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Preface

This book aims to present the work on crossed complexes and related higher homotopy groupoids

carried out mainly by the first two authors from 1974 to 2005, resulting in 12 joint papers.

This account also elucidates fully, as did [BH81a], a paragraph near the end of the Introduction

to [Bro67] which referred speculatively to an n-dimensional version of the van Kampen theorem.

The intuition behind that speculation drove the subsequent research, and it was interesting to see

how well it all worked.

The aim became to develop the theories of groupoids and higher groupoids in a similar spirit to

that of combinatorial group theory.

The contribution of Philip Higgins’ imagination, algebraic insight and expository skills to this

research is seen throughout this book, and so he is rightly a joint author. However, this presentation
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This diagram aims to give a sketch of some influences and interactions leading to the develop-

ment of nonabelian algebraic topology, and higher dimensional algebra, so that this exposition is

seen as part of a continuing development.
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Introduction

Aims

Our aim for this text is to give in one place a complete, consistent and we hope readable account

of basic algebraic topology on the border between homology and homotopy, using where sensible

the tools of groupoids, crossed modules, crossed complexes and a higher homotopy groupoid. The

principal research for this work was done by the first two authors in the years 1974–1995.

The major tool is a classical functor defined using relative homotopy groups and the fundamental

groupoid on a set of base points

Π : FTop→ Crs (0.0.1)

from the category of filtered spaces to the category crossed complexes. Here a filtered space

X∗ : X0 ⊆ X1 ⊆ · · · ⊆ Xn ⊆ · · · ⊆ X∞

is a topological space X∞ with an increasing sequence of subspaces. For such a filtered space X∗ one

obtains the fundamental groupoid π1(X1,X0) and the relative homotopy groups πn(Xn,Xn−1, x), x ∈

X0,n > 2. They are defined in terms of homotopy classes of maps In → Xn, where In is the unit

n-cube, which map to x the set Jn−1 of all (n − 1)-faces of In except the (−, 1)-th face, map the

remaining face to Xn−1, and all homotopies keep Jn−1 fixed. These groups are abelian for n > 3,

and admit an operation of π1(X1,X0) as well as boundary maps from dimension n to dimension

n − 1. The structure all these satisfy is called a crossed complex.

We can calculate this functor directly in many useful cases because of the first of our major

results, a Higher Homotopy van Kampen Theorem, (HHvKT), that the functor Π preserves certain

colimits: this mean that in some cases, Π of a filtered space X∗ can be calculated from the way X∗

is built up by gluing together smaller filtered spaces. The applications and proof of this result are

main themes of the theory.

One major application is a homotopical excision theorem (Theorem 8.3.7): this says that if A,B

are open, A,B,A ∩ B are connected, and the pair (A,A ∩ B) is (n − 1)-connected, then the pair

(A ∪ B,B) is (n − 1)-connected and the excision morphism

ε : πn(A,A ∩ B, x)→ πn(A ∪ B,B, x) (0.0.2)

determines the right hand module (crossed if n = 2) as induced from the left hand (crossed) module

by the morphism λ : π1(A ∩ B, x) → π1(B, x). In dimension 2, this is a nonabelian result (cf.

Theorem 5.4.1) which has not been otherwise obtained. Thus the theory copes happily and in a

uniform fashion with the action of the fundamental group, or indeed groupoid, whereas actions of

a fundamental group are usually treated via covering spaces.

As a simple example of the approach to modules, consider the map of spaces

f : Sn ∨ [0, 1]→ Sn ∨ S1 (0.0.3)

xv
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where the n-sphere (n > 2) is attached to the unit interval at 0, and f identifies 0, 1. We see the

nth homotopy of the first space as the free I–module on one generator of dimension n at 0, where

I is the ‘unit interval groupoid’, and of the second space as the free module on one generator over

the infinite cyclic group C∞. Now to say an object is free means it satisfies a universal property.

It is desirable aesthetically, and is good practice, to prove these result by direct verifications of the

universal property. We set up the machinery to do exactly this. Of course this particular result could

be proved using covering spaces and homology; but we do not use homology theory!

Corollaries of this homotopical excision result include:

(i) the Brouwer degree theorem (the n-sphere Sn is (n − 1)-connected and the homotopy classes

of maps of Sn to itself are classified by an integer called the degree of the map);

(ii) the relative Hurewicz theorem, which usually relates relative homotopy and homology groups,

but seen here as describing the morphism πn(X,A, x)→ πn(X∪CA, x) when (X,A) is (n− 1)-

connected;

(iii) Whitehead’s theorem that π2(A ∪ {e2λ},A, x) is a free crossed π1(A, x)-module; and

(iv) computations of the second homotopy group, and indeed of the homotopy 2-type, of the mapp-

ing cone of the map Bf : BG → BH of classifying spaces of groups induced by a morphism

f : G→ H of groups.

The last two results involve the nonabelian structure of crossed modules.

We have used the word ‘induced’ several times in the above comments. This is put in the general

context of fibred categories in Appendix A.7.

A second major theme is to develop the techniques to define the classifying topological space BC

of a crossed complex C and to prove that if X∗ is the skeletal filtration of a CW-complex X, then

there is a bijection of sets of homotopy classes

[X,BC] ∼= [ΠX∗,C], (0.0.4)

where on the left we have homotopy classes of continuous maps and on the right homotopy classes

in the algebraic category of crossed complexes. This result, Theorem 10.4.17, is shown in Chapter

12 to allow some specific calculation, not possible by other means, of homotopy classes of maps of

spaces.

The routes to these results do not involve traditional tools of algebraic topology such as homol-

ogy or simplicial approximation, but are not direct. They involve less well known methods of a

cubically defined higher homotopy groupoid ρX∗. One advantage of cubical methods is an easy and

intuitive description of algebraic inverses to subdivision; this means algebraic control not only of cutt-

ing something up, but also putting it back together again. This combination is especially suitable for

local-to-global problems.

A second advantage which we exploit is the use of tensor products derived from the standard

formula for cubes Im × In ∼= Im+n.

The complete and intricate story has its main facts summarised in the following diagram and
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(Main Diagram)

in which

MD 1) the categories FTop of filtered spaces, Crs of crossed complexes and ω-Gpds of ω-groupoids,

are monoidal closed, and have a notion of homotopy using ⊗ and unit interval objects;

MD 2) ρ, Π are homotopical functors (that is they are defined in terms of homotopy classes of certain

maps), and preserve homotopies;

MD 3) λ, γ are inverse adjoint equivalences of monoidal closed categories, and λ is a kind of ‘nerve’

functor;

MD 4) there is a natural equivalence γρ ≃ Π, so that either ρ or Π can be used as appropriate;

MD 5) ρ preserves certain colimits and certain tensor products, and hence so also does Π;

MD 6) the category Chn of chain complexes with a groupoid of operators is monoidal closed, and ∇

is a monoidal functor which has a right adjoint Θ;

MD 7) by definition, the cubical filtered classifying space is B = | | ◦ U∗ ◦ λ where U∗ is the forgetful

functor to filtered cubical sets using the filtration of an ω-groupoid by skeleta, and | | is

geometric realisation of a cubical set;

MD 8) there is a natural equivalence Π ◦B ≃ 1;

MD 9) if C is a crossed complex and its cubical classifying space is defined as BC = (BC)∞, then for

a CW-complex X, and using homotopy as in MD1) for crossed complexes, there is a natural

bijection of sets of homotopy classes as in equation (0.0.4).

Why crossed complexes?

• They generalise groupoids and crossed modules to all dimensions, and the functor Π is classical,

involving relative homotopy groups.

• They are good for modelling CW-complexes.

• Free crossed resolutions enable calculations with small CW-models of K(G, 1)s and their maps

(Whitehead, Wall, Baues).

• Crossed complexes give a kind of ‘linear model’ of homotopy types which includes all 2-types.

Thus although they are not the most general model by any means (they do no contain quadratic

information such as Whitehead products), this simplicity makes them easier to handle and to relate

to classical tools. The new methods and results obtained for crossed complexes can be used as a

model for more complicated situations. This is how a general n-adic Hurewicz Theorem was found

[BL87a].
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• They are convenient for some calculations generalising methods of computational group theory,

e.g. trees in Cayley graphs. We explain some results of this kind in Chapter 11.

• They are close to the traditional chain complexes with a group(oid) of operators, as shown

in MD6), and are related to some classical homological algebra (e.g. identities among relations for

groups). Further, if SX is the simplicial singular complex of a space, with its skeletal filtration, then

the crossed complex Π(SX) can be considered as a slightly non commutative version of the singular

chains of a space. However crossed complexes have better realisation properties than the related

chain complexes.

• The monoidal structure is suggestive of further developments (e.g. crossed differential algebras).

• They have a good homotopy theory, with a cylinder object, and homotopy colimits. The homo-

topy classification result (0.0.4) generalises a classical theorem of Eilenberg-Mac Lane.

• They have an interesting relation with the Moore complex of simplicial groups and of simplicial

groupoids, [Ash88, NT89, EP97].

Why cubical ω-groupoids with connections?

The definition of these objects is more difficult to give. Here we explain why we need to introduce

such new structures.

• The functor ρ gives a form of higher homotopy groupoid, thus confirming the visions of topolo-

gists of the early 20th century of higher dimensional nonabelian forms of the fundamental group.

• They are equivalent to crossed complexes, and this equivalence is a kind of cubical and non-

abelian form of the Dold-Kan theorem, relating chain complexes with simplicial abelian groups.

• They have a clear monoidal closed structure, and notion of homotopy, from which one can

deduce that on crossed complexes, using the equivalence of categories.

• It is easy to relate the functor ρ to tensor products, but quite difficult to do this for Π.

• Cubical methods, unlike globular or simplicial methods, allow for a simple algebraic inverse to

subdivision, involving multiple compositions in many directions, Remark 13.1.11, which is crucial

for the proof of our HHvKT in Chapter 14.

• The additional structure of ‘connections’, and the equivalence with crossed complexes, allows

the notion of thin cube, Section 13.7, which subsumes the idea of commutative cube, and the proof

that multiple compositions of thin cubes are thin. The last fact is another key component of the proof

of the HHvKT, see Theorem 14.2.9.

• They yield a construction of a (cubical) classifying space BC = (BC)∞ of a crossed complex C,

which generalises (cubical) versions of Eilenberg-Mac Lane spaces, including the local coefficient

case.

• There is a current resurgence of the use of cubes in for example combinatorics, algebraic topology,

and concurrency.

Structure of the book

Because of the complications set out above in the Main Diagram, and in order to communicate

the basic intuitions, we divide our account into three parts, each with an Introduction.

In Part I we give some history of work on the fundamental group and groupoid, in particular

explaining how the van Kampen theorem with a set of base points gives a method of computation

of fundamental groups. It was the extension of this classical theorem from groups to groupoids that

led to the question of the putative uses of groupoids in higher homotopy theory.
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We are then mainly concerned with the extension of nonabelian work to dimension 2, using the

key concept, due to J.H.C. Whitehead in 1946, of crossed module. This is a morphism

µ : M→ P

of groups together with an action of the group P on the right of the group M, written (m,p) 7→ mp,

satisfying the two rules:

CM1) µ(mp) = p−1(µm)p;

CM2) m−1nm = nµm,

for all p ∈ P, m,n ∈M. Algebraic examples of crossed modules include normal subgroups M of P;

P-modules; the inner automorphism crossed module M → AutM; and many others. There is the

beginnings of a combinatorial and also computational crossed module theory.

The standard geometric example of crossed module is the boundary morphism of the second

relative homotopy group

∂ : π2(X,X1, x)→ π1(X1, x)

where X1 is a subspace of the topological space X and x ∈ X1. This relative homotopy group is

defined in terms of certain homotopy classes of maps I2 → X. For this reason, and because they are

a good model of 2-dimensional pointed homotopy theory, crossed modules are commonly seen as

good candidates for 2-dimensional groups.

The remarkable fact is that we can calculate with these 2-dimensional structures and apply these

calculations to topology using a 2-dimensional version of the van Kampen theorem for the funda-

mental group.

We give a substantial account of this 2-dimensional theory because the step from dimension 1 to

dimension 2 involves a number of new ideas for which the reader’s intuition needs to be developed.

In particular, calculation with crossed modules requires some extensions of combinatorial group the-

ory, for example to induced crossed modules. Finally in this Part, the proof of the van Kampen type

theorem for crossed modules, involves a notion of homotopy double groupoid, based on composing

squares with common edges. The intuition for this construction was the start of the theory of this

book.

The aim of Part II is to give a kind of handbook of applications of crossed complexes, assuming

some major properties which are proved in Part III. The theory extends many basic results in ho-

motopy theory, such as the relative Hurewicz theorem. Among results found in no other text on

algebraic topology is the homotopy classification theorem referred to above.

In Part III we define the cubical ω-groupoids with connections whose properties are the power

behind the applications of crossed complexes. In principle, and this would be the logical order, Part

III can be read independently of the previous parts, referring back for some basic definitions.

At the end, Part IV, we give a ‘Conclusion’, in which we try to evaluate what has been done, to

direct the reader to some other current directions, and to indicate some of the many things yet to be

done with these tools.

Prerequisites: The aim is for large parts of this book to be readable by a graduate student acquainted

with general topology, the fundamental group, notions of homotopy, and some basic methods of

category theory. Many of these areas, including the concept of groupoid and its uses, are covered

in Brown’s text ‘Topology and Groupoids’, [Bro06]. The only theory we have to assume for the

homotopy classification theorem in Chapter 10 is some results on the geometric realisation of cubical

sets.

Some aspects of category theory perhaps less familiar to a graduate student are summarised

in an Appendix, particularly the notion of representable functor, the notion of dense subcategory,
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and the preservation of colimits by a left adjoint functor. This last fact is a basic tool of algebraic

computation for those algebraic structures which are built up in several levels, since it can often

show that a colimit of such a structure can be built up level by level.

We make no use of classical tools such as simplicial approximation, but some knowledge of

homology and homotopy of chain complexes could be useful at a few points, to help motivate some

definitions.

We feel it is important for readers to understand how this theory derives from the basic intuitions

and history of algebraic topology, and so we start Part I with some history. After that, historical

comments are given in Notes at the end of each chapter.



Part I

1 and 2-dimensional results

1





Introduction to Part I

Part I develops in dimensions 1 and 2 that aspect of nonabelian algebraic topology related to the

van Kampen Theorem (vKT).

We start by giving a Historical background, and outline the proof of the van Kampen theorem in

dimension 1. It was an analysis of this proof which suggested the higher dimensional possibilities.

We then explain the functor

Π2 : (pointed pairs of spaces)→ (crossed modules)

in terms of second relative homotopy groups, state a Higher Homotopy van Kampen Theorem

(HHvKT) for this, and give applications. These applications involve the algebra of crossed modules,

and two important constructions for calculations with crossed modules, namely coproducts of crossed

modules on a fixed base group (Chapter 4) and induced crossed modules (Chapter 5). The latter

concept illustrates well the way in which low dimensional identifications in a space can influence

higher dimensional homotopical information. Induced crossed modules also include free crossed

modules, which are important in applications to defining and determining identities among rela-

tions for presentations of groups. This has a relation to the cohomology theory of groups.

Both of these chapters illustrate how some nonabelian calculations in homotopy theory may be

carried out using crossed modules. They also show the advantages of having an invariant stronger

than just an abelian group of even a module over a group. The latter are pale shadows of the

structure of a crossed module.

Finally in this Part, Chapter 6 gives the proof of the HHvKT for the functor Π2. A major interest

here is that this proof requires another structure, namely that of double groupoid with connection,

which we abbreviate to double groupoid. We therefore construct a functor

ρ2 : (triples of spaces)→ (double groupoids),

and show that this is equivalent in a clear sense to a small generalisation of our earlier Π2 functor,

to

Π2 : (triples of spaces)→ (crossed modules of groupoids).

Here a triple of spaces is of the form (X,X1,X0), where X0 ⊆ X1 ⊆ X, and the pointed case is when

X0 is a singleton.

This substantial chapter develops the 2-dimensional groupoid theory which is then used in the

proof of the HHvKT, which gives precise situations where ρ2, and hence also Π2, preserves colimits.

The surprising fact is that in this book we are able to obtain many new nonabelian calculations in

homotopy theory without any of the standard machinery of algebraic topology, such as simplicial

complexes, simplicial approximation, chain complexes, or homology theory.

All this theory generalises to higher dimensions, as we show in Parts II and III, but the new ideas

and basic intuitions are more easily explained in dimension 2.

3
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Chapter 1

History

In this chapter we give some of the context and historical background to the main work of this book,

in order to show the tradition in which this work has been done. It is hoped that this will help

you to understand and evaluate the results, and to analyse the potential for further developments

and applications. We are showing how the extensions from groups, to groupoids, and then to

certain multiple groupoids, and to other related structures, enables new results and understanding

in algebraic topology.

It is generally accepted that the notion of abstract group is a central concept of mathematics, and

one which allows the successful expression of the intuitions of reversible processes. In order to obtain

the higher dimensional, nonabelian, local to global results described briefly in the Introduction, the

concept of group has:

A) to be ‘widened’ to that of groupoid, which in a sense generalises the notion of group to allow a

spatial component, and

B) to be ‘increased in height’ to higher dimensions.

Step A) is an essential requirement for step B).

A major stimulus for this view was work of Philip Higgins in his 1963 paper [Hig64], and this

book is based largely on his resulting collaboration with Brown. Higgins writes in the Preface to

[Hig71] that: “The main advantage of the transition [from groups to groupoids] is that the category

of groupoids provides a good model for certain aspects of homotopy theory. In it there are algebraic

models such notions as path, homotopy, deformation, covering and fibration. Most of these become

vacuous when restricted to groups, although they are clearly relevant to group-theoretic problems.

. . . There is another side of the coin: in applications of group theory to other topics it is often the

case that the natural object of study is a groupoid rather than a group, and the algebra of groupoids

may provide a more concrete tool for handling concrete problems.”

In fact there is a range of intuitions which abstract groups are unable to express, and for which

other concepts such as groupoid, pseudogroup and inverse semigroup have turned out to be more

appropriate. As Mackenzie writes in [Mac87]:

The concept of groupoid is one of the means by which the twentieth century reclaims the

original domain of applications of the group concept. The modern, rigorous concept of

group is far too restrictive for the range of geometrical applications envisaged in the work

of Lie. There have thus arisen the concepts of Lie pseudogroup, of differentiable and of

5
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Lie groupoid, and of principal bundle – as well as various related infinitesimal concepts

such as Lie equation, graded Lie algebra and Lie algebroid – by which mathematics seeks

to acquire a precise and rigorous language in which to study the symmetry phenomena

associated with geometrical transformations which are only locally defined.

A number of these concepts related to groupoids were initiated by C. Ehresmann over many

years, particularly the notion of differential or Lie groupoid ([Ehr83, Bro07]).

A failure to accept a relaxation of the concept of group made it difficult to develop a higher

dimensional theory modelling some key aspects of homotopy theory. To see the reasons for this we

need to understand the basic intuitions which a higher dimensional theory is trying to express, and

to see how these intuitions were dealt with historically. This study will confirm a view that it is rea-

sonable to examine and develop the algebra which arises in a natural way from the geometry rather

than insist that the geometry has to be expressed within the current available concepts, schemata

and paradigms.

1.1 Basic intuitions

There were two simple intuitions involved. One was the notion of an

algebraic inverse to subdivision.

That is, we know how to cut things up, but do we have available an algebraic control over the

way we put them together again? This is of course a general problem in mathematics, science and

engineering, where we want to represent and determine the behaviour of complex objects from

the way they are put together from standard pieces. This is the ‘local-to-global problem’. Any

algebra which gives new insights into questions of this form, and yields new computations, clearly

has arguments in its favour.

We explain this a bit more in a very simple situation. We often translate geometry into algebra.

For example, a figure as follows:

•
a //• b //• •

coo d //•

is easily translated into

abc−1d.

Again, given a diagram as follows:

•
a //

c

��

•

b

��
•

d
//•

(1.1.1)

it is easy to write

ab = cd, or a = cdb−1.

All this is part of the standard repertoire of mathematics. The formulae given make excellent sense

as part of say the theory of groups. We also know how to calculate with such formulae.
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The problem comes when we try to express similar ideas in one dimension higher. How can one

write down algebraically the following picture, where each small square is supposed labeled?

• //

��

•

��

•oo //

��

• //

��

• //

��

• //

��

•

��
• //

��

•

��

•oo //

��

• //

��

• //

��

• //

��

•

��
• //• •oo //• //• //• //•

• //

OO

•

OO

•oo //

OO

• //

OO

• //

OO

• //

OO

•

OO

(1.1.2)

Again, how can one write down algebraically the formulae corresponding to the above commu-

tative square 1.1.1 but now for the cube:

• //

��

•

��

•

??~~~~~~~ //

��

•

??~~~~~~~

��

• //•

• //

??~~~~~~~
•

??~~~~~~~

(1.1.3)

What does it mean for the faces of the cube to commute, or for the top face to be the composition,

in some sense, of the other faces?

It is interesting that the step from a linear statement to a 2-dimensional statement should need a

lot of apparatus; it also took a lot of experimentation to find an appropriate formulation. As we shall

see later, the 2-dimensional composition (1.1.2) requires double groupoids or double categories,

while the second (1.1.3) requires double groupoids with thin structure, or with connections.

Thus the step from dimension 1 to dimension 2 is the critical one, and for this reason most of Part

I of this book is devoted to the 2-dimensional case. Further reasons are that the theory in dimension

2 is more straightforward than it becomes in higher dimensions; illustrative pictures are easier to

give; and the novel features of the 2-dimensional theory need to be well understood before passing

to higher dimensions. It is also intriguing that so much can be done once one has the mathematics to

express the intuitions, and that then the mathematical structures control the ways the calculations

have to go. This requires an emphasis on universal properties, which are afterwards interpreted to

give formulae.

1.2 The fundamental group and homology

The above questions on 2-dimensional compositions did not arise out of the void but from a historical

context which we now explain.

The intuition for a Nonabelian Algebraic Topology was seen early on in algebraic topology, after

the ideas of homology and of the fundamental group π1(X, x) of a space X at a base point x of X

were developed.

The motivation for Poincaré’s definition of the fundamental group in his 1895 paper [Poi96]

seems to be from the notion of monodromy, that is the change in the value of a meromorphic function

of many complex variables as it is analytically continued along a loop avoiding the singularities. This
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change in value depends only on the homotopy class of the loop, and this consideration led to the

notion of the group π1(X, x) of homotopy classes of loops at x, where the group structure arises from

composition of loops. Poincaré called this group the fundamental group ; this fundamental group

π1(X, x), with its relation to covering spaces, surface theory, and the later combinatorial group

theory, came to play an increasing rôle in the geometry, complex analysis and algebra of the next

hundred years.

It also seems possible that an additional motivation arose from dynamics, in the classification of

orbits in a phase space.

The utility of the group concept in homotopy theory is increased by the relations between the

fundamental group considered as a functor from based topological spaces to groups

π1 : Top∗ → Groups

and another functor called the classifying space

B : Groups→ Top∗,

which is the composite of the geometric realisation and the nerve functorN from groups to simplicial

sets.

We shall review the properties of B in Section 2.4. Now let us note that B and π1 are inverses

in some sense. To be more precise, BG is a based space that has all homotopy groups trivial except

the fundamental group, which itself is isomorphic to G. Moreover, if X is a connected based CW-

complex and G is a group, then there is a natural bijection

[X,BG]∗ ∼= Hom(π1X,G),

where the square brackets denote pointed homotopy classes of maps.

It follows that there is a map

X→ Bπ1X

inducing an isomorphism of fundamental groups. It is in this sense that groups are said to model

homotopy 1-types, and a computation of a group G is also regarded as a computation of the 1-type

of the classifying space BG.

The fundamental group of a space may be calculated in many cases using the Seifert-van Kampen

Theorem (see Section 1.5), and in other cases using fibrations of spaces. The main result on the

latter, for those familiar with fibrations, is that if 1 → K → E → G → 1 is a short exact sequence of

groups, then the induced sequence BK→ BE→ BG is a fibration sequence of spaces. Conversely, if

F
i
−→ X

p
−→ Y is a fibration sequence of spaces, and x ∈ F then there is an induced exact sequence

of groups and based sets

· · · −→ π1(F, x)
i∗−→ π1(X, x)

p∗−→ π1(Y,px)→ π0(F)→ π0(X)→ π0(Y).

This result gives some information on π1(X, x) if the other groups are known and even more if the

various spaces are connected. We shall return to this sequence in Section 2.6, and it will be used in

other contexts, with more information on exactness at the last few terms, in Section 12.4.

Higher dimensional topological information in terms of Betti numbers and torsion coefficients

had been obtained much earlier than the definition of the fundamental group. These numbers were

combined into the powerful idea of the abelian homology groups Hn(X) of a space X defined for

all n > 0, and which gave very useful topological information on the space. They measured the
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presence of ‘holes’ in X of various dimensions and of various types. The origins of homology theory

lie in integration, the theorems of Green and Stokes, and complex variable theory.

The notion of ‘boundary’ and of a ‘cycle’ as having zero boundary is crucial in the methods and

results of this theory, but was always difficult to express precisely until Poincaré brought in simplicial

decompositions, and the notion of a ‘chain’ as a formal sum of oriented simplices. It seems that the

earlier writers thought of a cycle as in some sense a ‘composition’ of the pieces of which it was made,

but this ‘composition’ was, and still is, difficult to express precisely. Dieudonné in [Die89] suggests

that the key intuitions can be expressed in terms of cobordism. In any case, the notion of ‘formal

sum’ fitted well with integration, where it was required to integrate over a formal sum of domains

of integration, with the correct orientation for these:
∫

C

f dz +

∫

C′

f dz =

∫

C+C′

f dz

It was also found that if X is connected then the group H1(X) is the fundamental group π1(X, x)

made abelian:

H1(X) ∼= π1(X, x)ab.

So the nonabelian fundamental group gave much more information than the first homology group.

However, the homology groups were defined in all dimensions. So there was pressure to find a

generalisation to all dimensions of the fundamental group.

1.3 The search for higher dimensional versions of the funda-

mental group

According to [Die89], Dehn had some ideas on this search in the 1920’s, as would not be surprising.

The first published attack on this question was the work of Čech, using the idea of classes of maps of

spheres instead of maps of circles. He submitted his paper on higher homotopy groups πn(X, x) to

the International Congress of Mathematicians at Zurich in 1932. The story is that Alexandrov and

Hopf quickly proved that these groups were abelian for n > 2, and so on these grounds persuaded

Čech to withdraw his paper. All that appeared in the Proceedings of the Congress was a brief

paragraph, [Čec32].

The main algebraic reason for this abelian nature was the following result, in which the two

compositions ◦1, ◦2 are thought of as compositions of 2-spheres in two directions.

Theorem 1.3.1 Let S be a set with two monoid structures ◦1, ◦2 each of which is a morphism for the

other. Then the two monoid structures coincide and are Abelian.

Proof The condition that the structure ◦1 is a morphism for ◦2 is that the function

◦1 : (S, ◦2)× (S, ◦2)→ (S, ◦2)

is a morphism of monoids, where (S, ◦2) denotes S with the monoid structure ◦2. This condition is

equivalent to the statement that for all x,y, z,w ∈ S

(x ◦2 y) ◦1 (z ◦2 w) = (x ◦1 z) ◦2 (y ◦1 w).

This can be interpreted as saying that the diagram

[
x y

z w

]

1

2
��

//
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has only one composition. Here the arrows indicate that we are using matrix conventions in which

the first coordinate gives the rows, and the second coordinate gives the columns. This law is com-

monly called the interchange law .

We now use some special cases of the interchange law. Let e1, e2 denote the identities for the

structures ◦1, ◦2. Consider the matrix [
e1 e2

e2 e1

]

This yields easily that e1 = e2. We write then e for e1.

Now we consider the matrix composition
[
x e

e w

]

Interpreting this in two ways yields

x ◦1 w = x ◦2 w.

So we write ◦ for ◦1.

Finally we consider the matrix composition
[
e y

z e

]

and find easily that y ◦ z = z ◦ y. This completes the proof.

Incidentally, it will also be found that associativity comes for free. We leave this to the reader. 2

This result seemed to kill any possibility of “nonabelian algebraic topology”, or of any general-

isations to higher dimensions of the fundamental group. In 1935, Hurewicz, without referring to

Čech, published the first of his celebrated notes on higher homotopy groups, [Hur35], and the latter

groups are often referred to as the ‘Hurewicz homotopy groups’. As the abelian higher homotopy

groups came to be accepted, a considerable amount of work in homotopy theory moved as far as

possible from group theory and the nonabelian fundamental group, and the original concern about

the abelian nature of the higher homotopy groups came to be seen as a quirk of history, an unwill-

ingness to accept a basic fact of life. Indeed, Alexandrov and Finikof in their Obituary Notice for

Čech, [AF61], referred to the unfortunate lack of appreciation of Čech’s work on higher homotopy

groups, resulting from too much attention to the disadvantage of their abelian nature.

However important nonabelian work in dimension 2 was published by J.H.C. Whitehead in 1941,

1946 and 1949, with the second paper introducing the term crossed module – these crossed modules

are a central theme of this book. Brown remembers Henry Whitehead remarking in 1957 that early

workers in homotopy theory were fascinated by the action of the fundamental group on higher

homotopy groups. Many also were dissatisfied with the fact that the composition in higher homotopy

groups was independent of the direction. Deeper reasons for this independence are contained in the

theory of iterated loop spaces (see the book by Adams, [Ada78], or the books and survey articles by

May [May72, May77a, May77b, May82].

A new possibility eventually arose in 1967 through the notion of groupoid, which we discuss in

the next section.

1.4 The origin of the concept of abstract groupoid

A groupoid is defined formally as a small category in which every arrow is invertible. For more

details see the surveys [Bro84, Wei01], and the books [Bro06, Hig71].
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There are two important, related and relevant differences between groupoids and groups. One

is that groupoids have a partial multiplication, and the other is that the condition for two elements

to be composable is a geometric one (namely the end point of one is the starting point of the other).

This partial multiplication allows for groupoids to be thought of as “groups with many identities”.

The other is that the geometry underlying groupoids is that of directed graphs, whereas the geometry

underlying groups is that of based sets, i.e. sets with a chosen base point. It is clear that graphs

are more interesting than sets, and can reflect more geometry. Hence people find in practice that

groupoids can reflect more geometry than can groups alone. It seems that the objects of a groupoid

allow the addition of a spatial component to group theory.

An argument usually made for groups is that they give the mathematics of reversible processes,

and hence have a strong connection with symmetry. This argument applies even more strongly for

groupoids. For groups, the processes all start and return to the same position. This is like considering

only journeys which start at and end at the same place. However to analyse a reversible process,

such as a journey, we must describe the intermediate steps, the stopping places. This description

requires groupoids, since in this setting the processes described are allowed to start at one point and

finish at another. Groupoids clearly allow a more flexible and powerful analysis, and this confirms

a basic intuition that, in dimension 1, groupoids are more convenient than groups for writing down

an ‘algebraic inverse to subdivision’.

