaro ring with unit containg at least one maximal

ideal and a fortiori a prime ideal) applied to AlJ wa see that 7 1=

contained in some prime {dsal unless 2 = A . [In ocher words
(2.12) V() =¢g=g=a

So Eﬂlin,ua:nnuequenneue can write | = Efl fiéﬁl
i€l
with finitely many E'I. ¥ 0, which implies that A is the sum of finitely

' many ;l s 1.2, the intersection of finitely many vi is empty.

Let us look at the clposure E] of the one poinc set (x] of x. f;}

1s the smallest closed subser of X containing x . lar y = Vi . To

88y that Y contains x is equivelent ro Baying thar ;‘Cpx. Thus the
smallest closad ser containing =x » Corresponds to the maximal J contained

in b which is p icself, As a conseduence we hava »

(2,13) Yy E [;}-p?:px

Therefors the specialication nlu:ig{n: ¥y E [-z_i corresponds to the raverse

inclusion ralation for prime idesls.
COROLLARIES . ”The 2ne poinh sat [a)} is.ciosed if cha prima ideal p_ is

nuximal

-
e

) et %Y ba tuo polats of any topelogical space X . Wo say that y 44 & specialization
of x Lff ye (3} . Cf. mext §). Of courss in any T, ®pacs; {1 particular in
mﬂm_, ¥ is s apscislizition of Emyasg i.9, tha eotloa hecomas erivial!

ITT=2-4
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Z)K is a Tl-apace (# every point of X 1s closed) {ff everv prims

idezl of X 15 maximal,

We can show plenty of sxamples of rings A with nonmaxlmal prime
ideals, thus X 4is not necessarily a separated space! We shall verify

gshortly the To-axium . r-éf. footnote (%) in III-!:EJ.

r-}f ¥y € {x], every closed ser of X containing x contalns alss

¥ which is equivalent to: EVery open neighborhood of y € [x]} contains

also = .

A point gz of an irreducible subset ¥ of a topologicsl space X 1ig

called a generic point of Y LIff either one of these two equivalant

properties hold:

L) Y ={g}s svery elpsed set of ¥ containine g contains also v,
Y¥ EX.

2) For svery ¥ € ¥, any open neighborhood 0of v conrains %3

2) can be rephrased also as follows: every Don-empLy open sat of

Y ing 2ns ineg g

Now we can prove that Spec A 1is a3 Tﬂ*apacn - Let %,y be two diffarant
points of Spec A , let us assume that every open neighborhood of ¥
contains :¢=-u Sp, ). Then P i Py (otherwise x=y). Thys

= [y] = Some open neighborhgod of =x does not ““nt'iFH,ZJ. q.e.d,

3. THE CANONICAL BASYS 8 OF Op(x)' . =

The classieal foct chat auy ZARISED elossd 82t (old eime Infarmal Maffine varisey':
tef. I, J14) is the incarseecion of “hypersucfaces’: f(x) = 0 has & matural analozom in

Spec A (f(x} =D w ffﬂxJ » Tha dual property can ke erorassad by saying that che Eirtly

-

'H'm blackboard notacion fer sha category of open secs and loclusions in & Eapuiogical space
I vas & =8(2) vhieh (n coo close to 8, (che scructurs ihesf), I replace it hary by

Op = Op(X} for open aa translaclon of his Ouv. for "ouverz".

TTiT=2-7 1I-3-1
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- ¥ defined b [3.1) Ls AELE

® Exf}ft Pl . 5 Y Macuiyy or E0onical basis for the topology

of Bpae A, R ix ftable for finjpe £n:ur:nttiann. If s

' . - Hat nflpetens Ir iz the

complement of a proper "hypecavrfacs vr ®lxgSspus A[f{h} *0]. sin tha alasstes] cane

it f s nllpotene :I “$. A is a naturgl SXimp e of & "akeen (CROTRENDIE G topulegy),

1.8. 4 topalogy with Covering data in stiich sheavgu 240 by definga # footnetes in pazes
~hod;: o

100 snd 101 . Soom Eunctarial propercies nesded in Pars 1y A to define the steuctycs

r i
sheaf of Spec A ars established here co avaid g lacer lnasthy gras ton. They ean He lafr
a -

for & macand reeding,
The definition of a closed set Foon g " F=y(s) (Sc4) i

equivalent to the fact that every closed set p $5:4is Iatarssation of

closed sets of type V(E) (£EA), defineqd by

(3.1) V(E) = [p€spec Al ep) = € 3pec Kem) = o1
Precisely:
(3.2) FeVS)®F = 0y

. FES

Particular important cases of the closed Bers V() sre
(3.3) V(1) = ¢ V(0) = ¥

More precisely, we have:

(3.4) V(F) =X = £€p, vpegpeu_mmu

In other words V(L) = X {FF £ {s i lpotent,

By topological duslity we get the fhlluvlng P

Toperey;:
RURLYopen et U of X s the WM Xg» vhere
(3.5) Xg =X - V(£) = [p € Spac AlE gy
Precisely
1.6) FaX-U=ws) = n Vif) = ¢ .
: f€s &g £

The family [xf]EEa is called th!\t%_ﬂf b Baganeat

fopology on X . It will play an i{mporcane tole {n the construction of

TII=3.2
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the structure sheaf in Parc IJ.
The canonical basis is stable by finite intersections, pracisely-

(3.7) Xeg = X N X_ V(E,8) €A x A

fg
The inclusion relations between basie open sets can be intarpreted in
terms of commutative algebra, for instance:

Kf e ]{g implies the existence of a positive intéger n and an element

h E A such that

(3.8) g" = hE

Proof. Hf = Eg = V(E) S V(g) = V(fA) = V(/EA )= Vi{g) = (3.8). In
particular two elements f,g of A define the same bssic open sets: .‘(f o ¢
3 : g
1ff thare exist two integers m > 0, » > 0 such that me.as, gnfﬁf v

[1a fact, the cesson vhy we waac to emphasize this cascaical basts @ = (X ] . fs thay the

exactnass praperties characterizing che shesves om X as partizular cases of presheaves con
be eapressed (o terma of commutative slgebra. To maks chis sore explicic I reapore GROTHENDIECK"s
kalk, following the rape ar this § to avoid too -n?r hju:r disgressions in the comseruceion

of the structure sheaf A (CF. OO0, Furd IT, he 7 X L)

s« Before discussing the structure sheaf of rings A in Spec A
Cf, Part IT of Ch. IIT I will give the genaral description of shedaves on the
spectrum by using the previous remark thar the open sets of type xE Eob g
{(€€A) from a basis of the topology stable by finite fntersections. Now
I recall sgain that to give a sheaf of sets on an arbiteary topologieal

space X is the same as to define a preshesaf satisfying cercain exactness
conditions; fi-.rs: of 2ll let us -recall that for any tnpnlagifsl space X

we can constroct the category Op(X) (ecf. footnote (*) of p;:ﬂ;:x
whose objects are the open sets of Op(X) . The set Hom(U,V) of

morpliisms for twe open sets of Op(X) is either empty 1£ff U v

or it consists of & unique morphism 1:: u + V (che canonical inclusien).

J11-3-3
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A presheaf p on X with values in 3 cfategory C 1g 3 contravariant

funceor p: (Op(x))” > 5 GROTHENDIECK is Particularly interested in

considering mow the case that C 1a the category of Sets.l

++sh sheaf of sers ¢ on X 13 a preshear which a

°pen st U of X a sat F{u)
U.z (1 €1)

L

(3.9)

1€1

1f we look ar the interssccions l.l1 'y

 LIED by taking F(U) to the

product of che restricrions p: iF(u) - F{ui} an this to the twofold
1

corTesponding to the two inclusions of uon Uj in U, or UJ

product

we obtain an exacr sSequence

(3.10)

F(UY - It r(ﬂi} 20 1='f1!i n EJ} (1)
i€1 i,4

In other words: T1q say that che presheaf F is a

sheaf i{s equivalant
Eo say that (3.10) is exac:clj

for every choice of the covering (3.9) of u

and for every U . Now lar us come back to the case X = Spec 4 » Bince

B is a3 basis 6table for i{ntarsecrionsg (ef. (3.7)):1c sulfices to rephrase

the previous general considerations by mAps X_m F(xf} (EEA, X )

£
and whenever Hf Is covered by Open sats xf {fi € 4A):
i
(3.11) X. = U X (£,£, €A, 1€ 1)
£ €3 ﬁi o -

8 Ot courss that Ehe izmage of che

Hagle arrow s {dentical wicth the kernal
of the deuble srrow. In the category of sacs,

berlu,v) , whers 4 5 B 1a & double sreow
L

kar(u,v) = (2 € Alata) = v(ay]
10 genaral Catagories che dafinision 13 rediced £a ths sec cheorecic 6498, using morphiems,
instasd of polnts of ob Jacts,
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if we losk at the {intersoctions Kf n Ef By € 1) by taking ;{.;.;I-, to
i
the product of the restrictieons and this to the twofold product correspondd

to the two inclusions of X. NX, in X, or X we obtatu o diagray
f-i f] fl £

(3.12) F(X) + T Fex.) 3
i

Il 7(x ]
{€1 q 5

¥4 i)

which iz exoct in an ebvious way.
In termg of commutative algobra we shall simplify our notations Ly

e3llfng G the “sheal" that we want to describe by writing

(3.12) G(f) = Fﬂ{f} YE €A

Thus Lo cvery clememt £ of the ring A we shalil sisociate a sav
G{f}q} We: shall give certain data €0 this collection of sets fol(n }f-‘&.‘.
and the eonditions needed on this dera in order to dofine a'sheat ¢ .,
EBaplicivly we have the conditiens:

a) £wnG(E) VEEA
b) For every pair 2, b €A sueh that If c xg T want to defins o

restriction mapn- .

PEi G(2) + G(o)

We have to interpiet inm térms of comutative algabra what neany that
xf c K: + We saw zlready (cf. p. 97) chae Xy ng is equivalent to che
existence of & positive integer n and an h €A such that (3.8) Liolds!

In other words J{f CIE can be expressed in terms of tha divisibiliry
relation on the ring A. .Hcre-wer we have transirivity, i.e,: X, :IE =

imply that the diagram of Ynelusions:

1
{ }D: S{6) will be a Eroup, = riog, an A-sodule, erc., atearding co rha Category on which 0
tales valuce. In the cext F([) contiouss to be 3 pure rec,

ITI-3-5
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Gh) = g

e(e)

is commutative. So we have a “"presheaf in the citegory of basic open sets
xf" which can be {nterpreted as a presheaf in tha catagory A I_i:f. next
digresazien on "ﬂil:es_'jﬂ{rhoae category structure comes from the preorder
relation of divisibility,

Theé presheaves themselveg would not have much tepological gignificance
80 we need to introduce the exactness properties writing down che eéxactness
conditions (3.14) {n terms of commutative algehra:

Precizely:

For every V£ €A and elements L, €A (1 £E1) such thae

xf = ) xf + I want that the diagram
€1 4
(3.15) ¢B) = Te(r) 3 mece ey
1ET i,]

defined as before, in terms of the restriction morphisms, should be exact
for every f und for BVEry open covering, i.e, we should he able to identify

G(f) with the subset of the produce I G(£,) consisting of all the elemants
i€]

whoge images by the two arrows are the same,

Now In order to interpret in terms of comutative algebra we have:

&)
For avery xf fo which means, I recall Eni 2o, It1 €A s.r.
o i a
i i
£ = .|, = =
4 fh[ i.e ;,u' Ifi Rf = Ei Ehi L&Y

) f?uu formalize chis orul expasitqon:
T: Op(X) = Sace wag defined in che CAtegoty of opem sets of ¥ ,
-H ﬂ * Becs [x definad s G . Howsver {r makes senge co a8y that @ s a cop rianc
functor ( w $ues becsusa che divisibility calacion ElE=9nzx 0, bEea, s, ;3 = hg
defines 4 categorical struccure in A whare Hom (5.2) o 117 ¢ { £ and thers 14 a
unigus sorphism (preorder relacion) ig2 I|l_'_-.l
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b) We need to express the converse proparty: X.©C Ele . This
i i
means that V(D) :ﬁﬂ?(!i) which means alse WV(EA) :ﬂ‘u{[ih} » This

implies an inclusion between the radical ideals JEA , JE £.h ¢

(3.18) V(A ) o v/ £ £.A

L€
which means that there is an integer n 2 0 and finitely many elements

8; £ A such that
(3.17) £ =T 8ef

Now we have interpreted everything in terms of commutative algebra!
In Fact we have reconstructed the "slta" of the open sets of type Xe inm

1
terms of commutative algebtl.‘ )

Another impi:;r:ant property of the canonical bases needed later is their

functoriality, We shall prove it im §4. __/
4. THE FUNCTOR Spec. In the previous §1,2,3 we assumed X = Spec 4 to

be fixed, Let us check now that to any morphlism

(4.1) u: A'™+ B

in the category C of cormutative rings with unirs corresponds a continuous oag
(4.2) Spec u: Spec B - Spec A

between the spectra (in reverse order). We know alrszady how ta define the

Whoie reqant forgut thut noe everybody followsd his ocurss in Topol (which Ls nor pacessary to
undarscend chils eourse) but he sdded A vorey ahort exp)anntlon

"4 uire la Just 8 gaternry ply vacing diea, "
A Sice is 1he wome as & “OROTHENUTEDE topniepv". [.e. & cutagery where Fibared

extee, In ohich the casential propetclas o covarbaps mekes sénse, jusc replucing inter-
sectionz U N tr] in & by U "2 Ul » B . 13, B1.2 For the Forowl definmicion of fibre

products.. For "GROTHENUIECK's topologlas” the Guickest shiet davelopment i3 given in
DLEUDOWNE, Advamces 1D, Page 407-11.

II1-3-7 IIT=b=1
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=1
map betwesn cha underlying sets b o u (b) . We nead to verify _Iusr\’
tha

continuity of Spec u, Let V(S) be = closed set of Spec A (s =a)
The condition: (Spec u) {b) = u-l(b} € V(8) 1is equivalent rg

u-l(h} 25 = b=u(8) = pe¢ V(u(S)), f.e. the faverse lmage of the |
closed set V(8) of Spec A by Spec u s V(u(8)) whien Ls cloged fn

Spec B .

Ihe induced map Spec u s a continuous map,

Spec is a contravariane functor from the CaAtegory O of cm”uth
== —Sitariy,
rings with unit and unic Présecving ring homomorphiisms to khe Mtgsug of
Lopological spaces and eontinuous maps, !

As particular cases of (4.1) let us consider the surjecti

ve S2non]cq)

homomorphism 4 :M‘u (8 ideal of A) defined by ama+gq, Then ‘

Spec u: Spec(A/p) = Spec A 15 a éami-;nl injeccion of the 8Bpectyy, |
If a=Nil A is the Nilradical ef A , the bijection betweeq the

underlying secs Spec A  and Spec{A/Nil A) defined 5% p B p/Ni1 A g |

homeomorphiism between bath topological spacas: [

(4.3) Spec A 3 Spec(A/Nilp) '

This Property alone makes clear that We cannot recover A from Spac 4

The cass that A is a field ia even more expressive: the spectrum

of any

Field k g4 5 one~point space cerresponding to the unique ideal (0 of
k: Spec k = (o)) .

