
Category theory 
  

The theory of categories, functors and natural transformations (CFNT), often 

labelled with the short name of 'Category Theory', is concerned with the 

abstract concept of morphism, or 

of mathematics. Thus, category theory can be described as "

mathematical theory of structures and sytems of structures

the actions of morphisms.  

Morphisms can be composed, or linked together, into 

law or rule, such as " ", and they are also subject to an 

if f, g and h are thre morphisms of a category 

. Identity morphisms

for any morphism 

case, all identity morphisms are distinct (unlike the particular case of a group where 

the identity is unique for the whole group). 

In the case of Set Theory, a morphism is a set

mathematical function. It can also be represented as a relation between, or among, 

sets. In the beginning, the theory of categories

and MacLane based on the theory of sets. However, in later years, in order to avoid 

certain antimonies related to 'sets of sets', an independent axiomatic foundation of 

CFNT was proposed called the Elementary Theory of Abstract Categories

ETAC has eight axioms in addition to the (nonelementary) 

without making use of the set-membership relation required by the older set theory

unfortunately, the intial version of ETAC was still subject to the 

('Axiom 5') which has been the subject of controvercy among modern set theorists 

that are concerned with the foundations of a new set theory. As in the general theory 

of categories, the terms that remain undefined in ETAC are those of 

domain, codomain, and composition of mappings

  

The theory of categories, functors and natural transformations (CFNT), often 

with the short name of 'Category Theory', is concerned with the 

, or arrow, which is a fundamental notion in all 

of mathematics. Thus, category theory can be described as "a general 

mathematical theory of structures and sytems of structures" specified through 

mposed, or linked together, into diagrams via a composition 

", and they are also subject to an associativity axiom, that is, 

are thre morphisms of a category C that can be composed, then 

Identity morphisms 1 are assumed to exist such that 

for any morphism f of the category C; obviously, in the general 

case, all identity morphisms are distinct (unlike the particular case of a group where 

the identity is unique for the whole group).  

, a morphism is a set-theoretical mapping or a 

mathematical function. It can also be represented as a relation between, or among, 

theory of categories was developed in 1945 by Eilenberg 

the theory of sets. However, in later years, in order to avoid 

certain antimonies related to 'sets of sets', an independent axiomatic foundation of 

Elementary Theory of Abstract Categories (ETAC). 

ETAC has eight axioms in addition to the (nonelementary) axiom of completeness

membership relation required by the older set theory

unfortunately, the intial version of ETAC was still subject to the axiom of choice

('Axiom 5') which has been the subject of controvercy among modern set theorists 

that are concerned with the foundations of a new set theory. As in the general theory 

ategories, the terms that remain undefined in ETAC are those of mapping, 

composition of mappings.  

The theory of categories, functors and natural transformations (CFNT), often 

with the short name of 'Category Theory', is concerned with the 

, which is a fundamental notion in all 

" specified through 

composition 

, that is, 

that can be composed, then 

are assumed to exist such that 

; obviously, in the general 

case, all identity morphisms are distinct (unlike the particular case of a group where 

mathematical function. It can also be represented as a relation between, or among, 

was developed in 1945 by Eilenberg 

the theory of sets. However, in later years, in order to avoid 

certain antimonies related to 'sets of sets', an independent axiomatic foundation of 

(ETAC). 

axiom of completeness, 

membership relation required by the older set theory; 

axiom of choice 

('Axiom 5') which has been the subject of controvercy among modern set theorists 

that are concerned with the foundations of a new set theory. As in the general theory 

mapping, 



Subsequently, a foundation of mathematics in the category of categories

proposed in 1966 by William F. Lawvere that reduces the number of undefined 

terms, and has also more general axioms than those of ETAC. 
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Abstract Categories 

In abstract categories one is concerned only with morphisms and their higher 

dimensional, or higher level, types, such as functors

Thus, and abstract category is defined as a class of linked morphisms with certain 

associativity and composition rules (such as those already introduced above), that 

are very similar to those encountered for mathematical funct

Duality 

Reversing the direction of all arrows in a category 

the dual category of A. The universal properties of 

A; thus, for every theorem which is valid for category 

theorem that holds for the dual category. 