The definition of groupoid arose from Brandt’s attempts to extend to quaternary forms Gauss’

work on a composition law of binary quadratic forms, which has a strong place in Disquitiones

Arithmeticae. It is of interest here that Bourbaki [Bou70], p.153, cites this composition law as an

influential early example of a composition law which arose not from numbers, even taken in a broad

sense, but from distant analogues1. Brandt found that each quaternary quadratic form had a left

unit and a right unit, and that two forms were composable if and only if the left unit of one was the

right unit of the other. This led to his 1926 paper on groupoids [Bra26]. (A modern account of this

work on composition of forms is given by Kneser et al. [KOK+86].)

Groupoids were then used in the theory of orders of algebras. Curiously, groupoids did not form

an example in Eilenberg and Mac Lane’s basic 1945 paper on category theory [EM45]. Groupoids

appear in Reidemeister’s 1932 book on topology [Rei49], as the edge path groupoid, and for han-

dling isomorphisms of a family of structures. The fundamental groupoid of a space was well known

by the 1950’s, and Crowell and Fox write in [CF77]:

A few [definitions], like that of a group or of a topological space, have a fundamental

importance to the whole of mathematics that can hardly be exaggerated. Others are more

in the nature of convenient, and often highly specialised, labels which serve principally to

pigeonhole ideas. As far as this book is concerned, the notions of category and groupoid

belong to the latter class. It is an interesting curiosity that they provide a convenient

systematisation of the ideas involved in developing the fundamental group.

It may well be that a concept providing a ‘convenient systematisation’ is generally an indication of

underlying power of that concept. We referred earlier to the extensive work of C. Ehresmann on

groupoids in differential topology. One motivation for this work was his strong interest in local-to-

global situations. Problems of this kind are often central in mathematics and in science.

The fundamental groupoid π1(X,A) on a set A of base points is introduced and used in [Bro06].

Its successes suggest the value of an aesthetic approach to mathematics, namely that the concept

1C’est vers cette même époque que, pour le premier fois en Algèbre, la notion de loi de composition s’étend, dans deux

directions différents, à des élements qui ne présentent plus avec les 〈〈nombres〉〉 (au sens le plus large donné jusque-là à

ce mot) que des analogies lointaines. La première de ces extensions est due à C.F.Gauss, à l’occasion de ses recherches

arithmétiques sur les formes quadratiques . . .
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which feels right and gives ‘a convenient systematisation’ is likely to be the most powerful one. In

this viewpoint, much good mathematics enables difficult things to become easy, and an important

part of the development of good mathematics is finding: (i) the appropriate underlying structures,

(ii) the appropriate language to describe these structures, and (iii) means of calculating with these

structures. Without the appropriate structures to guide us, we may take many wrong turnings.

There is no benefit today in arithmetic in Roman numerals. There is also no benefit today in

insisting that the group concept is more fundamental than that of groupoid; one uses each at the

appropriate place. It is as well to distinguish the sociology of the use of a mathematical concept

from the scientific consideration of its relevance to the progress of mathematics.

It should also be said that the development of new concepts and language is a different activ-

ity from the successful employment of a range of known techniques to solve already formulated

problems.

The notion that groupoids give a more flexible tool than groups in some situations is only be-

ginning to be widely appreciated. One of the most significant of the books which use the notion

seriously is Connes book “Noncommutative geometry”, published in 1994, [Con94]. He states that

Heisenberg discovered quantum mechanics by considering the groupoid of transitions for the hydro-

gen spectrum, rather than the usually considered group of symmetry of an individual state. This

fits with the previously expounded philosophy. The main examples of groupoids in his book are

equivalence relations and holonomy groupoids of foliations.

On the other hand, in books on category theory the role of groupoids is often fundamental (see

for example Mac Lane and Moerdijk [MLM96]). In foliation theory, which is a part of differential

topology and geometry, the notion of holonomy groupoid is widely used. For surveys of the use of

groupoids, see [Bro87, Hig71, Wei01, Mac05, Bro07]. Groupoids have been used extensively by

Ehresmann, [Ehr80].

1.5 The van Kampen Theorem

We believe a change of prospects for homotopy theory came about in a roundabout way, in the mid

1960s. R. Brown was writing the first edition of the book [Bro06] and became dissatisfied with the

standard treatments of the van Kampen Theorem. This basic tool computes the fundamental group

of a space X given as the union of two connected open subsets U1,U2 with connected intersection

U12. For those familiar with the concepts, the result is that the natural morphism

π1(U1, x) ∗π1(U12,x) π1(U2, x)→ π1(X, x) (1.5.1)

induced by inclusions is an isomorphism. The group on the left hand side of the above arrow is

the free product with amalgamation; it is the construction for groups corresponding to U1 ∪ U2 for

spaces, as we shall see later in discussing pushouts. This version of the theorem was given by Crowell

[Cro71], based on lectures by R.H. Fox. One important consequence is that the fundamental group

shared the same possibilities and the same difficulties of computation as general abstract groups.

The problem was with the connectivity assumption on U12, since this prevented the use of the

theorem for deducing the result that the fundamental group of the circle S1 is isomorphic to the

group Z of integers. (See Section 1.7 where π1(S
1) is calculated.) If S1 is the union of two connected

open sets, then their intersection cannot be connected. So the fundamental group of the circle is

usually determined by the method of covering spaces. Of course this method is basic stuff anyway,

and needs to be explained, but having to make this detour, however attractive, is unaesthetic.

It was found that a uniform method could be given using nonabelian cohomology, [Bro65], but
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Figure 1.1: Example of spaces in a van Kampen type situation

a full exposition of this became turgid. Then Brown came across the paper by Philip Higgins entitled

‘Presentations of groupoids with applications to groups’ [Hig64], which among other things defined

free products with amalgamation of groupoids. We will explain something about groupoids a bit

later. It seemed reasonable to insert an exercise in the book on an analogous result to 1.5.1 for the

fundamental groupoid π1(X), namely that the natural morphism of groupoids

π1(U1) ∗π1(U12) π1(U2)→ π1(X) (1.5.2)

is an isomorphism. It then seemed desirable to write out a solution to the exercise, and lo and

behold! the solution was much clearer and more powerful than all the turgid stuff on nonabelian

cohomology. Further work yielded the idea that it was sensible to generalise from the fundamental

group π1(X, x) on one base point x to the fundamental groupoid π1(X,A) on a set A chosen freely

according to a given geometric situation. In particular if U12 is not connected it is not clear from

which component of U12 a base point should be chosen. So one hedges one’s bets, and chooses a set

of base points, one in each component of U12. One finds that the natural morphism

π1(U1,A) ∗π1(U12,A) π1(U2,A)→ π1(X,A) (1.5.3)

is also an isomorphism and that the proof of this result using groupoids is simpler than the original

proof of 1.5.1 for groups. One also obtains a new range of calculations. For example, U1,U2,U12

may have respectively 27, 63, and 283 components, and yet X could be connected - a description of

the fundamental group of this situation in terms of groups alone is not so easy.

In view of these results the writing of the first edition of the book [Bro06] was redirected to give

a full account of groupoids and the van Kampen Theorem. A conversation with G.W.Mackey in 1967

informed Brown of Mackey’s work on ergodic groupoids (see the references in [Bro87]). It seemed

that if the idea of groupoid arose in two separate fields, then there was more in this than met the

eye. Mackey’s use of the relation between group actions and groupoids suggested the importance

of strengthening the book with an account of covering spaces in terms of groupoids, following the

initial lead of Higgins in [Hig64] and of Gabriel and Zisman in [GZ67].

Later Grothendieck was to write (1985):

“The idea of making systematic use of groupoids (notably fundamental groupoids of spaces,
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based on a given set of base points), however evident as it may look today, is to be seen as a

significant conceptual advance, which has spread into the most manifold areas of mathematics.

. . . In my own work in algebraic geometry, I have made extensive use of groupoids - the first

one being the theory of the passage to quotient by a “pre-equivalence relation” (which may

be viewed as being no more, no less than a groupoid in the category one is working in, the

category of schemes say), which at once led me to the notion (nowadays quite popular) of

the nerve of a category. The last time has been in my work on the Teichmüller tower, where

working with a “Teichmüller groupoid” (rather than a “Teichmüller group”) is a must, and part

of the very crux of the matter . . . ”

1.6 Proof of the van Kampen Theorem (groupoid case)

In this section we sketch a proof that the morphism induced by inclusions

η : π1(U1,A) ∗π1(U12,A) π1(U2,A)→ π1(X,A) (1.6.1)

is an isomorphism when U1,U2 are open subsets of X = U1 ∪U2 and A meets each path component

of U1,U2 and U12 = U1 ∩U2.

What one would expect is that the proof would construct directly an inverse to η. Alternatively,

the proof would verify in turn that η is surjective and injective.

The proof we give might at first seem roundabout, but in fact it follows the important procedure

of verifying a universal property. One advantage of this procedure is that we do not need to show

that the free product with amalgamation of groupoids exists in general, nor do we need to give a

construction of it at this stage. Instead we define the free product with amalgamation by its universal

property, which enables us to go directly to an efficient proof of the van Kampen Theorem. It also

turns out that the universal property guides many explicit calculations.

We use the notion of pushout in the category of groupoids. It is a special case of the pushout in

categories that we study in the Appendix. Let us recall the definition in this case. We say that the

groupoid G and the two morphisms of groupoids G1
j1−→ G and G2

j2−→ G are the pushout of the two

morphisms of groupoids G
i1−→ G1 and G

i2−→ G2 if they satisfy

PO1) the diagram

G0

i1 //

i2

��

G1

j1

��
G2

j2

// G

(1.6.2)

is a commutative square, i.e. j1i1 = j2i2,

PO2) the last diagram is universal with respect to this type of diagram, i.e. for any groupoid K and

morphisms of groupoids G1
k1−→ K and G2

k2−→ K such that the following diagram is commutative

G0

i1 //

i2

��

G1

k1

��
G2

k2

// K

(1.6.3)

there is a unique morphism of groupoids k : G→ K such that kj1 = k1, kj2 = k2. The two diagrams
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are often combined into one as follows:

G0

i2
��

i1 // G1

j1
�� k1

��

G2

j2 //

k2 ,,

G
k

  @
@

@

K

(1.6.4)

We think of a pushout square as given by a standard input, the pair (i1, i2), and a standard

output, the pair (j1, j2). The properties of this standard output are defined by reference to all other

commutative squares with the same (i1, i2). At first sight this might seem strange, and logically

invalid. However a pushout square is somewhat like a computer program: given the data of another

commutative square of the right type, then the output will be a morphism (k in the above diagram)

with certain defined properties.

It is a basic feature of universal properties that the standard output, in this case the pair (j1, j2)

making the diagram commute, is determined up to isomorphism by the standard input (i1, i2).

Further details will be given in the Appendix. See also [Bro06, Appendix A4].

Thus in our case, we have:

Theorem 1.6.1 If U1, U2 are open subsets of X, X = U1 ∪ U2, and A is a subset of U12 = U1 ∩ U2

meeting each path component of U1, U2, U12 (and therefore of X), the following diagram of morphisms

induced by inclusion

π1(U12,A)
i1 //

i2

��

π1(U1,A)

ji

��
π1(U2,A)

j2

// π1(X,A)

is a pushout of groupoids.

Proof So we suppose given a commutative diagram of morphisms of groupoids

π1(U12,A)
i1 //

i2

��

π1(U1,A)

k1

��
π1(U2,A)

k2

// K

(1.6.5)

We have to prove that there is a unique morphism k : π1(X,A)→ K such that kj1 = k1, kj2 = k2.

Let us take an element [α] ∈ π1(X,A) with α : (I,∂I)→ (X,A). By the Lebesgue covering lemma

([Bro06, 3.6.4] ) there is a subdivision

0 = t0 < t1 < · · · < tn−1 < tn = 1

of I into intervals by equidistant points such that α maps each [ti, ti+1] into U1 or U2 (possibly in

both). Choose one of these for each i and call it Ui and αi the restriction of α. This subdivision

determines a decomposition

α = α0α1 . . .αn−1.

Of course the point α(ti) need not lie in A, but it lies in Ui ∩Ui−1 and this intersection can only be

U1,U2 or U12. By the connectivity conditions, for each i = 0, 1, · · · ,n − 1, we may choose a path ci



16 [1.6] Nonabelian Algebraic Topology

in Ui ∩ Ui−1 joining α(ti) to A. Moreover, if α(ti) already lies in A (which is the case when i = 0

and when i = n), we choose ci to be the constant path at α(ti).

U1

U1

U2

U2

α

� �

�

�
�

�

� �

�
�

Figure 1.2: A path α in a van Kampen type situation

For each 0 6 i < n we have the path βi = c−1
i αici+1 in Ui joining points of A. It is clear that

[α] = [β0][β1] · · · [βn−1] ∈ π1(X,A).

Notice that βi also represents a class in π1(U
i,A). Let us call ψi = ki([βi]). If the homomorphism

of groups that commutes the external square k exists, the value of k([α]) is determined, because

k([α]) = k([β0][β1] · · · [βn−1]) = k([β0])k([β1]) · · · k([βn−1]) = ψ0ψ1 · · ·ψn−1.

This proves uniqueness of k. We have also proved that π1(X,A) is generated as a groupoid by

the images of π1(U1,A),π1(U2,A).

We have yet to prove that the element k([α]) is independent of all the choices made. Before

going into that, notice that the construction we have just made can be interpreted diagrammatically

as follows. The starting situation looks like the bottom side of the diagram

•
β0 //____ •

β1 //____ • •
βn−2 //____ •

βn−1 //____ •

•

c0

OO

α0

//◦

c1

OO

α1

//◦

c2

OO

◦

cn−2

OO

αn−2

//◦

cn−1

OO

αn−1

//•

cn

OO

(1.6.6)

where the solid circles denote points which definitely lie in A.

The way of getting βi may be seen as composing with a retraction from above like the one in the

Fig 1.3.

If necessary, this retraction also provides a homotopy α ≃ β0β1 · · ·βn−1 rel end points. This is the

first of lots of filling arguments where we have defined a map in a subset of the boundary of a cube

and fill the whole cube by appropriate retractions. This is studied in all generality in Chapter 10,

using ‘expansions’ and ‘collapses’.

We shall use another filling argument in I3 to prove independence of choices. Suppose that we

have a homotopy rel end points h : α ≃ α ′ of two maps (I,∂I) → (X,A). We can perform the

construction in (1.6.6) for each of α, α ′, and then glue the three homotopies together.
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�
�
�
�
�

�
�
�
�
�
�
�
�

D
D
D
D
D
D
D
D

L
L

L
L

L
L

Figure 1.3: Retraction from above-centre

•
β

•

•
α

h

•

•
α ′

•

•
β ′

•

(1.6.7)

So, replacing βs by αs, we can assume the maps α, α ′ have subdivisions α = [αi], α
′ = [α ′

j] such

that each αi, α
′
j has end points in A and lies in one of U1, U2. Since h is a map I2 → X, we may

again by the Lebesgue covering lemma make a subdivision h = [hlm] such that each hlm lies in one

of U1, U2. Also by further subdivision as necessary, we may assume this subdivision of h refines on

I× ∂I the given subdivisions of α, α ′.

The problem is that none of the vertices of this subdivision are necessarily mapped into A, except

those on ∂I× I (since the homotopy is rel vertices and α, α ′ both map ∂I to A) and those on I× ∂I

determined by the subdivisions of α, α ′. So the situation looks like the following:

α ′

• //• //◦ //• //◦ //• //•

• //

OO

◦ //

OO

◦ //

OO

◦ //

OO

◦ //

OO

◦ //

OO

•

OO

• //

OO

◦

OO

//◦ //

OO

◦ //

OO

◦ //

OO

◦

OO

//•

OO

• //

OO

◦ //

OO

• //

OO

• //

OO

α

• //

OO

◦ //

OO

•

OO

(1.6.8)

We want to deform h to h ′ : α ≃ α ′, a new homotopy rel end points between the same maps, having

the same subdivision as does h, and such that any subsquare mapped by h into Ui, i = 1, 2 remains

so in h ′, and any vertex already in A is not moved. This is done inductively by filling arguments in

the cube I3.
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Let us imagine the 3-dimensional cube I3 as I2 × I where I2 has the subdivision we are working

with in h. Define the bottom map to be h. We have to fill I3 so that in the top face we get a similar

diagram but with all the vertices solid, i.e. in A, and each subsquare in the top face lies in the same

Ui as the corresponding in the bottom one.

We start by defining the map on all ‘vertical’ edges, i.e. on {v}× I for all vertices in the partition

of I2. If the image of a vertex lies in U12 but not in A, then we choose a path in U12 joining it to

a point of A. We work similarly for the case of vertices with images in U1 \ U12, U2 \ U12. Let us

call elm the path we have chosen between the vertex h(sl, tm) and A. (These elm are constant if

h(sl, tm) lies already in A.) This gives us the map on the vertical edges of I3.

• • • • •

• •

• •

• • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

Figure 1.4: Extending to the edges

From now on, we restrict our construction to the part of I3 over the square Slm = [sl, sl+1] ×

[tm, tm+1]. Let us call σlm = h|[sl,sl+1]×{tm} and τlm = h|{sl}×[tm,tm+1]. Then, using the retraction

of Figure 1.3 on each lateral face, we can fill all the faces of a 3-cube except the top one. Now, using

the retraction from a point on a line perpendicular to the centre of the top face, as in the following

Figure 1.5

......

• •

• •

• •

• •

Figure 1.5: Extending to the lateral faces

we get at the top face a map that looks like

•

@@
@@

@@
@ •

~~
~~

~~
~

◦

τlm hlm

◦

◦
σlm

elm~~
~~

~~
~ ◦

@@
@@

@@
@

• •

(1.6.9)

Thus, in particular, it is a map into Ui sending all vertices in A.
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If we do the above construction in each square of the subdivision, we get a top face of the

cube that is an homotopy rel end points between two paths in the same classes as α and α ′, and

subdivided in such a way that each subsquare goes into some Ui sending all vertices into A. Each

of these squares produces a commutative square of paths in one of π1(Ui,A), i = 1, 2. Thus the

diagram can be pictured as

α ′

• //• //• //• //• //• //•

• //

OO

• //

OO

• //

OO

• //

OO

• //

OO

• //

OO

•

OO

• //

OO

•

OO

//• //

OO

• //

OO

• //

OO

•

OO

//•

OO

• //

OO

• //

OO

• //

OO

• //

OO

α

• //

OO

• //

OO

•

OO

(1.6.10)

Applying ki to each subsquare we get a commutative square li in K. Since k1i1 = k2i2, we get

that the li compose in K to give a square l in K.

Now comes the vital point. Since the composite of commutative squares in a groupoid pro-

duces a commutative square, the external square l is commutative.

But because of the way we constructed it, two sides of this composite commutative square l in

K are identities. Therefore the opposite sides of l are equal. This shows that our element k([α]) is

independent of the choices made, and so proves that k is well defined as a function on arrows of the

fundamental groupoid π1(X,A).

The proof that k is a morphism is now quite simple, while uniqueness has already been shown.

So we have shown that the diagram in the statement of the theorem is a pushout of groupoids.

This completes the sketch proof. 2

There is another way of expressing the above argument on the composition of commutative

squares being a commutative square, namely by working on formulae for each individual square as

in the expression a = cdb−1 for 1.1.1. Putting together two such squares as in

•
a //

c
��

•

b
��

e //•

f
��

•
d

//•
g

//•

(1.6.11)

allows cancelation of the middle term

ae = (cdb−1)(bgf−1) = cdgf−1

which if c = 1, f = 1 reduces to ae = dg. This argument extends to longer gluings of commutative

squares, and hence extends, by induction, and in the other direction, to a subdivision of a square.

We would like to extend the above argument to the faces of a cube, and then to an n-dimensional

cube.

For a cube, the expression of one of the faces in terms of the others can be done (see the Ho-

motopy Commutativity Lemma 6.7.6) and then can be used to prove a 2-dimensional van Kampen

Theorem. That is done in Section 6.8.
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It is much more difficult to follow this route in the general case and a more roundabout method is

developed in Chapter 14. The algebra to carry out this argument in dimension n is given in Chapter

13. It is interesting that such a complicated and subtle algebra seems to be needed to make it all

work. We emphasise the the purely algebraic work of Chapter 13 is essential for the applications in

the following two chapters, and so for the whole of Part II.

Remark 1.6.2 One of the nice things about proving the theorem by verifying the universal property

is that the proof uses some calculations in a general groupoid K, and groupoids have, in some

sense, the minimal set of properties needed for the result. This avoids a calculation in π1(X,A), and

somehow makes the calculations as easy as possible. The same characteristics hold in some other

verifications of universal properties, for example in the computation of the fundamental groupoid of

an orbit space in [Bro06, Chapter 11]. We will see a similar situation later for double groupoids.

1.7 The fundamental group of the circle

In order to interpret the last theorem, one has to set up the basic algebra of computational groupoid

theory. In particular, one needs to be able to deal with presentations of groupoids. This is done to a

good extent in [Hig71, Bro06]. Here we can give only the indications of the theory.

The theory of groupoids may be thought of as an algebraic analogue of the theory of groups, but

based on directed graphs rather than on sets. 1

Let us explain some basic definitions in groupoid theory. A groupoid G is called connected if

G(a,b) is non empty for all a,b ∈ Ob(G). The maximal connected subgroupoids of G are called the

(connected) components of G .

If a is an object of the groupoid G, then the set G(a,a) inherits a group structure from the

composition on G, and this is called the object group of G at a and is written also G(a) . The

groupoid G is called simply connected if all its object groups are trivial . If it is connected and simply

connected, it is called 1-connected, or an indiscrete groupoid .

A standard example of an indiscrete groupoid is the groupoid I(S) on a set S . This has object set

S and arrow set S× S, with s, t : S× S→ S being the first and second projections. The composition

on I(S) is given by

(a,b)(b, c) = (a, c), for all a,b, c ∈ S.

A special case is the groupoid we will write I = I({0, 1}). This has two nonidentity elements which

we write ι : 0 → 1 and ι−1 : 1 → 0. This apparently ‘trivial’ groupoid will play a key role in the

theory, since it determines homotopies. It is also called the ‘unit interval groupoid’.

A directed graph X is called connected if the free groupoid F(X) on X is connected, and is called

a forest if every object group F(X)(a) of F(X),a ∈ Ob(X), is trivial. A connected forest is called a

tree . If X is a tree, then the groupoid F(X) is indiscrete; an indiscrete groupoid is also called a tree

groupoid.

Let G be a connected groupoid and let a0 be an object of G. For each a ∈ Ob(G) choose an

arrow τa : a0 → a, with τa0 = 1a0
. Then an isomorphism

φ : G→ G(a0)× I(Ob(G)) (1.7.1)

is given by g 7→ ((τa)g(τb)−1, (a,b)) when g ∈ G(a,b) and a,b ∈ Ob(G). The composition of φ

with the projection yields a morphism ρ : G → G(a0) which we call a deformation retraction since

it is the identity on G(a0) and is in fact homotopic to the identity morphism of G, though we do not

elaborate on this fact here.
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It is also standard [Bro06, 8.1.5] that a connected groupoid G is isomorphic to the free product

groupoid G(a0) ∗ T where a0 ∈ Ob(G) and T is any wide, tree subgroupoid of G. The importance of

this is as follows.

Suppose that X is a graph which generates the connected groupoid G. Then X is connected.

Choose a maximal tree T in X. Then T determines for each a0 in Ob(G) a retraction ρT : G→ G(a0)

and the isomorphisms

G ∼= G(a0) ∗ I(Ob(G)) ∼= G(a0) ∗ F(T)

show that a morphism G → K from G to a groupoid K is completely determined by a morphism of

groupoids G(a0)→ K and a graph morphism T → K which agree on the object a0.

We shall use later the following proposition, which is a special case of [Bro06, 6.7.3]:

Proposition 1.7.1 LetG,H be groupoids with the same set of objects, and let φ : G→ H be a morphism

of groupoids which is the identity on objects. Suppose that G is connected and a0 ∈ Ob(G). Choose a

retraction ρ : G → G(a0). Then there is a retraction σ : H → H(a0) such that the following diagram,

where φ′ is the restriction of φ:

G
ρ //

φ

��

G(a0)

φ′

��
H σ

// H(a0)

(1.7.2)

is commutative and is a pushout of groupoids.

This result can be combined with Theorem 1.6.1 to determine the fundamental group of the

circle S1.

Corollary 1.7.2 The fundamental group of the circle S1 is a free group on one generator.

Proof We represent S1 as the union of two semicircles E1
+,E1

- with intersection {−1, 1}. Then both

fundamental groupoids π1(E
1
+, {−1, 1}) and π1(E

1
- , {−1, 1}) are easily seen to be isomorphic to the

connected groupoid I with object set {−1, 1} and trivial object groups. In fact this groupoid is the

free groupoid on one generator ι : −1→ 1.

Also, π1({−1, 1}, {−1, 1}) is the discrete groupoid on these objects {−1, 1}. By an application of

Theorem 1.6.1 we get a pushout of groupoids

{−1, 1} //

��

I

��
I // π1(S

1, {−1, 1})

From the previous Proposition, we have a pushout of groupoids

I //

��

{1}

��
π1(S

1, {−1, 1}) // π1(S
1, 1)
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Gluing them, we get a pushout of groupoids

{−1, 1} //

��

{1}

��
I // π1(S

1, 1)

and the result follows by an easy universal argument. 2

Note that S1 may be regarded as a pushout in the category of topological spaces

{−1, 1} //

��

{1}

��
[−1, 1] // S1

(1.7.3)

The correspondence between these last two diagrams was for R.Brown a major incentive to exploring

the use of groupoids. Here we have a successful algebraic model of a space, but of a different type

from that previously considered. An aspect of its success is that groupoids have structure in two

dimensions, namely 0 and 1, and this is useful for modeling the way spaces are built up using

identifications in dimensions 0 and 1.

Another interesting aspect is that the groupoid I is finite, and it is easy to explore all its proper-

ties. By contrast, the integers form an infinite set, and discussion of its properties usually requires

induction.

The problem was to find analogous methods in higher dimensions.

1.8 Higher order groupoids

The successes of the use of groupoids in 1-dimensional homotopy theory and the successes in

group theory as exposed in the books [Bro06, Hig71] suggested the potential interest in the use

of groupoids in higher dimensional homotopy theory. In particular, it seemed possible that a Higher

Homotopy van Kampen Theorem (HHvKT) could be proved if the ‘right’ higher homotopy groupoids

could be constructed, with properties analogous to those which enabled the proof of this theorem in

dimension 1.

Experiments by Brown to obtain such a construction in the years 1965-74 proved abortive. How-

ever in 1971 Chris Spencer came to Bangor as a Science Research Council Research Assistant, and

in this and a subsequent period considerable progress was made on the discovering the algebra of

double groupoids. It was in this time that the relation with crossed modules was made, so linking

the notion of double groupoids with more classical ideas.

Crossed modules had been defined by J.H.C. Whitehead in 1946 [Whi46] in order to express the

properties of the properties of the boundary map

∂ : π2(X,X1, x)→ π1(X1, x)

of the second relative homotopy group, a group which is in general nonabelian. He gave the first

nontrivial determination of this group in showing that when X is formed from X1 by attaching 2-

cells, then π2(X,X1, x) is isomorphic to the free crossed π1(X1, x)-module on the characteristic maps

of the 2-cells.
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This result was a crucial clue to Brown and Higgins in 1974. On the one hand it showed that a

universal property, namely freeness, did exist in 2-dimensional homotopy theory. Also, if our pro-

posed theory was to be any good, it should have this theorem as a corollary. However, Whitehead’s

theorem was about relative homotopy groups, which suggested that we should look at a relative the-

ory, i.e. a space X with a subspace X1. With the experience obtained by then, we quickly found

a satisfactory, even simple, construction of a relative homotopy double groupoid ρ2(X,X1, x) and a

proof of a 2-dimensional van Kampen Theorem, as envisaged.

The equivalence between these sorts of double groupoids and crossed modules proved earlier

by Brown and Spencer, then gave the required van Kampen type theorem for the second homotopy

crossed module, and so new calculations of second relative homotopy groups.

So we have a pattern of proof:

A) construct a homotopically defined multiple groupoid;

B) prove it is equivalent to a more familiar homotopical construction;

C) prove a van Kampen Theorem in the multiple groupoid context; and

D) interpret this theorem in the more familiar context.

These combined give new nonabelian, higher dimensional, local-to-global results. This pattern has

been followed in the corresponding result for crossed complexes, which is dealt with in our Part II,

and results for the catn-groups of Loday [Lod82]. However, we do not discuss the latter in this book.

Crossed modules had occurred earlier in other places. In the mid 1960s the great school of

Grothendieck in Paris had considered sets with two structures, that of group and of groupoid, and

had proved these were equivalent to crossed modules. However this result was not published, and

so was known only to a restricted group of people.

It is now clear that once one moves to higher version of groupoids, the presence of crossed

modules is inevitable, and is an important part of the theory and applications. This is why Part I is

devoted entirely to the area of crossed modules and double groupoids.
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Notes

1p. 20 For some discussion of the philosophy of moving from sets to directed graphs, see [Bro94].

We refer to [Bro06, Hig71] for the construction of a free groupoid over a directed graph.



Chapter 2

Homotopy theory and crossed

modules

In this chapter we explain how crossed modules over groups arose in topology in the first half of the

last century, and give some of the later developments.

The topologist J.H.C. Whitehead (19041960) was steeped in the combinatorial group theory of

the 1930’s, and much of his work can be seen as trying to extend the methods of group theory to

higher dimensions, keeping the interplay with geometry and topology. These attempts led to greatly

significant work, such as the theory of simple homotopy types [Whi50b], the algebraic background

for which started the subject of algebraic K-theory. His ideas on crossed modules have taken longer

to come into wide use, but they can be regarded as equally significant.

One of his starting points was the van Kampen Theorem for the fundamental group. This tells

us in particular how the fundamental group is affected by the attaching of a 2-cell, or of a family of

2-cells, to a space. Namely, if X = A ∪ {e2i }i∈I, where the 2-cell e2i is attached by a map which for

convenience we suppose is fi : (S1, 1)→ (A, x), then each fi determines an element φi in π1(A, x),

and a consequence of the van Kampen Theorem for the fundamental group is that the group π1(X, x)

is obtained from the group π1(A, x) by adding the relations φi, i ∈ I.