Now we can prove that the continuous map (4.2) induced by (4.1) mapg

the basgic OPen sets of Y (ef, §3) in those of X . In face ths inverg,
sl

image (1 (‘ff} of the open sar Yf (£ €A4) is open in x . We shall Prove

the functoriality:

biovh 2

2 U
R e T T
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= ) m.tfﬂfi = EK (ﬁx;ﬂY canonical bases of 0p(X),0p(Y)) .

i the peautiful sharper form

-1

(4.5) o () = Ryery

rl‘.l {'\Fely “.f E B 3 uf E jl ¥ L-E-: us comE bEICk Lo Ehc Eiuﬁiilifil‘.ﬁd “utﬂ!i[ﬂls
" A o
b}; GEU!'HM]IFEK iﬂ, his lectilrﬂﬂ, i.‘!'lﬂtl’.‘ad G.E thﬁ fuhﬂl‘.ariai oncs

aof §3 uged

uncd in this &4, i.e. we write again & = Spec 8, ¥ = Spea 4, @0 = Spec o
u

way that Spec transforms A = B dnto Y+ X. Tlet ¥ €8,  be

in such a

nay hasic open set of ¥ corresponding Eo any elament [ € A . We have

4.6) Y. = [p € Spec A[F € p] = -.a'lrffi = (q € Spec u\g{q} S ‘ff} -

E
[q € Spec Eiu_l{q} € Tf] = {q € spec B|E § u'l{q}} =
[q € spec B|(B) §q) =X g - _ N

q.e.d. 1Im otherwords: THe canonical basis ﬂ? of Y is mapped maturally

by @_1 {n the canonical basis ﬁx of X in such a way that (4.5) holds.

In order to recover A we shall define in Pare II che structutrae sheaf

A on Spec A ; In such a way that T (Spec ﬁ,ﬁj ¥ A . Then wa shall seec

how these gheaves in the category # play a fundamental role.

DIGRESSION ON POINT SET TOPOLOGY APPLICABLE TO' SPEC A . EXAMPLES.

tnere are seviral lmporzznc, purely
topological notioma of old cime slgebrale gacmetty chich are reapingful for arbitgary copelogleal
spaces, They ara agplied here to the highly aon-AAUSEORFT spaces of algehrale geomacry:
algebraic varizcies, tchemas...etc.,; via che TARISKI ropology. They ars not wseslly handied
in coucses on polnt-gec topology bacause thay becoms crivial L saparated spaces, which are
ragardad az the "natural ones’. The T5,T, wspaced fesdned here are negl_cced since they sce

"oathologleal™,,, Tha fact thic thay play 30 big 4 Tole in algebraic geometry makes Le highly
desizable to overcama this bias since the algabraic geowettic abjacts are wmry nacural and
lrportant ohigces of acudy. The typlezl cases traated helow by GRUTHEWDIECK ars Lrreducibilicy,

eneric poin: (alresdy mentionsd bafora), spsclalizscion, gober 4paces, ars. For further
detalls of. 5GA, Springes, Ch. 0 32, 7age 23,

3.

CHOTHEVDIECK 's SIMMARY: T ar going to prove now that the Spectzum X = Spec A ia a achar

I11-4-3 111-5-1
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Epoce, i.e, For avary elesed leredusihia (™)
ouch that v = [3] 4.s

luhm!n‘ct his ane and oply oae pénerle poine,

x + [%] beewoan the se: of pofars oF y &l

X therr existy 4 point y €y

aud remgrks Lvery closed freedys 5le !
I athor worde, chore exiprs 3 (=X} -corrvupandenee

the fomily of eloged Irroductble

sublpices of s

A topological space ¥ is called frredicible iff X 1= pon empLy

and it canuot pa decomposad as the union of two closcd seLe both difforens

from X :
X' = %
{5-1} :l: # m’ x = x' U K", x'l‘ - EIJ xll = i:ll = or
xll - x

ﬁnun. !rneuﬂbllnr it oot quite the same a3 L

did pat espuma X'y xM e ad * connectedhcis proporty, becsiee e
L2 ] =]

= ‘In ocher vords, gyer Erveduelbly seacn iy Sannoeted Buk narc
E0pyaraely. fook for Inscatice & the union of ER?‘%&ET:‘FF&&T}.TETF‘;
afEins plang, r

e
in che
AUS fg Eomnecrel bur (b iy moe It":cdudbte_.l

A subspsce ¥ of X 43 irreducible {ff YCAUB (A and B

closed

in X) implies thap As 8 consoquance

Y is contained in A or YC B .

Yex ia irreducibla 57 its elosure Y is irreducilile: {n other words

irreducibility is stable under closure,

A one-point ser [x)C X 4is irre-

ducible for any X ;| we saw already thar (%} s nor necessarily closed

in Spec A s in other words Spec A 1s not necassarily a T,~2pace, {.e.

we need to consider the possibility that m will be larger than [x]

(and often "“auch larger" cf, Examples at the end of 55). Because of the

Previous remark we have: The closure fxl of 2 one-pofnt ser 4s always
~—=E closure

irvoducible, Conversely, let V¥ be an irreducible subspace of ¥ . Any
h-_———q,
Point x €V such that v = [x] is called 2_gensric point of v (CF.

§3

for the Partieculsr case of Spec A),

If ye (3] every closed sat F containing x contains also y e

)

LI, the topologieal dafinieln

n of irrecuctbilicy givan by (5.1)-

This dofinition La the

samy ysed By "ol cimers”.
preced 43 & ganars®

topelogleal notlon wpplied

the "oew™ fact fs thar this

[11-5-2

old definicion can be can be Latsr-

o che ZARISKI topdlogy.

—= = S L
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Every apen neiphiborhood of v contalns x . If X fs a Tu"‘SIuTEE { ROT.MOGOROET

spaca) every irreducible subspace of 'V containg aAr most onc generic poiut
(beexuse iF (%} = [§l = v and x#y every open ncighborhood of x(y) comtains

y(x) agains the Tﬂ-praperny. (Cf: (*) of page (90)). We say that y iz &

spocialization of x (% x a genorization of y) iff y € [¥} .

A topological space iz called saber LT every irveducible subspace Y

of % has a peneric point. 1If % 4s T, and sober every irreducible

subspace of X <contains onc and only one generic point. In ather words:

In a Tu sober space X there 45 a bijeelivi map % = :ﬁ} hoelveen

{lie paiats of ¥ and che ser of frreducible subsets of X . If £; XY

is & continuous map and the source X is irreducible, then the imsgp subsct
f(X) on the target space is also irreducible.
For scperated spates lrreduclbllity 1s not too Interesting! A

separated space X 1§ irreducible iff X contains just one point!

II—:: fact the set-thearetlc dual of the deflaltlon property (5.1) 8: Anv Lo noncesats open
zats of X u;_c_g_ggﬂ“l {ez. 1, §i&): '
A8 both mpunand A Ff g, BP9y = LNE P&

Lz g consequence #n Lerndunible speve containing évo non empry open adtE eanust be MiusduieF:
1L P8 ave twe diffcrent polots ol NauedazI{ space Thete exlst tve disjolur open nesghbou-
Cliaeds uf’ PO chus X ceunnor be Lriedueible,

In Algebraice Geometry; of course, the situation is entirely different!
For instance {Pr a elassical affine algebrafe veriety X, ® is irreducible
iff the riag of polynomial on X 1is an integral domain.

The application of rLhese notions to Spac A (AE0b () endowed with its
spoctral topalogy (cf, §2) is iummediate,

If X 4is the Spectrum of & ring AE0b 2, we want to see whar means

tl)“'l F'-'GE"F“T ear Se takas lt‘lﬂ il a definleion af IEIHHﬂihlllﬂr- ﬂll’l“ 'ﬁuiwﬂl'ﬂt Cﬂhﬂ:iﬂﬂi Pt E
“;““ pon=g=ptv. ocdn et AT X j3 demse fg X E A =R
E‘JE sr¥ oper Aubspaes =f X fs compecteds B leave the sday verificeclon to the resder.

TIT=5=1



that X dis frreducible, Firse let us remark that the speetrum of A
doesn't change {f we replace A by A/NilA , bocause every prims ideal
contains NilA and the map p w p/NilA (3p € Spec A) , (which is a bi-
jection between Spee A and Spec A/NLIA), preserves the topolegy.

As a consequence, in order to cheek irreducibility we can assume that

A _is a reduced ring, Let us verify the two irrcducibility counditions

separately. That X = Spec A is non empty means 4 # 0 ; because X =g
means that A has no prime ideals and by FRULL's theovem & =0 , Now
let us assume X =X'" UX" (X',X" closed subspaces of X). X,X' and X"
corresponds to radieal ddeals J,7' and the union corresponds to the

product 2'4" , i.e.
xl ‘F umi}. xll = ?(?ﬂ} x = v{g!;ﬂ}

This lacter property means 2'7" =0 , i,e. 2'2" is the zero 1deal and
there is a (1-1)-map betwoen closed sets of X and radical ideals of A .
Because of our assumption that A £s reduced, the zero idezl is a radical
ideal. Then the frreducibility property is equivalent to 7'7" =0 . This
property is true {ff A has no zero divisors. In other words (for a

reduced A) X = Spec A is irreducible {ff A 18 an fntegral domain. In

"

general, ve have:

X irreducible = A/Mil A 4s an integral domain.

We know that any closed subspace of Spec A can be identified with Spec A/a
where ¢ 13 3 radical ideal of A. We have: the closed subspace

V = Spec Afo of Spec A is irreducible {ff o is prime. Then g is

2 generic point of Spac A .

I11-5-4
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Fvery Grrvducible closed sebt of Spee 4 has o unique peverle pojul

Tier existence was just provedi Yhe uﬁiquuucss is a conscquence of the
Tﬁ'prﬂp“fLy of Spoc A (if an Ivredueitle ¥ of a Tb sobor Space conla
two different peneric polils ¥, y' overy opun acighborhosd of ont of t
gliould econcain rhe other, in contradiccion with Ih :

The topolosfesl spacn Spec A is T, awl sobor.

Ve alveady saw the proof: 1 every open U cantalning = also contaty
y (# %) then every closzd ecautaining x alse contaims y & Fy oy,
Then camuat ::p? othorwise be x =y . Thus Spec A irx T . On
ollier hand Bpec Ao (o vadical ideal of A) 1= frreducibly Lf 6 =
ix prime and we already saw that o dis geserle for V and it is the o
one becapsa Spec A is Tﬁ .

Auy irvedecible subspace 1 of & tepolopical spacce iz contained i
maximal one (¢hich is pectssarily closed) beezuse Ehe family of irreduc
subspaces = 1 i3 partially ordered by = and It i lnducltive (= eva
totally oxdered subset is bounded). Then 2s a conséquonce of ZORN's lem
there cxist maximal glemonts. As a conszquence we hava:

Any topolagicil spaee X can be decamposed 35 an eredunﬂunttl} (18]
of {rreducible elosed subspaces:

(5.2) - T, % (;u irraducible, %u £.0)
vey ™

This decompositicn in irreducible componencs Iv is unique (up to the
ordering).
In classical Algebraic Ceometry the set of irreducible components

finite because the rings A were Noctherian (cf. Ch, 1I, ). Mora

ﬂ}hrcd‘uudan! oany;  evesy !'.!.I is zos contalned £ U 1

T3 &Y B

I11-5-5
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generally we can prove rhe finiteness of (5.2) if X is Noetherian (cf,
def. bLelow):
A topological space %X 1ig called Noethorinn irf Anyone of Chesxe squi-

valent conditions hold:

1y Descending chain condition for ¢loged subspaces (In lts rwo eqlit-

forms) :
KI | }{2 e is stationary (11 = Ei Vi)
xl ? xz ? ida is f[ﬂil:ﬂ
)" Ascending chain condl Elon ‘Fen sets U,
HI - I'J2 C +s¢ stationary “i open for every |
L‘rl 1; I.I2 % »-. Finite Ui open for every i

If A {5 Noetherian Spee A 15 Nootherian alro. GROTHENDLECK shows in [Foa

that the couverse Properiy is not true,

Accordingly thero are finltely many minimal fduals of u Noctherinn
ring A . They are ths generic points of the irreducible components of
Spec A ,

The proof of the finitcness of the decomposition in irreducible
components can bs done by "Woetherian Lnduction” as fallows:

Let X be a Noctherian topelogical space. If X is irreducible
there is nothing to prove, If % = X' UX" and the finiteness pProperty
is false for X it should be False also for at least one of the closed
subsets X', X" of a non rrivial decomposition X = X' (J X" . fThen
K'=x"'y X with X1,% closed and # X' . Let us essume that the
ts false for XI,... Then we construce an Infinite stricrly descending

chain of closed sets: ¥ o x' o xi‘ = +s+ against the "Noethertanicy",

III-5-6
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EXAMITES. T want to present two kinds of examples:

17 1hozc cowing from a elassiesl affine algebrate varlety V (not

necessarily irreducible) over the complex uuisber field. V will appazr as
the gubspace of closed points of ﬁpec AfV) where A(Y) 1s the ring of
C-yuluwd polynomizl functioms f: V=L defined on ¥ .

2' Examples which have no elassienl apalesien,

It is elear that cxamples of the first type ean b partieunlarly usefal
for tha readers with some background im Classicel (or "old tice") sipebraic
gnnma;r;. But sinceé 1 worry shout "applicabiliry", 1 cannot believe that
a non expert in elassical Algebraic Geemerry s ignorant of lines, plancs,
alouhenic euryes, surlaces In t3 . I cannot believe thal the veader aever
heard of the conic sections (Ls it fair te assume Lhat the render puver
heard nE VEPLER laws in this sge of space explovation?)... . Howovar,
restricting aorselves exclusively to spectrs coming from clasuical wvavislics
wauld not be 4n tha best interest of the reader. Such a restriction copld
lesd to the false idea that all Spectra coume from algebrale varievics,..

Since the ropological spaces Spec A aud Spec A/NLL A are homso-
morphis we can assume thar all the comukative Tings with snits neaticnc
in the vest of this section sre raduced (= NIl A =10) .

1° SPECTRA COMING FROM CUMPLEX AFFTNE ALGEBRALC VARTETIES.

A tedugad ring A of type A= E[gl,ﬁz,-f.,gul , L.e. a finitely
generated C-algsbra without nilpotent elemsnts (£ 0) ; represents an afiine

algebraic variecy V . Since A 1is Noetherian v e¢an be decomposed as an

irredundant union of finitely many irraducible tomponents 11’12*""Ih

?-IIUIZU...UIh

II1=-5-7
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The points of V are the maximal ideals of A: V = Max A . The ivredueibl.
componcnty Iv (v =1,2,...,h) correspond bijeetively to the (finirely
many!) miniwal ideals of A: HysHgpenos i and I, <¢an be idontified with
the maximal spectrum Max &I“u (v = 1,2,«es5h) AJ;5 iz an invegral
domsin, Its fleld of quoticnts has & finice Lranscemience dogrvo over
£, equal by dofinicion to the compléx dimansi{on of Iv + A chofea of a
finfre set of generators for A , for instance §j (J=1,2,.iu,m) onables
us to define a surjective homomorphism t[Ti'Tf"“’Tn] @ A ‘Tj - gj.
3= 1,..4,h) which provides an affine ewbadding v =", .. , uut let us
Stress once again that the embedding icself is not important. For a given
A n wight be variable (n > Max dim ﬁ}pv TR PR T

The enlargement Max A -+ Spec A might add te Vv Ymany moze" "thicker"
points: More precisaly, one for every frreducible subvariety 1 of V
{with Pt g, I I fJ. I.e. there is one point By =B ¥ = 1,2,00h
for each {rreducible componsnt, Every =x € Spec A 1s genericufar.tha
subscheme Afgx consisting of all the poinvs of Spec A representing
irreducible subvaristies of the Lrreducible vitriety V., Tepresented by x ,
i.e. y €Tx] is equivalent to V?C+ Vi = In particular For the B, o
v, € Spec A {s the generie point of TE;T' whose points represent all the

irreducible subvarieties of ,V contained in the y-th {rreducible component

I, v= 12,0000,

In elassical algebraic grometry {rreducible varieties played a privilege
r;le... Lat us examine in particular the cases of an irreducible affine
curve T, ap irreducible affine surface S and the affine space tj n

Lec A(T), A(s), A{23] be the corvesponding €-algebras of C-valued
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polynonial 1 unctions, We have;

a) Spec A(T) contains T plus the generic point (7 zero fdeal of h(r]},./

(D) € Spac A") because AT) 1is an integral domiin.
b)

spee A(S) contains S (» set of all
the maxinal ideals of A(5)) plus all
the points representing {irveduclble
curves lying on S , plus the ganerie
point of § (= (0) € Spec ~{8)) -

Spec A(ﬁ:jl contains (besidss the closed
points of 3-space E3) the points repre-

senting all the irveducible curvas, thoss

representing all the {rruducible surface:

/ and the gensrie point (0) € Spec A(ﬂl}.
Forgetting about L, 3f k iaany commutative field, Spee k contains
just one point (which is generic for Spec k). Thus once agsin there is
so way ¢f recovering k from Spec kiyas

»" SPEC Z AND Spec 6 (& LOCAL RINC):

§irice Z 1is the initial object of G let us consider Spec Z . Wa
have (D) € Spee Z ((0) 1is primpe = Z 1is5an tntegral domain}. (0)
te the generfc point of Spec Z . Any othet point # (D) of Spec Z has
the form (p) where p is any ptime number: p = 2,3,5,7,10,..... - Any
such (p) 1is & maximal ideal, L.e, Max Z* [ () lp prime} . Thus every

(p) 4is = closed polamt.