Functors 

A functor F is defined as an arrow between two categories 

intuitively perceived as a comparison, or 'mapping', of the two categories; the 

composition rules for functors are similar to those for morphisms, and there exist 

foundation of mathematics in the category of categories was 

proposed in 1966 by William F. Lawvere that reduces the number of undefined 

terms, and has also more general axioms than those of ETAC.  

one is concerned only with morphisms and their higher 

dimensional, or higher level, types, such as functors and natural transformations. 

Thus, and abstract category is defined as a class of linked morphisms with certain 

associativity and composition rules (such as those already introduced above), that 

are very similar to those encountered for mathematical functions.  

Reversing the direction of all arrows in a category A results in a category 

. The universal properties of are mirror images of those of 

; thus, for every theorem which is valid for category A there is a corresponding 

theorem that holds for the dual category.  

is defined as an arrow between two categories A and B, and can be thus 

intuitively perceived as a comparison, or 'mapping', of the two categories; the 

es for functors are similar to those for morphisms, and there exist 

was 

proposed in 1966 by William F. Lawvere that reduces the number of undefined 

one is concerned only with morphisms and their higher 

and natural transformations. 

Thus, and abstract category is defined as a class of linked morphisms with certain 

associativity and composition rules (such as those already introduced above), that 

called 

are mirror images of those of 

there is a corresponding 

, and can be thus 

intuitively perceived as a comparison, or 'mapping', of the two categories; the 

es for functors are similar to those for morphisms, and there exist 



identity functors that 'leave the category 

categorical diagrams can also be defined by means of a special functor over a 

scheme.  

There are two different kinds of functors: 

 covariant functors that convert arrows 

preserving the direction of the arrows, whereas 

 contravariant functors that reverse arrows: 

example, the fundamental theorem of Galois theory

functor from the extensions of a given field to subgroups of its 

Another example is the forgetful functor

object: one can convert a group into a set by simply forgetting the group law. 

An even more interesting example is that of the 

group functor: it takes any topological space to the first and simplest of its homotopy 

groups--the fundamental group which encodes information about the loops in a 

topological space. The fundamental groups of homeomorphic spaces are 

isomorphic, and in fact, the fundamental group only depends on the homotopy type 

of the space. We recall here that two mappings are said to be 

equivalent if one can be continuously deformed into the o

groups are employed in Algebraic Topology to classify topological spaces; such 

groups encode the information about the holes of a topological space as the 

continuous deformation of paths is prevented by the holes present in the sp

Categories of dynamical graphs or dynamic networks may represent dynamic 

system transformations in terms of functors between networks or dynamical graphs. 

An important example is that of functors between 

certain dynamic transformations diagrams in quantum gravity which are called 

foams. Because a spin network is equivalent to an one

the spin foams lead directly to an equivalent topological category of CW

Natural Transformations

that 'leave the category A unchanged'. Moreover, 

categorical diagrams can also be defined by means of a special functor over a 

functors:  

covariant functors that convert arrows into arrows thus 

preserving the direction of the arrows, whereas  

contravariant functors that reverse arrows: becomes 

fundamental theorem of Galois theory describes a contravariant 

nctor from the extensions of a given field to subgroups of its Galois group

forgetful functor that simply 'forgets' the structure of an 

object: one can convert a group into a set by simply forgetting the group law. 

teresting example is that of the fundamental group, or Poincaré 

: it takes any topological space to the first and simplest of its homotopy 

which encodes information about the loops in a 

amental groups of homeomorphic spaces are 

isomorphic, and in fact, the fundamental group only depends on the homotopy type 

of the space. We recall here that two mappings are said to be homotopically 

if one can be continuously deformed into the other. Therefore, homotopy 

are employed in Algebraic Topology to classify topological spaces; such 

groups encode the information about the holes of a topological space as the 

continuous deformation of paths is prevented by the holes present in the space. 

or dynamic networks may represent dynamic 

system transformations in terms of functors between networks or dynamical graphs. 