• xX

A

Figure 2.1: Picture of an attached 2-cell

The next problem was clearly to determine the effect on the higher homotopy groups of adding

cells to a space. So his 1941 paper [Whi41] was entitled ‘On adding relations to homotopy groups’. If

we could solve this problem in general then we would in particular be able to calculate all homotopy

groups of spheres. Work over the last 70 years has shown the enormous difficulty of this task.

In this paper he gave important results in higher dimensions, but he was also able to obtain

information on the second homotopy groups of X = A ∪ {e2i }i∈I. His results were clarified by

him in two subsequent papers using the notion of crossed module [Whi46], and then free crossed

25
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module, [Whi49b]. This formulation became the key for Brown and Higgins to Higher Homotopy

van Kampen Theorems, as we shall see later. His basic method of proof (an exposition is given

in [Bro80]) uses what is now called transversality, and has become the foundation of a technique

called ‘pictures’, [HAM93]. His algebraic methods have also been exploited rather differently and in

a more algorithmic way in [BRS99] to compute second homotopy modules, see Subsection 11.2.4.

We begin this chapter by giving a definition of the fundamental crossed module

Π2(X,A, x) = (∂ : π2(X,A, x)→ π1(A, x))

of a pointed pair of spaces and explaining some of Whitehead’s work. Then we state two central

results:

• the 2-dimensional van Kampen theorem, in Section 2.3;

• the notion of classifying space of a crossed module, in Section 2.4.

It is these two combined which give many of the important homotopical applications of crossed

modules (including Whitehead’s results). However the construction of the classifying space, and the

proof of its properties, needs the methods of crossed complexes of Part II, and is given in Chapter

10. We give applications of the 2-dimensional van Kampen theorem in Chapters 4 and 5 and prove

it in Chapter 6. This sets the scene for the corresponding higher dimensional results of Part II, and

the substantial proofs of Part III.

Section 2.5 shows that crossed modules are equivalent to another algebraic structure, that of

cat1-groups. This is used in Section 2.6 to obtain the cat1-group of a fibration, which yields an

alternative way of obtaining the fundamental crossed module.

Section 2.7 shows that crossed modules are also equivalent to ‘categories internal to groups’, or,

equivalently, to groupoids internal to groups. This is important philosophically, because groupoids

are a generalisation of equivalence relations, and equivalence relations give an expression of the

idea of quotienting, a fundamental process in mathematics and science, because it is concerned

with classification. We can think of groupoids as giving ways of saying not only that two objects

are equivalent, but also how they are equivalent: the arrows between two objects give different

‘equivalences’ between them., which can sometimes be regarded as ‘proofs’ that the objects are

equivalent.

Moving now to the case of groups, to obtain a quotient of a group P we need not just an equiva-

lence relation, but this equivalence relation needs to be a congruence, i.e. not just a subset but also

a subgroup of P × P. An elementary result in group theory is that a congruence on a group P is

determined completely by a normal subgroup of P. The corresponding result for groupoids is that a

groupoid with a group structure is equivalent to a crossed module M → P where P is the group of

objects of the groupoid.

This family of equivalent structures – crossed modules, cat1-groups, group objects in groupoids

– gives added power to each of these structures. In fact in Chapter 6 we will use crucially another

related structure, that of double groupoids with connection. This is equivalent to an important gener-

alisation of a crossed module, that of crossed module of groupoids, which copes with the varied base

points of second relative homotopy groups.

2.1 Homotopy groups and relative homotopy groups

Recall that two maps f,g : X → Y between two topological spaces are said to be homotopic if f can

be continuously deformed to g. Formally, they are homotopic, and this is denoted by f ≃ g, if there
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is a map

F : X× I→ Y

such that F0(x) = F(x, 0) = f(x) and F1(x) = F(x, 1) = g(x). The map F is called a homotopy from f

to g.

This definition gives an equivalence relation among the set of maps from X to Y. The quotient

set is denoted [X, Y] and the equivalence class of a map f is denoted by [f].

Sometimes we are interested in considering only deformations that keep some subset fixed. If

A ⊆ X, we say that two maps as above are homotopic relative to A, and denote this by f ≃ g rel A, if

there is a homotopy F from f to g satisfying F(a, t) = f(a) for all a ∈ A, t ∈ I. This definition gives

another equivalence relation among the set of maps from X to Y. The quotient set is denoted [X, Y]A

and the equivalence class of a map f is again denoted by [f].

Since all maps homotopic relative to, or rel to, A must agree with a map u : A → Y, this set for

a fixed u is written [X, Y;u]. Thus [X, Y]A is the union of the disjoint sets [X, Y;u] for all u : A→ X.

A particular case of this definition is when we study maps sending a fixed subset A of X to a

given point y ∈ Y. Then the quotient set corresponding to maps from X to Y sending all A to y with

respect to homotopy rel A, is written as [(X,A), (Y,y)] or, when A = {x}, as [X, Y]∗.

To define the homotopy groups of a space, we consider homotopy classes of maps from particular

spaces. Namely if x ∈ X, the n-th homotopy group of X based at x is defined as

πn(X, x) = [(In,∂In), (X, x)]

where ∂In is the boundary of In. The elements of πn(X, x) are classes of maps that can be pictured

for n = 2 as in the following diagram:

x

x X x

x

1

2

��

//

(2.1.1)

where we use throughout all the book a matrix like convention for directions. One of the reasons

for this will become clear in Chapter 6.

In the case n = 1 we obtain the fundamental group π1(X, x). For all n > 1 there initially seem to

be n group structures on this set induced by the composition of representatives given for 1 6 i 6 n

by

(f+i g)(t1, t2, . . . , tn) =

{
f(t1, t2, . . . , 2ti, . . . , tn) if 0 6 ti 6 1/2,

g(t1, t2, . . . , 2ti − 1, . . . , tn) if 1/2 6 ti 6 1.

Remark 2.1.1 For the case n = 2 the following diagrams picture the two compositions:

α

γ

α+1 γ

α β

α+2 β

1

2

��

//

2
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Theorem 2.1.2 If n > 2, then any of the multiplications +i, i = 1, · · · ,n on πn(X, x) induce the same

group structure, and all these group structures are abelian.

Proof By Theorem 1.3.1, we need only to verify the interchange law for the compositions

+i, +j, 1 6 i < j 6 n. It is easily seen that if f,g,h, k : (In,∂In) → (X, x) are representatives

of elements of πn(X, x), then the two compositions obtained by evaluating the following matrix in

two ways

f g

h k i

j

��

//

in fact coincide. The verification consists in checking the formula for such a multiple composition.

2

Of course this argument is the same as in Theorem 1.3.1.

We shall need later that πn is functorial in the sense that to any map φ : X→ Y there is associated

a homomorphism of groups

φ∗ : πn(X, x)→ πn(Y,φ(x))

defined by φ∗[f] = [φf], and which satisfies the usual functorial properties (φψ)∗ = φ∗ψ∗, 1∗ = 1.

Now we may repeat everything for maps of triples and homotopies among them. By a based pair

of spaces (X,A, x) is meant a space X, a subspace A of X and a base point x ∈ A. The nth relative

homotopy group πn(X,A, x) of the based pair (X,A, x) is defined as the homotopy classes of maps

of triples

πn(X,A, x) = [(In,∂In, Jn−1), (X,A, x)]

where Jn−1 = {1} × In−1 ∪ I × ∂In−1. That is we consider maps α : In → X such that α(∂In) ⊆ A

and α(Jn−1) = {x} and homotopies through maps of this kind.

The picture we shall have in mind as representing elements of πn(X,A, x) is

A

x X x

x

1

2

��

//

(2.1.2)

As before, a multiplication on πn(X,A, x) is defined by the compositions +i in any of the last

(n− 1) directions. It is not difficult to check that any of these multiplications gives a group structure

and analogously to Theorem 2.1.2 these all agree and are abelian if n > 3. Also, for any maps of

based pairs φ : (X,A, x)→ (Y,B,y), there is a homomorphism of groups

φ∗ : πn(X,A, x)→ πn(Y,B,y)

as before .

The homotopy groups defined above fit nicely in an exact sequence called the homotopy exact

sequence of the pair as follows:

· · · → πn(X, x)
j∗−→ πn(X,A, x)

∂n−→ πn−1(A, x)
i∗−→ πn−1(X, x)→ · · ·

j∗−→ π2(X,A, x)
∂2−→ π1(A, x)

i∗−→ π1(X, x)
j∗−→

j∗−→ π1(X,A, x)
∂1−→ π0(A, x)

i∗−→ π0(X, x)

(2.1.3)
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where i∗ and j∗ are the homomorphisms induced by the inclusions, and the boundary map of a pair

∂ is given by restriction, i.e. for any [α] ∈ πn(X,A, x) represented by a map α : (In,∂In, Jn−1) →

(X,A, x), we define ∂[α] = [α ′] where α ′ is the restriction of α to the face {0} × In−1, which we

identify with In−1.

This exact sequence is of abelian groups and homomorphisms until π2(X, x), of groups and ho-

momorphisms until π1(X, x), and of based sets for the last three terms. The amount of exactness for

the last terms is the same as for the exact sequence of a fibration of groupoids, see [Bro06, 7.2.9],

and which we use again in Section 12.4 (Theorem 12.4.1.) .

The final interesting piece of structure is the existence of a π1(A, x)-action on all the terms of the

above exact sequence which are groups. Let us define this action. For any [α] ∈ πn(X,A, x) and any

[ω] ∈ π1(A, x), we define the map

F = F(α,ω) : In × {0} ∪ Jn−1 × I→ X

given by α on In × {0} and by ω on {t}× I, for any t ∈ Jn−1. Then we have defined F on the subset

of In+1 indicated in Figure 2.2

J
J
J
J
J
J
J
J
J!!!!!!!!!!!!

J
J
J
J
J
J
J
J
J!!!!!!!!!!!!

!!!!!!!!!!!!

!!!!!!!
JJ

���
T
T
T

α

x
x

3x

ω

x

x

A

1

2

Figure 2.2: Action of π1(A, x)

Now, we compose with the retraction

r : In+1 → In × {0} ∪ Jn−1 × I

given by projecting from a point P = (0, 1
2
, 1

2
, · · · , 1

2
, 2) and indicated in Figure 2.3, getting a map

Fr : In+1 → X extending F.
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• P

Figure 2.3: Retraction from above-lateral

The “restriction” map

In ∼= In × {1} →֒ In+1 Fr
−→ X

represents an element [α][ω] ∈ πn(X,A, x).

We leave the reader to develop proofs that the action is an action of a group on a group, that is

that various axioms are satisfied. However all this will follow in a more algebraic fashion using the

theory given in chapter 14.

Notice that in this definition we use another of the filling arguments that we have started using

in the proof of Theorem 1.6.1 in Section 1.6. Arguments of the same kind prove that the assignment

just defined is independent of the several choices involved (α, ω and the extension of F), and that it

defines an action.

Remark 2.1.3 Notice that when n = 2 the map representing [α][ω] could be drawn

ωoo

F

ω //

ω

wwooooooooo ω

''OOOOOOOOO

ω

����
��

��
��

��
�

ω

��

ω

��?
??

??
??

??
??

1

2

��

//
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or, equivalently we could have chosen the one described as follows

ωoo

F

ω //

ωoo ω //

ωoo

ω
����

��
��

��
��

�

ω

��

ω

��

ω

��

ω

��?
??

??
??

??
??
ω //

1

2

��

//

2

In a similar way, we may define an action of π1(X, x) on πn(X, x). In our case, this gives an action

of π1(A, x) on both πn(A, x) and πn(X, x). Moreover, all maps in the homotopy exact sequence are

maps of π1(A, x)-groups.

All the above constructions can be repeated for based r-ads X∗ = (X;X1,X2, . . . ,Xr, x), where all

Xi are subspaces of X. Homotopy groups πnX∗ are defined for n > r+1 and are abelian for n > r+2.

There are various long exact sequences relating the homotopy groups of (r + 1)-ads and r-ads. An

account of these is in [Hu59]. The homotopy groups of an (r + 1)-ad are also a special case of the

homotopy groups of an r-cube of spaces [Lod82, BL87b, Gil87] . All these groups are important for

discussing the failure of excision for relative homotopy groups, to which we have referred earlier,

and whose analysis in some cases using nonabelian methods will be an important feature of this

book.

2.2 Whitehead’s work on crossed modules

We start with the basic definition of crossed module. ( From Chapter 6 onwards we will need crossed

modules over a groupoid, but until then we stick to the group case.)

Definition 2.2.1 A crossed module (over a group) M = (µ : M → P) is a morphism of groups

µ : M→ P called the boundary of M together with an action (m,p) 7→ mp of P on M satisfying the

two axioms

CM1) µ(mp) = p−1µ(m)p

CM2) n−1mn = mµn

for all m,n ∈M, p ∈ P. 2

When we wish to emphasise the codomain P, we call M a crossed P-module.

Basic algebraic examples of crossed modules are:

• A conjugation crossed module is an inclusion of a normal subgroup N ⊳ G, with action given

by conjugation. In particular, for any group P the identity map IdP : P → P is a crossed

module with the action of P on itself by conjugation. T. Porter has remarked that the concept

of crossed module can be seen as an ‘externalisation’ of the concept of normal subgroup. That

is, an inclusion is replaced by a homomorphism with special properties. This process occurs in

other algebraic situations.

• If M is a group, its automorphism crossed module has the form (χ : M → Aut(M)) where χm

is the inner automorphism mapping n to m−1nm. If A satisfies Inn(M) 6 A 6 Aut(M) and

χ(M) ⊆ A, we also call the automorphism crossed module to (χ : M→ A).
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• A P-module crossed module has zero boundary and M is a P-module.

• A central extension crossed module (µ : M→ P) has surjective boundary with kernel contained

in the centre of M and p ∈ P acts on m ∈M by conjugation with any element of µ−1p.

• Any homomorphism (µ : M → P), with M abelian and Imµ in the centre of P, provides a

crossed module with P acting trivially on M.

The category XMod/Groups of crossed modules has as objects all crossed modules over groups.

Morphisms in XMod/Groups from M to N are pair of group homomorphisms (g, f) forming commu-

tative diagrams with the two boundaries,

M
g //

µ

��

N

ν

��
P

f
// Q

and preserving the action in the sense that for all m ∈ M,p ∈ P we have g(mp) = (gm)fp. If P is

a group, then the category XMod/P of crossed P-modules is the subcategory of XMod/Groups whose

objects are the crossed P-modules and whose morphisms are the group homomorphisms g : M→ N

such that g preserves the action (i.e. g(mp) = (gm)p, for all m ∈M, p ∈ P), and νg = µ.

Here are some elementary general properties of crossed modules which we will often use.

Proposition 2.2.2 For any crossed module µ : M→ P, µM is a normal subgroup of P, i.e. µM ⊳ P.

Proof This is immediate from CM1). 2

The centraliser C(S) of a subset S of a group M is the set of elements of M which commute with

all elements of S. In particular, C(M) is written ZM and called the centre of M and is abelian. Any

subset of ZM is called central in M .

The commutator of elements m,n of a group M is the element [m,n] = m−1n−1mn. The

commutator subgroup [M,M] of M, is the normal subgroup ofM generated by all commutators. We

write Mab for the abelian group M/[M,M], the abelianisation of M.

Proposition 2.2.3 Let µ : M→ P be a crossed module, and let C = Cokµ. Then

(i) Kerµ is central in M.

(ii) µ(M) acts trivially on ZM.

(iii) ZM and Kerµ inherit an action of C to become C-modules.

(iv) P acts onMab and µ(M) acts trivially onMab which inherits an action ofC to become aC-module.

Proof Axiom CM2) shows that if m,n ∈M and µn = 1 then mn = nm. This proves (i). On the

other hand, and by CM2) and CM1), mn = nm implies mµn = m, and this proves (ii). Then (iii)

follows using these and Proposition 2.2.2, which implies C = P/µ(M).

Since [m,n]p = [mp,np] for m,n ∈ M, p ∈ P, we have [M,M] is P-invariant, so that P acts on

Mab. However in this action µ(M) acts trivially since if m,n ∈M then

mµn = n−1mn = m mod [M,M].

2
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Thus for any crossed module (µ : M→ P) with C = Cokµ, π = Kerµ we have an exact sequence

of C-modules

π −→Mab −→ (µM)ab −→ 1.

The first map is not injective in general. To see this, consider the crossed module χ : M→ Aut(M)

associated to a group M. Then π = Kerχ = ZM, the centre of M. There are groups M for which

1 6= ZM ⊆ [M,M],

for example the quaternion group, the dihedral groups and many others. For all these the composite

map π → ZM → Mab is trivial and so not injective. These examples give point to the following

useful result.

Proposition 2.2.4 If there is a section s : µM → M of µ which is a group homomorphism (but not

necessarily a P-map) then M is isomorphic as a group to π × µM. Further [M,M] ∩ π = 1, and the

map π→Mab is injective.

Proof Because s is a section (i.e. µs is the identity on µM) we have that M = (π)(Im s) and

π∩(Im s) = {1}. Because the action of Im s on π is trivial, we have an internal product decomposition

M = (π) × (Im s). Furthermore, by Proposition 2.2.3 we know that π is abelian so [M,M] =

[Im s, Im s].

So, [M,M] ∩ π = {1} and π→Mab is injective. 2

An important example where the section s exists is when µ(M) is a free group. The well known

Schreier Subgroup Theorem of combinatorial group theory, that a subgroup of a free group is itself

free (see books on combinatorial group theory, for example [LS01, Joh97] and also [Hig71], or

[Bro06, 10.8.2], for a groupoid proof) assures us that this is the case when M itself is free.

The results of the following exercise will be used in Chapter 11, Example 11.2.20.

Exercise 2.2.5 Let µ : M→ P be a crossed module.

(i) If M is abelian, then µM acts trivially on M so that M can be seen as a Cokµ module; and

(ii) if M has a single generator as P-group, and P is abelian, then M is abelian. 2

Example 2.2.6 Crossed modules µ : M→ P in which bothM and P are abelian form an interesting

subcategory of that of crossed modules. As an example, let µ : Z2×Z2 → Z4 be the morphism which

maps each Z2 summand injectively, and where Z4 operates by switching the two summands. This

gives a crossed module which as we shall see in Chapter 12 Theorem 12.2.8 is in a key sense non

trivial.

Other algebraic examples of crossed modules arise from two key constructions: coproducts of

crossed P-modules in Chapter 4 and induced crossed modules in Chapter 5.

The major geometric example of a crossed module is the following, where the basic definitions

were given in the last Section. Let (X,A, x) be a based pair of spaces, that is X is a topological space

and x ∈ A ⊆ X. Whitehead showed that the boundary map

∂ : π2(X,A, x)→ π1(A, x), (2.2.1)

from the second relative homotopy group of (X,A, x) to the fundamental group π1(A, x), together

with the standard action of π1(A, x) on π2(X,A, x), has the structure of crossed module. This result

and its proof will be seen in various lights in this book. Because of this example it is convenient and

sensible to regard crossed modules µ : M→ P as 2-dimensional versions of groups, with P,M being
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respectively the 1- and 2-dimensional parts. This analogy also will be pursued in more detail later.

At this stage we only note that the full description of the 2-dimensional part requires specification of

its 1-dimensional foundation and of the way the two parts fit together: that is, we need the whole

structure of crossed module.

Now we see that we have a functor from based pairs of topological spaces to crossed modules

Π2 : Top2
∗ → XMod/Groups (2.2.2)

which sends the based pair (X,A, x) to the crossed module given in 2.2.1 above. (Later we shall

formulate a groupoid version of this functor, allowing the base point to vary, but it is best to get

familiar with this special case at first.)

The work of Whitehead on crossed modules over the years 1941-1949 contained in [Whi41,

Whi46, Whi49b] and mentioned in the Introduction to this Chapter can be summarised as follows.

He started trying to obtain information on how the higher homotopy groups of a space are

affected by adding cells. For the fundamental group, the answer is a direct consequence of the van

Kampen Theorem:

adding a 2-cell corresponds to adding a relation to the fundamental group, adding an

n-cell for n > 3 does not change the fundamental group.

So the next question is:

how is the second homotopy group affected by adding 2-cells?, i.e. if X = A∪ {e2i }, what

is the relation between π2(A) and π2(X)?

In the first paper ([Whi41]), he formulated a geometric proof of a theorem in this direction. In

the second paper ([Whi46]) he gave the definition of crossed module and showed that the second

relative homotopy group π2(X,A, x) of a pair of spaces could be regarded as a crossed module

over the fundamental group π1(A, x). In the third paper ([Whi49b]) he introduced the notion of

free crossed module and showed that his previous work could be reformulated as showing that the

second relative homotopy group π2(X,A, x) was isomorphic to the free crossed module on a set of

generators corresponding to the 2-cells. This concept of free crossed module will be studied in detail

in Section 3.4.

He was not in fact able to obtain any detailed computations of second homotopy groups from this

result, but it was fundamental to his work on the classification of homotopy 2-types, and, together

with the concept of chain complex with operators that we shall develop in the second part, on a

range of realisation problems [Whi41, Whi46].

The proof he gave was difficult to read, since it was spread over three papers, with some notation

changes, and that is why a repackaged version of the proof by Brown was accepted for publication

[Bro80]. The main ideas of the proof included knot theory, and also transversality, techniques of

which became fashionable only in the 1960s (see also [HAM93]). A number of other proofs have

been given, including one we give in this book (see Corollary 5.4.8) in which the result is seen as a

special case of a 2-dimensional van Kampen type theorem.

The way this work was developed by Whitehead seems a very good example of what Grothendieck

has called ‘struggling to bring new concepts out of the dark’ through the search for the underlying

structural features of a geometric situation.

Whitehead’s work on free crossed modules parallelled independent work by Reidemeister and his

student Renee Peiffer at about the same time on the closely related notion of identities among rela-

tions [Rei49, Pei49], which we deal with in Section 3.1. Whitehead also acknowledged in [Whi41]
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that some of his results on second homotopy groups were also obtainable from work of Reidemeister

on chain complexes with operators, now recognised as given by the complex of cellular chains of the

universal cover of the space, and which has been extensively used for example in simple homotopy

theory [Coh73].

2.3 The 2-dimensional van Kampen Theorem

Whitehead’s theorem on free crossed modules referred to in the last section demonstrated that a

particular universal property was available for homotopy theory in dimension 2. This suggested that

there was scope for some broader kind of universal property at this level.

It also gave a clue to a reasonable approach. Such a universal property, in order to be broader,

would clearly have to include Whitehead’s theorem. Now this theorem is about the fundamental

crossed module of a particular pair of spaces. So the broader principle should be about the funda-

mental crossed modules of pairs of spaces. The simplest property would seem to be, in analogy to

the van Kampen Theorem, that the functor

Π2 : Top2
∗ → XMod/Groups

described in (2.2.2) preserves certain pushouts. This led to the formulation of the next theorem. Also

there had been a long period of experimentation by Brown and Spencer on the relations between

crossed modules and double groupoids [BS76b, BS76a], and by Higgins on calculation with crossed

modules, so that the proof of the theorem, and the deduction of interesting calculations, came fairly

quickly in 1974.

The next two theorems correspond to Theorem C of this Brown and Higgins paper ([BH78]).

We separate the statement into two theorems for an easier understanding. The first one is about

coverings by two (open) subspaces, the second one about adjunction spaces.

First, we say the based pair (X,A) is connected if A and X are path connected and for x ∈ A

the induced map of fundamental groups π1(A, x)→ π1(X, x) is surjective, or, equivalently, using the

homotopy exact sequence, when π1(X,A, x) = 0.

Having in mind that all pairs are based but not including the base point in the statement, we

have:

Theorem 2.3.1 Let A, U1, and U2 be subspaces of X such that the total space X is covered by the

interiors of U1 and U2. We define U12 = U1 ∩ U2, and Aν = A ∩ Uν for ν = 1, 2, 12. If the pairs

(Uν,Aν) are connected for ν = 1, 2, 12, then:

(Con) The pair (X,A) is connected.

(Iso) The following diagram induced by inclusions

Π2(U12,A12) //

��

Π2(U2,A2)

��
Π2(U1,A1) // Π2(X,A)

(2.3.1)

is a pushout of crossed modules.

Remark 2.3.2 Recall that this statement means that the above mentioned diagram is commutative

and has the following universal property: For any crossed module M and morphisms of crossed
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modules φν : Π2(Uν,Aν) → M for ν = 1, 2 making the external square commutative, there is a

unique morphism of crossed modules φ : Π2(X,A)→M such that the diagram

Π2(U12,A12) //

��

Π2(U1,A1)

�� φ1

��

Π2(U2,A2) //

φ2 --

Π2(U,A)
φ

%%
M

commutes. 2

There is a slightly more general version of the theorem for adjunction spaces that can be deduced

from the preceding theorem by using general mapping cylinder arguments.

Theorem 2.3.3 Let X and Y be spaces, A a subset of X and f : A → Y a map. We consider subspaces

X1 ⊆ X and Y1 ⊆ Y and define A1 = X1 ∪ A and f1 = f| : A1 → Y1. If the inclusions A ⊆ X and

A1 ⊆ X1 are closed cofibrations and the pairs (Y, Y1), (X,X1), (A,A1) are connected, then:

(Con) The pair (X ∪f Y,X1 ∪f1 Y1) is connected.

(Iso) The following diagram induced by inclusions

Π2(A,A1) //

��

Π2(Y, Y1)

��
Π2(X,X1) // Π2(X ∪f Y,X1 ∪f1 Y1)

(2.3.2)

is a pushout of crossed modules.

Remark 2.3.4 The term closed cofibration included in the hypothesis of the theorem is satisfied in

a great number of useful cases. It can be intuitively interpreted as saying that the placing of A in X

and of A1 in X1 are ‘locally not wild’. 2

The interest in these theorems is at least seven fold:

• The theorem does have Whitehead’s Theorem as a consequence (see Corollary 5.4.8).

• The theorem is a very useful computational tool and gives information unobtainable so far by

other sources.

• The theorem is an example of a local-to-global theorem. Such theorems play an important rôle

in mathematics and its applications.

• The theorem deals with nonabelian objects, and so cannot be proved by traditional means of

algebraic topology.

• The two available proofs use groupoid notions in an essential way.

• The existence of the theorem confirms the value of the crossed module concept, and of the

methods used in its proof. We should be interested in algebraic structures for which this kind

of result is true.
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• It shows the difficulty of homotopy theory since one has, it appears, to go through all this just

to determine, as we explain in Section 5.8, the second homotopy groups of certain mapping

cones.

A further point is that the proof we shall give later does not assume the general existence of

pushouts of crossed modules. What it does is directly verify the required universal property in this

case.

We conclude this section by stating an analogue of Theorem 2.3.1, but for general covers of a

space X; this also will be deduced from Theorem 6.8.2.

Let Λ be an indexing set and suppose we are given a family U = {Uλ}λ∈Λ of subsets of X such

that the interiors of the sets of U cover X. For each ν = {ν1, · · · ,νn} ∈ Λn, we write

Uν = Uν1
∩ · · · ∩Uνn

.

Let A be a subspace of X, and define Aν = Uν ∩A, for any ν ∈ Λn. Suppose also given a base point

x ∈ A which is contained in every Xλ.

Theorem 2.3.5 Assume that for every ν ∈ Λn,n > 1, the pair (Uν,Aν) is connected. Then

(Con) the pair (X,A) is connected, and

(Iso) the crossed module Π2(X,A) satisfies the following universal property: For any crossed module M

and any family of morphisms of crossed modules {φλ : Π2(Uλ,Aλ) → M | λ ∈ Λ} such that for

any λ,µ ∈ Λ the diagram

Π2(Uλµ,Aλµ) //

��

Π2(Uλ,Aλ)

φλ
��

Π2(Uµ,Aµ)
φµ // M

commutes, there is a unique morphism of crossed modules φ : Π2(X,A) → M such that all

triangles of the form

Π2(Uλ,Aλ)

''NNNNNNNNNNNN
// Π2(X,A)

φ
��

M

commute.

The universal property of the theorem can be expressed as what is called a ‘co-equaliser condition’

(see Appendix).

Remark 2.3.6 It can be easily seen from the proof that the conditions on n-fold intersections for

all n > 1 can be relaxed to path connectivity of all 4-fold intersections, and 1-connectivity of all

pairs given by 8-fold intersections. More refinements of the arguments, using Lebesgue covering

dimension, reduce these numbers to 3 and 4 respectively. These improvements were originally

shown by Razak Salleh in his thesis [RS76]. 2

The proof of Theorem 2.3.5 will be given later via another intermediate algebraic structure,

that of double groupoids, since these have properties which are more appropriate than are those

of crossed modules for expressing the geometry of the proof, which is analogous to that of the

1-dimensional theorem.
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2.4 The classifying spaces of a group and of a crossed module

We are going to give in the second part of this book the construction of the classifying space of a

crossed complex; this includes as particular cases the classifying spaces of a group and of a crossed

module.

Nevertheless, this is a good point to state some of the properties of these special cases. In

particular we want to stress that these classifying spaces classify the 1-type and the 2-type of a

space.

The classifying space of a group P is a functorial construction

B : Groups→ Top∗

assigning a reduced CW-complex BP to each group P so that

Proposition 2.4.1 The homotopy groups of the classifying space of the group P are given by

πi(BP) ∼=

{
P if i = 1,

0 if i > 2.

This gives a natural equivalence from π1B to the identity. There is also some relation between

Bπ1 and the identity. It is given by

Proposition 2.4.2 Let X be a reduced CW-complex and let φ : π1(X) → P be a homomorphism of

groups. Then there is a map

X→ BP

inducing the homomorphism φ on fundamental groups.

As a consequence we get that Bπ1 captures all information on fundamental groups.

Theorem 2.4.3 Let X be a reduced CW-complex and let P = π1(X). Then there is a map

X→ BP

inducing an isomorphism of fundamental groups.

It is because of these results that groups are said to model pointed, connected homotopy 1-types.

Next, we state some properties of the classifying space of a crossed module. It is a functor

B : XMod→ Top∗

assigning to a crossed module M = (µ : M → P) a pointed CW-space BM with the following

properties:

Proposition 2.4.4 The homotopy groups of the classifying space of the crossed module M are given by

πi(BM) ∼=






Coker µ for i = 1

Ker µ for i = 2

0 for i > 2.
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There is a twofold relation with the classifying space of a group defined before. On the one hand,

it is a generalisation, i.e.

Proposition 2.4.5 If P is a group then the classifying space B(1 → P) is exactly the classifying space

BP discussed before.

On the other hand

Proposition 2.4.6 Let M ⊳ P be a normal subgroup of the group P. Then the morphism of crossed

modules (M → P) → (1 → P/M) induces a homotopy equivalence of classifying spaces B(M → P) →

B(P/M).

This follows from Whitehead’s theorem, that a map of CW-spaces inducing an isomorphism of all

homotopy groups is a homotopy equivalence.