Our last example will be thes spectrumd, Spec A , of a local rving with
maximal ideal m . These rings wet€ considered im classical algebraic

geometry even :haugh-:he.y are not of the type l‘.[ﬁl,-ﬁz,u.,gnl » Thus,

I11-5-9
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Spec A s Cxtremoly different fray Spec ﬂigl,x..,gnl (except in the

trivial case), In fact: Spee A comtalns just one closed point . Auy

Other poine P €ESpec A 4g a generalization of m (@ m € [P]} » In

classical algobraje Beomelry £f ¥ is an irreducible subvariocy of the

complex Lrreducipye algebraic variaty x » the localfzation of A(X) with

Tespect to thp Prime idea] ny (ef. 58) is a local ring A}' i the poinrcs

of Spec J"-}, Correspond bijectively ro 2]l of the irroducible subvariectics

LiYczcy .

the IT_t-lll.m pecicd & PECDRCEY P of an izredicible (Lffins or projectivel algsbesic

25 Ttrvs for cha Berarle polne" tef p 1% falze for & Proper subviriecy ¥ o I .

*his L2 eculvalent to say thas P 1s false Ln & ZARISKI clesed sec of i

; *r*  Tar instance fha SE3cements there 09 Just oas line containing

175 PALE of polney 1 the plane X moans ehie the Propesty s falze only for ehe
[xxx[x ¢ K) which is a ZARYISYT cloged subser of ¥ yx. Ihis convernzdnnai lagzusge

in real .mlr,[:*?:?““‘“i“ "valtd alocst everyuhiers™ = (oxompe for 4 set of ceasurs zero,..)

VAN U2 Cigors Introduced hiz "

L12) a4 4 a0 Ugesatne punke” (gl £2,040iE%)  for soy xee P tk  ground

Etncrators of ghs k-alzeora. Sepresazciog’. XY Sucithe sARraglesizcie propessy

M Q) En (wmy *xtenslon field of k) L2 & genar{e peint of X LFF “-'{‘;JI “0 focany ¢
vaslghinz i-d!utiull;- in x :JI.I ® Ls any athor poine of X £(1) =0 = £rx) =D « ThE purpoge

of this *lgezainE puses i3 o try to ks "y lgobraic™ the previocs Izalien mitlog (were #n Mizsual"

jraaric PALZ kay map veally dafined) bue ic g clear that £ uses che consdisacess it la nat antque... 1
CROTEESDIzCR Yy EERRricity ssaiza; 4 4nizus gezerie coine ta avery itzeducible subsat of Spée 4 gnd

this paice (5 “laetingic® (no *iZime endaddings are naeded) , x (gemerie potaz of 1 ¢efined Ln the

I3 thea 3 Purely copoioglcal mocion. Bacause of che deflolriog of che TARLEHI
R - a4 g iE
VAN hes KagaDmy & Lhar Flx) = 0 = E{y) =0 fa= oy speclalizsclon yiz \%xi), a3 ia

PART II

SHEAVES ON AFFINE ScHEMpsS

The S4e propsceras of thaaves of atellsn Broup3, riogs, ecc. on the category of

‘Eopelogisal soacey 4op *ugposad Lo be knowm (ef, PREREQUISITES, peze ). I balleve thaz che

Ecsndard 31higy- COOENENT, tha Cosplazencs in ok ire tho extensive for a Seginger. Ihev aze

efarence Eooks. The suia Feasonstis ghort Intsoducelon wich full proafs Ls SERRE's FacC

Phper; (Bl sArey, teacehy 1z

Trasomably Mghgps#

troduction, or che exteoded one 13 QIMXING-ROSST, ... sre also

visde A shopg Introduction on shoaves sr 2ets is provided in the Appendix (§14).
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The wain resule af this Tarl TT of Chi: IFL" §s the face that the stvurtute shéaf dufined
on Spie A in ECImE of cha luﬂ‘[['.utl_,nnl H.,' (p & Spec A} tropsfotms Spos A Lntooa

lerelly rinred mpacs ((ef. T, o, page 33 (Spoc A, A} and A becones tha ring of ‘global

gaccions of ;, Fius we fecave® A, froo tho affinc schome actschwd to A .
The catcgocy AEE of sffiue schames 13 4 full subcategory of the catcgory of locally

pinped spaced. ALD 18 gsoaorphiic with tle appesite sategory ‘2%  af the category @ of

compmtative zings with unit.

1ho topological screctuzs an % (= o F) ds esly @ saall parc of the strucguro needed
on. X, ‘In grdar Lo rocover A 1o fass;, X 4w rimd--gg{u. Yo are gaing ko
conosruct & covasisnt funczar: Ba¥E 4 Lre which goos from the categoty AEE of afiine

algstraic sphces ca the zitezzcy of locelly ringed apirerk, (2 or squivelently & zontrivarims

functor Fron the opposite cILEROTY € of commutative ringd with unled to fes

Hew 1 uill define this extea structure thet L pramisnd, mamely I will dofice @ sheaf of

rings 5‘ = 4 on cho spestrum of A, callad the scructuse sheaf of X o

H readar with bhe glexpntary sophistication of ghea? theory glved In TAC can u{#},

imdarstand the comscrucsion as follows:

Tha stelk ip af A ot a point pESpuc A s the dipess Ii=ile

(6.1) ip = Lsh,
UEDD

of the lecalleed :l.na:u} Ay of 4 vkere U ctums In the eacégory € of basle opea seied
of Spac & (cf.Ch, 111, 3308, (A, i the largssc bomooorphie tmage of A .ﬁn;-.,l,-l A

characterizad by the universal property that 1 U -If Syt £y &= iovercibie in lnl;_‘

Mep, get. 12 fastnnts (8), page 0-4& of the Iotroduction. CE, EGi-Springer, Ch. O, i4
Espaces asnalds, pege 57. Wa ahall dafine the marphisms An 47,

ﬂﬁ"n object of Zza i3 4 tinged space (X, $:} ; whose strugture chasl EI is s ih;nl_' of
1ocal rings, f.e. for every 2€X the stalk et w, ﬂ:‘: iz a local eing: Morphisms in

frs will ba defined aceocdingly fn 7 -

':3)-11; i3 claar thac the readér ghauld be siace of the theory of localizecion {shich tn seandard
equipmant o mony geaduste algedra courses, cf. for inizanca LANG or ATIYAH-MEDOCMALD and
BOUREBAKT-COITI-ALS, for fuil details). <he meln dafinlzlons were reviewed by SOTHENDIECK
when needsd. I have collscted che= ln sa .

Bler. 33
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' inga of continuous Sections of
The ring Le {sosarphic with

*U iz Iscmmrpliic with ) In othes Vordy any

Froctlon afs of

: n
wreicren io the fors s/t tor an goncrares B
b ¢ ¥ P POrtiaular, fur

-1, Ii = ¥ Ay A, Lk ve recovar A #s the ring ap globay OB nuous seckiond i

Rihe #tructure shoaf A over X,

REMARE., Tn the FPAG pppe
pendently of proshis Y. Using s,
2 1ks L et

hﬂﬂlﬂ-:inz. nmi11I'1m:“£iu this ft;?ﬁsq:ﬁ“:::mha! N::‘
the ibers P ' in i gy ’ R iy M
CROTHENDIECK detines a she s .E“:--::___: Falssciuz, o .
Eatisfying certaln BXActnass condiel {eular pru.m gap 8
is tﬂ‘ﬂhﬂtﬂﬂ]- In Ill.l “!i'{csl'l l--- mﬂu&.r The tcd ‘I_a'!u"l
there are pot RECEISaTiTy botnes oo CTULHDIECE tops

of "

ol Juence there are agp ﬂc:ru-rii;-‘w:{:gﬂ“-. I(;:a:::
’*l{:}}_ mglI will Vrikes [ ] il'lil
I8, In $8 1 review 1M

8 ish
equivalence of hoth Pointy o . e st
e1gontisl Faces =nri:in:m5 ri: of #r, t1 neaded 10

= Qne
SSNEtCuction o A and shea?

oacl| theavgg Cimy be défined lede?

follaw the detailz of the
A-modules secacliod Lo tha
M be sty A module. Thes “® €40 constvuct & shesf f o

A 1k 2
P € Spec A Ly che localizad modyls HP - "odules vhose std

1y both construceions of A and
2a4-lon chaory For A can bécome & pd:l:.ll:l.r].l_l.: casp o
Fyelr), Conversely, if R iy any sheaf of } Zadyley ¢4

T € Spec A) the nstyral quescion arises vhether or nge B Agle-
: ~olds 166 R ts 8 cpsni-caherene sheat Avodule,, “TF fram m A-ee

et
1y by Uslhg the fxct thOT .
¥ rl;uEJcE L ‘"‘."_. duld

8. mvary H‘ ls an A jﬁ-

EBR1 conatruction gf } | inspired by the pape recording ¢, rats®

A
Lix devaloped £ §7 angd 2. A rhowledgeabla regder tmu”aweu o §9, prep

2Larg wieh :ﬁ‘-
ve shall ba able o defive finally che cktagory @ of afeyn, dik which 8¢ ’
maa,

S=0rphic to the SAtagary AEf of slgebrase paces (cf, o 1) (t.e. the caceqory of
- .

w=eatible funciory ag @, or vhac Ly the same wa Sam dantipy o, 0810 sekames VEED
G 144 &

o e ts af ‘the Catagory opposite co @ .

A8 order m.ni. EAla explicit va shall aceach £2 ayacy SOy, rieg wieh unif

._':! affina Scheme (Soec A, A) o L.k Ehe locally fingay $Paca oy, andeclyind t

L spaes oy 3pc A = [blp prime ideat ef A] endowed with sy spactral copolog? *

Eructure i
gt etur: sheaf 4 45 eng shasf of locgl riogs 'sn M € Speq A} fuge mancioned=
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) - :
A5 s any merphisu in G thave 15 a

sgen thar (5pcc &, 1) gives bagk AT | mageovns, 1 4

well &:If.l.n-at.'- marynlse of lecally ringed szacas in che osposles divection: {Spec B, ) =+ (dpes A, I}

#8 Jefinee: & gontinuout =37 Gpee 3 = Spec A betuesa the underlylog topological spaces and &

sheaf hemoporphise (reversing the dirceclon agaiad.

1o Te=sck tha foct thaz A whpht or mizak ToC be reduced. |

FOLLOVING FAC AND CROTHEMDIEGK, RINGED SPACLES

It i3 {mpartant

-
Y‘. CENERALITIES OH SHEAVES
g Lkind of

hat FAC is reasonably well-known, 48 2

cince 1 bolieve t

sransition from classical to preparabion for CROTHEGDIECK's algebralic

geometry #nd the definition of a sheaf is given thers direzcly without

introducing first prosheaves., we snall see the equivalengs of both approael

Pollewing FAC a sheaf of abelisn groups (1) on a topological space X

ig an etsls covering

such that for every x € X the

(2) p:S =+ X of another tapelogical space 5 gnto X
stalk §, = p'l{xi is an abalian group 2n

the map of the fibre product S Sp 8 Ifajtcf. Ch. II, §3) definad by

(7.1} (a,b) + a-b

iz continuous.

There are two ways of comparing sheaves and presheavss in FAC: i -

eaf, the map UMW I‘(SIH) assigning to every opem ssC of
4 15 a presheaf, (CE. §3) eczlls

g is a sh x

che abelfan group of continuous sections

canonical presheaf defined by S orf the prasheaf of local conbinuous

seccions. Om the ccher hand 1f P is an arbitracy presheaf of abelian

groups we can define the germs at x (€ X) of an element £ € P(0) (U op

q’!at tmeeaees tne trivial case that A =% i3 = Zileld (Spac k, & = ([}, !

(3]
‘!Iﬂl-.tﬂj' ve z3pg deflpe gheaves of ringd, loczl rings, sabs, =te.

23 .
In rhis concexe f:ale coverinn, means Juss chae the projection § ?-rt
ia d L i3 3 loeal hoa
m!;h.l..n, l.e. far suery 8 = 5 toere exiacd an open nelghborhood U 3 5 l“#-:‘bh“ =/
P]ﬂ- U < P(U) LA & bomeoscrpbiem. CF. Appesdix far further inforsaclen.

L 1= 3 PR
Is the FAC definiriom of shefves SXZ Bas the produce =apolegy and Sx 5 bad the topaia)
{aduced by SXS . : 1

£4)
4 contipdous local! dsction af the shest p i
such thac peas = 1 l: @ shea® S5 un U (open im X} 1a & contimuous map 5: U +
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3x) by a well-known equivalence relation that can be defined as a direct
Limit Pk - L&:EIT{UJ - Then we construct the limit sheaf EF of the
presheaf P on X by means of Ehe disjoint unlon SP = LEJxP“ or under-
lying set, by introducing s nacural topolozy on Sp suchxthar if xex
becomes an étale covering of ¥ and tha algebraic oparations bacsme
continuous. These two Funcrors between the catpgories Presh {(X) and
Top(X) of sheaves and presheaves are not inverse of sach other. FPrecisaly
we are concerned with the faet that the presheaf P of continuous logal
sections of the limic sar Sp of 4 preshesf P cannot be ident{fled
canonicelly with P |, but there is just a cenonical map P-4 . The
natural problem &rises of charactecizing tha presheaves P which can he
identified with the canouical prasheaf of SP » This problem was already
stated and solved In FAC. The solution can be characterized by an exaptness
condition:

The presheaf P {s canonical {fF for any open covering U = | U,
b 181

the following diagram 45 exact:
i
|
(7.1) ( F(o) » 1 F(Ul) = I F(Ui n Uj}
— 1€1 4
We recommend expressing in words the two verifications fnvolved in
this exscrness condition, checking that we gat back the old charactarizatcion

of canonical sheaves by the two conditions:

a) F is separated = F(U) 1is uniquely determined by all its rescrictions,

b) F 1is "local" i.e. for evary map U, w F{UI} sétisfying the
‘matehing condition" there sxiszs a saction (unique because of ga)

such that F(U) = F(U) | v,

ITI-7-2
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The two funetors

Tup{!}‘é Presh(X) (1 d4neclusion, y¥(P) canonical sheaf)
Y

between the two ca:egnriesflj Top(X) and Presh() of sheaves and presheaves
over ¥ are adjoint to each othar: (ef. Chs Il), i.c. 1f S 45 a sheaf
and P & preshesf we have canonical identiFications:

(7.2) Hom(S,y(P)) = Hom(i(S),P)
Top (X) Presh (X)

in this course (and in most of his publications) GROTHENDIECK takes
che exactness condition as definition of a sheaf, because it is mors

categorical, f.e. we can replace Op(X) by anv catepory wich Fiber products;

summarizing: & sheaf over X is & presheaf satfsfying the exactness conditionm,

With this approach the "stalks" do not appear expliclitly but this is
convemient for arbitrary "sites" (= CROTHENDIECK's Topologies) where the

stalks do not play any primary rale.