An important example is that of functors between spin networks that represent 

ransformations diagrams in quantum gravity which are called 

. Because a spin network is equivalent to an one-dimensional CW-complex 

the spin foams lead directly to an equivalent topological category of CW-complexes. 

Natural Transformations 

unchanged'. Moreover, 

categorical diagrams can also be defined by means of a special functor over a 

thus 

; for 

describes a contravariant 

Galois group.  

that simply 'forgets' the structure of an 

object: one can convert a group into a set by simply forgetting the group law.  

Poincaré 

: it takes any topological space to the first and simplest of its homotopy 

which encodes information about the loops in a 

isomorphic, and in fact, the fundamental group only depends on the homotopy type 

homotopy 

are employed in Algebraic Topology to classify topological spaces; such 

ace.  

or dynamic networks may represent dynamic 

system transformations in terms of functors between networks or dynamical graphs. 

that represent 

ransformations diagrams in quantum gravity which are called spin 

complex 

complexes.  



Furthermore, natural transformations

defined in the category of functors

subject to a naturality condition in the form of a square commutative diagram. Thus, 

natural transformations convert a functor into another one while respecting the 

internal structure (that is, the composition of morphisms) of the categories involved; 

this naturality condition is precisel

Definition 0.2. Let and be two categories, and let 

functors between them. Then assume that for every object 

morphism in 

following diagram  

Figure 1: 

is commutative.  

 

Then, one writes 

trasformation of into .  

An identity natural transformation is called a 

in an abstract, general sense, an 

different objects and morphisms but are in a certain, mathematical sense, equivalent 

natural transformations , or arrows between functors, can also be 

category of functors , but the resulting constructions need to be 

in the form of a square commutative diagram. Thus, 

natural transformations convert a functor into another one while respecting the 

(that is, the composition of morphisms) of the categories involved; 

this naturality condition is precisely defined as follows.  

be two categories, and let be two covariant 

functors between them. Then assume that for every object in one has a 

such that for every morphism in 

 
 

Figure 1: Naturality condition 

, and calls a natural 

An identity natural transformation is called a natural equivalence because it defines 

in an abstract, general sense, an equivalence of two categories that can have very 

different objects and morphisms but are in a certain, mathematical sense, equivalent 

, or arrows between functors, can also be 

, but the resulting constructions need to be 

in the form of a square commutative diagram. Thus, 

natural transformations convert a functor into another one while respecting the 

(that is, the composition of morphisms) of the categories involved; 

be two covariant 

one has a 

in the 

natural 

because it defines 

that can have very 

different objects and morphisms but are in a certain, mathematical sense, equivalent 



in their categorical, or universal properties. An important example is that found in the 

fundamental theorem of Galois theory: the functor from a subgr

group of a field to its fixed field is an equivalence of categories; because it is a 

contravariant functor, it reverses the arrows. 

Concrete Categories 

On the other hand, one can also define 

addition to arrows, or morphisms. However, an object 

can be assimilated with its identity morphism

unchanged. Thus, more generally, morphisms that are not identities can also be 

regarded as transformations of objects. 

Examples of categories

A short list of examples of categories is as follows: 

 Group  

 Groupoid  

 Monoid  

 Abelian Category  

 Category of groups and group homomorphisms

 Category of groupoids and groupoid homomorphisms

 Category of topological spaces and homeomorphisms

 Category of automata and automaton homomorphisms

 Category of Metabolic--Replication, or (M,R), Systems

 Category of Neural Nets  

 Category of Genetic Networks

 Category of Cell Groupoids. 

In the case of the category of sets

set-theoretical mappings between sets. In the case of the 

Group, the objects are mathematical groups and the morphisms are group 

homomorphisms. The category of abelian groups

properties. An important example is that found in the 

fundamental theorem of Galois theory: the functor from a subgroup of the Galois 

to its fixed field is an equivalence of categories; because it is a 

contravariant functor, it reverses the arrows.  

 

On the other hand, one can also define concrete categories that have objects

ion to arrows, or morphisms. However, an object A of such a concrete category 

identity morphism that leaves the object 

unchanged. Thus, more generally, morphisms that are not identities can also be 

f objects.  