Proposition 2.4.7 The classifying space BP is a subcomplex of BM, and there is a natural isomorphism

of crossed modules

Π2(BM,BP) ∼= M. (2.4.1)

Theorem 2.4.8 Let X be a reduced CW-complex, and let Π2(X,X1) be the crossed module π2(X,X1)→

π1(X
1), where X1 is the 1-skeleton of X. Then there is a map

X→ B(Π2(X,X1)) (2.4.2)

inducing an isomorphism of π1 and π2.

It is because of these results that it is reasonable to say that crossed modules model all pointed

connected homotopy 2-types. This result is originally due to Mac Lane and Whitehead [MLW50]

(they use the term 3-type for what later came to be called 2-type), and with a different proof.

Later we shall give by means of crossed complexes an elegant description of the cells of the clas-

sifying space B(M→ P). The existence and properties of the classifying space show that calculations

of pushouts of crossed modules, such as those required by the 2-dimensional van Kampen Theorem,

may also be regarded as calculations of homotopy 2-types. This is evidence that the fundamental

crossed module of a pair is an appropriate candidate for a 2-dimensional version of the fundamental

group, as sought by an earlier generation of topologists.

The situation we have for crossed modules and pairs of spaces comes under a format very similar

to the main diagram (MD) in the Preface:

(topological data)
Π //

U ''OOOOOOOOOOOO (algebraic data)

B
oo

Bxxppppppppppp

Top

(2.4.3)

We suppose the following properties:

(i) The functor Π preserves certain colimits.
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(ii) There is a natural equivalence ΠB ≃ 1.

(iii) B = UB.

(iv) There is a convenient natural transformation 1 ≃ BΠ preserving some homotopy properties.

Property (i) is a form of the van Kampen Theorem. This enables some computations to get started.

Property (ii) shows that the algebraic data forms a reasonable mirror of the topological data.

Property (iii) allows the classifying space to be defined: U is some kind of forgetful functor.

Property (iv) is difficult to state precisely in general terms. The intention is to show that the structure

BΠ captures some slice of the homotopy properties of the original topological data.

We shall not use any general format of or deduction from these properties, but it should be

realised that the material we give on groups and on crossed modules forms part of a much more

general pattern.

Let us finish this section by giving also some indications of how to go up one dimension further.

First we give a theorem about the behaviour of that classifying space of crossed modules functor

when applied to a short exact sequence. This theorem will be deduced from a more general theorem

on the classifying space of crossed complexes, where more machinery is available for the proof.

Theorem 2.4.9 Suppose the commutative diagram

0 // L
i //

λ
��

M
p //

µ
��

N //

ν
��

1

1 // K
j

// P
f

// Q // 1

(2.4.4)

is such that the vertical arrows are crossed modules, the squares are morphisms of crossed modules, and

the rows are exact sequences of groups. Then the diagram of induced maps of classifying spaces

B(L→ K)→ B(M→ P)→ B(N→ Q)

is a fibration sequence.

In the above situation we say that the crossed module L → K is a kernel of the morphism (p, f)

of crossed modules. Note that the groups L,K are essentially normal subgroups ofM,P respectively.

There is an additional property, that if k ∈ K,m ∈ M, then p(m−1mj(k)) = 1, so that m−1mj(k) ∈

Im i. This gives rise to a function h : K×M→ L. The properties are summarised by saying that the

first square of diagram 2.4.4 is a crossed square [Lod82]. This structure gives the next stage after

crossed modules for modeling homotopy types, that is they model homotopy 3-types. There seem to

be good reasons why the analysis of kernels should give rise to a higher order structure modeling a

further level of homotopy types. These ideas are quite subtle and require notions of ‘crossed squares’

which cannot be pursued this book (see [BL87b] and [Por93]).

2.5 Cat1-groups.

There are several algebraic and combinatorial categories that are equivalent to the category of

crossed modules. Some of these equivalences were already known to Verdier in the late 60’s, but

the first published account seems to have been by Brown and Spencer in 1976 [BS76b]. Later, these
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equivalences have been generalised by Porter, [Por87], to a more categorical setting, and by Ellis

and Steiner, [ES87], to an n-cube setting.

Of the categories equivalent to XMod/Groups, perhaps the most used is the category Cat1- Groups

of cat1-groups. One of its advantages is the naturality of the generalisation to higher dimensions

and in this way was used for Loday in [Lod82]. It is also useful in some cases when describing the

colimits used in the 2-dimensional van Kampen Theorem.

In this section, we explain this equivalence and some of the applications. Let us begin by ex-

pressing the basic properties of a crossed module M = (µ : M→ P) in an alternative way.

The action of P on M can be encoded using the semidirect product P ⋉M, and the projection

s : P ⋉M → P, (p,m) 7→ p. The map µ gives a homomorphism t : P ⋉ M → P ⋉ M by the rule

(p,m) 7→ (pµ(m), 1); that t is a homomorphism of groups follows from CM1).

It is a bit more difficult to find the way CM2) can be translated, but after playing for a while it

can be seen that it gives that the elements of Ker s and those of Ker t commute in the semidirect

product. This is the kind of algebraic object we need.

A cat1-group is a triple G = (G, s, t) such that G is a group and s, t : G→ G are group homomor-

phisms satisfying

CG1) st = t and ts = s

CG2) [Ker s, Ker t] = 1.

A homomorphism of cat1-groups between (G, s, t) and (G ′, s ′, t ′) is a homomorphism of groups

f : G → G ′ preserving the structure, i.e. such that s ′f = fs and t ′f = ft. These objects and

morphisms define the category Cat1- Groups of cat1-groups.

Example 2.5.1 The category of groups, Groups, can be considered a full subcategory of Cat1- Groups

using the inclusion functor

I : Groups→ Cat1- Groups

given by I(G) = (G, Id , Id). 2

Having in mind the discussion at the beginning of this section, we define a functor

λ : XMod/Groups→ Cat1- Groups

given by λ(µ : M→ P) = (P ⋉M, s, t), where s(g,m) = (g, 1) and t(g,m) = (g(µm), 1).

Proposition 2.5.2 If µ : M→ P is a crossed module, then λ(µ : M→ P) is a cat1-group.

Proof It is clear that s is a homomorphism. To check that t is also a homomorphism , let us

consider elements (g,m), (g ′,m ′) ∈ P ⋉M. Then, we have

t((g,m)(g ′,m ′)) = t(gg ′,mg
′

m ′)

= (gg ′µ(mg
′

)µm ′), 1) = (gg ′g ′−1µmg′µm ′), 1) by CM1)

= (gµmg′µm ′), 1) = t(g,m)t(g ′,m ′).

It is also easy to prove that s, t satisfy CG1).

To check CG2), let us consider generic elements (1,m) ∈ Ker s and (µm ′,m ′−1
) ∈ Ker t. Then,

we have

(1,m)(µm ′,m ′−1
) = (µm ′,mµm

′

m ′−1
) = (µm ′,m ′−1

mm ′m ′−1
) by CM2)

= (µm ′,m ′−1
m) = (µm ′,m ′−1

)(1,m).

2
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Example 2.5.3 Thus, associated to any normal subgroup M of G, we have a cat1-group M ⋉ G,

where G acts on M by conjugation. 2

To define the functor back, let us check that all cat1-groups have a semidirect product decompo-

sition.

Proposition 2.5.4 For any cat1-group (G, s, t):

i) The maps s, t have the same range, i.e. s(G) = t(G) = N, and are the identity on N.

ii) The morphisms s and t are “projections”, i.e. t2 = t and s2 = s.

Proof i) As st = t, we have Im t ⊆ Im s and as ts = s, we have Im s ⊆ Im t.

ii) We have ss = sts = ts = s. Similarly, tt = t. 2

As an easy consequence, we have:

Corollary 2.5.5 There are two split short exact sequences

1→ Ker s →֒ G
s
−→ N→ 1 and 1→ Ker t →֒ G

t
−→ N→ 1.

Remark 2.5.6 Thus G is isomorphic to both semidirect products N ⋉ Ker s and N ⋉ Ker t, where

N acts on both kernel by conjugation. The map N ⋉ Ker s → G is just the product and the inverse

isomorphism G→ N⋉ Ker s is given by g 7→ (s(g), s(g−1)g). 2

We can also define an inverse functor

γ : Cat1- Groups→ XMod/Groups

given by γ(G, s, t) = (t| : Ker s→ Im s) where Im s acts on Ker s by conjugation.

Proposition 2.5.7 If (G, s, t) is a cat1-group, then γ(G, s, t) is a crossed module.

Proof With respect to CM1), for all g ∈ Im s and m ∈ Ker s, we have

t(mg) = t(g−1mg) = (tg)−1(tm)(tg).

Now, since g ∈ Im s = Im t, by Proposition 2.5.4 we have tg = g. Thus, t(mg) = g−1(tm)g.

On the other hand, with respect to CM2) for all m,m ′ ∈ Ker s, we have

m ′(tm)
= (tm−1)m ′(tm) = (tm−1)m ′(tm)m−1m.

Now, since (tm)m−1 ∈ Ker s and m ′ ∈ Ker s, they commute, giving

m ′(tm)
= (tm−1)(tm)m−1m ′m = m−1m ′m.

2

Proposition 2.5.8 The functors λ and γ give an equivalence of categories.

Proof On one hand we have λγ(G, s, t) = (Im t ⋉ Ker s, s ′, t ′) where s ′(g,m) = (g, 1) and

t ′(g,m) = (gt(m), 1). Clearly there is a natural isomorphism of groups φ : G → Im t ⋉ Ker s

given by φ(g) = (s(g), s(g)−1g) that is an isomorphism of cat1-groups.

On the other hand, γλ(µ : M → P) = (Ker
t
−→ Im s) where s : P ⋉ M → P ⋉ M is given by

s(g,m) = (g, 1). There are obvious natural isomorphisms Ker s ∼= M and Im s ∼= P giving a natural

isomorphism of crossed modules. 2
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2.6 The fundamental crossed module of a fibration

In this section the proofs will be omitted or be sketchy, since background in fibrations of spaces is

needed. Throughout we assume that ‘space’ means ‘pointed space’.

In this section we are going to give a proof that for any fibration F = (F
i
−→ E

p
−→ X) the induced

map

i∗ : π1(F)→ π1(E)

is a crossed module Π2(F) which we call the fundamental crossed module of the fibration F. This is

an observation first made by Quillen and from it can be deduced the fundamental crossed module

of a pair of spaces.

Perhaps it is better first to recall in some detail the action of π1(E) on π1(F) for any fibration F.

Let us consider [µ] ∈ π1(F) and [α] ∈ π1(E). The projection to X of the loop α−1µα is homotopic

to the constant through a homotopy of loopsH : I×I→ X. Since p is a fibration, using the homotopy

lifting property, we get a homotopy of loops H : I × I → E from α−1µα to a loop projecting to the

constant, i.e. ImH1 ⊆ F. We define

[µ][α] = [H1] ∈ π1(E).

We omit the proof that this action is well defined. This is a good exercise on fibration theory.

To prove that i∗ is a crossed module, we proceed in a roundabout way. Clearly, it is equivalent

to prove that the semidirect product π1(E) ⋉ π1(F) given by the action just defined is a cat1-group.

Again, this is not done directly, but instead we prove that there is a natural isomorphism of groups

π1(E×X E) ∼= π1(E) ⋉ π1(F)

and that the former is a cat1-group, where E×X E is the pullback of p along p, i.e.

E×X E = {(e, e′) ∈ E× E : p(e) = p(e′)}.

First, let us prove that π1(E×X E) decomposes in the expected semidirect product.

Proposition 2.6.1 For any fibration F = (F
i
−→ E

p
−→ X), there are two splitting short exact sequences

1→ π1(F)
i1∗−→ π1(E×X E)

p1∗−→ π1(E)→ 1 and 1→ π1(F)
i2∗−→ π1(E×X E)

p2∗−→ π1(E)→ 1

where il is the inclusion of F in the lth factor. Moreover both are natural with respect to maps of

fibrations.

Proof Recall that the projection in the first factor E ×X E → E is a fibration with fibre F since

it is the pullback of p along itself. Also, the diagonal map gives a section of this fibration. Thus,

its homotopy exact sequence decomposes into a sequence of splitting short exact sequences. In

particular,

1→ π1(F)
i1∗−→ π1(E×X E)

p1∗−→ π1(E)→ 1

is a splitting short exact sequence. The same is true in the second case. 2

Now, we are able to prove that (π1(E×X E), s, t) where s (resp. t) is the homomorphism induced

on the fundamental groups by the composition of the projection in the first (resp. second) factor

and the diagonal is a cat1-group for any fibration F. We shall call it the fundamental cat1-group of

the fibration F.
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Proposition 2.6.2 Let F = (F
i
−→ E

p
−→ X) be a fibration. Then (π1(E×X E), s, t) is a cat1-group.

Proof It clearly satisfies CG1) since the maps s, t are essentially projections.

To prove CG2), using the exact sequence of Proposition 2.6.1, we have Ker s = Im i1∗ and Ker t =

Im i2∗

Also by Proposition 2.6.1 the elements of Ker s are of the form [(ct,µ)] where µ is a loop in the

fibre and the elements of Im s are of the form [(α,α)] where α is a loop in E.

We choose elements [(ct,µ)] ∈ Ker s and [(ν, ct)] ∈ Ker t where µ and ν are loops in the fibre.

The commutativity of these elements is now clear, since

[(ν, ct)][(ct,µ)] = [(ct,µ)][(ν, ct)] = [(ν,µ)].

2

Now, we proceed to identify the crossed module associated with (π1(E×X E), s, t).

Proposition 2.6.3 The crossed module (t| : Ker s → Im s) associated to the cat1-group π1(E ×X E) is

naturally isomorphic to Π2F = (π1(F)→ π1(E)).

Proof There are natural isomorphisms π1(F) ∼= Ker s and π1(E) ∼= Im s, given by [µ] 7→ [(ct,µ)]

and [α] 7→ [(α,α)] respectively. It remains only to check that these isomorphisms preserve actions.

The action of Ker s on Im s is given by conjugation in π1(E×X E). Under these isomorphisms the

result of the action of [α] ∈ π1(E) on [µ] ∈ π1(F), is the homotopy class of any loop ν in F satisfying

[(ct,ν)] = [(α−1α,α−1µα)].

Recalling the definition of the π1(E) action on π1(F) at the beginning of the section, we see that

[µ][α] is represented by just this same element. 2

To define the fundamental cat1-group functor on maps of general topological spaces we need

some more homotopy theory. There is no space to develop this here in full, and so we just sketch

the ideas, which are well covered in books on abstract homotopy theory, for example [KP97].

A standard procedure in homotopy theory is to factor any map f : Y → X through a homotopy

equivalence i and a fibration f : Y → X where Y = {(λ,y) ∈ XI × Y : λ(1) = f(y)} and f(λ,y) = λ(0).

This gives a functor Fib : f 7→ f from maps to fibrations. We define the cat1-group functor on

maps of general topological spaces by composition with the cat1-group of fibrations functor.

Let us sketch a direct description of the composite functor

Maps→ Cat1- Groups

following ideas of Gilbert in [Gil87].

The functor is defined by

(f : Y → X) 7→ (π1(Y ×X Y),p1∗,p2∗).

Using the homeomorphism

Y ×X Y ≡ {(y1, λ,y2) ∈ Y × X
I × Y : λ(0) = f(y1) and λ(1) = f(y2)}

the projections in the factors correspond to the maps

p1(y1, λ,y2) = (y1, λ1), where λ1(t) = λ(t/2)

p2(y1, λ,y2) = (y2, λ2), where λ2(t) = λ(1 − (t/2)).
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Via the same homeomorphism, the elements of π1(Y ×X Y) correspond to homotopy classes of

triples, [(α,µ,β)], where µ : I× I→ X maps I× {0, 1} to the base point and α,β : I→ Y are loops on

Y lifting µ(0, −) and µ(1, −) respectively. The homotopies correspond to triples, (F,H,G), the map

H : I × I × I → X sending I× {0, 1}× I to the base point, and F,G : I × I → Y being homotopies of

loops, relative to the end points, lifting H(0, −, −) and H(1, −, −), respectively.

The description of p1∗ and p2∗ follows easily.

For the sake of coherence let us point out that if f is already a fibration, both definitions of the

fundamental cat1-group produce the same group up to isomorphism.

If f is a fibration, f and f are fibre homotopy equivalent. It can be checked directly that Y ×X Y

and Y ×X Y are also homotopy equivalent, but it is also a consequence of the following cogluing

theorem which is a special case of the results of [BH70]. The dual of this result, namely a ‘gluing

theorem’, is proved in [Bro06] and in an abstract setting in [KP97].

Theorem 2.6.4 Suppose given maps over X

Y
i //

f ��>
>>

>>
>>

> Y

f����
��

��
��

X

Z
j //

g
��>

>>
>>

>>
Z

g����
��

��
�

X

such that f, f,g,g are fibrations, and i, j are homotopy equivalences. Then the induced map on pullbacks

i×X j : Y ×X Z→ Y ×X Z

is also a homotopy equivalence, and in fact a fibre homotopy equivalence.

In the particular case in which we are mostly interested, we consider a pair of topological spaces

(X,A). Associated to the inclusion i : A → X there is the fibration A → X where Ā is the space of

paths in X starting at some point of A and the map sends each path to its end point. The fibre of this

fibration is the space

Fi = {λ ∈ XI : λ(0) ∈ A and λ(1) = ∗}

whose homotopy groups are, by definition, those of the pair (X,A), i.e.

πn(Fi) = πn+1(X,A).

In particular, the fundamental crossed module of a pair functor

Π2 : Top2
∗ −→ Fib −→ XMod/Groups

is given by

Π2(X,A) = (∂ : π2(X,A)→ π1(A))

with the usual action already known and used by Whitehead.

Finally in this section, we mention some relations of crossed modules with algebraic K-theory,

for those familiar with that area.

Let R be a ring. A basic structure for algebraic K-theory is the homotopy fibration

F(R)→ BGL(R)→ BGL(R)+.

This yields the crossed module

π1(F(R))→ π1(BGL(R))
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which is equivalent to

St(R)→ GL(R)

which has cokernel K1(R) and kernel K2(R).

Now let I be an ideal of R, and let GL(R, I), the congruence subgroup, be the kernel of GL(R) →

GL(R/I). By the same trick, we get a crossed module

St(R, I)→ GL(R, I)

which has cokernel K1(R, I) and kernel K2(R, I). This is Loday’s definition of the relative K2 [Lod78].

It differs from that of Milnor [Mil71] by relations corresponding to those of the second rule CM2)

for a crossed module.

One advantage of this procedure is the generalisation to multirelative groups K2(R; I1, . . . , In)

[GWL81, Ell88]. The relevant algebra is that of crossed n-cubes of groups. All this was one of the

motivations for the van Kampen Theorem for n-cubes of spaces [BL87b].

2.7 The category of categories internal to groups

In this section, we study another category equivalent to XMod/Groups, namely the category of cate-

gories internal to groups, written Cat[Groups]. This category has easy generalisations both to higher

dimensions and to other algebraic settings.

This category has two features that make it very interesting. On the one hand it can be used as

an intermediate step to get a simplicial equivalent of crossed modules which can be generalised to

crossed n-cubes. (This has been done by T. Porter in [Por93]).

On the other hand, we shall see that the category Cat[Groups] is formed by groupoids, being also

the category of group-groupoids. This will be generalised in Chapter 6 to an equivalence from the

category XMod of crossed modules over groupoids to a category of double groupoids.

First, let us recall from the Appendix that the definition of a category C is given by two sets, the

object set, Ob C, and the morphism set, MorC, and four maps, the identity i, the source and target

s, t, and the composition of morphisms ◦, satisfying several axioms. Note that ◦ is considered as a

function on its domain.

We say that C is a category internal to Groups, if both Ob C and MorC have a group structure

and the maps s, t, i and ◦ are homomorphisms of groups. Thus, a category internal to Groups is also

a group in the category of all small categories. This principle for algebraic structure that ‘an A in a B

is also a B in an A’ is of wide applicability.

Similarly, a functor f : C → C ′ between two categories, is a pair of maps Ob f and f commuting

with the structure maps (source, target, identity and composition).

A functor between categories internal to Groups is a functor internal to Groups if both maps are

homomorphisms of groups.

Then, Cat[Groups] is the category whose objects and morphisms are categories and functors in-

ternal to Groups.

For any object C in Cat[Groups], we will write the product in MorC additively and the product

in Ob C multiplicatively. Then, if 1 and 0 are the identities in Ob C and MorC, we have i(1) = 0,

s(0) = 1 and t(0) = 1. So, the elements of Ker s (resp. Ker t ) are the morphisms with source 1

(target 1 ).
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The next property shows that, for any category internal to Groups, we can define the composition

of morphisms in terms of the other structure maps.

Proposition 2.7.1 For any two composable morphisms, u and v, we have

(i) v ◦ u = v− itu+ u = v− isv+ u,

(ii) v ◦ u = u− itu+ v = u− isv+ v.

Proof (i) We have

v ◦ u = (v+ 0) ◦ (itu+ (−itu+ u)) = (v ◦ itu) + (0 ◦ (−itu+ u)) = v− itu+ u.

The second equality is immediate because the morphisms are composable, so itu = isv.

(ii) is proved in a similar way. 2

Remark 2.7.2 Thus, to prove that a category where the objects and morphisms are groups, and the

source target and identity are homomorphisms, is internal to groups, all we have to check is that the

composition defined using Proposition 2.7.1 is a homomorphism. 2

There is also an expression for the inverse of a morphism, proving that all categories internal to

groups are groupoids.

Proposition 2.7.3 For any morphism in a category internal to groups we have

u−1 = isu− u+ itu.

Proof Let us define u−1 by this formula. We can easily check that it has the appropriate source

and target and that both compositions are the identity. 2

Remark 2.7.4 As a consequence of this property, a category internal to groups is a groupoid internal

to groups, or, equivalently, a group in the category of groupoids.

Considering that a group is just a groupoid with only one object, we could try to study the

category of “groupoids of groupoids”, or “double groupoids”. We shall do this in Chapter 6. 2

To end this section, we state the relation of Cat[Groups] to the previous categories. The equiva-

lence with Cat1- Groups is easily defined.

In one direction, we assign to the cat1-group (G, s, t) the category having Im s = Im t as set of

objects, G as set of morphisms, s and t as source and target, identity the inclusion Im s ⊆ G and

composition defined by g ′ ◦g = g ′− itg+g, for any g,g ′ ∈ G with tg = sg ′. It can be easily checked

that this gives a category internal to Groups.

In the other direction, to any category C internal to Groups we assign the cat1-group (Mor C, i ◦

s, i ◦ t).

Thus, the categories XMod/Groups and Cat[Groups] are equivalent, since both are equivalent to

Cat1- Groups. However, it is convenient to record for further use the functors giving this equivalence.

The functor one way is defined as C 7→ (s| : Ker t→ Ob C), where C is a cat1-group. The reverse

functor assigns to any crossed module M = (µ : M → P) the category having P as set of objects,



48 [2.7] Nonabelian Algebraic Topology

P ⋉M as set of morphisms; identity map given by the inclusion; source and target maps given by

s(g,m) = g and t(g,m) = g(µm) and composition given by any of the formulae in Proposition

2.7.1.

Nevertheless, there is a simpler expression for the composition in this case. Notice first that with

the definition of source and target, two morphisms (g ′,m ′), (g,m) ∈ P ⋉M are composable when

gµm = g ′.

Proposition 2.7.5 The composition of morphisms in P ⋉M,

◦ : P ⋉Ms×t P ⋉M→ P ⋉M

is given by (g(µm),m ′) ◦ (g,m) = (g,mm ′).

Proof This is not difficult to prove using the definition of composition given in Proposition 2.7.1

i). 2

With this property we can get another model of the category internal to Groups associated to a

crossed module.

Proposition 2.7.6 The map A : Mor C s×tMor C → P ⋉M ⋉M defined by A((g ′,m ′), (g,m)) =

(g,m,m ′), is an isomorphism carrying the composition to the map

◦ ′ : P ⋉M⋉M→ P ⋉M

sending (g,m,m ′) to (g,mm ′).

Proof Clearly A is bijective and transforms the composition to the afore mentioned map. It re-

mains to check that A is a homomorphism and that is left as an exercise. 2

Let us consider now the composite functor

Fib→ Cat1- Groups→ Cat[Groups]

i.e., mapping F to the category internal to Groups associated to the cat1-group π1(E×X E).

Using the isomorphism Impi∗ ∼= π1(E), this category is isomorphic to the category that has π1(E)

as objects, π1(E ×X E) as morphisms, source and target given by projections, identity given by the

diagonal and composition the only one possible to make this a category internal to groups.

As seen before, this category is also isomorphic to the one associated to π1(E) ⋉ π1(F), that has

π1(E) as objects, π1(E) ⋉ π1(F) as morphisms, ([α], [µ]) 7→ [α] and ([α], [µ]) 7→ [α] ∗ i∗([µ]) as source

and target maps and composition given by

([α] ∗ i∗[µ], [µ′]) ◦ ([α], [µ]) = ([α][µ ∗ µ′]).

We finish by stating a description of the composition in π1(E×X E).

Proposition 2.7.7 Let [(α,β)], [(β ′,γ ′)] ∈ π1(E×X E) be such that [β] = [β ′],i.e. there is a homotopy

G : β ′ ∼= β. Since p is a fibration there is a homotopy H lifting pG and starting with γ ′. Then

[(β ′,γ ′)] ◦ [(α,β)] = [(α,H1)].

Proof It is clear that [(β ′,γ′)] and [(β,H1)] are homotopic using the homotopy (G,H). Then,

[(β ′,γ ′)] ◦ [(α,β)] = [(β,H1)] ◦ [(α,β)]. So, we only have to consider the composition in the case

[(β,γ)] ◦ [(α,β)]. Using that F is a fibration there are unique [µ], [µ′] ∈ π1(F) with

[(α,β)] = A([α], [µ]) = [(α ∗ ct,α ∗ µ)]
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and

[(β,γ)] = A([β], [µ′]) = [(β ∗ ct,β ∗ µ′)].

Clearly, [β] = [α] ∗ i∗([µ]), and

[(β,γ)] ◦ [(α,β)] = A([β], [µ′]) ◦A([α], [µ])

= [(β ∗ ct,β ∗ µ′)] ◦ [(α ∗ ct,α ∗ µ)]

= [(α ∗ ct,α ∗ µ′ ∗ µ)]

= [((α ∗ ct) ∗ ct,α ∗ µ′ ∗ µ)]

= [(α ∗ ct,β ∗ µ′)]

= [(α,γ)].

2

This proof is related to a proof in [BJ04] which shows that in the construction of a double

homotopy groupoid of a map of spaces, a composition defined geometrically agrees with that derived

from Generalised Galois Theory.

We can also describe easily the functor

Maps→ Cat[Groups].

Notice that π1(Y) is isomorphic to π1(Y) under the projection. So the associated category internal to

groups is equivalent to the one having π1(Y) as objects, π1(Y×X Y) as morphisms, source and target

given by [(α,µ,β)] → [α] and [(α,µ,β)] → [β], and composition given by [(β,µ′,γ)] ◦ [(α,µ,β)] =

[(α,µ′ ∗ µ,γ)].

Note that if ν is an homotopy from β to β ′, the composition of [(α,µ,β)] with [(β ′,µ′,γ)] is

given by [(α,µ′ ∗ ν ∗ µ,γ)] since [(β ′,µ′,γ)] = [(β,µ′ ∗ ν,γ)].
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Chapter 3

Basic algebra of crossed modules

In this chapter we analyse what historically was the second source of crossed modules over groups:

identities among relations in presentations of groups. This also leads to the area of crossed resolutions

of groups, and groupoids with which we deal in Chapter 11.

A central problem in mathematics is the representation of infinite objects in manipulable, and

preferably finite, terms. One method of doing this is by what is called a resolution. There is not a

formal definition of this, but we can see several examples.

This notion first arose in the 19th century study of invariants. Invariant theory deals with sub-

algebras of polynomial algebras Λ = k[x1, . . . , xn], where k is a ring. Consider for example, the

subalgebra A of Z[a,b, c,d] generated by

a2 + b2, c2 + d2, ac+ bd, ad− bc.

It is called an invariant subalgebra since it is invariant under the action of Z2 which switches the

variables a,b and c,d. As pointed out in [Gar80, p.247], “these generators satisfy the relation

(ac+ bd)2 + (ad− bc)2 = (a2 + b2)(c2 + d2)

which is classically called a syzygy, and the algebra A of invariant polynomials turns out to be the

homomorphic image of the polynomial algebra in four variables given by the quotient algebra

Z[x,y, z,w]/(z2 +w2 − xy).

In particular, the algebra is finitely generated by four explicit polynomials, and the ideal of relations

is finitely generated by a single explicit relation.”

Hilbert solved also the so-called second main problem of invariant theory, in showing that the

ideal of relations among the invariants was also finitely generated. 2 On [Gar80, p.253-4] we

have: “Since the second main problem had succumbed so easily, it was natural to turn to chains of

syzygies, studying relations among the generating set of relations and so on. More precisely, this

work involved the sequence of finitely generated k[x1, . . . , xn]-modules

0 // J1 // F1 // B1
// 0

0 // J2 // F2 // J1 // 0

· · · · · · · · ·

0 // Jq // Fq // Jq−1
// 0,

51
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where the Fi are free with rank equal to the minimal number of generators of the i’th syzygy Ji.

Hilbert’s main theorem on the chains of syzygies says that if k is a field then Jq = 0 if q > n. In

effect, this launched the theory of homological dimension of rings.”

It was also natural to splice the morphisms Fq → Jq−1 → Fq−1 together to get a sequence

· · ·
∂q+1

−→ Fq
∂q

−→ Fq−1

∂q−1

−→ · · ·
∂2−→ F1

∂1−→ B1

which was exact in the sense that

Ker∂q = Im∂q+1

for all q. This sequence was called a free resolution of the module B1.

A basic question was the dependence of this sequence on the choices made. It was found that

given any two such free resolutions F∗ → B1, F
′
∗ → B1, then there was a morphism F∗ → F′∗ and

any two such morphisms were homotopic. It was also later found that the condition ‘free’ could

conveniently be replaced by the condition projective.

Another source for homological algebra was the homology and cohomology theory of groups. As

pointed out in [ML78], the starting point for this was the 1942 paper of Hopf [Hop42]. Let X be an

aspherical space (i.e. connected and with πiX = 0 for i > 1), and let

1→ R→ F→ π1X→ 1

be an exact sequence of groups with F free. Hopf proved the formula

H2X ∼= (R ∩ [F, F])/[F,R].

We shall see in Section 5.5 that this formula follows from our 2-dimensional van Kampen Theorem

for crossed modules. Thus we see the advantage for homotopy theory of having a 2-dimensional

algebraic model of homotopy types.