The main objects of study of GROTHENDIECK's algebraic geometry, the

schemes, are particular instances of ringed spaces, i.e. of topological

spaces X with a structure sheaf of rings @x ; then they will be denoted
by a pair (x,@x} . ‘The simplest examples of such structures known to the
reader, at least infnrmnllyfz} are manifolds of various types (topological
or d‘-differentinbla in che sequal, to fix the ideas). Letr us think of

a surface X , for instance. The local real valued funetions on X form
a presheaf Uw ITﬂiﬁx} (U open in X , ITU[BE? ig the ring of functions

I +R).

{”m mopphiszs in Presh(X) aTe natural cransformacionz. A morphiss betunsn shasves. 5 ?-:,

3% (defined us tn PAC) 13 8 contimuous map § =+ T making commutative the crismgle §,T,X
and inducing fiber homomorphlsms S = T far every = EX .

I“rj"l-'n do mot esaume roy ospecialleed knowledpe on manifolds, fc 4g enough to feenll examples
from “Freshman Caleulus" eo replace surves or surfaces, by manifelds of dimcnaion ©.

ITI=7-3
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A map (K,@x:ll: (¥,8,) betwoen two sucfaces means 2 continuous map
X =+ Y which transfemrs lecal funections in loeal Eunctlons, and since
functions behave in z contravariant way the only sensible way of doing sa
ig ro 1ift = loezl function ¢: U~ & (¥ open in ¥) to 2 local fic=tlon
P, F: F'I(U} -+ B (whare F—I{L*} is

opest in, beccuse F  Ofa continuous),

- ;
/ﬂ More precisely we hiava a cing

homomorphiss ! ¢
‘\ ____,_/ T, 8,) + T(F U6

Marveover, this operation is compatibie with the constructien af Eoerms

(eleninty of 1lim P (0)). Let us make c¢xplicit the constructlons:
+ U3x

Let £ : U= R, £, 2 R be tuo local
Eun:tion(sl)deﬂnud in twa openneighborhoods 5f

x. We write EU"Ev LEF thers exists a third

open setuW C U N V. such that fufﬁ' =£ Iy,

£
v

It 15 easy to chack that ~ is indes) an

equivdlence ralotina (in the set of local

functions defined fn gpen neighborhosds of %)

compatibla with the rine opardtions, The

equlvalence elass deFfinad by fu Is called the garm of EU ac_x . Cerms ac

x will be denotad by capital seriot latrers 3J, Qs ¥ «vs with the laft

subscript x:xﬁ,xﬁ,x]i, -+ This should not be cenfused with the =sal number

xfc-'{x} (vzlue of :3 it x) which makes sense since Eu - E‘f - EU{xJ = fll“,.f*.as:,'l.{rJ

&"ll:anrl.mw: =c") or sccordieg to the cass: The © csss Ls suto=zcls, The
[=21%es & strocg Testricsion, Hur #uszy @ should be 1ifred, jus: these thich are ™ .

Iﬂ’]m: e cart=ot d:fin:‘.i. ¥l for 34 =x.
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The set of gorms of functions at x has a natural ring structure, This iy
6, , of gorms 4t x contzins M as a subfleld when we identify any ¢ € ]

2
with the germ F of a loeally constant function equal ta ¢ (r fs= JF &
: 30

&

The map f_u-c ﬁ is a homomorphism of commutative rings with wunit.
Morcover, the map xE - x’_&'(x} is also a real walued ring homomorphisn, hos

kernel m“ is a maximal idenl of {BK o In fact i£ fu{:-:) # 0 it remadng £ O

in a certain open peighboriced of x , &5 & consoquence thz eorresponding

X ’ 3o =]
germ E:{ Iz invartibla, i.e, W £ E}.‘.,x' in other words: tha ser
E:,x = [Ex ¢ @x,xl:}x{x} ¥ 0] consises of all the invertible elementes of
er'x . The complementary sat m, = {Ex = Exjxi.;xf:;) = ﬂ] is 2 marimal

idcal m . Commutative rings wich unit having such a property are ecalled

local rings precidely because they appear naturally in thie loeal study of

manifolds ju a sufffeiently small neighborhood of any fived paint x €

It is clear that for any couple of corresponding points x, F(x)
x € X, F(x) €Y we can lift any germ EF{H} @t F(x) to a germ ac

* F preserving the values; in other words we define a

x: EF{xJ - EF{:-:}
map between the two local rings BY £ (x) < Ex % making the diagram below
3 3

[ 32

‘!,!’(H. ﬁ!l!
(7.3) l -
n -t R
ldn

U1ﬁ: %8 ve present a shors review of a purely mlgebralc approsch to local rings fallowing
the e2pe. In the werncloe this short suumery by GROTAESDTECK canm help i...1 reeall thez 3
cocmmracive ricg wich Ldentity ds 2 local rlog Lff thore is Juse ons —sxiesl {deal, or one
can also say that the men-lnversible elesency sre stable under sum and 3 Focsloct chey
form ko {desl (because tn any cing A ,if 3 @ A {2 gem-icvertible. Xa i secill oons
tnvercible for aay ) € 4) aod this Ldeal would be the =awimal fdeal. Thin cap slag Se
phrssed aa followa: fFor eny tua elesnnce 4 E A, | +3 Envessible deplies chat
elther [ or g La toveccible, snd sultxplying thia by the (averse of this swn s=cuntay &0
seyicg chat eicher £ oc Il = £ wust be fnvertible for every € . Roplacieg £
by - : elther € or 3+ [ w=ysc be lovercible,



! comnutative, wiere the vertical arrows map germs £n Elo corresponding

value at FOd, x . In particular, if a germ vanishes at Fx) 1its

image vanisiics at also, 1In other words: The imrgo of the mavimal

idonl of g by F* is containgd fg the mycimal {deal m of &

YJI“{K} x":_\:- = |
OT ubat is equivalent: the inverse imape F*'I[nﬂ of the maximal {deal
: (1)
f £ .
© E‘}E,x i3 the maximal ideal o G‘-LF(:‘}
These considerations Suggest the right definition of morphism of
ringed rances: F

Let (X,&x}, {Y,@Y) b two ringod spacﬁs.tn & morphism (x,ﬁx} -4 (Y,G?:

is a pair G = (f, ) where f£: X ¥ s a continuous mup between the
underlying topological spacos and @ {is an f~homomorphism g GE 4 Gx

between the slieaves,. {.e. for every x € X, there is a ring homomorphizn

a9 Bi‘,f{x} “ &X,x

It is clear how we can construct the eate-ory Rs of ringed snaces'’

with ths {xlsx} 2s objects and the morphisms are the proviously dzfined.

The former gxsuple shows how we should sharpen the definition for

locally ringed soaces, A ringed space (x,exJ is ealled locally ringed.

| iff the stalks Gx « Bt any x is a loes] ring.

1) This slevstlen suggescs the dlgsbrals dafinition of focat hemomorphism bezwnren twe local
viogs 3.0Y . If e @ are the corzesponding maxizt! Ldeals of 6.5 and %:Q wg' (s

“n frdltrary hosooorphilas Lo a, II.I{:.'} =@, buc the prime ldesl h'ttm'} € Spoc & mighe b

fu. b e Jocal [rd h'tfm": = M. This sropercy L9 squivalent to cha fact that the
dle2s: lsage aim should be ssatalsed 13 o' » We shall come back to chis following che
Eaje,

{E}-Li- Z,T ctopological spacea ﬁt-‘ﬂ:f shesves ¢ rings {noo necessacily local).
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The loedlly risnged spaces from a subcategory frs  (noc full!) of

the eategory BRs Gsu:h that if I(R,E:{J A {Y,r;r} belong to OL(Srs) a2
mor phism fx,ﬁt,{) ) {?,@Y} in fis belongs to frs iff € = (£, 0) |

is loczal, i.e. L[ for every x € X, the induced morphfsu
7]
On £ - &x:x between these two locsl rings Ls local, f.e. it satisfies

cither one of the two equivalent conditions treated below: {cf. Tootnate (2}

b ‘The direet image of m is coptained in mx .

£(x)
(74) gx{%{x]}' e
= -1
(7.5) Ex (mx] = mf ()

HISTORICAL REMARE.
the locally rizged spaces ipponr vory satusally in the study of

mmifolds of varfaus kinds, {cf. I, 20) for inscenics fac sosplex analyife =aalfzld (X, «_-,1_}
83 the clagz of zercs of local holocorplilc fimccinns, S£83=ly Tic peses datroduced tham iy

Classfeal Agebrale Coosstcy over so algohrafeelly closad flald, Then sz 2f5ine #Vgemeaifc

varfety Io FAC's ienss (X, ﬁx] {2 tha Eollowing particular casa:
I i the oaxionl specimm of @ finitely gezecaced k-zlgedrs A wi¢baur T
clecanrr
I=Max A ‘--t[£1. t:J L i! St1-k =0

Ia perticcler I i3 fereduzible L£f A4 L3 ac lategesl domain: Sz i3 the skesf of prr=3
of lncal tagular fusstions ea X (f.2. restriczisna of the old "sacfs-al” or eecocarphis
fimetlocs to ZARISAT opea seta vhers they have po poles sad =9 Filnderds=inaey palnse,™ 1.2,

wvhere they are aetuslly deficed,

11X-7-8
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8.  DIGRESSTON ABOUT RINGS AND MODULES OF FRACTIONS, LOCAL RINGS,
LOCALIZATIONS.

rl-'puun: some: preliminacy (nformation given by GROTHESDIZCK domeerning the conatrus=«
Elon of the presheaves defining the structure shesf A on X = Spec A and the gheaf M op

‘A-modules sttached Lo an arbitraty A-module M !‘I“ Ezsentially, we are going to eonstruce, iz
eeveral vaye flngs of Fractlons S'IA = (a/o ] 2aEn, 2 8] and modules of fractiond

5-1!-: » [mfa ] B EM, 5 ES] with denoninscars in @ miltdplicative 3o SCA . e are mainly

intcresced In the cases S, [!'"[n 0] and 5= 4 - b for p & Spec A, S-IA, SEEM ity

abbroviated by phe notations *f‘"i-ﬂ'

»eene We are going to construct a sheaf of rings according to this

recipe I_thr: one from Ch. 11, §Hu}, but, at the samé time we shall
construct something more gensral, namely snm_aheaf of modules
ix (2€X = Spec A) . We shall starc with a module M over A (which
—F we shall eventually wvary ) thus to M we will associate a sheaf 0 .
:-:;:::‘P Then, when M 4is equal to a I:egarded as an A-module over il:se]il, H_
becomes equal to the structure shesf X that we are looking for.

We have to construct the fumctor £ M(£) (£€a) . M(D) will be
the localized module M, at the mulriplicative set Sg = {.f“[n =0]
which can be described in various ways, We pow make a litrle

(3)

parenthesis on commutative algebra.

Mf can be described as being the direct limi:“) of copies of

M, M = ch induced by non-negative incegers @, where Ha is mapped ints

Hﬂ+1 by multiplication by f£:
(B.1) M +M Vaz 0

(] a+l

ﬁ}
ALl A-modules (A € ObGIM are unitazy, t.e. (lm) = l.a=n W&
¥ e - M, wheza M | ab
“}n.f the category Ei et A-modules agod 1 (s & houlu.rrh.ln of l-mduh;.. e

The reader wishing to follow CROTHENDIECK's talk withour By loterrupclons should cantinus
silh ch, 1, §3.

3
O30 datette con be 2aand 1a ECA, T (TNES) Ch. 0, pages 13-14,...

I1I1-8-1
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In this way M appears ns a dircet liwdL (cf. Ch, II) of A-modulss

(8.7) il

and therefore it 48 an A-module and we have, of course, a canonjcal

hewomorphism

MM

(5.3) g £

becanse M can bo viewed as the fuitial step ¢ M = 'Mﬂ .
So we have eonstructed im texms of § (&3A) another module }lf e

M will be fixed for a livtle viifle and [ will be allowed towvary. Fe

are poins to characterize (8,3) by & universal property: lLet us Yesark

that in this module HE maltiplicetion by £ beeomes fuvertible

(Hing: look at the limit of the transitien morphisms (8.1) . Morsaver

the map S, of (8.3) is universal, with respect to the properiy that

f-wultiplication becones invertible.)

Namely £f @ : M < N is an A-homomorphism such thar tha hemorhaty
nfs fn (YnEN) s bijective (= it is an isomorphism) thers exist a unique

hauwomerplilsa Mg 4N making che diagram

(8.4) \f\,I

commutative, So Hf appears @3 & solution of a universal problem

(mapping M into A-modules such that the £ multiplication on the

image hecomes an iscmorphism). Therefore we see that Hf beczomes

functorial wicth respeer to M, i.e. if we have a homomorphism M-+ N

Eﬂ the ﬂt!zm mﬁ of A mdulﬂﬂ thﬂn there exists a uﬂque homo-

morphism Hf - Hf which makes the diagram
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i K

|
(8,5) SI;I; 1-5‘

F— K

comutative, bhecause hp cnm;mﬂ'iuh oElia us :

495 a8 tlie propert
PN N F = property
that the f—::muluplzmunn on

A i -
Le i inwvertible . As g consequance

'sf Llactors through Hr ina Ut . Vi
50 we have 2lready Lyg Vaye

I .
dcmribin: He + elither as & divect

limit or az a selutiony of a “ﬁivr:rm]_

tPrelilen, Still we can glve a

third description: M £an_be vy
Eyed
* Wﬂ of formnl fractione w/L"

(8.6) Me = Ix/1" | xey, , > 0)

f.¢. 25 2 =oL of formal Quotioney

0 .
3 l2tonry of M divided by powers ar
f with non-ne=ative cxXpotents vhere Ere

module structure (additfon and

multiplication by scalsrs)is d*’-‘fhlnd G :
2 Obvigus Wiy, name ¥i

(E'?} ff“"f' ;}rf“r = ! 0
X X . (fnx-l-anl:lJ"fm

(5.8) AG/EY) = Oy /en

Bur first of all ye need 1p &tfj_n’: 4an EQuivalence rela Llen beatweeq
pairs (x, ) ~ ', £° ) such thay X/ o p1pen’ W 1d 1ik
x'/f 3 e Wou L -

to do so by "ehasing denominators © '

This Mould pesn thas xf° - x"£" = 0.

But this is net guite an equivalencs Talar
on.