Examples of categories 

A short list of examples of categories is as follows:  

Category of groups and group homomorphisms  

Category of groupoids and groupoid homomorphisms  

spaces and homeomorphisms  

Category of automata and automaton homomorphisms  

Replication, or (M,R), Systems  

Category of Genetic Networks  

.  

category of sets, Set, the objects are sets and the morphisms are 

theoretical mappings between sets. In the case of the category of groups, 

, the objects are mathematical groups and the morphisms are group 

category of abelian groups, Ab, consists of a class of abelian 

properties. An important example is that found in the 

oup of the Galois 

to its fixed field is an equivalence of categories; because it is a 

objects in 

of such a concrete category 

that leaves the object 

unchanged. Thus, more generally, morphisms that are not identities can also be 

, the objects are sets and the morphisms are 

, 

a class of abelian 



groups together with a class of abelian group homomorphisms that are subject to six 

axioms denoted by Ab1 to Ab3 and 

The following is the definition of an 

(1965).  

Definition 0.1. An Abelian category, 

products. The following theorem from Mirtchell (1968) is also relevant as it relates 

key properties of Abelian categories: 

Theorem 0.1. “The following statements are equivalent:

 Ab is an Abelian category;  

 Ab has kernels, cokernels, finite products, finite coproducts, and is both normal 

and comormal;  

 Ab has pushouts and pullbacks and is both normal and conormal”.

In the case of the category of topological spaces

spaces and the morphisms are topological transformations or 

The category of groupoids (concrete categories with all invertible morphisms), 

consists of the class of groupoids

the class of groupoid homomorphisms, 

are also subject to the commutativity and associativity axioms; the existence of a 

unique identity is also assumed for each groupoid in 

The category of automata consists of the class of automata, or sequential machines, 

together with the class of automata homomorphisms that are also subject to two 

associativity and composition conditions taken as axioms; it also has a unique 

identity for each automaton that leaves the automaton unchaged thus playing the 

role of an identity transformation for the automaton. This category has an alternative 

definition in terms of semigroups (of automaton states) and semigroup 

homomorphisms.  

groups together with a class of abelian group homomorphisms that are subject to six 

and Ab1* to Ab3*.  

The following is the definition of an Abelian category according to Barry Mitchell 

An Abelian category, Ab, is an exact additive category with finite 

products. The following theorem from Mirtchell (1968) is also relevant as it relates 

key properties of Abelian categories:  

Theorem 0.1. “The following statements are equivalent:  

has kernels, cokernels, finite products, finite coproducts, and is both normal 

has pushouts and pullbacks and is both normal and conormal”.  

category of topological spaces, Top, the objects are topological 

spaces and the morphisms are topological transformations or homeomorphisms

(concrete categories with all invertible morphisms), 

of groupoids-- considered as its objects-- together with 

the class of groupoid homomorphisms, , considered as arrows in 

are also subject to the commutativity and associativity axioms; the existence of a 

unique identity is also assumed for each groupoid in .  

consists of the class of automata, or sequential machines, 

together with the class of automata homomorphisms that are also subject to two 

associativity and composition conditions taken as axioms; it also has a unique 

ch automaton that leaves the automaton unchaged thus playing the 

role of an identity transformation for the automaton. This category has an alternative 

definition in terms of semigroups (of automaton states) and semigroup 

groups together with a class of abelian group homomorphisms that are subject to six 

according to Barry Mitchell 

, is an exact additive category with finite 

products. The following theorem from Mirtchell (1968) is also relevant as it relates 

has kernels, cokernels, finite products, finite coproducts, and is both normal 

, the objects are topological 

homeomorphisms. 

(concrete categories with all invertible morphisms), , 

together with 

that 

are also subject to the commutativity and associativity axioms; the existence of a 

consists of the class of automata, or sequential machines, 

together with the class of automata homomorphisms that are also subject to two 

associativity and composition conditions taken as axioms; it also has a unique 

ch automaton that leaves the automaton unchaged thus playing the 

role of an identity transformation for the automaton. This category has an alternative 
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