Later work of Eilenberg-Mac Lane [EML47] found an algebraic formula for HnX, n > 2 as

follows. Produce sequences of ZG-modules

0 // J1 // F1 // Z // 0

0 // J2 // F2 // J1 // 0

· · · · · · · · ·

0 // Jq // Fq // Jq−1
// 0,

in which Z is the trivial ZG-module, and each Fn is a free ZG-module. Splice these together to give

a free resolution of Z:

F∗ : . . .→ Fn → Fn−1 → . . .→ F2 → F1 → Z.

Form the chain complex C = F ⊗ZG Z. Then HnC ∼= HnX. Using particular choices of the Fn, the

Hopf formula may be deduced [Bro94, p.46].

Thus we see an input from the homotopy and homology theory of spaces into the development of

homological algebra. The use of homological methods across vast areas of mathematics is a feature

of 20th century mathematics. It seems the solution of Fermat’s last theorem depended on it, but it

has also been applied in differential equations, coding theory and theoretical physics.

In its 20th century form, homological algebra is primarily an abelian theory. There is considerable

work on nonabelian homological algebra, but this is only beginning to link with work in homotopical

algebra, differential topology, and related areas. This book has an aim of showing one kind of start

to a more systematic background to such an area.
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Now the elementary, computational and example-oriented approach to groups considers presen-

tations 〈X;R〉 of a group Q: that is X is a subset of Q and there is an exact sequence

1→ N→ FX
p
→ Q→ 1 (∗)

where FX is the free group on generators [x], x ∈ X; p is defined by p[x] = x, x ∈ X; and R is a set

of generators of N as normal subgroup of FX. Thus, each element of N is a consequence

c = (rǫ1

1 )u1 . . . (rǫn
n )un ,

ri ∈ R, ǫi = ±1,ui ∈ FX and ab = b−1ab. However, this representation of elements of N, and the

persistent use of N and FX as non-abelian groups (rather than of modules derived from them) plays

a small role in the homological algebra of groups. One would expect, a priori, that the sequence (*)

would be the beginning of a “nonabelian resolution” of the group Q. We will show that this is so in

a later chapter.

Another curiosity is that there are a number of results in homotopy theory which are satisfactory

for 1-connected spaces, but for which no formulation has been given when this assumption has been

dropped, particularly when some non-abelian group has to be described. As long as interest was

focussed on high-dimensional, or stable, problems, this restriction seemed not to matter. In many

problems of current interest (for example low-dimensional topology, low-dimensional homology of

groups, algebraic K-theory) this restriction has proved irksome, but few appropriate constructions

have been generally seen to be available. This is one of the reasons for promoting the subject matter

of this book.

In Section 3.1 we recall what is a presentation 〈X | ω〉 of a group P, and show that the ‘identities

among the relations’ can be seen as the elements of the kernel of a morphism θ : F(R×P)→ P which

satisfies CM1) in the definition of crossed modules.

This gives good reason to relax the concept of crossed module. In Section 3.3 we define pre-

crossed modules in terms of axiom CM1) and also the functor that associates to every precrossed

module a crossed module. This construction (−)cr is adjoint to the inclusion of categories

XMod/Groups →֒ PXMod/Groups.

The morphism θ : F(R × P) → P has some extra freeness properties, making it what is called a

‘free precrossed module’. These are studied in Section 3.4.

The chapter ends with the definition of a category of algebraic objects equivalent to that of

precrossed modules and generalising the equivalence defined in Section 2.5.

3.1 Presentation of groups and identities among relations.

We now show how crossed modules arise in combinatorial group theory.

A group G is of course defined as a set with a multiplication satisfying certain axioms. In some

cases this multiplication can be specified by a formula involving the elements: notable examples are

certain matrix groups, such as the Heisenberg group H of matrices of the form




1 x y

0 1 z

0 0 1





for x,y, z ∈ Z. Thus the elements of H are given by triples (x,y, z) of integers with multiplication

(x,y, z)(u, v,w) = (x + u,y+ v+ xw, z +w).
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This is known as a ‘polynomial group law’. So we have a formula for the elements of the group H

and for the multiplication.

The reader should not be surprised that this could raise difficulties in other cases. Part of the

problem may be to give a useful formula for the elements of the group, let alone a formula for the

multiplication. In mathematics as a whole, the question of ‘presenting’ information on a structure is

often a key part of a problem.

An often useful way of representing the elements of a group is by giving generators for the group.

Example 3.1.1 Let D4 be the dihedral group of order 8, i.e. the group of symmetries of the square.

This group is generated by the elements x,y where x is rotation anticlockwise through 90◦ and y is

reflection in a vertical bisector of the square. The elements of D4 can then be written as

1, x, x2, x3,y,yx,yx2,yx3

and this is quite a convenient labeling of the elements. However if you try to work out the multipli-

cation table in terms of this labeling you find you need more information, namely relations among

the generators, for example

x4 = 1, y2 = 1, xyxy = 1.

If you are not already familiar with these, particularly the last one, then you are expected to verify

them using some kind of model of a square. It turns out that every relation you might need in

working out the multiplication table is a consequence only of these three. Thus we can specify the

group completely also in terms of what we call a ‘presentation’

P = 〈x,y | x4,y2, xyxy〉.

If there is any need, we shall write D4 = gpP. We need a definition of this idea of a presentation. 2

The first thing to note is that the term x4 in the presentation P is not an element of the group D4,

since the 4th power of the element x in D4 is 1. Rather, as is common with the mathematical use of

=, one side of the = sign in x4 = 1 is in fact an instruction: ‘multiply x by itself 4 times’, while the

other side tells you what will be the result. A convenient language to express both an ‘instruction

for a procedure’ and the result of the procedure is that of a morphism defined on a free group.

A free group F(X) on a set X is intuitively a group F(X) together with an inclusion mapping i :

X→ F(X) such that X generates the group F(X) and ‘there are no relations among these generators’.

There are two useful ways of expressing this precisely.

One of them is to give what is called a ‘universal property’: this is that a morphism g : F(X)→ G

to a group G is entirely determined by its values on the set X. Put in another way, given any function

f : X→ G, there is a unique morphism g : F(X) → G such that gi = f. This ‘external’ definition thus

defines a free group by its relation to all other groups, and is a model for the notion of ‘freeness’ in

other algebraic situations. A set X generating a free group plays a rôle similar to that of a basis for

a vector space, and we also talk about X as a basis for the free group F(X). However, unlike vector

spaces, not every group is free. The simplest example is the group Z2 with two elements: it is not

free because there is only one morphism Z2 → Z, the zero morphism.

The other ‘internal’ way of specifying a free group is to specify its elements and the multiplication,

and this can be done in terms of ‘reduced words’: every non identity element of F(X) is uniquely

expressible in the form

xr11 x
r2
2 . . . xrn

n (3.1.1)

where n > 1, xi ∈ X, ri ∈ Z, ri 6= 0, and for no i is xi = xi+1, i.e. no cancelation in the ex-

pression 3.1.1 is possible. In this specification, work is needed to give the multiplication since
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adjoining two reduced words often yields a non reduced word, and the reduction process has

to be given. 3Accounts of this are in many books on combinatorial group theory, for example

[Joh97, LS01, Coh89]. Reduced words are commonly used to store elements of a free group in

computer implementations of combinatorial group theory.

We assume now that we have free groups, and this allows us to give our first definition of a

presentation of a group Q.

Definition 3.1.2 A presentation P = 〈X | R〉 of a group Q consists of a set X and a subset R of the

free group F(X) together with a surjective morphism φ : F(X) → Q such that Kerφ is the normal

closure in F(X) of the set R.

If there is any need, we shall write Q = gpP.

We explain in more detail the notion of normal closure, since this gives a useful model of an

important general process, and we will use a more general form later for presentations of groupoids.

First recall that for any normal subgroup K � P, the group P acts on the group K by conjugation:

we write kp for p−1kp, k ∈ K,p ∈ P. A basic aspect of group theory is that a normal subgroup is a

kernel of a morphism (in this case, for example, of the quotient morphism P → P/K), and that the

kernel of any morphism from P to a group is normal in P.

If R is a subset of the group P then the normal closure NP(R) of R in P is the smallest normal

subgroup of P containing R. We write conjugation of p by q as pq = q−1pq for all p,q ∈ P. The

elements of NP(R) are all consequences of R in P, namely all products

c = (rε11 )p1 . . . (rεm
m )pm (3.1.2)

where ri ∈ R, εi = ±1, pi ∈ P and m > 1. An important point is that if φ : P → Q is any morphism

to a group Q such that φ(R) = {1}, then φ(NP(R)) = {1}, since Kerφ is normal. Thus φ factors as

P → P/NP(R)→ Q where the first morphism is the quotient morphism.

Now we can see that there might be identities among consequences. Intuitively, such an identity

is a ‘formal’ product such as 3.1.2 which is 1 when evaluated in the group P. A definition is given

below. Here we consider some examples.

Example 3.1.3 For any elements r, s of R, we have the identities

r−1s−1rsr = 1,

rs−1r−1s(r
−1) = 1.

These identities hold always, whatever R. 2

Example 3.1.4 Suppose r ∈ R,p ∈ P and r = pm,m ∈ Z. Then rp = pr, i.e. p belongs to the

centraliser C(r) of r in P. We have the identity

r−1rp = 1. (3.1.3)

It is known that if the group P is free and r ∈ R then there is a unique element p of P such that

r = pm with m ∈ N maximal and then C(r) is the infinite cyclic group generated by p. This element

p is called the root of r and if m > 1 then r is called a proper power. 2

Example 3.1.5 Suppose the commutators [p,q] = p−1q−1pq, [q, r], [r,p] are among the elements of

R. Then the well known rule

[p,q][p, r]q [q, r][q,p]r [r,p][r,q]p = 1 (3.1.4)

is an identity among the consequences of R, since [q,p] = [p,q]−1. 2
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Example 3.1.6 Let S3 be the symmetric group on three letters with presentation 〈x,y | r, s, t〉 where

r = x3, s = y2, t = xyxy. The fact that each relation is a proper power gives rise to three identities

among relations, namely

r−1rx, s−1sy, t−1txy.

However there is also a fourth identity namely

(s−1)x
−1

ts−1(r−1)y
−1

tx(s−1)xr−1tx
−1

.

We leave it to you to verify that this is an identity among relations by writing out the formula in the

free group on x,y. This identity can also be interpreted as a kind of composition of 2-cells in the

following picture:

1 - x

]

x2

�
y

�

�

yx

^
xy-

�

�
�

M ^

The Cayley graph of S3

We shall discuss this a bit more in the next Section in terms of van Kampen diagrams. The general

notion of ‘composition of 2-cells’ makes more sense with our discussion of computing identities

among relations in Subsection 11.2.4 of Part II. 2

Note that in all these examples conjugation is crucial. This is related to the fact that the kernel

K of a morphism from a group P should be thought of not just as a subgroup K of the group P but

also as a subgroup with an action of P on K. This principle, that a kernel in nonabelian situations

has more structure than just that of subobject, is of general applicability. It is of direct applicability

to the definition of an identity among the consequences of a subset R of the group P.

One extra formality is needed. We wish to allow for the consideration of repeated elements of R.

One reason for this is that we may have some difficulty in recognising that two specified elements

of P are in fact the same. In the context of presentations, we wish to allow for repeated relations. In

the geometric context, we allow repeated attaching of cells by the same map (for example a constant

map). Therefore we replace the subset R of P by a function ω : R → P and define a presentation

to be P = 〈X | ω〉. Nevertheless, we keep the notation 〈X | R〉 whenever R ⊆ F(X) and ω is the

inclusion.

Now in order to say that an identity among consequences is a formal product such as 3.1.2 which

is 1 when evaluated in the group P, we need to define the free object in which such a ‘formal product’

should lie.

We adopt a more general notation and define the free P-group on R to be the free group on the

set R× P. We denote this P-group by H. The action of P on R× P is given by the product, i.e. by

(r,p)q = (r,pq)

and this determines an action of P on the free group H. By another use of the universal property of

a free group there is a morphism θ : H→ P defined on generators by

θ(r,p) = p−1ω(r)p.
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It is easy to see that the image of θ is the normal closure in P of ω(R). In symbols:

θ(H) = NP(ω(R)).

It is clear also that the map θ preserves the action of P: that is, for any h ∈ H,p ∈ P

θ(hp) = p−1(θh)p. (3.1.5)

You will recognise this as the axiom CM1) for a crossed module; however H with θ does not neces-

sarily satisfy axiom CM2).

The elements of H will be called formal consequences of ω : R→ P in P.

There is an alternative description of H which we give for those familiar with the group theoretic

background.

Proposition 3.1.7 The group H is isomorphic to the normal closure of R in the free product P ∗ F(R).

Proof This is a simple consequence of the Kurosch subgroup Theorem for free products.4 2

Our first definition is that an identity among the consequences of 〈X | ω〉 in P is an element of

E = Kerθ. Equivalently, an identity among consequences is a formal consequence which gives 1

when evaluated as an actual consequence in P.

The idea of specifying an identity among consequences is thus very similar to that of specifying

a relation as an element of the free group FX, but taking into account the action of FX. This leads to

an appropriate concept of ‘free’. However, we are not yet at our final position.

It is easy to see that certain identities are always present in E. We define the basic Peiffer elements

to be the elements of E of the form

a−1b−1abθ(a)

where a,b ∈ R× P. Note that

(r ′,p ′)θ(r,p) = (r ′,p ′p−1(wr)p).

More generally, if h, k ∈ H we will write

[[h, k]] = h−1k−1hkθ(h)

and call such an element a Peiffer element. These should be thought of as ‘twisted commutators’. 5

3.2 van Kampen diagrams

These diagrams give a geometric method of deducing consequences of relations, and can, as we shall

see, be used to show exactly how to write a word as a consequence of the relations. We do not give a

general definition or description, but illustrate it with examples. The idea has been used extensively

in some sophisticated theorems in combinatorial group theory. For our purposes, the idea illustrates

geometric aspects of the use of crossed modules.

The idea of these diagrams come from the fact that a relation in a presentation can be represented

by a based cell whose sides are labeled by the letters of the relation in such way that when they are

read clockwise from the base point we get the relation.

Then, we can get new relations by gluing two or more of these cell along some common sides.

Let us consider a simple case.
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Example 3.2.1 Suppose for a given presentation we have the relations r = bd−1 and s = abc. They

can be represented as based cells as follows:

B

//d

r

• //
b

C

B //
b

C

����
��

�

c
��

��
�

A

[[77777
a

77777 s

•
•

We write δs = abc, δt = db−1. Now, we glue r and s alongside b getting

B

//d

r

• //
b

C

����
��

�

c
��

��
�

A

[[77777
a

77777 s

•
•

The boundary of this new cell is

adc = abc · c−1b−1 · db−1 · bc = (δs)(δ(tbc)).

Of course tbc makes sense in the context of crossed modules of groupoids, since t is based at B

whereas tbc is based at A. 2

Here is a more complex example.

Example 3.2.2 The quaternion group of order 8 is usually presented in the form

Q8 = gp 〈x,y | x4, x2y−2,y−1xyx〉.

However the following diagram shows that the relation x4 is a consequence of the other two rela-

tions. Set r = x4, s = x2y−2, t = y−1xyx and consider the drawing

F

s

//x G

�� x

E

44jjjjjjj y

jjjjjjj

t

s−1
C

ddJJJ
x

JJJJ

��7
77

77

y

77
77

7D
•

t

::ttt x

ttt

yyttt
yttt

A•

•

•

OO x
GG�������

y

�������

B

•
oo
x

In this diagram, each cell has a base point, represented by a •, which is where the reading of the

boundary starts in clockwise direction. This explains why we have an s and s−1, since the latter is s

read counterclockwise.

Now we have to show how we can deduce from this diagram the expression we want.
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We take the outside loop starting from A (which has a base point for the outside ‘cell’) and then

change it to traverse the boundary of each internal cell, obtaining the rule which you can easily

verify:

xxy−1y−1 · yx−1x−1y · y−1xyx · x−1 · y−1xyx · x = x4.

This can be reread as:

s · yx−1x−1y · t · x−1 · t · x = x4.

But yx−1x−1y = yx−1x−1 · yyx−1x−1 · xxy−1 = (s−1)xxy
−1

. So our final result is that

s · (s−1)xxy
−1

· t · tx · r−1

is an identity among relations, or, alternatively, shows in a precise way how x4 is a consequence of

the other relations. 2

One context for van Kampen diagrams is clarified by the notion of shelling of such a diagram.

This is a sequence of 2-dimensional subcomplexes K0,K1, . . . ,Kn each of which is formed of 2-

dimensional cells, with K0 consisting of a chosen basepoint ∗, K1 being a 2-cell s1 with ∗ on its

boundary, and such that for i = 2, . . . ,n, Ki is obtained from Ki−1 by adding a 2-cell si such that

si ∩ Ki−1 is a non empty union of 1-cells which form a connected and 1-connected set, i.e. a path.

Such a shelling will yield a formula for the boundary of Kn in terms of the boundaries of each

individual cell, provided each cell is given a base point and orientation.

Here is a clear way of getting the formula (explained to us by Chris Wensley):

Choose ∗ = K0 as base point for all the Ki. The relation for K0 is the trivial word. If B1 is the

base point for s1 and P1 is the anticlockwise path around s1 from B1 to ∗ and w1 is the word in the

generators read off along P1, then the relation for K1 is δ(s1
w1). For i > 2, let Bi be the base point

for si, and let Ui,Vi be the first and last vertices in the intersection si ∩ Ki−1 met when traversing

the boundary of Ki−1 in a clockwise direction (so that the intersection is a path Ui . . .Vi). Then if

Bi lies on Ui . . .Vi let Pi be the path Bi . . .Ui . . . ∗, otherwise let Pi be the path Bi . . .Vi . . .Ui . . . ∗

(traversing the boundary of si in an anticlockwise direction and the boundary of Ki−1 clockwise). If

wi is the word in the generators read off along Pi then

(relation for Ki) = (relation for Ki−1).δ(si
wi).

We finish this short section by a more involved example

Example 3.2.3 Let us prove the non obvious fact that the relations

r = x2yxy3, s = y2xyx3

have x7 as a consequence using the next picture. We leave it as an exercise to check that base points
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and orientations can be assigned, and, harder, to give x7 as a consequence of r, s. 6

◦
y

MMMM

&&MM
MM

xhhhhhhhhhhhhhhhh

tthhhhhhhhhhhhhhhh ◦
yqqqq

88qqqq

◦
y

MMMM

&&MM
MM

◦

x

��

◦
xqqqq

88qqqq

r ◦
x

MMM
M

&&MMM
M

◦

x

jjVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

◦
yqqqq

88qqqq

x
MMMM

&&MM
MM

◦oo
x

y

��

◦
y

MMMM

&&MM
MM

s−1 ◦
xqqqq

88qqqq

s−1 ◦
y

MMMM

&&MM
MM

◦
yqqqq

88qqqq

s−1

r ◦
yqqqq

xxqqqq

xqqqq

88qqqq

r

◦
xqqqq

xxqqqq
◦

xMMMM

ffMMMM

◦
xqqq

q

xxqqqq
s−1 ◦

yMMMM

ffMMMM

◦
x

//◦

y

OO

x
//◦

x
//y

ffMMMMMMMM
◦

x

OO

2

Here is a more formal definition of a van Kampen diagram.

A complete Higher Homotopy van Kampen diagram is a finite regular CW-structure K on a compact

subset of the sphere S2. Regularity here means that each attaching map fs : (S1, 1) → (K1,K0) of

a 2-cell s is a homeomorphism into. By omitting one 2-cell s∞ from K and using stereographic

projection we can also regard K \ s∞ as a subset of the plane R2. The projection of K \ s∞ gives a

planar van Kampen diagram.

Whitehead’s Theorem (Corollary 5.4.8) says essentially that Π(K,K1,K0) is the free crossed

π1(K
1,K0)-module on the characteristic maps of the 2-cells of K.

3.3 Precrossed and crossed modules

Following the concepts introduced in the first section, it seems a good idea to study morphisms

having the same formal properties as θ : H → P. One way of describing the distinctive feature of θ

is to say that θ is a morphism of P-groups, where P acts on itself by conjugation.

So, let M and P be groups such that P acts on M on the right and let µ : M→ P be a homomor-

phism of groups. We say that M = (µ : M→ P) is a precrossed module if it satisfies CM1) of section

2.2, that is:

CM1) µmp = p−1µmp = (µm)p for all m ∈M and p ∈ P,

i.e., µ is a morphism of P-groups when P acts on itself by conjugation.

A morphism between two precrossed modules M = (µ : M → P) and N = (ν : N → Q) is a pair

(g, f) of homomorphisms of groups g : M→ N and f : P → Q such that
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i) the diagram

M
g //

µ

��

N

ν

��
P

f
// Q

commutes, i.e. fµ = νg, and

ii) the actions are preserved, i.e. g(mp) = (gm)fp for any p ∈ P and m ∈M.

The above objects and morphisms define the category PXMod/Groups of precrossed modules and

morphisms.

Example 3.3.1 It is easy to see that if 〈X | R〉 is a presentation of a group, then using the notation

of Section 3.1, θ : H→ F(X) is a precrossed module. 2

Analogously to our method in this example, we can define Peiffer elements in any precrossed

module. Let M = (µ : M → P) be a precrossed module and let m, m ′ be elements of M. Their

Peiffer commutator is defined as

[[m,m ′]] = m−1m ′−1mm ′µm.

The precrossed modules in which all Peiffer commutators are trivial are precisely the crossed

modules. Thus the category of crossed modules is the full subcategory of the category of precrossed

modules whose objects are crossed modules.

Since the Peiffer elements are always defined in a precrossed module, it is a natural idea to factor

out by the normal subgroup that they generate and consider the induced map from the quotient. Let

us check that this produces a crossed module.

The Peiffer subgroup [[M,M]] of M is the subgroup of M generated by all Peiffer commutators.

We now prove that this subgroup inherits the P-action and is a normal subgroup.

Theorem 3.3.2 For any precrossed module µ : M → P, the Peiffer subgroup [[M,M]] of M is a P-

invariant normal subgroup.

Proof The Peiffer subgroup is P-invariant since for any m,m ′ ∈M and p ∈ P, we have

[[m,m ′]]p = (m−1m ′−1mm ′µm)p

= (mp)−1(m ′p)−1mpm ′(µm)p

= (mp)−1(m ′p)−1mpm ′p(µm)p

= (mp)−1(m ′p)−1mpm ′p(µmp)

= [[mp,m ′p]].

It is also normal since for any m,m ′,n ∈M we have

n−1[[m,m ′]]n = n−1m−1m ′−1mm ′µmn

= n−1m−1m ′−1m(nm ′µmn(m ′−1)µmnn−1)m ′µmn

= ((mn)−1m ′−1mnm ′µmn)(((m ′µm)µn)−1n−1m ′µmn)

= [[mn,m ′]][[n,m ′µm]]−1.

2
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Now for any precrossed module µ : M→ P we define

Mcr =M/[[M,M]].

By the previous property, Mcr is a P-group. Let us see that the homomorphism µ induces a crossed

module.

Proposition 3.3.3 For any precrossed module µ : M→ P, the induced map gives a crossed module

Mcr = (µcr : Mcr → P)

which we call the crossed module associated to µ.

Proof It is easy to see that for each m,m ′ ∈ M, µ[[m,m ′]] = 1, so µ induces a homomorphism of

groups µcr.

Clearly µcr satisfies CM1) because it was already satisfied by µ. It also satisfies CM2) because all

Peiffer commutators have been quotiented out. 2

The association of the crossed module Mcr → P to a precrossed module M→ P gives a functor

(−)cr : PXMod/Groups→ XMod/Groups.

That is, a morphism (g, f) of precrossed modules yields a morphism (gcr, f) of crossed modules, and

this association satisfies the usual functorial rules.

Moreover let us prove that (−)cr is a left adjoint of the inclusion XMod/Groups →֒ PXMod/Groups

by checking the appropriate universal property.

Proposition 3.3.4 Let M = (µ : M → P) be a precrossed module. For any crossed module N =

(ν : N → Q) and any morphism of precrossed modules (g, f) : M → N there is a unique morphism of

crossed modules

(gcr, f) : (µcr : Mcr → P) −→ (ν ′ : N→ Q)

such that g = gcr ◦ θ where θ is the quotient homomorphism θ : M→Mcr.

Proof Obviously, gcr can only be the homomorphisms induced by g on the quotient, and this is

well defined since g[[m,m ′]] = 1 for any elements m,m ′ of M. 2

For future computations it is interesting to have a set of generators of the Peiffer subgroup as

small as possible. The following property is useful for this.

Proposition 3.3.5 Let µ : M → P be a precrossed module and let V be a subset of M which generates

M as a group and is also P-invariant. Then the Peiffer subgroup [[M,M]] of M is the normal closure in

M of the set of Peiffer commutators

{[[a,b]] | a,b ∈ V}.

Proof Let Z be the normal closure ofW = {[[a,b]] | a,b ∈ V}. Since [[M,M]] is normal and contains

W, it is clear that Z ⊆ [[M,M]] ⊆ Kerµ. On the other hand W is P-invariant since [[a,b]]p = [[ap,bp]]

as was proved in Theorem 3.3.2. So Z is also P-invariant. Thus µ induces a homomorphism of

groups µ : M/Z→ P which is P-invariant, so that we have a precrossed module. Let us check that it

is also a crossed module.

Let V be the image of V in M/Z, i.e. V is the set of cosets of all elements in V . Notice that we

have

yµx = x−1yx (∗∗)
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for any x and y lying in V, which is a set of generators of M/Z. It is easy to see that for a fixed x in

M/Z the set Px of y’s satisfying this equation (**) is a subgroup containing V so Px has to be all of

M/Z.

Consider now the set Qx of x in M/Z satisfying (**) for all y in M/Z. It is closed under multi-

plication (since

yxx
′

= (yx)x
′

= (x−1yx)x
′

= (x−1)x
′

yx
′

xx
′

= x ′−1x−1x ′x ′−1yx ′x ′−1xx ′ = x ′−1x−1yxx ′)

and also under inversion (since if w = yx
−1

, we have wx = y and wx = x−1wx, so that x−1wx = y

and w = xyx−1). So Qx = M/Z and thus µ : M/Z → P is a crossed module. It follows that

[[M,M]] ⊆ Z. 2

Corollary 3.3.6 Let ω : R → P be a function to the group P and let θ : H → P be the associated

precrossed module. Then the Peiffer subgroup [[H,H]] of H is the normal closure in H of the basic Peiffer

elements [[a,b]] = a−1b−1abθa where a,b ∈ R× P.

3.4 Free precrossed and crossed modules

Another crucial property satisfied by the precrossed module associated to a presentation of a group

is that it is, in some sense, free. We need to make this property explicit.

As explained in the Appendix, a free construction in a category is usually the left adjoint of some

forgetful functor. The appropriate forgetful functor in this case goes from the category of crossed

modules to the category of sets over a group forgetting the algebra of the top group and considering

only the underlying boundary map. We recall the appropriate categories.

Let P be a group. We have defined the category XMod/P of crossed P-modules in Section 2.2. In

a similar way, we define the category PXMod/P by restricting to precrossed modules over P.

Let P be a set. We define Sets/P to be the category whose objects are P-sets, i.e. maps S = (ν :

S → P), and whose morphisms are P-maps, Sets/P i.e. maps α : S → S ′ making commutative the

diagram

S
α //

ν
��>

>>
>>

>>
S ′

ν′

����
��

��
�

P .

We have a forgetful functor

U : XMod/P → Sets/P.

Thus, the free crossed module construction is a functor

F : Sets/P → XMod/P

such that for any P-set S = (ν : S → P) and for any crossed P-module M = (µ : M → P) there is a

natural bijection

(Sets/P)(S,UM) ∼= (XMod/P)((FS, M),

i.e. there is a P-inclusion i : S→ FS, corresponding to the morphism IdFS of crossed P-modules such

that for any P-map f : S→M there exist a unique extension to a morphism f ′ : FS →M of crossed

P-modules.
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In the same way we may define the free precrossed module using the forgetful functor between

PXMod/P and Sets/P.

To determine when a crossed module is free, let M = (µ : M → P) be a crossed module, R a set

and ω : R → M an injective map (equivalently, let {mr | r ∈ R} be an indexed family of elements

of M). We say that M is the free crossed P-module on ω (also, that ω is a basis of M) if the unique

morphism of crossed modules Fω : FR → M extending ω is an isomorphism, or, equivalently, if it

satisfies the following universal property: for any crossed module M ′ = (µ′ : M ′ → P) and map

ω ′ : R → M ′ such that µω = µ′ω ′ there exists a unique morphism h : M → M ′ of P-crossed

modules such that hω = ω ′.

There is a similar definition of the free precrossed module onω. As always in universal construc-

tions, the free crossed and precrossed P-modules onω are unique up to isomorphism. We study now

their existence.

We consider a group P and a function ω : R → P, or equivalently, an indexed family {pr | r ∈ R}

of elements of P. First we create the free P-group with basis R. To this end, we define E = F(R × P).

It is the free group on the formal elements {rp | r ∈ R,p ∈ P}. We think of (r,p) as rp. Then, any

element of E can be seen as a formal product

(r
p1

1 )ε1 · · · (rpn
n )εn

with n ∈ N, εi = ±1, pi ∈ P and ri ∈ R.

This representation makes clear the definition of the P-action on generators, since to be an action

it has to satisfy (rp)p
′

= rpp
′

. Thus, we define a P-action on E by

(r,p)p
′

= (r,pp ′)

on generators and we extend it in the only possible way.

We define a map θ : E → P by the only possible definition to make it a P-map, i.e. θ(r,p) =

p−1ω(r)p on generators.

Let us check that the map θ just constructed gives the free precrossed module.

Proposition 3.4.1 E = (θ : E→ P) is the free precrossed module on ω : R→ E where ω(r) = (r, 1).

Proof It is clear that P acts on E and also that θ is a homomorphism by the way they are defined.

It is easy to check that θ : E→ P is a precrossed module,

θ(r,p)p
′

= θ(r,pp ′) = p ′−1p−1ω(r)pp ′ = p ′−1θ(r,p)p ′.

To prove the universal property, consider M ′ = (µ′ : M ′ → P) a precrossed P-module and a map

ω ′ : R→M ′. We can define the map

R× P → M ′

(r,p) 7→ (ω ′r)p

that extends to a unique homomorphism h : E → M ′ that is a morphism of precrossed modules

since

i) µ′h(r,p) = µ′(ω ′r)p = p−1(µ′ω ′r)p = θ(r,p) and

ii) h(r,p)p
′

= h(r,pp ′) = (ω ′r)pp
′

= ((ω ′r)p)p
′

= h(r,p)p
′

.