We have to remember thse
multiplication by £ should be hihttim
o0 che

image. This means that
there should exist scme w2 @ Such thy,

i
(6.9) fm(xf" -z'f")*u

Conversely (8.9) acruall defines in e H¥alencs ralacio in oth d
Tl‘.. no er wor - ¥
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We can define x/f" as an equivalence class of pairs {x,fn} nz 0

with respect to the equivalence relation
L]
(8.10) {x,fnj hr(x',fn ) = (8.9) holds for soma m =0 ,

We leave to the reader the easy verifications that (8.7);, (8.8) arc

well defined.

fin A is fnvercikla,

Now wa can check that mulbtiplicarion by £

First of all it 15 surjective because we can write w/E% = E[xffn+1} [

ard it is injective also becjusa E-(xffn) — {Ex}ffn =0 is eguivalent

to the fact that there exist some m = 0 such that £ (fx) = fm+1x = )
and this is equivalent to x/f =0, 5o we can introduce {in this way
a calculus of- fracrions. Besides we can define now 5f= hy Ay by

e xf1 (1 = f‘) or what is the same by x = £ x/f" .
This des=riprion of Hf in terms of fractions 45 essentially the

same as the previous one because the composition of M -'uh - Hl T ]

maps x 1in % .
Woen M Ls equal to A I?Egnrdad ag sn ﬁ—algehril this construct{

gives an A-module homomorphism A = Ag » But A, 1is not only an A-

module. Tt is also an A-algebra, whera the product is defined by

D)
(8.11) /8 Py = txyyiet

Furchermore, for any M , we can see that Mg is an A.-module. This o

be seen in various ways, for instance the product {”’fm) (,jf“} (acAmel

g
is well defined to be equal to em/E" . Another way of seeing this {is a:

)
The reader should verify rhat tha produst { = ;
#nd thar the ring l.‘:l-mfr aCa satls f,ud;. A wall-defined {.lnd"'m“t of cepresencacivas

IT-B~4
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follows: The ring ﬁf is an  A-algebra chardeterizod by the Follewing

vniversal property:

Any ring homosorphiism A § R ima ring with unip (not necessarily

commitative) such thar @) is invertible factors through A malina

comutative the diagranm

Ko g
(8.12) \\H vr
k
Now if we take B ro be the endoworphism ring End (N) of an
Abelian group co Eive a homomorplhism A 4 & g tha zame thing as to
defline in N 2 mwodule Stzucture over A |, If rhis structure hue the

pProperty that [ operates as an isomorphism en N this means that N has

Eie structure ar ap Ag~module end conversiey: To give ap Ag-module

structure sver N is vha AL 2B ED pive 3 structure of ap A-moduls on

N such thar f Sperates 25 an isomorphi=zm. If we a2pply this to the

particular case of Me then the A-module M, becomes an Az-module
because f operates on Hf a3 an isomorphism.
Finally we obtained ssveral ways of describing the ﬁf-uudule
Strueturs on Mf v Now we shall see what haopens for 2 variable fea,
Now let ve assume

(8.13) Xg =X,

and let us define anp A-homemorphlism

(B.14) Hg + M,
We shall see that there oxists & unique A-Lomemorphiss miking

—_—

(8.15)

X =
A=

—

E £

ITT-8-5
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comistarive (whoere the vertical arruws are the canonical Ltniosnr il smr of
M dnte the locolived modules Hﬂ s Mede ALL I need to pedve f5 that
nultiplication by g operating on Hf is an isonorpliism (thus fr fuerors
through HE}. In fact, because of the inclusion (B.13) we have an
idontity of type " = gh (n 2o, NCA) and since bocomes invertible
in Me , g heeomes iuvertible in Mg .
On the other hand this wap HE -+ Hf (whan  (8.14) liolde for f,p

fixed) 15 functorial with respeet to M . Becauss of the unigueness of

the induced map (B.14) we have alss transitivite: IF

S

(8.18) xfcxgcx"

we have 2 commutative diagram

(8.17) -

because the unique dotted arrow sheuld ke equal Lo the compesition,

In order to interpret correctly all the details of the construction
of the sheaves A, ¥ in 49 we need to alss know the properties of

localizarions or modules or riuss of Fracticus with respect to arbitra=y

viultiplicative sets S A . This constructicon of comutatiye algebra

can be regarded as a wide generalization of the canstruction of the fiald
of fractions {1 of an integral domain T . Lot us write I* =71 - [ﬂ}
Then; a fraction a/b €0 (a & I, b €1*) is an equivalence clags af

1 ®x I* with respect to the equivalence relacion

(8.18) (a,5b)) ~ (a,,b,) = agb, = ab =0

There is a canomical map I ~» ) defined by

I11-8<h




(8.19) am afl

However it [s possible to define auch a generalization of the "caleulus

S of A ,(already found in the definition of prime idouls (ef. Ch, T ).)

We recall the definition:

A subset S of A (A € OB is called multiplicatively closed {£f

the twe fFollowing properties hold

b (a,b) E5%xS = ab € g

2) les

1f A €0 but is not an integral domain the corresponding property

&
with fractions" just by replacing I by an arbitrary multiplicative sot

(8.18) (equality of eross products) does not define any equivalence relation,

1}, 2) can be replaced by the unique condition that the broduct of any Finite

family of elements of S belongs to S . Then the unit element of A

appears to be the product of an ewpty famlly of elements of 5§ .{1}

Such sets always exist in 2oy A S 0bqg for inscance we can take § = A

Hom rrivial examples aras:

115 =A~-% 1f p € Spec A (by definition of prims {deal p  prime

= .A.-h mlt-}- |

l 2}'l:t'le set of non-zero divisors of any A € Obli is muleiplicarive.

3}Let £ be any element of A . Then

(8.20) 8, = (£"mezZ, n 2 0}

Hl“ J in & finfce non empty szt and @) Fomlly of elemanca of A indexed by J asuch a
family Is a =ap @i J 44 . Than I:“- 8 oll) o« TE P, @nd @, are two finics noo empry
€3

families 0 ot Bl
ate;, e e
is & unigque map gév;.mpi-i-:p thus ﬁiil.

If we wanC to maiotsin this propsrty for J = g, v note thore

-III=-8~7
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r;s a multiplicative set, For £ =0,] , So = (0], 5, = (1] .

The eri.ghml case, whien A fg an intepcal domnin beeomes a partleular
case beenuss A is an integral demain (Tf {0) £ Spee & .,

Tho intersection of any non empty fanily of multiplicarive sets (m.s.)
of A is multiplicative, In pariicular for any T A, the interscctios
of the (non empty!) family ‘of all m, <. of A containing T s
the smallest m.s. ST containing 7T , SI consists of All the products
of finite fanilles of clements of T .

The interest of the multiplicative sets comes from the following propar

Let § be any m,;s, of A& . Let (HIJ_ﬂiJ CAXE ; § = 1,2 be rws

pairs. Let us write {al,sl} - (az,gz] ilf
(B.21) 5{&132 ~a,%) =0

for some s €85 . Then -~ Is an equivalence rnI.HI:iCln.“)In the particulay

case that A s Integral and 8 =4 - {0} , (8.21) bacomes (8.18).

We denote by E*IA the quotient set AXS/~ in order fo recall that

s s consiscs of "fractions" a/s with numerdtors in A apd denominstors

in s, Precisely a/s denotes the (~)-class of (2,8) € axs .
= I
$§ A has a natural SLructure of commutstive ring with unit dafinsd by
the usual laws '1"’51 +a24'"sz = {alfrz + '251”5152 and {alfsl}(azfsi,}
= (nlaz}!-al-az; 0/ and 1/1 ara the z2ero and unic slement of E_la a
There is 3 patural motphism in G: A - S'IA defined by (7.2) thay

will be denoted by .l'ls or just /1 when § {g fixed, ,

{Ijkatlc:iviny and fyemecry are clear, Traniitlvity followa from: (2,3) = (a* 4"
= tfay' = 3's) = (' y2') = (2"4") = pfiate" . sy fe,e" € 5y aod
te'sa" - %) = with ec'a” £,

ITI-8-38
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~

WARNING: we cannot write "naturallph

& = afl ; becauss for ap
arbitrary g /1 e not hecessarily infective,

In fact, wa CAN compure
easily phe kornel

of IIS: afl = 0/1 1fF g3 = 0 fop some

fls is injecrive

1EF 3 does pop contain divisors or
Zero,

E§ €8 ., As
a zonsequence:

t
|-
[y
=

called the Lotal ri

of fraerio 5 ofF A

i
Sinpa !Is

attached to any A€,
end the morphism 315: A48 are called localizavions

although 5';1 12 referred to as the rips A

localized at s

This Tocalizarion morphism Ils has the

fulluuing univergal Property

The image /1 of any element

Precisely (a/1)(1/s) = 12

€ such that

5 €35 15 invertible in S*IA ;
Moreover, lar @ A=B he any morphism {pn
o(s) 1is invertible in 3 for any g €3 , Then, there
exist a unique morphism u; 3_{A * B such that tha diagram

f1
4=t f'l;.
(8.19) \ o
o v
_ »
t:ﬂmutea.
Let

I11-8-9
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~s and ~p thus there i{s an induced homomerphism 5-15 - '1"1,1 .

A particularly important speclal case needed fn the conatruction al

A is the case that T 28 {3 the satutated multiplicative sot '§ dediced

from & . JTts definition is

8= {a EAlSs €8 s.r. 5 =ab, b Al

(1)

—_—

in other words 'S ce¢onsists of the divicors of clomeits of s ,

The interest of S is that the eansnical hemomor phi sm S-lﬁ +|?Iﬁ

is an isomorphisn. Besides g =8,

In fact in any sﬁlﬁ the rule afs = av/st (for any ¢ € 8) {s wvalic
Regarding divigion; if ala: E E‘IA there exist ¢t £ § such thag

Laast

st €5 = a/e = at/sc €3 % , thus & A, q.e.d.
EXAMPLES:  For every p € Spec A , the localized ting (A - p}'].ﬁ. is
denoted more simply by A]: and it is commonly raferred to as the locali-

zation of A at b . In particular Lf (0) €A (# A 1s an incegral

domain) A[Iﬂ is the Field of fraeccion=s of A .
The name is justified because ap €0 1is in facet a losal ring.

[We alresdy encountered local rings through our discussion of ringed spaces

and locally ringed spaces in §7. I will give & brief review of the
technical algebraic treatment of local rings, following the tape: _[

DIGRESSION ON LOCAL RINGs(2)

-«Let & be a ring (commutative with unit, as usual, =& E0b Q.

ﬁ’ch::k the lmmed{ite faccs that § by oledpiteaztvely eleasd a=d coatalps § .

{Hll\_'a sdvise the knowiedzeable ceoder to 3kip this digiesslon 1 ke (o sulnly Loterested in
rings of fracclens snd losslizacions. )

IXI-8-10



We say that €& is a loeal ll'.l'.l'l.j",(l:l LI and only £F thera ig

one and only one maximal ideal m in @ . We reeall the faet that the

ex.is:c-nce of at least ecne maximal ideal implics that & is not zero (bocausae of
KRULL's Theorem), 1In Carms of the Spectrum, if you like poometriecal languaga
we know that maximal ideals of A correspond bijeetively to closed points
of Spec A . Thus B _is a local ring ifF there {= lust one clased pofnt

in Spec 2.

Let @®,m) be a pair  where @& € Obd , and m 4s an ideal of @& .

8 iz loeal with maximal ideal m jf£s

SR e’ oD

This comes From the fact that in day ring A [€ Ob Q) (not necessarily

local) and element f is ifvertibla if and only if 1t doss note belong te
20y maximal fdeal, thus fA = A {is the unit ideal, because we have:
A/f0 = 0 (because of KRULL's theoram) = 4 = g4 . Conversely §f

6% =@ - m the quotient ring B©/m is a field because any eloment of
G/mFf 0 ts the image of some invertibla ¢ €8% . Any ideal 4 =8 of
® 1s contained tn m otherwise {f FEm Ffm £ {s fnvertible
Da=08 .,

The field k(m) =6/m fs called the residus fiald of the local ring &,

&}

It I3 frequent ro fozlude zhe Noathesian csndiclon {n zhe deflaleton. If ra

! ‘ 2om., Finitines
HACATA: 8 lossl « ¢ Moethesian + © = g* . chen th ed :
seferred o 34 & quasi-focal. el ; SeSSNLYoSohon et

CROTHENDIZCK has o certaln cendency to ger pid 9f Woccherian rest#{ettans, fer fastance
Our contexe for 4o schitracy Ay A A ma Becezsarily; Mootherign, Thus when 4 i3
- : p

Koetherfin ve Whall maka Lt explicte b¥ talking sbout' Norcher an local r[ng‘:;[

oy i
dooclier characterisese condizion for p £e b4 local fa the folloving ore vi0st droof ig laft o

the resdes; o I'Eﬂn.g by loeal 102 fo ey £€06 o(ther p o D=8 X fatareérat
—_— - & 5: .

I1-8-11
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As 4 naturs]l example let us check that A, 18 in fact a loeal ting
with maximal {deal m = p Ap“) for every Yy € Spec A:

An element & of Ap is a fractlon f/g (F,g €A, g f o). a b
to uj,P iff it can be wriccen as £E/g with f¢ P thus' £/g = £(1/a) .,
-p.AP is clearly an ideal of ﬁp » The element & does not belong to
P "‘:'p LEE 4t cannot be written fn this form, f.s, {ff 3 = Elg with

£ f P,B2€p. Then a ¢ invertible with a’t o 8/t .

9. DEFINITION OF THE SHEAVES M, X .
+o 50 W have & presbicaf H (or el Arzodules for A=algobron) 2ofined 4n the erdared
caregory of eltmcnuts £ & & -
(.1 Eule (er 1w A vrea

We could In fact take tho dnsociaced gheaf [G3 dolinieion or ﬁ, ﬂ 23 w2 48 Ly tha tagk
of BLECDOGSE {EB‘n-I-Sprtn:tr, GEF 1-3+3, page 1963 and be hapiysaey but im uant Lo prove

direccly eMar eha Preahaaves &, N scs dheaves ) . [Toe. for ny open cover!.g

(%2 X, = U %
e
of bawic opgn gets in Spec d ve can defing by feactortalicy the digpram
llﬂl _ u"'l_..{_l
(9.1 ﬂiHr = H.'I' - EH!! = 0
IET %y Ly i
.I'Iot lif-] i
(2.3)" Oap, = 1 Ay o DA, , a9
157 47174

Znd ¢o need to check thae they eve oxact, for any [ €4 sod for acy eovering of :ﬂ‘.
In this courss (and fn mosc of his publications) GHOTEENDIECH caker the exdctness

condition as dafinirfon of & thes?, because it {g mars categorical, 1.0, we £an caplace
X) by anv catsenre wich Eibe guces; sumMELiting: 3 sheaf ver X i3 Ereshaaf -
Bat inz the exastness con ition

With chis approsch the "stalke" do nae Appaar expliciely bur this is convenlent far

srhitrary “iites" (= GROTHERDIECS's Topologies) wharn the scalks do por PLAY sny primary rols.

“’t?m lacalizacion IR A A givaes ‘*'p & vananical acruceure nf..l.--lgab'u, chus 14 § = A,

the sae B.I.PE "'p TEkAL penze.

- _
ﬁhr proves somathing mare herg- E‘, A dte shadugs over tha site R af bakis open gats of
the spoceral ropolapy in Bpec A, ef..Ch. I EJ_I

I111-8-12 II1I-7-1
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[E:: U EOLB be any basie open sar of X = Spec 4 . Then, by
defintition there is at laast one element f ¢ 4 such that | = xf s buot
this £ does not need to be unique, for instance Xp = X0 (nz 1) apg
We can finﬂ.planty of examples where £ # ¢7 The modules ang rings

Hf, Af apparently depending on the cholcs of 4 epresantative F depen@g

actuslly ap (= xf} enly, because the multiplicarive sag sf = [In|u = p)
defines the same Ting as the saturated multiplicatiye set %} which depends
only on U, In other words any fraction m/s € ﬁ;IH (or a/s e %;15)
can be written also in the form p'/f" (1f y = xf} Sromat A | A o

consequence we can replace (9.1) by

(9.1)" u - M) (or U = A(w)) YU € obg

where we wrote M(U), A(U) for short instead of salu i Sa;a and reaplace
(9.2) by

(9.2) ¢ b=y "1

i€I

with “1 - xf in such a way that the transition morphisms Hf - Hfi
i
ﬂif - Af ) can be written intrinaica!ly as M) - H{HI) (A(U) = n{ﬂijj &
i

i.e. they are indepandent on the choice of f,fi « In other words the
functoriat Properties of ﬁ, A are indand independent of any choice of

Fepresentatives. |[n §3 we completed the necassary Steps in order to make
these variations Very easily.

In order to prove that ¥ 13 a sheaf T peed po Prove that for
every f €A the diagram (9:3) 18 exace, Since X ig quasi-compace
we will assume I o be finite. We shall divide the proof ig two natural

tﬂp“ .