Actually, this is the only possible definition of h to make it a map of P-groups. So h is unique. 2



[3.4] 65

Corollary 3.4.2 The crossed P-module Ecr = (θcr : Ecr → P) is the free crossed module onω : R→ Ecr.

Proof Obviously Ecr is a crossed module. Let us check the universal property.

For any crossed P-module M ′ = (µ′ : M ′ → P) and any map ω ′ : R → M ′ there is a unique

morphism of precrossed modules α : E → M ′ satisfying ω ′α = ω. Thus, the induced map αcr :

Ecr →M ′ is the only morphism of crossed modules satisfying ω ′α = ω. 2

Exercise 3.4.3 Use the notion of normal subgroupoid and quotient groupoid in [Bro06, Section 8.3]

to generalise the above work on free crossed modules to the case where P is a groupoid rather than

just a group. Free crossed modules over groupoids are studied later in Section 7.2.4. 2

Remark 3.4.4 For any crossed module M = (µ : M→ P) such that µ(M) is a free group, there is a

section s : µM→M which is a homomorphism of groups. Then, the Proposition 2.2.4 applies.

So if µ : M→ P is the free crossed P-module associated to a presentation (ω : R→ P) of a group

G then there is a short exact sequence of G-modules

0→ π = Kerµ −→Mab µab

−→ (µM)ab → 0.

2

From the construction of the free precrossed module as a free group, it is clear that ω : R→ E is

injective. It is not so clear that ω : R → Ecr is also injective. This is a consequence of the following

property:

Proposition 3.4.5 Given a free crossed P-module M = (µ : M → P) on ω : R → M, with G the

cokernel of µ, then Mab is a free G-module with basis ωab : R→Mab.

Proof We know by Proposition 2.2.3 ii) that Mab is a G-module. To see that Mab is free we will

prove that it satisfies the universal property of a free G-module.

Let M ′ be a G-module. The projection P ×M ′ → P becomes a crossed P-module when P acts

on P ×M ′ by conjugation on P and the G action on M ′. For any map v : R → M ′ we define

v ′ = (µω, v) : R → P ×M ′. Since µ : M→ P is a free crossed P-module we get a unique morphism

of P-crossed modules φ : M→ P ×M ′ such that v ′ = φω. The composite M→M ′ factors through

a G-morphism φ : Mab →M ′ which is the only morphism of G-modules satisfying φωab = v. 2

We now give an example and proposition 7 which illustrate some of the difficulties of working

with free crossed modules.

Example 3.4.6 Let (∂ : C(R) → F(X)) be the free crossed module on the subset R of F(X) and

suppose that Y is a subset of X, and S a subset of R. Let M be the subgroup of C(R) generated by

F(Y) operating on S, and assume that ∂(M) ⊆ F(Y). Let M ′ = (∂ ′ : M → F(Y)) be the crossed

module given by restricting ∂ to M. Then M ′ is not necessarily a free crossed module.

Let X = Y = {x},R = {a,b}, S = {b} be such that ∂a = x,∂b = 1. Since ∂b = 1, we have ab = ba,

whence bxb−1 = a−1bab−1 = 1. Therefore M ′ is not a free crossed module. 2

Proposition 3.4.7 Let G,G ′ be the cokernels of ∂,∂ ′ respectively, and let η : G→ G ′ be the morphism

induced by the inclusion i : F(Y)→ F(X). If η is injective, then M ′ is the free crossed F(Y)-module on S.

Proof Let d : C(S)→ F(Y) be the free crossed F(Y)-module on S. It is clear that d(C(S)) = ∂(M).

Let j : C(S) →M be the morphism of crossed F(Y)-modules. Clearly j is surjective, and the result is

proved when we have shown that j is injective.
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Suppose that u ∈ C(S) and j(u) = 1. Then d(u) = 1. Let k : C(S)ab → C(R)ab be the induced

morphism of the abelianised groups. These abelianised groups are in fact free modules over G,G ′

respectively on the bases S,R respectively. Since η is injective, it follows that k is injective. Let u

denote the class of u in C(S)ab. Then ku = 0, and hence u = 0. But the morphism C(S)→ C(S)ab is

injective on Kerd. It follows that u = 1. 2

3.5 Precat1-groups and the existence of colimits

In the two previous section we have seen that when working with crossed modules it is some-

times convenient to consider the weaker structure of precrossed modules and see the category

XMod/Groups as a full subcategory of PXMod/Groups.

In Section 2.5 we have seen that the category Cat1− Groups of cat1-groups is equivalent to the

category XMod/Groups. It is an easy exercise to put both together and construct a category bigger

than and equivalent to PXMod/Groups.

So, a precat1-group is a triple (G, s, t) where G is a group and s, t : G → G are endomorphisms

satisfying st = t and ts = s. Thus we are omitting CG2) from the axioms of a cat1-group, i.e. we do

not impose commutativity between elements of Ker s and Ker t.

As before, a morphism between pre-cat1-groups is just a homomorphism of groups commuting

with the s’s and t’s. These objects and morphisms define the category PCat1−Groups. It contains

Cat1− Groups as a full subcategory.

Proposition 3.5.1 The categories PCat1− Groups and PXMod/Groups are equivalent, by an equiva-

lence extending that between Cat1−Groups and XMod/Groups.

Proof The definitions of both functors are the same as in Section 2.5, namely

λ : PXMod/Groups→ PCat1− Groups

is given by λ(µ : M→ P) = (P ⋉M, s, t), s and t being defined as before, and

γ : PCat1−Groups→ PXMod/Groups,

is defined by γ(G, s, t) = (t| : Ker s→ Im s).

It is easily checked that both functors are well defined and both compositions are naturally

equivalent to the identity. 2

As in the Section 3.3, we may define a functor associating to each pre-cat1-group a cat1-group

(−)cat : PCat1− Groups→ Cat1−Groups

defined by (G, s, t)cat = (G/N, s ′, t ′), where N = [Ker s, Ker t].

It is easy to see that the functor (−)cat corresponds through the equivalences of categories to

(−)cr : PXMod/Groups→ XMod/Groups.

Then, it follows

Proposition 3.5.2 The functor (−)cat is a left adjoint of the inclusion.
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Using this last property we can prove the existence of colimits in Cat1− Groups.

Since left adjoint functors preserve colimits (see [ML71] or Appendix A), for any indexed family

Gλ = (Gλ, sλ, tλ) of cat1-groups and morphisms between them, we have

colimcat{Gλ} = (colimpre{Gλ})
cat.

So, the existence of colimits in Cat1−Groups has been reduced to the existence of colimits in

PCat1− Groups.

It is not difficult now to check that in PCat1−Groups the colimits are as expected, i.e. for an

indexed family {Gλ | λ ∈ Λ} of pre-cat1-groups Gλ = (Gλ, sλ, tλ) and morphisms between them,

colimpre{Gλ} = (colimgr{Gλ}, colimgr{sλ}, colimgr{tλ}).

From the existence of colimits in Cat1 − Groups follows the existence of colimits in XMod/Groups

using the equivalence between both categories.

Remark 3.5.3 We have just added another way of computing colimits of crossed modules. So, if

we have an indexed family of crossed modules {µλ : Mλ → Pλ}, we construct the associated family

of cat1-groups {(Mλ ⋉ Pλ, sλ, tλ)} getting their colimit (G, s, t) and the colimit crossed module is

t| : Ker s→ Im t.

Even if it seems a long way around, it is worthwhile because for example Mλ ⋉ Pλ may be

finitely generated, even if Mλ and Pλ are not. Also, there are some efficient computer-assisted ways

of getting colimits, kernels and images of finitely generated groups and homomorphisms. 2

3.6 Implementation of crossed modules in GAP

Nowadays is almost impossible to make any serious computational work in group theory without use

of a computational group theory package. Some of these packages have evolved to accommodate

more structures becoming veritable computational discrete algebra packages. The one we have

been using along the book is GAP (see [Gro02] for more information). The package GAP has

been developed primarily for combinatorial group theory, and has the significant advantage of free

availability of the library code, thus enabling the user to modify a function so as to return additional

information.

Work at Bangor (in particular by M.Alp and C.D. Wensley) has produced the GAP module XMOD

which includes a number of constructions on crossed modules, cat1-groups and their morphisms.

In particular: derivations, kernels and images; the Whitehead group; cat1-groups and their relation

with crossed modules; induced crossed modules.

This package has already been in use for some time, and has been incorporated into GAP4. 8

In Section 5.9 we will show how XMOD has been used to determine explicitly some induced

crossed modules whose computation do not follow from general theorems and seem too hard to

compute by hand.
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Notes

2p. 51 This finiteness no longer holds for groups. A group may be finitely generated, but not

finitely presented; finitely presented but not finitely identified; and so on. For more information see

Wikipedia on finitely presented groups.

3p. 55

4p. 57 This theorem may be found in [Bro06, Hig71] and books on combinatorial group theory.

5p. 57In this spirit, there is a ‘Peiffer commutator calculus’ whose study has been advanced

considerably by Baues and Conduché [BC90].

6p. 60 These examples are from David Johnson’s book [Joh97]. Other examples on van Kampen

diagrams are in that book, and may also be found by a web search. The geometric and metric

analysis of van Kampen diagrams has proved important in aspects of combinatorial group theory.

7p. 65 These are due to Whitehead in [Whi50b].

8p. 67 We note that Alp and Wensley have in [AW00] used this programme to list many finite

cat1-groups.

General notes

The exposition of identities among relations follows to some extent that in [BH82].

Proposition 3.3.5 is taken from Brown-Huebschmann [BH82].



Chapter 4

Coproducts of crossed P-modules

In this chapter we start to show how the 2-dimensional van Kampen theorem and the algebra of

crossed modules allows specific nonabelian calculations in homotopy theory in dimension 2. To this

end, we study the coproduct of crossed modules (mainly of two crossed modules) over the same

group P. We construct the coproduct of crossed P-modules, check some properties and, using the

2-dimensional van Kampen Theorem, we apply these general results to some topological cases.

In the first section (4.1) we construct the coproduct of crossed P-modules. First, we see what

the definition of coproduct in a general category means in this case, and then we prove its exis-

tence by a two step procedure. As a first step, we prove that the free product of groups gives the

coproduct in the category of precrossed P-modules. Then, using the fact that the functor (−)cr pre-

serves coproducts, we see that its associated crossed P-module is the coproduct in the category of

P-modules.

This procedure is a bit complicated to implement because the free product is always a very big

group (it is normally infinite even if all groups are finite). So in Section 4.2 we give an alternative

description of the coproduct of two crossed P-modules. This is obtained by dividing the construction

of the associated crossed module in this case into two steps, of which the first gives a semidirect

product. Thus the coproduct of two crossed P-modules is a quotient of a semidirect product. Hence

we can get presentations of the coproduct using the known presentations of the semidirect product.

This has some topological bearings as explained in Section 4.3. First, we know that the coproduct

of two crossed P-modules is just the pushout of these two crossed modules with respect to the trivial

crossed module 1 → P. Thus in the case that we have a topological space X that is the union of

two open subsets U1,U2 such that both (Ui,U12) are 1-connected, the fundamental crossed module

Π2(X,U12) is the coproduct Π2(U1,U12)◦Π2(U2,U12) (Theorem 4.3.2) and we can use the previous

results to get information on the second homotopy group of some spaces. We end this section by

studying some consequences in this case.

In the last section (4.4) we study the coproduct in a particular case that we shall use later. We

begin with two crossed P-modules M = (µ :M→ P) and N = (ν : N→ P) satisfying the condition

(∗) : ν(N) ⊆ µ(M) and there is an equivariant section of µ.

In this case, we get a description of their coproduct using the displacement subgroup NM (Theorem

4.4.8). This case is not uncommon and we get some topological applications when the space X is

got from Y by attaching a cone CA, that is, X is a mapping cone. We finish this last section with a

description of the coproduct for an arbitrary set of indexes satisfying the above condition (*). This

result will be used at the end of the next Chapter (see Section 5.8).

69
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4.1 The coproduct of crossed P-modules

We give a construction of coproducts in the category XMod/P of crossed modules over the group P.

We do this for a general family of indices since this causes no more difficulty than the case of two

crossed modules.

From the general definition of the coproduct in a category given in the Appendix, we see that the

coproduct of a family {Mt | t ∈ T } of crossed modules over P is given by a crossed module M and a

family of morphisms of crossed P-modules {it : Mt → M | t ∈ T } satisfying the following universal

property: for any family {ut : Mt → M ′ | t ∈ T } of morphisms of crossed modules over P, there

is a unique morphism u : M → M ′ of crossed modules over P such that ut = uit for each t ∈ T .

Diagrammatically, there exists a unique dashed arrow such that the following diagram commutes:

Mt

it //

ut ""D
DD

DD
DD

D M

���
�
�

u

M ′.

As with any universal construction, the coproduct is unique up to isomorphism.

As we have seen in Section 3.3, the functor (−)cr from precrossed modules to crossed modules,

obtained by factoring out the Peiffer subgroup, is left adjoint to the inclusion of crossed modules

into precrossed modules, and so takes coproducts into coproducts. Thus to construct the coproduct

of crossed P-modules we construct the coproduct in PXMod/P, the category of precrossed modules

over the group P and apply the functor crs to it. The coproduct in PXMod/P is simply obtained

using the coproduct in the category Groups of groups, and this is the well known free product ∗tGt
of a family {Gt} of groups [LS01].

Proposition 4.1.1 Let T be an indexing set and, for each t ∈ T let Mt = (µt : Mt → P) be a precrossed

P-module. We define ∗tMt to be the free product of the groups Mt, t ∈ T . There is an action of P on

∗tMt defined by the action of P on each Mt. Consider the morphism

∗tMt = (∂ ′ : ∗tMt → P),

together with the homomorphisms it : Mt → ∗tMt given by the inclusion in the free product, and where

∂ ′ = ∗tµt is the homomorphism of groups induced from the homomorphisms µt using the universal

property of the coproduct of groups. Then the above defined ∗tMt is a precrossed P-module and the

homomorphisms it are morphisms of precrossed modules over P giving the coproduct in the category

PXMod/P.

Proof Let M = ∗tMt. If we represent by p# the action by p ∈ P, then the action p# : M → M of

p is defined by the composite morphisms Mt

p#

−→Mt
it−→M.

In terms of the normal form of an element of the free product, this means that the action is given

by the formula

(mt1 . . .mtn
)p = (mt1)

p . . . (mtn
)p, mti

∈Mti
.

As already pointed out, the homomorphisms µt extend uniquely to a homomorphism ∗tµt. So

(∗tµt)((mt1 . . .mtn
)p) = (∗tµt)(m

p
t1

. . .m
p
tn

)

= (µt1(m
p
t1

)) . . . (µtn
(m

p
tn

))

= p−1(µt1mt1)p . . .p−1(µtn
(mtn

))p

= p−1((µt1mt1) . . . (µtn
(mtn

))p



[4.2] 71

and ∗tµt is a precrossed module.

The verification of the universal property is easy. 2

We now easily obtain:

Corollary 4.1.2 If Mt = (µt : Mt → P), t ∈ T is a family of crossed P-modules, then applying the

functor (−)cr to ∗tMt to give

∂ ′cr : (∗tMt)
cr → P

with the morphisms jt : Mt
it−→ ∗tMt → (∗tMt)

cr, where the second morphism is the quotient

homomorphism, gives the coproduct of crossed P-modules.

We denote this coproduct by

©tMt = (∂ :©tMt → P)

where the morphisms jt : Mt →©tMt are understood to be part of the structure. These morphisms

need not be injective. In the case T = {1, 2, . . . ,n}, this coproduct will be writtenM1 ◦ · · · ◦Mn → P.

As is standard for coproducts in any category, the coproduct in XMod/P is associative and commu-

tative up to natural isomorphisms.

4.2 The coproduct of two crossed P-modules

Throughout this section we suppose given two crossed P-modules M = (µ : M → P) and N = (ν :

N→ P), and we develop at some length the study of their coproduct in XMod/P

M ◦N = (µ ◦ ν : M ◦N→ P)

and the canonical morphisms from M,N into M ◦N. This is the case that has been analysed more

deeply in the literature. Most of the results of this section were in print for the first time in a paper

by Brown ([Bro84]). Further results were obtained in [GH89], and some more applications and

results are also given in [HAM93]. However this construction as a quotient of the free product really

goes back to Whitehead [Whi49b].

The basic observation in [Bro84] is that M ◦N may be obtained as a quotient of the semidirect

product groupM⋉N whereM operates on N via P. This result makes the coproduct of two crossed

modules computable and from this we get some topological computations.

For convenience, we assume M,N are disjoint. To study M ◦N = (M ∗N)cr in some detail we

should have a closer look at [[M ∗N,M ∗N]], the Peiffer subgroup of M ∗N. As seen in Section 3.3,

[[M ∗N,M ∗N]] is the subgroup of M ∗N generated by all Peiffer commutators

[[k, k ′]] = k−1k ′−1
kk ′(µ∗ν)k

for all k, k ′ ∈M ∗N.

Notice that by Proposition 3.3.5, [[M ∗N,M ∗N]] is also the normal subgroup generated by the

Peiffer commutators of any given P-invariant set of generators. Now M ∪N generates M ∗N and is

P-invariant. Since M and N are crossed modules, redwe have [[m,m ′]] = 1 and [[n,n ′]] = 1, for all

m,m ′ ∈M and n,n ′ ∈ N. Thus [[M ∗N,M ∗N]] is the normal subgroup of M ∗N generated by the

elements

r(m,n) = n−1m−1nmn, and s(m,n) = m−1n−1mnm

for all m ∈M, n ∈ N.
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It is useful to divide the process of quotienting out by the Peiffer subgroup into two steps. First,

we consider the quotient ofM ∗N by the group U generated by {s(m,n) | m ∈M,n ∈ N} all Peiffer

commutators of the second kind. A useful observation already developed in [Bro84] is that this

quotient is the well known semidirect product.

Proposition 4.2.1 The precrossed P-module

M ∗N

U
= (µ ∗ ν : (M ∗N)/U→ P)

where U is the normal P-invariant subgroup generated by the set {m−1n−1mnm | m ∈ M,n ∈ N} is

isomorphic to

M ⋉ N = (µ⋉ ν : M⋉N→ P)

where the semidirect product is associated to the action of M on N via µ and the P-action.

Proof The inclusions M→M⋉N and N→M⋉N extend to a homomorphism of groups

ϕ : M ∗N→M⋉N.

Let us check that ϕ(U) = 1 by computing ϕ on all generators,

ϕ(m−1n−1mnm) = (m−1, 1)(1,n−1)(m, 1)(1,nm)

= (m−1,n−1)(m,nm)

= (m−1m, (n−1)mnm)

= (1, 1).

So we have an induced homomorphism of P-groups

ϕ : (M ∗N)/U→M⋉N.

We define a homomorphism in the other direction

ψ : M⋉N→ (M ∗N)/U

by ψ(m,n) = [mn] the equivalence class of the element mn ∈M ∗N. To check the homomorphism

property, we compute

ψ(m ′,n ′)−1ψ(m,n)−1ψ((m,n)(m ′,n ′)) = [n ′−1
m ′−1

][n−1m−1]ψ(mm ′,nm
′

n ′)

= [n ′−1
m ′−1

n−1m−1mm ′nm
′

n ′]

= [n ′−1
(m ′−1

n−1m ′nm
′

)n ′]

= [1]

since m ′−1
n−1m ′nm

′

∈ U.

Clearly ϕψ = 1. Since ψϕ is a homomorphism, to prove that it is 1 it is enough to check this on

the generators ψϕ[mn], m ∈M, n ∈ N, and this is clear.

It now follows, as may be proved directly, that µ ⋉ ν : M ⋉ N → P, (m,n) 7→ (µm)(νn) is a

homomorphism which with the action of P given by (m,n)p = (mp,np) is a precrossed P-module. 2
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So M ⋉ N is a precrossed module containing M and N as submodules. Let us see that it satisfies

a universal property with respect to maps of the crossed modules M and N to any given crossed

module M ′.

Proposition 4.2.2 Let M ′ = (µ′ : M ′ → P) be a crossed P-module and let f : M →M ′ and g : N →

M ′ be morphisms of crossed P-modules. Then there is a unique map of precrossed P-modules extending

f and g, namely f⋉ g : M⋉N→M ′, (m,n) 7→ (fm)(gn).

Proof Uniqueness is obvious.

To prove existence we have to check that the morphism of precrossed P-modules

f ∗ g : M ∗N→M ′

sends all elements of U to 1, where U is the subgroup specified in Proposition 4.2.1. On generators

of U we have

(f ∗ g)(m−1n−1mnm) = f(m−1)g(n−1)f(m)g(nm) = g(n−1)µ
′fmg(n)µm = 1

since µ′ : M ′ → P is a crossed module and µ′f = µ. 2

Therefore it is clear that the coproduct of two crossed P-modules µ : M → P and ν : N → P is

the crossed module associated to the precrossed module µ⋉ ν : M⋉N→ P, i.e.

M ◦N = ((µ ⋉ ν)cr : (M⋉N)cr → P) = (M ◦N→ P).

This has some striking consequences.

Remark 4.2.3 If we have two crossed P-modules such thatM andN are finite groups (resp. finite p-

groups), then so also is the semidirect productM⋉N and hence their coproduct as crossed modules

M ◦N is also a finite group (resp. a finite p-group). This result was not clear at all from previous

descriptions of the coproduct of crossed P-modules. 2

Remark 4.2.4 If (µ : M → P), (ν : N → P) are crossed P-modules such that each of M, N act

trivially on the other via P, then M⋉N = M×N and ∂ : M×N → P, where ∂(m,n) = (µm)(νn)

is the coproduct where (m,n)p = (mp,np). 2

We now study the Peiffer subgroup [[M⋉N,M⋉N]] of M⋉N, which we shall write {M,N}. As

we have seen, it is the subgroup generated by the Peiffer commutators of all elements of M ⋉ N.

Alternatively, {M,N} is generated by the images by ϕ of r(m,n), i.e. by

{{n,m} | m ∈M,n ∈ N}

Lemma 4.2.5 The elements {n,m} satisfy

{n,m} = ([m,n], [n,m]),

where [m,n] = m−1mn and [n,m] = n−1nm.

Proof Notice that any m, m ′ ∈M and n ∈ N satisfy the relation

n ′(m
n)

= ((n ′n
−1

)m)n = n−1(nn ′n−1)mn = n−1nmn ′m(n−1)mn (∗)
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Thus,

{n,m} = n−1m−1nmn

= (1,n−1)(m−1, 1)(1,n)(mn, 1)

= (m−1, (n−1)m
−1

)(mn, (nm)n)

= (m−1mn, ((n−1)m
−1

)m
n

(nm)n)

= (m−1mn,n−1nm) using (∗).

Finally, we have

{n,m} = ([m,n], [n,m]).

2

Using the previous result and some well known facts on the semidirect product, we get a presen-

tation of the coproduct of two crossed modules as follows. First, recall that the semidirect product

has a presentation with generators the elements (m,n) ∈M×N and relations

(m,n)(m ′,n ′) = (mm ′,nm
′

n ′)

for all m,m ′ ∈M and n,n ′ ∈ N. The set of relations may equivalently be expressed as

(m,nm
′−1

)(m ′,n ′) = (mm ′,nn ′).

To get a presentation ofM◦Nwe add the relations corresponding to the Peiffer subgroup {M,N}. By

the preceding property the relation {m,n} = 1 is equivalent to [m,n] = [n,m]−1, giving (mn)−1m =

n−1nm, or n(m−1)n = (nm
−1

)−1m−1. This may be expressed, taking m ′ = m−1,

nm ′n = (nm
′

)−1m ′

suggesting the next proposition.

Theorem 4.2.6 The group M ◦ N has a presentation with generators {m ◦ n | m ∈ M,n ∈ N}, and

relations

mm ′ ◦ nn ′ = (m ◦ nm
′−1

)(m ′ ◦ n ′) = (m ◦ n)(m ′n ◦ n ′),

for all m,m ′ ∈M and n,n ′ ∈ N.

Proof Let K be the group with this presentation. Then P acts on K by (m ◦ n)p = mp ◦ np, and

the map

ξ : K→ P, m ◦ n 7→ (µm)(νn),

is a well defined homomorphism. It is routine to verify the crossed module rules for this structure.

It is also not difficult to check that this crossed module together with the morphisms i : M →

K, m 7→ m ◦ 1 and j : N → K, n 7→ 1 ◦ n satisfy the universal property of the coproduct. We omit

further details. 2

We describe some extra facts about {M,N}. In particular, the expression of the products and

inverses of the elements {n,m}.

Proposition 4.2.7 For any m,m ′ ∈M and n,n ′ ∈ N we have

{n,m}{n ′,m ′} = ([m,n][m ′,n ′], [n ′,m ′][n,m]).
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Proof

{n,m}{n ′,m ′} = ([m,n], [n,m])([m ′,n ′], [n ′,m ′])

= ([m,n][m ′,n ′], [n,m][m
′,n′][n ′,m ′],

and

[n,m][m
′,n′][n ′,m ′] = (n−1nm)m

′−1
m′n

′

n ′−1
n ′m

′

= ((n−1)m
′−1

(nm)m
′−1

)m
′n

′

n ′−1
n ′m

′

= n ′−1
n ′m

′

n−1nm(n ′−1
)m

′

n ′n ′−1
n ′m

′

using (*) in Lemma 4.2.5

= n ′−1
n ′m

′

n−1nm

= [n ′,m ′][n,m].

Thus

{n,m}{n ′,m ′} = ([m,n][m ′,n ′], [n ′,m ′][n,m])

as indicated. 2

Remark 4.2.8 This result extends to any finite product of elements {ni,mi} with mi ∈M,ni ∈ N.

2

Corollary 4.2.9 For any m ∈M and n ∈ N we have

{n,m}−1 = {n−1,mn}.

The proof is left to the reader.

4.3 The coproduct and the 2-dimensional van Kampen Theorem

One of the interesting features of the coproduct of crossed P-modules is its topological applications.

The 2-dimensional van Kampen Theorem as stated in Theorem 2.3.1 involved a kind of generalised

pushout (a coequaliser, in fact) and the coproduct of two crossed P-modules may also be interpreted

as a pushout.

Proposition 4.3.1 If (µ : M→ P), (ν : N→ P) are crossed P-modules then the following diagram

(1→ P) //

��

(N→ P)

��
(M→ P) // (M ◦N→ P)

(4.3.1)

is a pushout in the category XMod/P and also in the category XMod/Groups.

Proof The equivalence of the pushout property in the category XMod/P with the universal prop-

erty of the coproduct is easy to verify. We defer the proof of the pushout property in the category

XMod/Groups until we have introduced in Section 5.2 the pullback functor f∗ : XMod/Q→ XMod/P

for a morphism f : P → Q of groups. 2
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One of the simpler cases of the 2-dimensional van Kampen Theorem is the following.

Theorem 4.3.2 Suppose that the connected space X is the union of the interior of two connected sub-

spaces U1,U2, with connected intersection U12. Suppose that the pairs (U1,U12) and (U2,U12) are

1-connected. Then the pair (X,U12) is 1-connected and the morphism

Π2(U1,U12) ◦ Π2(U2,U12)→ Π2(X,U12)

induced by inclusions is an isomorphism of crossed π1(U12)-modules.

Proof We apply Theorem 2.3.1 to the cover of X given by U1 and U2 with A = U12. The connec-

tivity result is immediate. Also by the same theorem the following diagram is a pushout of crossed

modules:

Π2(U12,U12) //

��

Π2(U1,U12)

��
Π2(U2,U12) // Π2(X,U12)

Since Π2(U12,U12) = (1→ π1(U12)), the result follows from Proposition 4.3.1. 2

We would like to extract from this result some information on the absolute homotopy group

π2(X). Consider the following part of the homotopy exact sequence of the pair (X,U12) stated in

2.1.3,

· · · → π2(U12)
i∗−→ π2(X)

j∗−→ π2(X,U12)
∂
−→ π1(U12)→ · · · .

It is clear that we have an isomorphism

π2(X)

i∗(π2(U12))
∼= Ker∂ = Ker(∂1 ◦ ∂2). (4.3.2)

Notice than, in particular, this result gives complete information on π2(X) when π2(U12) = 0.

It would be a good thing to be able to identify the kernel of the coproduct of two crossed P-

modules in a more workable way. To do this, let us introduce the pull back of crossed P-modules.

Given two crossed modules M = (µ : M→ P), N = (ν : N→ P) we form the pullback square

M×P N
p1 //

p2

��

M

µ

��
N ν

// P

(4.3.3)

whereM×PN = {(m,n) ∈M×N | µ(m) = ν(n)}, p1 and p2 are the projections. ObviouslyM×PN

is a P-group (P acts diagonally).

Proposition 4.3.3 M×P N is isomorphic as P-group to Ker (µ⋉ ν).

Proof Let

φ : M×P N→M⋉N

be defined as φ(m,n) = (m,n−1).
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To check that it is a homomorphism of groups we compute for all m,m ′ ∈M and n,n ′ ∈ N

φ(m,n)φ(m ′,n ′) = (m,n−1)(m ′,n ′−1
)

= (mm ′, (n−1)m
′

n ′−1
)

= (mm ′, (n−1)n
′

n ′−1
)

= (mm ′,n ′−1
n−1n ′n ′−1

)

= (mm ′, (nn ′)−1)

= φ(mm ′,nn ′).

Clearly, φ is a bijection onto Ker (µ⋉ ν) that preserves the P-actions. 2

Now, to any m ∈M and n ∈ N we associate an element of M×P N defined as

〈m,n〉 = (m−1mn, (n−1)mn). (4.3.4)

If we write 〈M,N〉 for the normal subgroup of M ×P N generated by {〈m,n〉|m ∈ M,n ∈ N}, we

have seen that φ(〈M,N〉) = {M,N}.

Thus, there is an induced map

φ :
M×P N

〈M,N〉
−→

M⋉N
{M,N}

= M ◦N.

We deduce immediately from the proposition

Corollary 4.3.4 The map φ gives an isomorphism of P-modules

φ :
M×P N

〈M,N〉
∼= Ker(µ ◦ ν).

Remark 4.3.5 Notice that this result has some purely algebraic consequences. Since M ◦ N is a

crossed module, Ker (µ ◦ ν) is abelian; so 〈M,N〉 contains the commutator subgroup of M×P N. 2

Now we can translate this algebraic result into a topological one.

Theorem 4.3.6 If (U1,U12) and (U2,U12) are 1-connected and π2(U12) = 0, we have,

π2(X) ∼=
π2(U1,U12)×π1(U12) π2(U2,U12)

〈π2(U1,U12),π2(U2,U12)〉
.

Proof Since π2(U12) = 0, from the equation (4.3.2), we have π2(X) ∼= Ker (∂1 ◦ ∂2) and the result

follows from the corollary before. 2

Let us study some other algebraic way of computing Ker(µ ◦ ν) or, equivalently, the quotient

M×P N

〈M,N〉
.