I1-9-2
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1)

Np, is'injective (= exactness in the f{est step)

- &

Let us assums that all the images Py (x/£") are zare for every i =
where x/f" € Mg « We need to prove that x/e" =g ,

1f pi(xffn} = fxff“]fl £ Mg, 1s equal to zero there exists come
m, = 0 such that f?‘(xf;fn} - (fi.x}ff"’ := 0 (in }If} and this imolies
the existence of some Emi sueh thac fmiflmix = 0 ; then since 1 Leg

finivte we can replacs m! by m = max m (L € I) and we obrain
i
By
(9.4) é‘fi x =0

On the other hand the inclusion X_ S x implies the exisranca
i€l
E

i

: o

of a relation £ = > zifii that togecher with (3.4) implies
2 f€r1

L]
i x=0 = %/ 1g equal co zero in Mf 7 9«e.d, This takes ecare
the exactness of (%.2) in the firse step,

2) Exactness in the middle kesm of (3.3) -

Let us assuma the matching condition

(9.5) pf‘ x, rety =, i ey e
fifj i £ f j : (gt Eif_l
a, .
for every pair 1,j € I ‘where «x hj_ b Me 5 YL €1 . Sinee 1 is
finite we can assume n=mn , ¥i Juse multiply-ing X, and f:i by

suitable powers of fi « Moreover sipce Hf =M (Yn> 1) we can
i

fﬂ
- s i
assume n =1 ., Then the mateching condition assumas the form

m,
(9.5) (£,£) ‘jcfj*-xl - £,x) =0 m intezers =0

acd again vs can repliuce the (Einitely many) My 5 oY some fixed m > 0 :
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(9.6) " £y, - fm']}rj =0

where Y mei (L e1) (1. & ¥, )‘E yiff‘:ﬂ} » thus (9.6)" raduces
€O the case @ = .

Let us grite now y = Egiyi (where, asg before £° = ZE ffH'I) .
1€ ter 1 *

Then we haye

(5.7) €y = (g e, . f?"'lfzgir')-ffur
. ler jer

which is 2quivalent te she fact thac Py v/ = rif!f"l with y/¢ E.H;

-

q-ﬁlﬂv

REMARK. Tha Previous cons truction zhous that localizacion of an A-modile

localization in che topological sense, namely ag taking sections of a
CeTCain sheaf N With respect to 4 smiller bagic open sec xs E Gbﬂ.

In particalar, we have
(9.8) M(X) = M= n

E:Lcalixal:inn with respect to the ynit eloment of _ﬂ_!

Thus we view M as the A-module of zlobal continuous 5ections of the

sheaf M gver Spec A fl.e. we "recauar"ﬂ
I1T-9-4

and the localizarion map
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M= Ml -+ Hf ls interpreted &% the restriction {n the topological Sensa p

the basic open set xff})
In the casa M=a:

I{i{) = :{1 = A e the orfpinal ripeg 3 becomas Isonorphic with ehis

Eing of plobal contfnuous sectiong of the Strusturg sheef T =g

10, IDEH'I‘IFICATIDH or g WITH THE CATEGORY oF AFFINE SCHEMES,

Iﬁ'knm thae 24a caregocy ° opposite o tha Catezsry 6§ af SocEutative rings with uniz

is Lsooerphla wizy the vategory Aff o 22ing aleghsy £ MBacas  (of. oy, L) or whae 14 the
faze, Lha Eaceyory of civarisne FRpTasancaniy functors: G = S&ry. Moeiy cg &Very A(E Qs
Correapoudy she affire dlgebrgie $paoc Iﬂu - 4 o 1.2, the Fepressncabls fuacror

£ HE (A,%) x oy ay . CROTHEND&cK | § tecond (and mere ESpesreiy) Interprecasion af g

In ta of affing Ichenes 2. a9 follows:

Ta Blary - L £.0bC Eerrasponds bhg dffine Icheas (Sees AAAY ,oLie, the 19::.:11! ridrad $72
wioke undcr:nn; topalagizal ifdcw L thke specriun Spec A = Enf: Prlme |In A endoves wich
bes speceral Copology fcf. §23 ang A i3 the strucsure Heaf defineg i 19 Comversely
(Spec A A} gives bick A= T{5zec A;4) a3 che Fing of glohal Secciom of e

i Eifuciure sheg®
An arbltrazy ting Bomomarphian rl._a _El' ’

(0.1 £2448
ioduces g sorphism
(10.2) €5 (Spec 8,8) = (spac A7

-
n the carepar af locally ringed dces (ef. 7, vhere £ = (Spec £ consises gf
the eaatlouous map

(10.3) SPec £: Spec 8 4 Spes 4

RT} This (nfopmyi deseripoiog can be =ads moTe precise, folloving Z.E.L-Epuugu, (Prop. 1.3.8§,

age 19%) by che £allowd 1taCcement:
: tm_ggg:;_{s :f- cr:lg: fdearifiad eatonlcally wish ehe Speecrum Spes lr af the
localized etng 4. - 4ra N, wien ehe zercriceton Rix, . =

¢ “&ES

I111-9-5 I1-10-1




=138~

induced butvesn the underlying topological Spaces snd & (Spec ) -morphise fcf. § ):
10.4) i35

among the structure sheaves.

Conversely: any morphiss ¢ = ©,8): (Spec 3,0) = (Spec A, %) between tha two Le.s.

ivduces & morphiise E*z A=+ 3 among che rings of global secciensy of bask TETurturs sheaves
#uch tharc

(10.5) Spec G =p G wp

In othar words:

The sffine schemay for= a full lubg“:ntﬂ a¥ che Zaksgory fry of ;Eﬂlz Tingsd Spaces
ghat v can idencify with Ehe sasesorvy G opoosics to G .

The two functors £ <+ (Spae f,7) ({8 % 8")) ure contravariant funscors 2 +q° © =q)
which sctabl leta dit -] &n 1a af g Eative a1
gomettie lancuawe of lo

We have seen that if we associate to every commutative ring with unic A

the ringed space (x,s:_‘.l H

(10.6) An (X0,) X = 3pech, o, =7

We can recover the ring A as being the tiog of global sections of the
Structurs sheaf Eﬂ"{}{,&ﬁ, therefore we can feel very securs that we have
Fecaptured all information regarding A (or what amounts to the samse,
gbout the corresponding algebraic space Iﬁ ’;.".. Ch. Iil in terms of rhis
geometrip :rllajut lt:—lu affine scheme (Spec A,E}J » But in order ro faal
still wmore ar mase we have td see how tha morphism betwsen rings rin ﬂ_!

(or equivalently betwaen affine algebraie spaces) can be interpreted in

Eerms of the spactra. o let us now glve a homemorphism

(10.7) u: A = g

(in G] and look at the corresponding map between the spectra,
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(10.8) o XY

L J
(where X = spee B, Y=5pec A and = Spec U = u ) which carrics every

prime ideal p of B 1into its inverse image u-l'(p} T X . We have sesq

l:f. ﬁﬂ that this is & continuous wap from X into ¥ .

Now 1 want to see how this map relates to the sheaves on Y and X

]

associated to modulés over A and B . Let us start with the case of the
sCructurs sheaves ex,a,‘, « The map ¢ induces a2 natural homemorphiso of

sheaves of rings

(10,9) "~ JiH EI - Ex

(in the opposite direction of ¢ ), or what amounts te the same wp have a

natural homemorphism of the szheaf of rings E:Y into the direct image

(2) .
P, 6,) of Oy by @ . Im order co define © (cf. (10.9)) I nesd to
define {t only for tha presheaves, namely for every £ € 4 T have to

define a ring homomorphism:

(10.10) T(res.) + T (1,60 P

between the sections of both sheaves over the opan sets Y. C Y and

E
m-lﬁr} CX . Now we need to make explicit whar (10,10) means, using cthe
fact that '{"ff,ﬂn?] = Ag (A localized in § ef. § ) and the formula

q:-l(‘ff) = xu“:} (provad in §4), which fmplies rf:pﬂll:r!] {ﬂxj = Bu(ﬂ ; or,

{”tmnh-r that I‘&a'l‘{'tt‘p,axj iz tha ving of seccions gues 'f af the dirsce izage p‘!a;r}

of o, 1a ¥ [Gr 1.
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what 1a the #ame, we have a hemomorphism

(10.11) Ap = Bu(f) (= B.)

induesd by u . These homomorphisms &re compatible with Eransition mans,
l.e. if RBE-* X. we have a commutatiys diagram

Ae—>%¢n =8
(10.12) l

hh—> N T
mrure the harizoncal arrows are of type (10.11), 1.e. x!f; H u(x};{u{f))a
and the vertical arrows denote restriction morphisms. This means that
can be viawed as a morphism of ringad spnces“'} [g—f ) o {x,@x) -+ (‘r,&y} F

REMARK. This homomorphism A - B can be reconstructed when we know

the corresponding hememorphism for the Tinged spaces {x,ex} - (Y,&YJ -
: because u can ba viewed us being the homomorphism I'{Y,@YJ *I'{x,ﬂxj
' induced between the two rings of global sections it suffices to take
1 f=1=y(p = L, y = }rl " x *ﬁ]. In other worda we have geen quita
trivially that ting homomorphisms ecan be interpreted ag Patticular cases of

morphisms of ringed Bpaces, 1.a, we have an injective map:

(10,13) flem (A,8) € Homy _((X,8,), (7,8.))

I'.G' the category Rs of ringed spacsﬂ which express thag they come from

ring homomorphisms. Here we have to recall that both (K,Dx},(r,ar} are

ﬁ-hjects of the category Lre o_{] locally Iinged spaces, {.e. that the

LD equaltey Sty ™ B, recally the faee chat the localisation of che elng & IE osg|

in the 1=3ge uif) of ¢ by u ia cananically {ymmorphic wieh the Iocalirzzigg of 3
Tegarded ar an d-sodule with respece to ¢ We leave che waay proof to the readar,




LACE

-1&1-

stalks of tha strudti=n SHEAVAS at puarv pRint x €X'  (orp y<un s

—_—

local rings En other wordy (10.13) gan alro be wriztken ae
(10,14 HC-‘J‘HG (A,8) < i‘I»::u'nls,,_r5 ((H,(ix] 3 fY,EI-Y-)j

But 4 homemorphism 3: % ¥ of ringed spaces implies that fop Every

choice of x € X, YET such thac Y =0o(x) we goc a Tiag homomorplid sm

(10.15) (TR

in the epposits direction Betwean the stall ae ¥;x & This hemomorphiss

LtI li-n E} betwesn the Ewe loecal

L *alx)
tings is kind of "ressonoble! LeF (g

= i5 a so-czllad local !m_m_,magﬂhim

ig

x -
i.e, {If the inverse lmaze uql{mxj
of the maximal {deal m =g ; B
¥ T,y
(10.16) I.Ix local = U.[fﬂk) — m? 5”

Accordingly, a morphism o {K,Exl - f!‘,&YJ I';: F_:J of ringed

spaces Ls said co be loeal, or a morphism of locally ringed spaces r: in nll

(1 Reassder chat for an arbitzary  a ('n G), wi g +g! ﬁ‘ﬂ’ local-cinge) we hive

u-ttn‘}ﬂ B W A sald =5 be ;a%l LiZ zhin fnciusion Necomes equalicy: u._'l[u'} - m

ied this Ls equivalent to uim == (a2, § P4E% ) T comcinue with the caged] ...this
sondition inasures that u pass=s to the quocienc k = &' (wisre &,B' azp che vawidur Flalds
k=3/s, ' =3'/n') ic sich a w3y enes ths disgram

LRl
3 ]
k=i
coommices (whare the ver:sical bars are canpnfcal projecclons). Anather wey of visuing this

89 he Lollowlag: £ E8" «iu(f) €3° . OF courim §f £ s tavartibie tn & [ £257).
ul(f) f& aiso lovercinls in % lehether or nor 88" ire tocal), 3uc shs opposits lapli-

e2tion = holaw anly e focal tdam,
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1fE for every pair of cefresponding peines (e,5(%))  the homonor ph i e

(10.15) betvesn the stalks is 3 1oeal homomor hism of local ¢y ns,“} Not
we can prove that the image of Hﬂn& (A,8) 1n che F2p (1008) 14 4 sat of
local morphisms, The comvorse is trie, thkus the inclusion (10.4) is

Actually g bijection
(10.16) Hﬂl‘:h(.ﬁ;ﬂ:l S Hmirsfﬁpnc B,E},fﬂpec A,A)) = Hﬂrf.rs (X, ¥

Il. RECOVERY OF ik Losy GROUND RING % . 1he dlctionary ve have gar yj
S0 far between rings and affine schemes viewed ag Particular cages of
locally ringea Gpaces, ‘tells us how fo interpret the Ting A or ObG or,
if you prefer the object IA. of the opposite category of 2ffine algebraie
Spdces which are those in lfhich We were interested from the very srars
(ef. ©h. 11) tn rerms of the l.r.s. (Spec A, &), 1.8, in terms of the
2ffine schema bijectively attached to the affine algebraie Epaca

T, (€ 0b ase )V

Using precise categorical languace we have the funcpors

(11.1) Sch: G 4 frs Seh®: &ﬂ'ézj 4 frs

Sch = (spec, ™) tontravariant, Sch’ covariane,

Both {mages schqg), Sch.{affzj ©an be fdentified with & fu1) sub-

“I"HI denctes the Categary of {ghgulur!. l.e. over Z) .lfﬂm algsbrats BPaces. The !
category "‘"h"' Sitdded yery #oou, iy che CAtegory of sftins algebrage Bacer gyer |
fk € oeg) ,

u}'-‘hnu u!z has Been canonfeally Ldenelfied cien the eppoxity Sarezory 5% o G

lwt;::'hr thet -Ez {ef. o, I, 823, 1.e. Fizgs of § and & -algabray are che $izs

II1-11-1
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gitesory 'of fhv. 2 pn bork Seh, Seh”  ave Fulle fafthlul (with vevarsls
8rrows, of course,for Sch).

Our ground ring k (€ 0bG) has been "lost " someuliat because it dig
not play any role in the constructions of Sch(d) ., <o We need to ses Ko

to recover g, Lec
(11.2) u: k = A

be the scructure morrhism of the k-algebra & , Then our dicrionarias (11,

give us two maps:

(11.3) Schu: Sch(A) - Sch(k) Seh” (%) + s’ (£,)

(the first one reversing arcows). By decomposing Sch o in (Speec u, 0)

we see that u: E 4 A gives che sheaf-homomorphism betwaen the structure
sheaves; locking at the stalks Ip corresponding points we have houomorph i sm:
k -ngx 4&}_ which, by eomposition tells us that gvery stalk of i jhas a

induced structure of k-algebra. Since A = wa,E; the conversa property

is true; any structure of A4 as a sheaf of k-algehras yields a

Structure morphism (1.2) of A as a k=algebra.

We can summsrize these rematks az follows:

If we retntroduce k €E0bQ g5 a ground ring, @, frs, ATE, Sch

are replaced by

(11.1) - Sehy i G =+ Sre SGh;:: ALE, -+ L5,

where Affk is the categorv of affine aleebraic sSpaces. pvar Lk 3 3"& iz

the category of locally ringed spaces (with &x 8 Structure gheaf of

k-algebrnu}, ete.,

IIT-11-2



The absolute case (when k 1a not menttoned explicicly) must be
__h'—h- -

raconsldered whenwe take k=2 (the inicia} ebject of @, or. ch. I, §2y,
In elassical algebraic gcometry k was a Field (often algebraically
closed, k = ¢ during many ploneering years,...), Then (spee k,K) is
reduced to a single Pofnt (0) and the field k “siteing" on (0)
((0),k) . Moreover in classical rimes A uged ko be a finitely generatad

k-ﬂlgﬂbri: A= k[g ’g A¥mw I [
i

12, Examrres op apprne SCHEMES. RECONSIDERATION OF NILPOTENT ELEMENTS.
We shall reconsider the cases of §5, pages 108,.., . We already see
how, by adding & te Spec A wa were able to recover A from the f.r.s.
(Spec 4, E} + We saw this already {5 the trivial case (Spec k, k), where

the underlying topological space is a ong point see,

In the examples coming from an irreducible complex algebraic variety V
Lf A does not have nilporant elements the staiks ac the "closed points" p & Max A
&re the local rings Am of "“rational functions™ ifg (F,2) € Arwi.th g(md # 0
“870modm. The stalk at g Point p which 18 not closed represgnta the
local ring of rational fupctions which ars nes "w" 8t the irreducible sub-
Variety HD represented by p (B(x) 1s not identically zero at W .