We may also define a homomorphism of groups k : M ×P N → P by the formula k(m,n) =

µ(m) = ν(n). This gives the following result.

Proposition 4.3.7 There is an exact sequence of P-groups

0→ Kerµ⊕Kerν→M×P N
k
→ µ(M) ∩ ν(N)→ 1.
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Proof It is immediate that k(M ×P N) = µ(M) ∩ ν(N). It remains to check that Ker k = Ker µ⊕

Ker ν; but this is clear since

Ker k = {(m,n) | µ(m) = ν(n) = 0}

and all m ∈ Ker µ and n ∈ Ker ν commute. 2

Bringing the subgroup 〈M,N〉 into the picture, it is immediate that k(〈m,n〉) = [µ(m),ν(n)].

Then we have k(〈M,N〉) = [µ(M),ν(N)] giving a homomorphism k onto the quotient. This gives

directly the next result.

Corollary 4.3.8 There is an exact sequence of P-modules

0→ (Kerµ⊕Kerν) ∩ (〈M,N〉)→ Kerµ⊕Kerν→
M×P N

〈M,N〉
= Ker(µ ◦ ν)

k
−→

µ(M) ∩ ν(N)

[µ(M),ν(N)]
→ 0.

Remark 4.3.9 An easy consequence is that µ ◦ ν is injective if and only if

i) Kerµ ⊕Kerν ⊂ 〈M,N〉 and

ii) [µ(M),ν(N)] = µ(M) ∩ ν(N). 2

As before, we can apply this result to the topological case, getting a way to compute the second

homotopy group of a space in some cases.

Theorem 4.3.10 If (U1,U12) and (U2,U12) are 1-connected and π2(U12) = 0, the following sequence

of groups and homomorphisms is exact

0→ (π2(U1)⊕ π2(U2)) ∩ 〈π2(U1,U12),π2(U2,U12)〉 → π2(U1)⊕ π2(U2)→ π2(X)→
R1 ∩ R2

[R1,R2]
→ 1,

where Rl = Ker(π1(U12)→ π1(Ul)) for l = 1, 2.

If further π2(U1) = π2(U2) = 0, then there is an isomorphism

π2(X) ∼=
R1 ∩ R2

[R1,R2]
.

Proof Let us consider the crossed modules ∂l : π2(Ul,U12) → π1(U12). Recall from (2.1.3) that

the homotopy exact sequence of the pair (Ul,U12) is

· · · → π2(U12)
il∗−→ π2(Ul)

jl∗−→ π2(Ul,U12)
∂l−→ π1(U12)→ · · · .

Directly from this exact sequence, we have

Im∂l = Rl.

On the other hand,

Ker∂l = π2(Ul)

using the same homotopy exact sequence and π2(U12) = 0.

Thus the result is a translation of Corollary 4.3.8. 2
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Remark 4.3.11 Whenever U1, U2 are based subspaces of X with intersection U12 there is always a

natural map

σ : π2(U1,U12) ◦ π2(U2,U12)→ π2(X,U12)

determined by the inclusions, but in general σ is not an isomorphism. Bogley and Gutierrez in

[BG92] have had some success in describing Ker σ and Coker σ in the case when all the above

spaces are connected. 2

4.4 Some special cases of the coproduct

We end this chapter by giving a careful description of the coproduct of crossed P-modules in the

particular case of two crossed P-modules µ : M → P,ν : N → P in a useful special case, i.e. when

ν(N) ⊆ µ(M) and there is a P-equivariant section σ : µM → M of µ. Notice that this includes the

case when M = P and µ is the identity. These results were first published in [73].

This case is important because of the topological applications and also because it is useful in

Section 5.6 for describing as a coproduct the crossed module induced by a monomorphism.

We start with some general results that will be used several times in this book.

Definition 4.4.1 If M acts on the group N we define [N,M] to be the subgroup of N generated

by the elements, often called pseudo-commutators, n−1nm for all n ∈ N, m ∈ M. This subgroup is

called the displacement subgroup and measures how much N is moved under the M-action. 2

The following result is analogous to a standard result on the commutator subgroup.

Proposition 4.4.2 The displacement subgroup [N,M] is a normal subgroup of N.

Proof It is enough to prove that the conjugate of any generator of [N,M] lies also in [N,M].

Let m ∈M,n,n1 ∈ N. We easily check that

n1
−1(n−1nm)n1 = ((nn1)

−1(nn1)
m)(n1

−1n1
m)−1

and the product on the right hand side belongs to [N,M] since both factors are generators. So we

have proved n1
−1[N,M]n1 ⊆ [N,M], whence [N,M] is a normal subgroup of N. 2

Definition 4.4.3 The quotient of N by the displacement subgroup is written NM = N/[N,M]. The

class in NM of an element n ∈ N is written [n]. It is clear that NM is a trivial M-module since

[nm] = [n]. 2

Proposition 4.4.4 Let µ : M→ P, ν : N→ P be crossed P-modules, so that M acts on N via µ. Then

P acts on NM by [n]p = [np]. Moreover this action is trivial when restricted to µM.

Proof To see that the P-action on N induces one on NM, we have to check that [N,M] is a P-

invariant subgroup and this follows because (n−1nm)p = (n−1)p(nm)p = (np)−1(np)m
p

for all

n ∈ N, m ∈M, p ∈ P.

The action of µM is trivial since [n]µm = [nµm] = [nm] = [n]. 2
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Now we study the homomorphism

ξ : M×NM → P, (m, [n]) 7→ µm.

We have just seen that NM is a P-group.

Proposition 4.4.5 With P acting onM×NM by the diagonal action, ξ : M×NM → P is a precrossed

P-module.

Proof If m ∈M,n ∈ N,p ∈ P then

ξ((m, [n])p) = ξ(mp, [np]) = µ(mp) = p−1(µm)p = p−1(ξ(m, [n])p))p.

2

Remark 4.4.6 In general it is not a crossed module. Nevertheless whenNM is abelian, the actions of

both factors on each other are trivial. In this case it follows from Remark 4.2.4 that ξ : M×NM → P

is a crossed module. (It is an easy exercise to prove this directly.) 2

We shall study now a condition first stated in [GH89] that implies that NM is abelian.

Proposition 4.4.7 Let µ : M→ P, ν : N→ P be crossed P-modules such that νN ⊆ µM. Then NM is

abelian and therefore ξ : M×NM → P is a crossed P-module.

Proof Let n,n1 ∈ N. Choosem ∈M such that νn1 = µm. Then by the crossed module rule CM2)

n1
−1nn1 = nνn1 = nµm

and so in the quotient [n1]
−1[n][n1] = [nµm] = [n]. 2

We now study the case where there is also a P-equivariant section σ : µM →M of µ defined on

µM. We will see that in this case ξ : M×NM → P is isomorphic to the coproduct M ◦ N of crossed

P-modules. We shall follow the later proof given by Brown and Wensley in [BW96]. This contains

the main result of [GH89] but it is stronger in the sense that it determines explicitly the coproduct

structure. Since we shall use this structure for later results, we give the proof in detail.

Theorem 4.4.8 Let µ : M→ P, ν : N→ P be crossed P-modules with νN ⊆ µM and let σ : µM→M

be a P-equivariant section of µ. Then the morphisms of crossed P-modules

i : M→M×NM, j : N→M×NM,

m 7→ (m, 1) n 7→ (σνn, [n])

give a coproduct of crossed P-modules. Hence the canonical morphism of crossed P-modules

M ◦N→M×NM

given by m ◦ n 7→ (m(σνn), [n]) is an isomorphism.

Proof We need to verify that the pair (i, j) satisfies the universal property of the coproduct of

crossed P-modules. Consider an arbitrary crossed P-module χ : C → P and morphisms of crossed

P-modules β : M→ C, and γ : N→ C. We have the following diagram:

M

i

%%KKKKKKKKKK

β

""

N
j

yytttttttttt

γ

}}

M×NM

φ
���
�
�

C
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and we want to prove that there is a unique φ : M ×NM → C determining a morphism of crossed

P-modules closing the diagram i.e. such that φi = β, and φj = γ.

Let us consider uniqueness. For anym ∈M,n ∈ N, since φ has to be a homomorphism, we have

φ(m, [n]) = φ((m, 0)(σνn, 0)−1(σνn, [n]))

= (βm)(βσνn)−1(γn).

This proves uniqueness of any such a φ. We now prove that this formula gives a well-defined

morphism.

It is immediate from the formula that φ : M × NM → C has to be β on the first factor and is

defined on the second one by the map [n] 7→ (βσνn)−1(γn). We have to check that this latter map

is a well defined homomorphism.

We define the function

ψ : N→ C

by n 7→ (βσνn−1)(γn) and prove in turn the following statements.

4.4.9 ψ(N) ⊆ Z(C), the centre of C, and χ(C) acts trivially on ψ(N).

Proof of 4.4.9 Since χβ = µ and χγ = ν, it follows that χψ = 0 and ψ(N) ⊆ Kerχ. Since C is a

crossed module, χ(C) acts trivially on Kerχ and Kerχ ⊆ Z(C). 2

4.4.10 ψ is a morphism of crossed P-modules.

Proof of 4.4.10 We have to prove that ψ is a morphism and is P-equivariant. The latter is clear,

since β,γ,σ,ν are P-equivariant. So let n,n1 ∈ N. Then

ψ(nn1) = (βσνn−1
1 )(βσνn−1)(γn)(γn1)

= (βσνn−1
1 )(ψn)(γn1)

= (ψn)(βσνn−1
1 )(γn1) by (4.4.9)

= (ψn)(ψn1). 2

Note that even if σ is not P-equivariant, ψ is still a group homomorphism.

4.4.11 M acts trivially on ψ(N).

Proof of 4.4.11 Let m ∈ M, n ∈ N. Note that (βσµm)(βm−1) lies in Kerχ, and so belongs to

Z(C). Hence

(ψn)m = (βσνnm)−1(γn)µm

= βσ((µm−1)(νn)(µm))−1(γn)χβm

= (βσµm−1)(βσνn−1)(βσµm)(βm−1)(γn)(βm)

= (βσµm−1)(βσµm)(βm−1)(βσνn−1)(γn)(βm)

= (βm−1)(ψn)(βm)

= ψn by (4.4.9) 2

It follows that ψ induces a morphism ψ ′ : NM → C, [n] 7→ ψn, and so we define

φ = (β,ψ ′) : M×NM → C

by (m, [n]) 7→ (βm)(ψn). Since ψn commutes with βm we easily verify that φ is a homomorphism,

φi = β, φj = γ and χφ = ξ. Thus the pair of morphisms i : M → M × NM, j : N → M × NM
satisfies the universal property of a coproduct. This completes the proof of the theorem.
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A standard consequence of the existence of a homomorphism σ : µM → M which is a section

of µ on µM is that M is isomorphic to the semidirect product µM⋉ Kerµ, where µM acts on Kerµ

by conjugation, i.e. m ′µm = m−1m ′m. Moreover, in the case when µ is a crossed module and σ

is P-equivariant, the isomorphism is as crossed P-modules. Thus we have a third expression for the

coproduct.

Proposition 4.4.12 Let µ : M → P, ν : N → P be crossed P-modules with νN ⊆ µM and let

σ : µM→M be a P-equivariant section of µ. There is an isomorphism of crossed P-modules

M ◦N ∼= (µM× Kerµ)×NM

given by m ◦ n 7→ (m(σµm)−1, (µm)(νn), [n]).

We now give a topological application.

Corollary 4.4.13 Let (Y,A) be a connected based pair of spaces, and let X = Y ∪CA be obtained from

Y by attaching a cone on A. Then there is an isomorphism of crossed π1(A)-modules

π2(X,A) ∼= π1(A)× π2(Y,A)π1(A).

Proof We apply Theorem 4.3.2 withU1 = CA,U2 = Y, so thatU12 = A. Then π2(CA,A) ∼= π1(A),

by the exact sequence of the pair (CA,A), so that we have π2(X,A) ∼= π1(A) ◦ π2(Y,A). The result

now follows from Theorem 4.4.8. 2

As another application of Theorem 4.4.8, we analyse the symmetry of the coproduct in a special

case.

The symmetry morphism τ : M ◦ N → N ◦M is, as usual for a coproduct, given by the pair of

canonical morphismsM→ N◦M, N→ N◦M. Hence τ is given bym◦n 7→ (1◦m)(n◦1) = n◦mn.

Proposition 4.4.14 Let µ : M→ P be a crossed module where µ is an inclusion of a normal subgroup

of the group P. Then the isomorphism of crossed P-modules

θ : M ◦M → M×Mab

θ(m ◦ n) = (mn, [n])

transforms the twist isomorphism τ : M ◦M→M ◦M to the isomorphism

θ−1τθ : M×Mab → M×Mab

(m, [n]) 7→ (m, [n−1m]).

Proof Notice that in this case Mab = MM. The isomorphism θ : M ◦M → M ×Mab is given in

theorem 4.4.8. The twist isomorphism is transformed into the composition

(m, [n]) 7→ mn−1 ◦ n 7→ n ◦ (mn−1)n = n ◦ n−1m 7→ (m, [n−1m]).

2

For an application in the next section, we now extend the last results to more general coproducts.

We first prove:

Proposition 4.4.15 Let T be an indexing set, and let µ : M → P and νt : Nt → P, t ∈ T , be crossed

P-modules. Let

N =©t∈T Nt.
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Suppose that νtNt ⊆ µM for all t ∈ T . Then there is an isomorphism of P-modules

NM ∼=
⊕

t∈T

(Nt)M.

Proof Since N = ©t∈TNt is the quotient of the free product ∗Nt by the Peiffer relations, NM
can be presented as the same free product with the Peiffer relations n−1

s n
−1
t nsn

νsns

t = 1 and the

relations n
µm
t = nt for all ns ∈ Ns, nt ∈ Nt, m ∈M.

These relations are equivalent to the commutator relations [ns,nt] = 1 together with nµmt = nt

for all ns ∈ Ns, nt ∈ Nt, m ∈M. 2

Corollary 4.4.16 Suppose in addition that the restriction µ| : M → µM of µ has a P-equivariant

section σ. Then there are isomorphisms of crossed P-modules between

(i) M ◦ (©t∈T Nt),

(ii) ξ : M×
⊕
t∈T (Nt)M → P, ξ(m,n) = µm,

(iii) ξη−1 : µM× Kerµ×
⊕
t∈T (Nt)M → P.

Under the first isomorphism, the coproduct injections i : M→M◦(©t∈TNt), jt : Nt →M◦(©t∈TNt)

are given by m 7→ (m, 0), nt 7→ (σνtnt, [nt]).

When T is well-ordered, we may also obtain explicit isomorphisms by writing a typical element

of©t∈T Nt as©t∈T nt, and by writing a finite product of elements νtnt ∈ P as
∏
t∈T νtnt.

Corollary 4.4.17 When T is well-ordered, the rules

m ◦ (©t∈T nt) 7→ (m(
∏

t∈T

(σνtnt)),
⊕

t∈T

[nt] ) 7→ (m(σµm−1), (µm)(
∏

t∈T

νtnt),
⊕

t∈T

[nt]) )

define isomorphismsM ◦ (©t∈T Nt) ∼= M×
⊕
t∈T (Nt)M, ∼= µM× Kerµ×

⊕
t∈T (Nt)M.

4.5 Notes

The construction of the coproduct had a precursor in Whitehead’s paper [Whi41], and then was

taken up in [Bro84], linked with consequences of the 2-dimensional van Kampen theorem.
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Chapter 5

Induced crossed modules

Here we give a full account of another construction which allows detailed computations of non

abelian homotopical information in dimension 2, namely the induced crossed modules. These arise

topologically from a pushout of pairs of spaces of the form

(A,A) //

��

(X,A)

��
(Y, Y) // (X ∪f Y, Y)

on applying the 2-dimensional van Kampen Theorem. The above diagram in fact gives a format for

what is known topologically as excision, since if all the maps are closed inclusions then X ∪f Y with

Y cut out, or excised, is the same as X with A excised. In the case of homology, and under suitable

conditions, we end up with isomorphisms Hn(X,A)→ Hn(X ∪f Y, Y).

This is by no means so for relative homotopy groups, and this illustrates the complication of

2-dimensional algebra. The result we give on induced crossed modules shows how crossed modules

cope with this complication. There are many implications.

We also find as a consequence of these methods that we obtain the relative Hurewicz theorem

in dimension 2 and also a famous formula of Hopf on the second homology of an aspherical space.

This formula was one of the starting points of the important theory of the cohomology of groups.

These applications give a model for higher dimensional results.

The induced construction illustrates a feature of homotopy theory, that identifications in low di-

mensions can influence strongly high dimensional homotopy. Applications of Higher Homotopy van

Kampen Theorems give information, though in a limited range of dimensions and under restrictive

conditions, on how this influence is controlled.

The constructions in this chapter are quite elaborate and in places quite technical. This illustrates

the complications of the geometry. We are illustrating the complications of 2-dimensional homotopy

theory, and also that the algebra can cope with this.

Also the crossed module “induced” by a homomorphism of groups f : P → Q may be seen as

one of the family of “change of base” functors of algebraic categories that have proved interest-

ing in many fields from algebraic geometry to homological algebra. A general account of induced

constructions in the context of cofibred categories is given in Appendix A.8.

The construction of the induced crossed module follows a natural pattern. Given the morphism

f as above and a crossed P-module µ : M → P, we need to construct from M and f a new group N

85
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on which Q acts so as to be a candidate for a crossed Q-module. Therefore we need new elements

of the form mq for m ∈ M,q ∈ Q. Since these do not for the moment exits, we construct them by

taking the free group on pairs (m,q) and then adding appropriate relations. This is done in detail

in Section 5.3.

In Section 5.1 we describe the pullback of a crossed module f∗(M). This is quite easy to construct

and the existence of the induced crossed module f∗(M) defined in Section 5.2 follows from the

existence of an adjoint to the pullback construction. We prove by the universal property that the

free crossed module of Section 3.4 is a particular case of the induced crossed module and that an

induced crossed module is the pushout of M and the trivial crossed module 1 → Q over the trivial

crossed module 1→ P.

That leaves the induced crossed module ready to be used in applications of the 2-dimensional

van Kampen Theorem. In Section 5.4 we prove that when X is a topological space having a decom-

position in two sets U1,U2 such that both pairs (U2,U12) are 1-connected, then the fundamental

crossed module Π2(X,U1) is the crossed module induced from Π2(U2,U12) by the homomorphism

induced by the inclusion (Theorem 5.4.1). As a consequence we get some homotopical results, in

particular Whitehead’s Theorem.

The second part of the Chapter is devoted to study the construction of the induced crossed

module in a more useful guise. Since the direct construction is in general enormous (the first step

uses a free group), it is interesting to get a more manageable way of producing induced crossed

modules. One fruitful idea is to study separately the case when f is surjective and the case when f is

injective and this is done in the next two sections.

The surjective case (Section 5.5) is quite direct and we prove that f∗(M) is the quotient of M

by the displacement subgroup [M, Ker f]. This case has some interesting topological applications,

in particular the relative Hurewicz’s Theorem in dimension 2 and Hopf’s formula for the second

homology group of a group.

The case when f is injective, i.e. a monomorphism (Section 5.6), is essentially the inclusion of

a subgroup. This case is much more intricate and we need the concept of the copower construction

M∗T where T is a transversal of P in Q. We get a description of the induced crossed module

as a quotient of the copower (Corollary 5.6.6). Both the group and the action have alternative

descriptions that can be used to develop some examples, so obtaining in particular a bound for the

number of generators and relations for an induced crossed module.

It is also proved (in Section 5.7) that the induced crossed module is finite when both M and the

index [P : Q] are finite. This suggests the problem of explicit computation, and in the last section

of the chapter we explain some computer calculations in the finite case obtained using the package

GAP.

The next Section (5.8) is quite technical but contains a detailed description of the induced crossed

module in a useful special case, with many interesting examples, namely when P and M are both

normal subgroups of Q. We start by studying the induced crossed module when P is a normal

subgroup of Q, getting a description in terms of the coproduct M◦T . Then we use the description

of the coproduct given in the last Section of the preceding Chapter to derive just from the universal

property both the action (Theorem 5.8.6) and the map (Theorem 5.8.7). When M is just another

normal subgroup included in P, we get some more concrete formulas.

This leaves many finite examples not covered by the previous theorems: the last section gives

some computer calculations. 9
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5.1 Pullbacks of precrossed and crossed modules.

The work of this section can be done both for crossed and for precrossed modules. We shall state

only the crossed case but, if nothing is said, it is understood that a similar result is true for precrossed

modules. We shall not repeat the statement, but we only shall give indications of the differences.

Let us start by defining the functor that is going to be the adjoint of the induced crossed module,

the “pullback”. This is an important construction which, given a morphism of groups f : P → Q,

enables us to move from crossed Q-modules to crossed P-modules.

Definition 5.1.1 Let f : P → Q be a homomorphism of groups and let N = (ν : N→ Q) be a crossed

module. We define the subgroup of N× P

f∗N = N×Q P = {(n,p) ∈ N× P | νn = fp}.

This is the usual pullback in the category Groups. There is a commutative diagram

f∗N

ν̄

��

f̄ // N

ν

��
P

f
// Q

where ν̄ : (n,p) 7→ p, f̄ : (n,p) 7→ n. Then P acts on f∗N via f and the diagonal, i.e. (n,p)p
′

=

(nfp
′

,p ′−1
pp ′). It is easy to see that this gives a P-action. The pullback crossed module is

f∗N = (ν̄ : f∗N→ P)

It is also called the pullback of N along f and it is easy to see that f∗N is a crossed module. 2

This construction satisfies a crucial universal property, analogous to that of the pullback of

groups. To state it, we use also the morphism of crossed modules

(f̄, f) : f∗N −→ N.

Theorem 5.1.2 For any crossed module M = (µ : M→ P) and any morphism of crossed modules

(h, f) : M −→ N

there is a unique morphism of crossed P-modules h ′ : M → f∗N such that the following diagram

commutes

M
h

$$
µ

��

h′

!!C
C

C
C

C

f∗N

ν̄

��

f̄

// N

ν

��
P

f // Q

Proof The existence and uniqueness of the homomorphism h ′ follows from the fact that f∗N is

the pullback in the category of groups. It is defined by h ′(m) = (h(m),µ(m)). So we have only to

prove that h ′ is a morphism of crossed P-modules. This can be checked directly. 2
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Using this universal property, it is not difficult to see that this construction gives a functor

f∗ : XMod/Q→ XMod/P.

Moreover, these functors are ‘natural’ in the sense that there are natural equivalences f∗f ′
∗ ≃ (f ′f)∗

for any homomorphisms f : P → Q and f ′ : Q→ R.

In the last chapter, we dealt with the coproduct of crossed P-modules, which satisfied a universal

property in the category XMod/P of crossed P-modules. We shall need an extension of this property

in Section 5.8. It gives the existence and uniqueness of a morphism of crossed modules associated

to a family of morphisms of crossed modules {(βt, f)} over the same homomorphism f : P → Q. The

standard universal property of the coproduct is just the particular case f = Id. The argument we

give uses the above pullback functor f∗ and can be seen in a more general categorical light. You may

skip this part until the result is needed. The proof takes time to write out but is in essence quite

direct.

Proposition 5.1.3 Let Mt, t ∈ T be a family of crossed P-modules. Let f : P → Q be a homomorphism

of groups, let N = (ν : N→ Q) be an arbitrary crossedQ-module, and for each u ∈ T let βu : Mu → N

be a homomorphism giving a morphism of crossed modules over f. Then there exists a unique crossed

module morphism φ :©tMt → N over f such that φiu = βu for all u ∈ T .

Proof The proof can be summarised by saying that we use the universal property of the pullback

functor to show that the universal property for the coproduct in the category XMod/P extends to the

more general case.

This general universal property asks for the existence and uniqueness of the dashed homomor-

phism φ in the diagram

Mu
βu

%%
µu

��

iu

##G
GG

GG
GG

GG

©tMt

µ

��

φ
//___ N

ν

��
P

f // Q

such that the diagram commute and (φ, f) is a morphism of crossed modules.

As happens many times, uniqueness is immediate from the fact that
⋃
it(Mt) generates©tMt.

By construction of the pullback of groups, if the homomorphism φ exists, it has to factor through

f∗N giving a commutative diagram

©tMt
φ

%%

V T R P
N

L

µ

  

φ′

##H
H

H
H

H

f∗N

ν̄

��

f̄

// N

ν

��
P

f // Q.

So we just have to construct a homomorphism φ′ that gives a morphism of crossed P-modules.

By the universal property of pullbacks, for each u there is a unique homomorphism β ′
u : Mu →

f∗N such that f̄β ′
u = βu. Moreover, β ′

u is a morphism of crossed P-modules and makes the diagram
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commutative:

Mu
βu

$$
µu

��

β′

u

""E
EEEEEEE

f∗N

ν̄

��

f̄

// N

ν

��
P

f // Q.

By the universal property of coproducts of crossed modules over P, there is a unique morphism of

crossed P-modules φ′ :©tMt → f∗N such that for all u ∈ T the diagrams

Mu
β′

u

&&

µu

  

iu

##G
GG

GG
GG

GG

©tMt

µ

��

φ′

// f∗N

ν̄

��
P

= // P

commute.

The composite morphism φ = f̄φ′ is the unique morphism satisfying φiu = βu for all u ∈ T . 2

5.2 Induced precrossed and crossed modules

Now we define a functor f∗ left adjoint to the pullback f∗ of the previous section. In particular we

prove that the free crossed module is a particular case of an induced crossed module. Then we apply

this to the topological case to get Whitehead’s Theorem (Corollary 5.4.8).

The “induced crossed module” functor is defined by the following universal property, adjoint to

that of pullback.

Definition 5.2.1 For any crossed P-module M = (µ : M → P) and any homomorphism f : P → Q

the crossed module induced by f from M should be given by:

i) a crossed Q-module f∗M = (f∗µ : f∗M→ Q);

ii) a morphism of crossed modules (φ, f) : M −→ f∗M, satisfying the dual universal property that

for any morphism of crossed modules

(h, f) : M −→ N

there is a unique morphism of Q-crossed modules h ′ : f∗M→ N such that the diagram

N

ν

��

M

h

33

φ
//

µ

��

f∗M

h′

=={
{

{
{

{

f∗µ

��
P

f // Q

commutes. 2
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Now we prove that this functor if it exists, forms an adjoint pair with the pullback functor. Using

general categorical considerations, we can deduce the existence of the induced crossed module

functor

f∗ : XMod/P → XMod/Q

and, also, that they satisfy the ‘naturality condition’ that there is a natural equivalence of functors

f ′∗f∗ ≃ (f ′f)∗.

Theorem 5.2.2 For any homomorphism of groups f : P → Q, f∗ is the left adjoint of f∗.

Proof From the naturality conditions expressed earlier, it is immediate that for any crossed modules

M = (µ : M→ P) and N = (ν : N→ Q) there are bijections

(XMod/P)(N, f∗N) ∼= {h : M→ N | (h, f) : M→ N is a morphism of crossed modules},

as proved in Proposition 5.1.2 , and

(XMod/Q)(f∗M, N) ∼= {h : M→ N | (h, f) : M→ N is a morphism of crossed modules}

as given in the definition.

Their composition gives the bijection needed for adjointness. 2

We end this section by comparing the universal properties defining the induced crossed module

and two other constructions. The first one is the free crossed module on a map. Using the induced

crossed module, we get an alternative description of the free crossed module.

Proposition 5.2.3 Let P be a group and {ωr | r ∈ R} be an indexed family of elements of P, or,

equivalently, a function ω : R → P. Let F be the free group generated by R and f : F → P the

homomorphism of groups such that f(r) = ωr ∈ P. Then the crossed module f∗(1F) : f∗F→ P induced

from 1F = (IdF : F→ F) by f is the free crossed P-module on {(1, r) ∈ f∗F | r ∈ R}.

Proof Both universal properties assert the existence of morphisms of crossed P-modules commut-

ing the appropriate diagrams. Let us check that the data in both constructions are equivalent.

The data in the induced crossed module are a crossed module N and a morphism of crossed

modules (h, f) : 1F → N. The data in the free crossed module are a crossed module N and a map

ω ′ : R → N lifting ω. Since F is the free group on R, the map ω ′ is equivalent to a homomorphism

of groups h : F→ N lifting ω (i.e. h(r) = ω ′(r)). Moreover, h satisfies

h(rr
′

) = h(r ′
−1
rr ′) = h(r ′)−1h(r)h(r ′) = (hr)νh(r′) = (hr)f(r

′) (5.2.1)

for all r, r ′ ∈ R. So h preserves the action and (h, f) is a morphism of crossed modules.

Thus the data in both cases are equivalent. 2

Remark 5.2.4 It is clear that the proof in Proposition 5.2.3 does not work for precrossed modules

since in proving the equality (5.2.1) we have used axiom CM2). It is easy to see that the precrossed

module induced from IdF : F → F is not the free precrossed module but its quotient with respect to

the normal subgroup generated by all relations

(p, rr
′

) = (pω(r), r ′)

when p ∈ P and r, r ′ ∈ R.

It is a nice exercise to find a crossed module L → F such that the free precrossed module is the

induced from L. 2
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We now give an important re-interpretation of induced crossed modules in terms of a pushout of

crossed modules. This is how we can show that induced crossed modules arise from a 2-dimensional

van Kampen theorem. The proof is obtained by relating the two universal properties. The general

situation of which this proof is an example is given in Proposition A.8.7 and Theorem A.9.2, using

notions of fibrations of categories.

Proposition 5.2.5 For any crossed module M = (µ : M→ P) and any homomorphism f : P → Q, the

induced crossed module f∗M is such that the commutative diagram of crossed modules

(1→ P)
(1,f) //

(0,Id)

��

(1→ Q)

(0,Id)

��
(M→ P)

(φ,f)

// (f∗M→ Q)

is a pushout of crossed modules.

Proof To check that the diagram satisfies the universal property of the pushout, let N = (ν : N→

R) be a crossed module, and (h, f ′) : M → N and (1,g) : 1Q → N morphisms of crossed modules,

such that the diagram of full arrows commutes. We have to construct the dotted morphism of crossed

modules (k,g):

(1→ P)
(0,f)

//

(0,1)

��

(1→ Q)

(0,1)

�� (0,g)

��

(M→ P)

(h,f′)
,,

(φ,f) // (f∗M→ Q)
(k,g)

&&
(N→ R)

It immediate that f ′ = gf, kφ = h. So we can transform morphisms in turn

(M→ P)
(kφ,gf)
−→ (N→ R)

(M→ P)
(kφ,1)
−→ ((gf)∗N→ P)

(M→ P)
(kφ,1)
−→ (f∗g∗N→ P)

(f∗M→ Q)
(φ,1)
−→ (g∗N→ Q)

(f∗M→ Q)
(k,g)
−→ (N→ R)

as required. 2

5.3 Induced crossed modules: Construction in general.

We now give a simple construction of the induced crossed module, thus showing its existence. This

construction is not particularly useful for computations, and this problem is dealt with later.