When Vv i3 nor irreducible, there 1s no "field of rational funccions",
This once again shows the advantage of the sheaf theorstic poink of view which
replaces the pld birational point of view (useful only for irreducible wa
varieties),

The sealk of # in (0) € Spee Z is the field Q@ of the rationals
Mg = 0, thus the residus Fiald at (0) is =q . For iny prime p , @

X;p
is the ring of rational mumbers a/p (a,b € Z) such that b # 0 (mod p) m,

111-11-2 ITI-12+1
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1s the {deal of @x (p)? and 2 = (0 mod p and the residue field
¥
K(p) 1is isomorphic with the prime Field of characteristic p ’ 2;‘_. ,

There is nothing mspacially remarkabla about intraducing a

structure sheaf for a local ring & ,

The existence or nonexistence of allpotent slements in A doss not play any

role in the construction of the scriucture shesf A and the Fact that A

is isomorphic with T(X,) (X = Spec A) sliows that the localizations of
any '8 € A for all the p € Spe¢c A cannot alyaye be equal to zero, unless
a =10, This shows thar the interprecation of A as a sheaf af germs of
local functions, whigh was so useful at the beginning, 1s no longer legi-
timate in the general csse: first of all the range of valuas a{mpj £ K(p)
changes from point to point (it is not & fixed Ffield k as in the classical
caze ofF Max A (A & finitely gencrated k-slgebra wvithous nilpotent alpmants,
k an algebraically closcd Field)). Anincorrect comsiderstion o tha elements
of the total space of A as germs of functions applied to z non trivial
nilpotent element & € A leads to the "paradox" of “Functions which are
not zero but whose value at Any x < Sgec A Ls zera" U S S P, s ¥x € Bpac A,
= a £ Nil A},

13. QUASI-CONERERT SHEAVES. THE FUNCTOR Mee W . IE scudy the covarisnc funciar
= I!lJlL = Hod(A)  becwean the cotegory of A-modulaes Il'.JII and the cutegory of ﬂxwh.l. La

X = Spac A (X #R) . This Ls & véry linportent iostance of the "dlctionary™ Setween commutative
algebrs apd cinged ipi:eﬂ

CROTHENDIECK SUMMARY: We are going co mike expliclt the fumerorisl corraspondange H -+ 8
batueen A-modules ¥ [ 05 M | and sheaves of A-modules, §,on the Spectrum X of tha £ing Aj

X ®wSpach = {1*1; prime idaal fn A] viewed sz a topological space'l! endaved With tha shasf
af rings 8, =X (ef, § )y e shall sae chag the category m* of A-medules can ba Ldenci-

fied with a full-gubcacagory of the category of all :t-ﬁdlllil (x EX) over % , which ia

rec ¥ gatcrory of rh Lied gusai-tnhar g over .{21 Thia ﬁu“ncqh."m:j
ts & purely local condicion oo che 6, -modules of sny ringed space u:,ﬁz} (cf. § 7). Mamaly,
they are those uhich canbevrizesnlocally ap echernels of hoscworphiems of locally free

nsdules over A

This dictionary batueen A-modules and sheaves of wodules ou X is compatible with mosc
Ehlogs that we can thisk pf. Wamely, this functor commiites*

ITI-12-2 ITr=13~1
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l} “lm finite I-I-I-II-, L.e, wich finite products M&FW M e !-1 (] ldd-‘u‘-'ﬂi}
2) Wieh tensor Prodiucte;

(13.1 M, N3 Hah
3} Wich Hom:
(13.2) Hom, 04,4 3 Home (3, 1)

(provided the firse Eetm 48 of fintes Bregecitacton). In addleisn:

4} 1Ic 1s exact, {.g,

(13.3) OB v Hay"wp Sxact = Q4N < HaF 4 exace, and

5 1c is fully #3214 thiful, -

The last :uuuft means that tha gatzgory m'|I can b viewsd g5 baing & ful) tubcategory
of the category Med (A} of A-modules,
One point is convenient to emphasize: This functor - m_.;mlt_e

with arbitrary products 1:1: (I not necessarily finice), Precisely: it
EI -

is not true that Hi is canonically isomorphie with [ ﬁi:
icI ier
e, -
(13.4) nM 3 M,
i€l L€l

This com:s from che fact that the property denied in (12.4) would be

true {ff for every £ € A the howomorphism (11 M e+ T M would be
16 *F ey i
an isomorphlsm for every f . This of course is not true! The localizarien
{8 Just a particular case of ving extension from A o !‘E and a ring
extension does not commute with products. Take for instance all the Hl
to be equal to A . Then the question is whether (AI}f is maturally
tsemorphic with {Af]I « Let us cheek what this means. We have a family
; n

of elaments of type (uiff EJIEI on one hand and on the sther L.m,.fn}l

With a fixed exponent. It 1s clear that 1f I (g infinite the exponents

I1I-13-4
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don't nevd to be bounded!

We should alse be careful that formation of Tlom( s ) does not commuita

with taking the tildas, i.e. {n peneral we have an arrou
Hou, (4, 8) - ﬂmn!x M, N)

which in general is not an isomorphism. We can saeq this nnsily by raklng

= nI with I infinite, just hy reduction to the previous case. The
“ripht" assumption, &s we said in 2) (formula (12.2)) is thar § should
be of finfle presentacion.

Pa.  APPENDIX ON SUEAVES OF .’-::-Z'I‘S.ﬂlj

Tho Follavlng notes on 'sheaves of ¥oia ware deliverod by CHOTHENNTECE ae thi brginning
lestmpea of Wiz vtntas on topils . To include Ehis in 7 would be toa dlgranaives thuy I prefer

Endneloude br 4n the dppemiin,  wlilel) whsuld b partisulurly ussfyl for roddery with s pcior
kuocindge of FAC; 4t Ulie gang tdme (¢ would by helpful as an Intrgducelon te Eli¢ abstrace

sppreach of COSENT's Bidle,
1 am going to talk about che theory af topei. 1 like to gsee it as a
kind of generalization of classfeal general tevology. As a background we

ghall assume some familiarity with topological Spaces, continuous maps,

. houecnorphisms, stc, ecc. and on the other hand famfliarity with the
linguage of caregories. Later we shall give some motivarion for intro-
ditcing something more general than topolagical spaces and give examples,

But to understand the theory of topoi we shall also require some familiaricy
with the language of sheaves on a topological space, Now, 1 guess that
this notion is not that familiar to everybody, #0 I will not assume anything

known about ir, T will review the standard thaory of sheaves of netatzj

OVEr topologieal spaceas,

Wihese notes were tristen with thd callaberation of 2. Winthrep.

EJEnﬂHEﬂNMﬂ W1l eaniidar weinly shiaves of secs, thim we ghell mrit chis resork In the
future. Kowover later he will {nrrodies vatious slzebcale struccyres. THe réader, knowing

FAG, ‘van ralie' 'adventapy of thieds lediure nRtes £4 sirenphthon his knowlodge of sheg? thacey
by separating the vepological frepircics froa bl slgelivaie onvs .

1TI-13«3 IT1-14-1
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14.-1. PRESHEAVES OF SETS. Let X be a topological space. We consider
the set ®& =0p(X) of open subsets on X , i.e. the subset 0p(X) of ch
pover set B(X) ") derining the topology on X . We recall that the axiogs
of a topology require that Op(X) eontain ¢ and X itself and be stable
under arbitrary unions and finite interseetions, Op(X) 1s a parcially
ordered set (with the ordering defined by inclusien) and thersfore Op (X)
already forms a cidtegory, by abuse of language. We denote this category
by & or 0p(X) . As in any partially ordered set O if U,V are

objects U,V €C the set of “homomorphisms" Hom(U,V) from U to Vv is
either empty {f U is nor contained in V or contains just the "inclusion

map": UC Y of U into V-

[ ody
(1.1) How (U, V) = J ’

104y

The composition of arrous U -+ V - W iz defined in the obvious way.
(We have no choice.) This particular construction of = category makes
sense for any partially ordered (@ whatever: it does not use tha fact that
C=0pX) .

In other words, the category Op(X) has as objects the open sets of
X and as arrows the graphs of the imelusion relat::[m.m}

A presheaf F on X is, by definition, 2 contravariant funetor

from the category Op(X) to the category of sets. In other words P goes

from the opposite category 6 of Op(X) to the category Sats of sets.
| Let us recall what that means:
| I}Tu every ok fect of the category, i.e. Co every open set U of £

We associate 3 ser F(U) , whose elements are called sections of F over

{llrr;ﬂ the Freoch part = gubsec: ™) - I'x_.l

&
This Ix trus for tha Category attached to an ordersd set (5,<): GCraph <= x,¥) €5 <
In our case 5 = Op(X} and < In che inelugion < , : (G djx<s] .
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g.
2) .
to every inclusion U V we associate a map:
(1.2) Pyt FOV) + E(W)

between the correspending sets (going in the opposite direction) where

p: = F(1) 4s also denoted by the restriction symbol :
(1.3) B(Y) 4+ BV [u = ol (FOIY)

and the following "evident axioms are satisfied

1 dak
JTranaIr:vlt?: If another open set W contains vV s Loe. U2vay

are inclusions of open sets in X , then we have arrows F(W) 4 F(V) -+ F(D)
in the category of sets, preserving compositions. In other to the commu-

tative diagram on the left (see below) corresponds & commitative diagram on

_the right
U ——v R(Mye—— £(V)
(1.4) \ 1 . "\ f
¥ FiwW)
In words:

Identity: F should transform [dentities into idencities, i.=. to
i
the idencitcy map u-ftl corresponds the fdentity map F(U) + F(I) from

F(U) to itself,

The eategory Presh(X) = Homf® .Zets) of preshesves on X is defined

as the category of all functors ﬁ‘ 4 8ets , 1e. an objece of Presh (X)

is a functor F: E' -+ Sets,

> 4
A homomorphism F + G from 2 presheaf F to a presheaf @ (both

over ¥X) is, by definition of homomorphism of func:ars.uJI i.e. a collection

i) E'ht; rerminology comes from sn ald direcc dafinitlon of dlieaves over X s In terma of an
ftale sovering apace S L X (cE.oexc § ). Tf 0 1 open in I & macklon gver 1 Ls
amap 5: U =8 suck that psz = l“‘:j

8 . ;
( }ﬁﬁurnmn::cx prefer "homasorphism of functors™ rather the synanimous "eatursl tronzformacion®,
very couman in the eategorical Jargon, |

III-14-3
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of maps F(U) - G(U) (W & Ob(B (X)) comparible with the restricetion maps;
i.e., for every open set y of X wve have a map F(U) + GQU) , such thar

the following disgram commutes

(1.5) f r

where the vertical aTrows are the restriction maps corresponding te U
£
and Vv , Moreover, the composition F = ¢ 5 H of morphisms of presheaves

is defined by considering in an obvious way the diagram

) e 29wy

_ o) |
(1.7) :
,.;I, 252 -:.:Il 4w

with all squares commutative,

This is the littla "general nonsense™ needed L0 comstruct the category

Presh(X) . So far we have not usad the properties of the categary 6 (X

of open sets we used justc I:he Properties of morphisms of functors =

"natural Eransformations" | but we will use them now to define a particulas

type of presheaves » the sheaves avar ¥ .

14.-2. suEAvEs OF SETS. Thus we need ta introduce some axioms on preshsaves

characteriscic of sheaves,
E

Let F be a presheas en X for every cpen set @ of X and for
BVETY open covering (o ]1EI of U= y u )L' ) we consider the
IEI
Festriction map of F(U) 1into each of the i.} (YL ET) and therefory

& map from F(U) to the product of rhe F[Ui}

(2.1) : F() = 1 rm]
ie1

{1}rhn unlon of the ni ean be deflncd tn tecws of el parcial prdecing in Op(X) by the

condltion that Y {y the Suprecum of the Yy fer 1€1.

111-14-4
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Then ¥ is separated iff for any choice of U and of the cover-
fu }iEI the previcus map FE(U) -» 121 F(U } is injective,
Let us state this property in another way. First of 411 the scr

associated with any open UC X be a presheaf F is called the sot ¢

- (1)
sections of F over U ,"and for any inclusion US ¥ the restrictiec

F(V) 9% F(U) defines the ser of restricted sections. Then the facer th

presheal F 1is separated means that for any open covering [ui]iEl o

U(E Ob(0p (X)) a section of F over U i= known 1fF all of fts

restrictions to the Ui' are known i.e. the arrov of (2.1) is an injec

arrow, i.e. we can write instead of (2:1)

(2.2) F < o F()
i€l

which means, in words, that any section of F over U ran be identdifis

with the collection of seetions of its restrictions [if for every i ¢

i
The second question arising, in characterizing shezves as partizula

cases of presheaves, is whether any system of sections @ = F(Hi) $ 'I.ri
open for every 1 €1 , can be obrained by restrictions from a secrion
F(U) over U= U U

s€1 *
is the "matching property":

A necessatry cooditien for such an F{U) to ex

(2.3) 1 ﬁklui n iy = $H|Ui n Uj

for every pair (i,]) €1IxXxI . This is clearly necessary becausa of the

Lransitivity property of che restriction maps.

) I?H.l fermmigolegy comes .'.‘rnu an old direct definltion of sheaves sver I i h terzz of an

Etale cowcring space § X (cf-pext § ). If U 23 0peniac I 2 secelon aver U Ls
amap 5:0=35 sguch that ps-t_l

II1-14-5
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DEF. 1,1. We 88y that s presheaf F over X 45,4 shan

=—S4f iF for evary
U EBboa® and EVETY open covering of U the map (2,1) (wih

is not injective) 1s indeecd injective (i.s, F is aeparatnd} and §
ts image

consists of all elements of | F{LIJ) satisfying the ‘*mﬂ;f_-ﬁ;ng Propecty
(2.3) for every palr (i,§) € Ix1 .
We can write DEF, 1.1 {in dizsgrammatie tamms, 45 the eondy ¢4 N
on that
the following sequence

(2.4) P 1 P@) 3 o PQU, N0,
1€1 (4, 1€rx1 1
is exacr.

To interpret (2.4) we need o apply F to the two I“‘:I“Hum
UI N Uj * U, and U, n U:I -+ I.Ij; thus we have the two ETToWs
FUQY 2+ PUo Nuy ana pwy PO (U MUy o The kerng

-4 I

double arrow P(Ui} - n len I.F}J means the systen of
(L,D€1x1

such that both restrictfon maps dgree for every pair (i,§) .

ig]

The vsual meaning of exactness (= Im = ker) 1s then Veri £ in

£2.3).
For two shesves P and ¢ a sheaf morphism p e g by
definition the same as a presheaf morphism batween ¥ and @ _ s v
X

€8N construct a category denoted by Top(X) (the category of Sheaves gyer

X) which is a full subcategory of the category Presh(x)

of prﬁﬁheam
over X :

(2.5 Top(X) < Presh(X) = Hom(® , SZets),

Now it is rime to 2lve examples to show that Ehis notioen qof

sheaf is a very natural one; i.e. that sheavas occur very QQEHEH;!

IIT-4-4
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EXAMPLES. Let E be any set and lat us define a Presheaf F on x

by

(2.6 F(U) = Map(t,5) = gV YU € &b(ap (x))

i.e; F(I) 1s the set of all maps from g to B\,
If we have yes y » We congider F(V) = Map(V,E) and rhe restriction

map F(V) -+ F(U) is defined by restricting maps from v to £ to maps

from U o E s 1oos LF 9: v 4 belonge ro Map(V,E) then olu: y 4 g
belongs to Map(U,£) . Since the restriction Of maps 1{s a Eransitive
gperaction; we haye Certainly defined a presheaf, This presheaf » defined by
(2.6) 1s in Faer g sheaf. This means char whenever an open sas U of x

iz covered by a family ui (i € 1) then ta give g map from U to E
SMOURES to the same as to Bive maps freom U, k0 E {in such g way chat

these maps "maroh up" in the Lli n I.?j for every ehoice &8 (1,1 e1x1 .

In fact this would be even true {f the I.li would not be open {n ¥ .

Therafore we have a sheaf called the sheaf 4f maps from ¥ to E .,

Now, many sheaves which ocour naturally in Mathematiecs zra subsheaves
of this one, but pe explain that I need ro define subpresheaves and
subsheaves,

Let F.G be Presheaves guer yx | Then we say that ¢ is

a subpresheaf of p ; and we write GO P igf the two following conditions

ire true:

a) For every vpes U cx, C(U) = F(m (Lew. G() 15 a subset of

F(0))
I11-14-7
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b) Fer every Inclusion p 4y of open sets U,V the restrietioy
map G(V) <+ CU) is induced by F(V) = Fan) » Lie. we have ap obvious
commutative diagram. Thig is what 18 called in general a subfuncror of a
elven functor.

In other words G Iz a subpreshes £ of F _{8f it can bo definoed by =

family of subscts G(U) of the given F(U) , and the enly condirion thar

We need to fmpose is that the family be stable under tha restriction maps,

Now let us asgume that both F ang G are sheaves oyar X & is
3 subsheaf of p {g¢f G isa subpresheaf of - 50 & subsheaf of p
consists of sybsets G(U) of the F(U) which are stable under the
Testriction maps, according to the presheaf law, but now we need to make
sure that the preshear € is also a sheaf, thus we nesd an extraﬁccnditlun.
It is evident that if G is a subpresheaf of s sheaf F , then ¢ is
Separated, because {f 4n open ser [ pf X 1s covered by open HI{I € I)
as before, the G(Uij determine the rfuij, and II1 Ffui} determines
F(U) because F 135 g sheaf, and F{U) determines Gy .

We have juse Proved that a subpresheas of & separated presheaf is

also separated. Now, what would i¢ mean that G i3 noc enly separated bur
also G is a sheaf? This would mean that the map U =+ G(U) is of local
5xg_.‘1> Summarizing: A subsheaf G of 2 sheat P over X 1Is defined
by the collection G = F() (U eEan bt (X)) » compatible with restriction
Waps and in which tha Property of a ser belonging to the CU) of local

!Inl:ul:'E-

]
( j|||'t fay thae g FEOpOrEy P of opep #2t3 of X i3 local LE and anly ff #or every opan U

of X, P holds {n J:_ if F holds for Any apen U, of any gsen cavering [Il1 I:EI L

 IIT-14-8
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EXAMPLE.  Let us assume that the previcus sot E is a topolopical
spnee and econsidar for each U the set Cont (U,E) -of continnous faps
from U to Eflj where the composition of pes is the fnclusion map of |
inte X .

Then cbnth,E) © Map(U,E) and this propecty is compatible with the
restriction maps (the restriction of a continuous map is continuous),
Besides we know that continuicy ts a property of local character: A map:
U+ E is continuous 1l and oﬁty if all the restrictions [IHi to & family
of open LIi covering T are continuous! Thus we have defined a subsheaf
of the sheal of maps from X to E, wiz.: the sheaf of continuous Locsl
maps U4 E .

Assume now, for instance that X is a differentiable variety (of any
fixved differentiability glass o {z >'1), cfb and that E [s also a
differentiable varicty (of the same C') ; then we can Eungider the sat
of local differentiable maps DILE£(U,E) and obtain a subshoaf of tle
previous sheaf of continuous local maps...{Z}. It is well known
that the diffcrantiability propercyis of a purely local nature, preserved
by restrictions: If U s cevered by Ui then a map £: U+ E is

c"-differentiable 1£¢ the f[ui: U, 4 £ is C-differentiabls for evary { €

for any open covering {ui}IEI. of U}

J)Huu we can extend this ad libitum, by taking for Lnstance instead of
differentiable varieties, analytic varieties,...or algebraic varieties,...,
se any kind of ";ﬂriety" defines a kind of sheaves...

ﬁjﬂhw there s still another kind of example of subsheaves of 2 sheaf

in terms of fibre spaces:

'u}'rhh case containg the preciaus ene of ¥ep(U,5) 47 +o endov © with the discccte bosalosF.

&}iheavu of gerew of lacal (eeqtlyumes C" p dflozentidhle h = 1', :m'lyu::, i,

I1T-14-9
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Let us assume now that E is a [ibre ipace over X , f.e. E,X are
topological spaces and we consider a continuous P: E+X of E dnto (x
: me triple (E;X,p) 1is a general continuous fibre space where X is the
base space, E Is Lhe total space and p the prujﬂcti'ﬂﬂ

Then for every open subset U of X let us lock to the set T (U, E/X)

=== g

of all continuous maps s: U + E such that pes = Iu » Suech maps s are
commonly called scctions of E over U (or just local sections i1f we do nc

want to mention U) . For any inclusion US ¥ we have an induced wap

.'i‘1’:.‘_‘..-l—

(v, E/X) -« TW,E/X) , i.e. the restriction maps transform V-seetious in

h U-sections. Now it is very clear that a map s; U+E {is a continuous

section of U over X if and only if the restriction maps slU[ 4+ E are
continuous sections over l.li for any choiece of an open govering of U .,

This sheaf iz called the sheal of local scctions of the fibre space E P* X .

It is because of this particular situvacion that the name seetion of F over
U was inktroduced.

There are any other examples suggested by the audience?

Schznuel suggested I:hai: it is convenicnt to point out that the previous
example can be obtatned from this one (sheaf of local continucus sactions

of a fibre space) by just considering the produet EXX.. +y Crothendieck agre=s,

If E {8 endowed with the diserete topology and we introduce the product
Copology in XX E then the pravious sheaf can be interpreted also as z
sheaf of local sections of XXE B X (where = denotes the projectcion on
the firsc factor). Then & section s: @ = LXE be identified with 2
function U4 E (x =+ (c,f(e)) , and this property Ls compatible wich

Festriction MAPS, aay

1
{ lr is eot 2esused o be onto,

TIT-14-10
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Are there any further examples?, ..
sereolot me poine eyt some more examples:

Lert X be a locally compact topological Space, and if ve associnte
with any open set U of X the set of RADON measures U , this propere:
is compatible wich Testriction maps. Besides this PToperty is local and
Bet 4 sheaf (the gheaf of Raflun Mieasures mn open sets of the L.cos. X)),

I1f X 1% a differenciable variety we ean consider the sheaf of
distributions on X (where a distribution is a Continuous Iinagy functio
OVLr vector spaces of lacal funcriong on Kessl)a Distributions can be
localized and we get a sheaf again,

Another example:

For every open set U of X “let us a85ign  the subsers of U clas
in U. Then we have the Fransitivicy pProperty of reseriztion maps and
we obtain a presheaf, This presheaf is a shesr because Coyp g4 elesed
in U 1iEf e n Hi is closed in Hi for avary egvering of 1 , {1.a,
the property of being closed is a local property).

In general any propercies of subsers of &N open zec of a local nature
enables to define 3 sheaf on X , for instance (f x 44 an enalytic variety

We can defipe 3 sheaf of lecal analﬁci: subsets of g .

Generally speaking one can say that sheaves are the most Systematic
tool to obraip global information, Starting from local infurmatlun, i.e.
sheaves enables tq “integrate” local data to global propercies,
Now let E'-{E;x,p}fﬁ for short) be a fibre Space over ¥ . We associa

to E 3 sheaf E , called the sheaf of continuous local sections of [ ,

[II-14-]1]
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By associating with every Fibre space £ over X the sheaf E we
obtein s functorial correspondeénce E -+ E . In other words if we have
a8 morphism E + F of fibre spaces over X (that means a continuous map
between total spaces miking commutative the triangle below):

e S

A\

this allows us to define a morphism E +F . In fact, whenever we have a
section s: U4 E on an open set U of X » We obtain a section fss of

F over the same U . This maps & «+ feos are compatible with restriction
mape 30 we are going to obtain a homomorphism of sheaves F: E =+ F . The
map £ 4 Ff fora variable f is compatible with composition of maps bebween

fibre spaces over X and thus we cbtain a functor:

(1.3) Fib(X) - Top(X)

form the category of fibre spaces over X (denoted by Fib(X)) to the

category Top(X) of sheaves over X .

The first question that might coma to our minds is, can we reconstruct
an object in Fib(X) Jusc by knowing its image in Top(X)?, 1.e. can we
Feconstruct a fibre space £ over X 4n terms of E ; (the corresponding
sheaf). In Formal terms we would like to know whether or not the functor
(1.3) is fully fFaithful?

We shall see that chis is not 80, 4s we can comvince ourselves quite
readily. 1In order to see it let us consider the particular case when X
is reduced to a single point 2, X= {e]l . Then the category of flbre spaces
over a one-point space {s just equivaleant te the category of topologieal

spaces, because for any such space E there is just one map E - (e} .

ITI-14-12
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Therefore Fib(e) = ¢ (catagury of all topologicatl Spaces). On rha
other hand, what is the category of sheaves fop [e} over a ene-point

space [e] 7 We consider again the mapg associating with (e} the seces

known 1ff we know the corresponding E . Thus tha functor (1.3) reduces,

when X = [e] o a functor; 44 Sets from the category of s11 topelogi
Spaces to the category of sets, which assoclates wirh tha topological Epac
E the underlying abstrace 8eL, i.e, we obtain g forgerful Eunctur, in whi
we Just “forger" the topolegy of g! How it 13 abvious thatr this funceor
is not fully faithful, {.e, we can't recover the topology 6f £ from its

underlying ser. Therefore to give 4 fibre space ¢ over X (g gomething

nuch more precise that to give the gheaf B of local continuous Sectiens!

14-3.THE CATEGORY B¢ (x) OF ETALE COVERINGS oF yx | W& can wender now
whether or not W& can define some full aubuategary {Et{!]} of khe
Category Fib(X) of fibre spaces over X, such that the restriceion ta
EL(X) of the funcrar (1.3), becomas fully fatthful, For instance in the
Case of & one-point space (e} , which are the topological spaces whoge
topology is known if we know the corresponding underlying sae? There are
several choices, (pe of them would be te introduce the discreta Copolagy:
for a given sor 8 there is Just onae discreca Lopology ever 5 + Therafora
if we take the restriction of rhe functor (1.3) to the category of discrete
topologicsl spaces over [e] we obtatn an equivalence of categories, Now
WE Want to generalize this cdtegorical equivalence to the general cuse of a

genaral basis X . Thus e want to define s full subcategory of Fib(x)

I1I-14-13
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which in the [e] case reduces to the category of discrete topological
:puc;s over (e} . The property which looks "nice” is thus of & topological
6pace E which i{s etale gver X . We shall define {t!
A continuous map #: E -+ X between topological spacesy is called égéig
if it is a local isomorphism, {n the following sense:
For every point x € E there exists an open neighbothood VC E of
X such that (V) 1s open in X such that m Iinduces 3 map from V 4inte
m({V) which is a homeomorphism, which means that i looks like a collection
of loecal humegmﬁrphism between some open sets of the space E upstairs
dnd theilr projections 7 (V) downscairs.
When this property helds we say also that g (s an dtale morphism
between the topological spaces E,X . This is fn fact a pretty old one in

tha theory of functions of one complex variable, where certain maps appear

which are &tale over sn open subser of the complex plana,

Let us give some examples of "Eraleness".

The most evident case is the inclusion map U=+ X of an open set (I
into X . This Ls the standard model!

Another example: Let us take a discrere topological space I , i,e.
an abstract set endowed 1 endowed with its discrate topology and lec us
consider the product space E = IXX ., This mesns that we take the disjoint
some of the copies aXX (a € I) , which are open in E . Then the
projection map IXX + X reduces to the "{dentity map" (a,x) = X on these
open coples of X .

Now we shall eonstruct the category Et(X) of &tale covering spaces

of X , wiilch is a subcacegory of FIb(X) . Let us lock at the restriction

ITI=-14~14
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functor (1.3) (going from FIb(X) to the category Top(X) of sheaves
over X) to the subcategory Ec(X) . Then we get the generaticarion of th

cage of discrete spaces over s one point space (e} cthat we wers looking

for! We obtain an equivalence of categories:

(3.1) EE(X) 3 Top ()

on their own {EEHI: coverings of X & objects af EE{X}] and we can
Jiggle back and forth betw=en both languages. It turns out that for certai
operations that we can perform on sheaves, the language of sections i3 by
far the most convenient and in others the langusge of Zrale spaces 1s batea

EXAMPLES. Now maybe I should give some examples. 1Is there & sugges
QUESTION: Is chets po trenziacien in Eaglich for the French adjective i._.!t.?

Angwer: Bo, chiz [sga quastlon thar wvas refesd aboue Fiftass yosre ago. To Freuch

ve Bay: un espace Stale’dans us alers..., which moans a space "$pread our ever anathar™,

But In terms of & morphisw, to say thac 1t is “spread out™ doean'e Lock poud, 3o why noc
intreduce anpthor word lute English..,? Duskin asky why. not g4y Jugt a loce! homesmosshlsn?
Crothendleck's answer (s that wvhon we desl in analogous contexts wich differentlible, enalycic
or ll:;hrlin spaces we vould like to use the sume vord, slace tha Farmal Progerties ard the

semg (I{nscead of Enereduclng local dlffeomorphisms; Focal bihalemsrphic maps, ete.). Tr Ls

becter to have a word which applles to all these parzlealar ﬂtu...tu.

QUESTION: Is it true that the oldest examples of &tale maps
come from the construction of Rismann surfaces with several copies of the
C-plane?

Amswer: Yes, provided you drop the branch peints! A1l right, I will
glve this example: Let us take the map f£: L -+ C of the affine complex
line, in {itgelf given by x -+ X (n=2) . Then £C0) =0 , Then the
restriction £|c" onte itself (£(0) =0) , € =&t - {0} is grale, 1a

fact the fibre over an x # 0 on tha second plane {s the set X1 5%y pnne %
o

u'jl.un on 10 private eonversdcion GROTHUENDIECE told me that dlso {5 Wils pacive Cerman the
word £tale £& used,..inscoad of lodking for 4 translacion,
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of the n nth-ran:s of x insuchawaythatin choosing one of them, the
others are obtained by multiplication with the nth roots of unity

exp (hikn_}"} (b =0,1,si0,n = 1) . Then for any cpen neighborhood U of x
not containing 0 obtain n coples of U covering U homeomorphically,
Thus we see a difference in behavior of the map according to whether or not

x = 0. The restriction to a neighborhood of zero is nar étale (0 {5 a
ramification poine),

Z}Tha previows example can be excended to any dominmant morphism X i Y
(# £(X) is dense in ¥) between two complex {rreducible non singular curves.
Throwing out finitely many points of Y (ramification points) the restriction
of the map f to % = U £ {R} (R=ramification points) is atale,

3 A third El:mpll: of covering atale evarywhere {5 the covering map

2+% ofa topologieal connected manifold by its universal covering gpace ,

ITI-14=16
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