We are going to construct the induced crossed module in two steps, producing first the induced

precrossed module and then from this the associated crossed module by quotienting out by its Peiffer

subgroup.
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Let us start with a homomorphism of groups f : P → Q and a crossed module (µ : M → P). We

construct

F = F(M×Q),

the free group generated by the elements ofM×Q (to make things easier to remember, we think of

(m,q) as “mq”).

There is an obvious Q-action on F given on generators by

(m,q)q
′

= (m,qq′)

for any q,q′ ∈ Q and m ∈M. Also, the map

µ̃ : F→ Q

given on generators by µ̃(m,q) = q−1fµ(m)q for any q ∈ Q and m ∈M is a precrossed module.

To get the induced precrossed module from this map µ̃, we take into the picture both the mul-

tiplication and the P-action on the first factor, and so make a quotient by the appropriate normal

subgroup. Let S be the normal subgroup generated by all the relations of the two following types:

(m,q)(m ′,q) = (mm ′,q) (5.3.1)

(mp,q) = (m, f(p)q) (5.3.2)

for any m,m ′ ∈ M,p ∈ P,q ∈ Q. We define E = F/S. It is easy to see that the action of Q on F

induces one on E. Also, µ̃ induces a precrossed module

µ̂ : E→ Q.

There is a map

φ : M→ E

got by projecting the map on F defined as φ(m) = (m, 1). This map is a morphism of groups

thanks to the relations of type 5.3.1, while (φ, f) is a morphism of precrossed modules thanks to the

relations of 5.3.2.

Theorem 5.3.1 The precrossed module µ̂ : E→ Q is that induced from µ by the homomorphism f.

Proof We have only to check the universal property.

For any morphism of precrossed modules

(h, f) : (µ : M→ P) −→ (ν : N→ Q)

there is a unique morphism of precrossedQ-modules h ′ : E→ N such that h = h ′φ because the only

way to define this homomorphism is by h ′(m,q) = (hm)q on generators. It is a very easy exercise

to check that this definition maps S to 1, and that the induced homomorphism gives a morphism of

crossed modules. 2

Remark 5.3.2 If M = (µ : M→ P) is a crossed module, there are two equivalent ways to obtain the

induced crossed module f∗M = (f∗M→ Q). One way is to get the associated crossed module to the

one above. The second way is to quotient out F, not only by the relations of the above two kinds,

but also adding the Peiffer relations

(m1,q1)
−1(m2,q2)(m1,q1) = (m2,q2q

−1
1 fµ(m1)q1)

for any q1, q2 ∈ Q and m1, m2 ∈M.
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There are much easier descriptions of the induced crossed module in the particular cases that

f is either surjective or injective and they go back to [BH78]. They give an alternative way of

constructing the induced crossed module since every map decomposes as the product of an injection

and a surjection. These are given later in Sections 5.5 and 5.6.

These constructions will be dealt with in a general setting in Section ??.

5.4 Induced crossed modules and the 2-dimensional van Kam-

pen Theorem

The relation between induced crossed module and the pushout of crossed modules suggests that

the induced crossed module may appear in some cases when using the 2-dimensional van Kampen

Theorem 2.3.1. After looking to the statement of the theorem for general subspaces A,U1,U2 ⊆ X

it is easy to see that this case occurs when A = U1, and this situation ia also known as ‘excision’. We

should give some background to this idea.

In the situation where X = U1 ∪U2, the inclusion of pairs

E : (U1,U1 ∩U2)→ (X,U2)

is known as the ‘excision map’ because the smaller pair is obtained by cutting out or ‘excising’ X\U2

from the larger pair. It is a theorem of homology (The Excision Theorem) that if U1,U2 are open

in X then the excision map induces an isomorphism of relative homology groups. This is one of the

basic results which make homology groups readily computable.

Here we get a result that can be interpreted as a limited form of Excision Theorem for homotopy,

but it shows that the excision map is in general not an isomorphism even for second relative homo-

topy groups. Lack of excision is one of the reasons for the difficulty of computing homotopy groups

of spaces.

Theorem 5.4.1 (Homotopical excision in dimension 2) Let X be a space which is the union of the

interior of two subspacesU1 andU2 and define U12 = U1∩U2. If all spaces are connected and (U2,U12)

is 1-connected, then (X,U1) is also 1-connected and the morphism of crossed modules

Π2(U2,U12)→ Π2(X,U1)

realises the crossed module Π2(X,U1) as induced from Π2(U2,U12) by the homomorphism induced by

the inclusion π1(U12)→ π1(U1).

Proof Following the notation of Theorem 2.3.1 with A = U1 we have

A1 = A ∩U1 = U1, A2 = A ∩U2 = U12 and A12 = A ∩U12 = U12.

It is clear that the hypothesis of Theorem 2.3.1 are satisfied since (U1,A1) = (U1,U1), (U2,A2) =

(U2,U12) and (U12,A12) = (U12,U12) are 1-connected. The consequence is that the diagram of

crossed modules
Π2(U12,U12) //

��

Π2(U2,U12)

��
Π2(U1,U1) // Π2(X,U1)

(5.4.1)

is a pushout.

Proposition 5.2.5 now implies the result. 2
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As in the case of Theorem 2.3.1, using standard mapping cylinder arguments, we can prove a

slightly more general statement.

Corollary 5.4.2 Let (X,A) be a pair and f : A → Y a continuous map. If all spaces are connected, the

inclusion i : A→ X is a closed cofibration and the pair (X,A) is 1-connected, then the pair (Y∪fX, Y) is

also 1-connected and Π2(Y∪fX, Y) is the crossed module induced from Π2(X,A) by f∗ : π1(A)→ π1(Y).

Proof This can either be deduced from the proceeding theorem by use of mapping cylinder argu-

ments, or can be seen as a particular case of Theorem 2.3.3 when U1 = A and Y1 = Y. 2

This last corollary has as a consequence a homotopical Excision Theorem for closed subsets under

weak conditions.

Corollary 5.4.3 Let X be a space that is the union of two closed subspaces U1 and U2 and let U12 =

U1 ∩ U2. If all spaces are connected, the inclusion U1 → X is a cofibration, and the pair (U2,U12)

is connected, then the pair (U1,X) is also connected and the crossed module (π2(X,U1) → π1(U1)) is

the one induced from (π2(U2,U12) → π1(U12)) by the morphism π1(U12) → π1(U1) induced by the

inclusion.

Before proceeding any further, we consider the case of a space X given as the homotopy pushout

of classifying spaces.

Theorem 5.4.4 Let M = (µ : M → P) be a crossed module, and let f : P → Q be a morphism of

groups. Let β : BP → BM be the inclusion. Consider the pushout diagram

BP
β //

Bf

��

BM

��
BQ

β′

// X.

i.e. X = BQ ∪Bf BM. Then the fundamental crossed module Π2(X,BQ) is isomorphic to the induced

crossed module f∗M.

Further, there is a map of spaces X→ Bf∗M inducing an isomorphism of the corresponding π1,π2.

Proof This first part immediate from Corollary 5.4.2.

The last statement requires a generalisation of Proposition 2.4.8, in which the 1-skeleton is

replaced by a subcomplex Z with the property that π2(Z) = 0 and the induced map π1(Z) → π1(X)

is surjective. (In our case Z = BQ.) This result is proved in Chapter 10. 2

Remark 5.4.5 The most striking consequence of the last theorem is that we have determined com-

pletely a non trivial homotopy 2-type of a space. That is, we have replaced geometric constructions

by corresponding algebraic ones. As we shall see, induced crossed modules are computable in many

cases, and so we can obtain many explicit computations of homotopy 2-types. The further surprise

is that all this theory is needed for just this example. This shows the difficulty of homotopy theory,

in that new ranges of algebraic structures are required to explain what is going on.

In the next sections, we will be able to obtain some explicit calculations as a consequence of the

last results.
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Remark 5.4.6 An interesting special case of the last theorem is when M is an inclusion of a normal

subgroup, since then BM has the homotopy type of B(P/M) by Proposition 2.4.6. So we have

determined the fundamental crossed module of (X,BR) when X is the homotopy pushout

BP
Bp //

Bf

��

BR

��
BQ

p′

// X

in which p : P → R is surjective. In this case M = (Kerp→ P). 2

To end, we consider the case where the space we are attaching is a cone.

Theorem 5.4.7 Let f : A → Y be a continuous map between connected spaces. Then the pair (CA ∪f
Y, Y) is 1-connected and Π2(CA∪f Y, Y) is the crossed module induced from the identity crossed module

1π1(A) by f∗ : π1(A)→ π1(Y).

Proof Using part of the homotopy exact sequence of the pair (CA,A),

π2(CA, x) = 0→ π2(CA,A, x)→ π1(A, x)→ π1(CA, x) = 0

we get an isomorphism of π1(A, x) groups transforming the fundamental crossed module Π2(CA,A)

in 1π1(A,x).

Now, we can use Corollary 5.4.2 and identify the induced crossed module with the free module

by Proposition 5.2.3. 2

As a consequence we get Whitehead’s theorem on free crossed modules [Whi49b].

Corollary 5.4.8 (Whitehead’s Theorem) Let Y be a space constructed from the path-connected space

X by attaching cells of dimension two. Then the map π1(X) → π1(Y) is surjective and Π2(Y,X) is

isomorphic to the free crossed module on the characteristic maps of the 2-cells.

As before, we apply the results just obtained to the case of a space X which is a pushout of

classifying spaces.

Theorem 5.4.9 Let f : P → Q be a morphism of groups. Then the crossed moduleΠ2(BQ∪BfCBP,BQ)

is isomorphic to the induced crossed module f∗(1P).

Proof Taking in the preceding remark R = 1, its classifying space is contractible. Thus, we can

take CBP as equivalent to the classifying space BR. 2

5.5 Calculation of induced crossed modules: the epimorphism

case.

Let us consider now the case where f : P → Q is an epimorphism. Then Ker f acts onM via the map

f and the induced crossed module f∗M may be seen as M quotiented out by the normal subgroup

appropriate for trivialising the action of Ker f (since Q is isomorphic to P/Ker f), i.e. by quotienting

out the displacement subgroup (recall 4.4.1 to 4.4.7).
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Proposition 5.5.1 If f : P → Q is an epimorphism and µ : M→ P is a crossed module, then

f∗M ∼=
M

[M, Ker f]

where [M, Ker f] is the displacement subgroup, i.e. the subgroup of M generated by {m−1mk | m ∈

M, k ∈ Ker f}.

Proof Let us recall that by Proposition 4.4.7 the quotientM/[M, Ker f] is aQ-crossed module with

the Q-action on M/[M, Ker f] given by [m]q = [mp] for m ∈ M,q ∈ Q,q = f(p),p ∈ P, and the

homomorphism

fµ :
M

[M, Ker f]
→ Q,

is induced by the composition µf : M→ Q.

It remains only to prove that this fµ satisfies the universal property. Let

(h, f) : (µ : M→ P) −→ (ν : N→ Q)

be a morphism of crossed modules. We have to prove that there exists a unique homomorphism of

groups

h ′ :
M

[M, Ker f]
−→ N

such that

(h ′, f) : (fµ :
M

[M, Ker f]
→ P) −→ (ν : N→ Q)

is a morphism of crossed modules and h ′φ = h where φ is the natural projection. Equivalently, we

have to prove that h induces a homomorphism of groups h ′ and that (h ′, f) is a morphism of crossed

modules.

Since h(mp) = (hm)f(p) for any m ∈M and p ∈ P, we have h[M, Ker f] = 1. Then, h induces a

homomorphism of groups h ′ as above such that h ′φ = h.

We have only to check that h ′ is a map of Q-crossed modules. But

νh ′[m] = νh(m) = fµ(m) = fµ[m],

so the square commutes, and

h ′([m]q) = h ′[mp] = h(mp) = (hm)f(p) = (h ′[m])q

so h ′ preserves the actions. 2

This description gives as a topological consequence a version of the relative Hurewicz Theorem.

Theorem 5.5.2 (Relative Hurewicz Theorem in dimension 2) Consider a 1-connected pair of spaces

(Y,A) such that the inclusion i : A→ Y is a closed cofibration. Then the space Y ∪ C(A) is simply con-

nected and its second homotopy group π2(Y ∪ C(A)) and the singular homology group H2(Y ∪ C(A))

are each isomorphic to π2(Y,A) factored by the action of π1(A).

Proof It is clear from the classical van Kampen Theorem that the space Y ∪ C(A) is 1-connected.

Using the homotopy exact sequence of the pair (Y ∪ C(A),C(A)),

· · · → 0 = π2(C(A))→ π2(Y ∪ C(A))→ π2(Y ∪ C(A),C(A)) → 0 = π1(C(A))→ · · ·
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we have

π2(Y ∪C(A)) ∼= π2(Y ∪ C(A),C(A)).

Now we can apply Corollary 5.4.2 to show that the crossed module

π2(Y ∪ C(A),C(A))→ π1(C(A)) = 1

is induced from π2(Y,A) → π1(A) by the map given by the morphism π1(A) → 1 induced by the

inclusion A→ CA.

Moreover, since the map i∗ : π1(A)→ π1(Y) is onto, by Proposition 5.5.1 we have

π2(Y ∪C(A),C(A)) ∼= π2(Y,A)/[π2(Y,A),π1(A)].

This yields the result on the second homotopy group.

The absolute Hurewicz theorem for Y ∪ C(A) (which we prove in Theorem 14.7.9) yields the

result on the second homology group. 2

Corollary 5.5.3 The first two homotopy groups of S2 are given by π1(S
2) = 0,π2(S

2) ∼= Z.

Proof This is the case of Theorem 5.5.2 when A = S1, Y = E2
+, where E2

+ denotes the top hemi-

sphere of the 2-sphere S2. Then π2(Y,A) ∼= Z with trivial action by π1(A) ∼= Z. 2

Actually we have a more general result.

Corollary 5.5.4 If A is a path connected space, and SA = CA ∪A CA denotes the suspension of A,

then SA is simply connected and

π2(SA) ∼= π1(A)ab.

Proof This is simply the result that π1(A)ab = π1(A)/[π1(A),π1(A)]. 2

One interest in this result is the method, which extends to other situations where the notion of

abelianisation is not so clear, [BL87a].

Example 5.5.5 Let f : A → Y be as in Theorem 5.4.7, let Z = Y ∪f CA, and suppose that f∗ :

π1(A) → π1(Y) is surjective with kernel K. An application of Proposition 5.5.1 to the conclusion of

Theorem 5.4.7 gives π2(Z) = π1(A)/[π1(A),K], and it follows from the homotopy exact sequence of

the pair (Z, Y) that there is an exact sequence

π2(Y)→ π2(Z)→ K/[π1(A),K]→ 0. (5.5.1)

It follows from this exact sequence that if A = BP and Y = BQ, so that we have an exact sequence

1 → K → P → Q → 1 of groups, then π2(Z) ∼= K/[P,K]. Now we assume some knowledge of

homology of spaces. In particular, the homology Hi(P) of a group P is defined to be the homology

Hi(BP) of the space BP, i > 0. Since Z is simply connected, we get the same value for H2(Z), by the

absolute Hurewicz theorem. Now the homology exact sequence of the cofibre sequence A→ Y → Z

gives an exact sequence

H2(P)→ H2(Q)→ K/[P,K]→ H1(P)→ H1(Q)→ 0

(originally due to Stallings ). In particular if P = F, a free group, or one with H2(F) = 0, then we

obtain an exact sequence

0→ H2(Q)→ K/[F,K]→ Fab → Qab → 0.

This gives the famous Hopf formula

H2(Q) ∼=
K ∩ [F, F]

[K, F]

which was one of the starting points of homological algebra. 2
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5.6 The monomorphism case. Inducing from crossed modules

over a subgroup

In Section 5.3 we have considered the construction of an induced crossed module for a general

homomorphism, and in Section 5.5 we have got a simpler expression for the case when f is an

epimorphism. Now we study the case of a monomorphism. This is essentially the same as studying

the case of an inclusion in a subgroup. So in all this section we shall consider the inclusion ι : P → Q

of a subgroup P of Q.

As we shall see this case is rather involved and we get an expression of the induced crossed

module that is quite complicated and in some cases very much related to the coproduct. Let us

introduce some concepts that shall be helpful.

Definition 5.6.1 Let M be a group and let T be a set, we define the copower M∗T to be the free

product of the groups Mt = M× {t} for all t ∈ T . Notice that all Mt are naturally isomorphic to M

under the map (m, t) 7→ m. So M∗T can be seen as the free product of copies of M indexed by T . 2

This construction satisfies the adjointness condition that for any group N there is a bijection

Sets(T , Groups(M,N)) ∼= Groups(M∗T ,N)

natural in M,N, T . Notice also that the precrossed module induced from M : (µ : M → P) by

f : P → Q is a quotient of M∗UQ where UQ is the underlying set of Q.

In the case where we have the inclusion of a subgroup ι : P → Q, we choose T to be a right

transversal of P in Q, by which is meant a subset of Q including the identity 1 and such that any

q ∈ Q has a unique representation as q = pt where p ∈ P, t ∈ T . For any crossed P-module

M = (µ : M → P), the precrossed Q-module induced by ι will have the form µ̂ : M∗T → Q. Let us

describe the Q-action.

Proposition 5.6.2 Let ι : P → Q, M, and T be as above. Then there is a Q-action on M∗T defined on

generators using the coset decomposition by

(m, t)q = (mp,u)

for any q ∈ Q, m ∈M, t ∈ T , where p,u are the unique p ∈ P, u ∈ T , such that tq = pu.

Proof Let m ∈ M, t,u,u′ ∈ T , p,p ′ ∈ P and q,q′ ∈ Q be elements such that tq = pu and

uq′ = p ′u′. We have t(qq′) = puq′ = pp ′u′. Therefore,

((m, t)q)q
′

= (mp,u)q
′

= (mpp
′

,u′) = (m, t)qq
′

and Q acts on M∗T . 2

Remark 5.6.3 We can think of (m, t) as mt, so the action is (mt)q = (mp)u where tq = pu.

Notice that if P is normal in Q then the Q-action induces an action of P on Mt given by (m, t)p =

(mtpt
−1

, t). We shall exploit this later. 2

Now we define the boundary homomorphism by specifying the images of the generators

µ̂ : M∗T → Q, (m, t) 7→ t−1µ(m)t.
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Proposition 5.6.4 Let ι : P → Q, M and T be as above. Then (µ̂ : M∗T → Q) is a precrossedQ-module

with the above action.

Proof We verify axiom CM1). For any m ∈M, t ∈ T , and q ∈ Q, we have

µ̂((m, t)q) = µ̂(mp,u) when tq = pu

= u−1µ(mp)u by definition of µ̂

= u−1(p)−1µ(m)pu because µ is a crossed module

= q−1(t)−1µ(m)tq because tq = pu

= q−1µ̂(m, t)q because µ is a crossed module.

2

To complete the characterisation we now prove that in this case this precrossed module is the

induced one.

Theorem 5.6.5 If ι : P → Q is a monomorphism, and M = (µ : M → P) is a crossed P-module then

µ̂ : M∗T → Q is the precrossed module induced by ι from µ.

Proof We check the universal property. There is a homomorphism of groups φ : M→M∗T defined

by φ(m) = (m, 1) that makes commutative the square

M
φ //

µ

��

M∗T

µ̂

��
P ι

// Q

and so that (φ, ι) is a morphism of precrossed modules.

For any morphism of precrossed modules

(h, ι) : (µ : M→ P) −→ (ν : N→ Q)

the only possible definition of a homomorphism of groups h ′ : M∗T → N such that h ′φ = h is the

one given by h ′(m, t) = (hm)t on generators. It is easy to see that it is a morphism of Q-precrossed

modules. 2

It is immediate that the induced crossed module is the one associated to the precrossed module

µ̂, i.e. the quotient with respect to the Peiffer subgroup.

Corollary 5.6.6 If ι : P → Q is a monomorphism, and (µ : M → P) is a crossed P-module, then the

crossed module induced by ι from µ is the homomorphism induced by µ̂ on the quotient

µ̂ :
M∗T

[[M∗T ,M∗T ]]
→ Q

together with the induced action of Q.

It is useful to have a smaller number of generators of the Peiffer subgroup [[M∗T ,M∗T ]].

Proposition 5.6.7 Let ι : P → Q be a monomorphism, M = (µ : M → P) be a crossed P-module and

M∗T as before. Let S be a set of generators of M as a group, and let us define SP = {sp | s ∈ S, p ∈ P}.

Then there is an isomorphism of the induced crossed module ι∗M = (ι∗M→ Q) to a quotient

ι∗M ∼=
(M∗T )

R
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where R is the normal closure in M∗T of the elements

[[(r, t), (s,u)]] = (r, t)−1(s,u)−1(r, t)(s,u)µ̂(r,t)

for all r, s ∈ SP and t,u ∈ T .

Proof By Corollary 5.6.6 we just have to prove that R is the Peiffer subgroup [[M∗T ,M∗T ]] of M∗T .

Now, M∗T is generated by the set

(SP, T) = {(sp, t) | s ∈ S, p ∈ P, t ∈ T }

and this set is Q-invariant since (sp, t)q = (spp
′

,u) where u ∈ T , p ′ ∈ P satisfying tq = p ′u. Then

by Proposition 3.3.5 {M∗T ,M∗T } is the normal closure of the set {(SP, T), (SP , T)} of basic Peiffer

commutators and this is just R. 2

The next corollary gives a bound on the number of generators and relations of a presentation for

the induced crossed module in terms of those of a presentation of M and the index of ιµ(M) in Q.

Corollary 5.6.8 Suppose ι : P → Q is injective, M has a presentation as a group with g generators

and r relations, the set of generators of M is P-invariant, and n = [Q : ιµ(M)]. Then ι∗M has a

presentation with gn generators and rn + g2n(n − 1) relations.

Proof This is just a process of counting. The transversal T has n elements, so M∗T has gn gen-

erators and rn relations. To get a presentation of ι∗M we just add as relations the basic Peiffer

commutators of the generators and those are g2n(n − 1) relations more. 2

We show how this construction works out in the case of the dihedral crossed module, which

exhibits a number of typical features.

Example 5.6.9 Recall that the dihedral group D2n of order 2n has presentation

〈x,y | xn,y2, xyxy〉.

We consider another copy D̃2n of D2n with presentation 〈u, v | un, v2,uvuv〉 and the homomor-

phism

∂ : D̃2n → D2n, u 7→ x2, v 7→ y.

With this boundary and action of D2n on D̃2n given on generators by the equations

uy = vuv−1, vy = v, ux = u, vx = vu,

this becomes the dihedral crossed module. As an exercise, check this result and also that ∂ : D̃2n →

D2n is an isomorphism if n is odd, and has kernel and cokernel isomorphic to C2 if n is even. 2

Example 5.6.10 We let Q = D2n be the dihedral group with generators x,y, and let M = P = C2

be the cyclic subgroup of order 2 generated by y. Let us denote by ι : C2 →֒ D2n the inclusion.

We have that Id : C2 → C2 is a crossed module and we are going to identify the induced crossed

module

µ̂ = ι∗(Id) : ι∗(C2) −→ D2n.

A right transversal of C2 in D2n is given by the elements T = {xi | i = 0, 1, 2, . . . ,n − 1}.

If we apply the Proposition 5.6.7 we have that ι∗C2 has a presentation with generators ai =

(y, xi), i = 0, 1, 2, . . . ,n − 1 and relations a2
i = 1, i = 0, 1, 2, . . . ,n − 1, together with the Peiffer

relations associated to these generators.
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Since the D2n-action on C∗T
2 is given by

axi = ai+1 and a
y
i = an−i,

and

µ̂(ai) = x−iyxi = yx2i,

we have (ai)
µ̂aj = a2j−i, so that the Peiffer relations become

a−1
j aiaj = a2j−i.

In this group, we define u = a0a1, v = a0. As a consequence, we have u = aiai+1 and ui = a0ai

and it is now easy to check that (C∗T
2 )cr ∼= D̃2n. Also the map µ̂ satisfies

µ̂u = µ̂(a0a1) = yyx2 = x2, µ̂v = y.

Thus y acts on ι∗C2 by conjugation by v. However x acts by ux = u, vx = vu.

This crossed module is the dihedral crossed module of the previous Example 5.6.9.

It is worth pointing out that this induced crossed module is finite while the corresponding pre-

crossed module M∗T is clearly infinite. We shall insist on these points in the next section. 2

Our next and last proposition in this area determines induced crossed modules under some

abelian conditions, and has useful applications. If M is a P-module, i.e. an abelian P-group, and T

is a set we define the copower of M with T , written M⊕T , to be the P-module which is the sum of

copies of M one for each element of T .

Proposition 5.6.11 Let ι : P → Q and (µ : M → P) be as before. Moreover assume that M is abelian

and ιµ(M) is normal in Q. Then ι∗M is abelian and as a Q-module is just the induced Q-module in the

usual sense.

Proof We use the result and notation of Proposition 5.6.7. Note that if u, t ∈ T and r ∈ S then

uµ̂(r, t) = ut−1µ(r)t = ιµ(m)ut−1t = µ(m)u

for some m ∈M, by the normality condition.

The Peiffer commutator given in Proposition 5.6.7 can therefore be rewritten as

(r, t)−1(s,u)−1(r, t)(s,u)µ̂(r,t) = (r−1, t)(s,u)−1(r, t)(sm,u).

Since M is abelian, sm = s. Thus the basic Peiffer commutators reduce to ordinary commutators.

Hence ι∗M is the copower M⊕T , and this, with the given action, is the usual presentation of the

induced Q-module. 2

Example 5.6.12 Let M = P = Q be the infinite cyclic group, which we write Z, and let ι : P → Q

be multiplication by 2. Then

ι∗M ∼= Z⊕ Z,

and the action of a generator of Q on ι∗M is to switch the two copies of Z. This result could also be

deduced from well known results on free crossed modules. However, our results show that we get a

similar conclusion simply by replacing each Z in the above by for example C4, and this fact is new.

2
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5.7 On the finiteness of some induced crossed modules

With the results of the previous section, we have an alternative way of constructing the induced

crossed module associated to a homomorphism f. We can factor f in an epimorphism and a

monomorphism and then apply the constructions. As pointed out before it is always a good thing to

have as many equivalent ways as possible since then we can choose the most appropriate to some

particular situation.

As we have seen in the previous section, if we have a (pre)crossed module M = (M → P) in

which M is generated by a finite P-set of a generators, and a group homomorphism P → Q with

finite cokernel, the induced (pre)crossed module is also generated by a finite set. In this section we

give an algebraic proof that a crossed module induced from a finite crossed module by a morphism

with finite cokernel is also finite. The result is false for precrossed modules.

Theorem 5.7.1 Let µ : M → P be a crossed module and let f : P → Q be a morphism of groups.

Suppose that M and the index of f(P) in Q are finite. Then the induced crossed module f∗M is finite.

Proof Factor the morphism f : P → Q as τσ where τ is injective and σ is surjective. Then f∗M is

isomorphic to τ∗σ∗M. It is immediate from Proposition 5.5.1 that if M is finite then so also is σ∗M.

So it is enough to assume that f is injective.

Let T be a right transversal of f(P) in Q. Then there are maps

(ξ,η) : T ×Q→ f(P)× T

defined by (ξ,η)(t,q) = (p,u) where p ∈ P, u ∈ T are elements such that tq = f(p)u. With this

notation, the form of a basic Peiffer relation got in Corollary 5.6.6 is then of the form

(m, t)(n,u) = (n,u)(mξ(t,u−1fµ(n)u),η(t,u−1fµ(n)u)) (5.7.1)

where m,n ∈M, t,u ∈ T .

We now assume that the finite set T has l elements and has been given the total order t1 < t2 <

· · · < tl. An element of M∗T may be represented as a word

(m1,u1)(m2,u2) . . . (me,ue). (5.7.2)

Such a word is said to be reduced when ui 6= ui+1, 1 6 i < e, and to be ordered if u1 < u2 <

· · · < ue in the given order on T . This yields a partial ordering of M ∗ T where (mi,ui) 6 (mj,uj)

whenever ui 6 uj.

A twist uses the Peiffer relation (5.7.1) to replace a reduced word w = w1(m, t)(n, v)w2, with

v < t, by w′ = w1(n, v)(mp,u)w2. If the resulting word is not reduced, multiplication in Mv and

Mu may be used to reduce it. In order to show that any word may be ordered by a finite sequence

of twists and reductions, we define an integer weight function on the setWn of non-empty words of

length at most n by

Ωn : Wn −→ Z+

(m1, tj1)(m2, tj2) . . . (me, tje) 7→ le
∑e
i=1 l

n−iji.

It is easy to see that Ωn(w′) < Ωn(w) when w→ w′ is a reduction. Similarly, for a twist

w = w1(mi, tji)(mi+1, tji+1
)w2 → w′ = w1(mi+1, tji+1

)(n, tk)w2

the weight reduction is

Ωn(w) −Ωn(w′) = ln+e−i−1( l(ji − ji+1) + ji+1 − jk ) > ln+e−i−1,
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so the process terminates in a finite number of moves.

We now specify an algorithm for converting a reduced word to an ordered word. Various al-

gorithms are possible, some presumably more efficient than others, but we are not interested in

efficiency here. We call a reduced word k-ordered if the subword consisting of the first k elements

is ordered and the remaining elements are greater than these. Every reduced word is at least 0-

ordered. Given a k-ordered, reduced word, find the rightmost minimal element to the right of the

k-th position. Move this element one place to the left with a twist, and reduce if necessary. The

resulting word may only be j-ordered, with j < k, but its weight will be less than that of the original

word. Repeat until an ordered word is obtained.

Let Z = Mt1 ×Mt2 × . . . ×Mtl
be the product of the sets Mti

= M× {ti}. Then the algorithm

yields a function φ : Y → Z such that the quotient morphism Y → f∗M factors through φ. Since Z is

finite, it follows that f∗M is finite. 2

Remark 5.7.2 In this last proof, it is in general not possible to give a group structure on the set Z

such that the quotient morphism Y → f∗M factors through a morphism to Z. For example, in the

dihedral crossed module of Example 5.6.9, with n = 3, the set Z will have 8 elements, and so has

no group structure admitting a morphism onto D6.

So the proof of the main theorem of this section does not extend to a proof that the induced

crossed module construction is closed also in the category of p-groups. Nevertheless, the result is

true and there is a topological proof in [BW95]. 2

5.8 Inducing crossed modules by a normal inclusion

We continue the study of Section 5.6 of the crossed modules induced by the inclusion P → Q of

a subgroup, by considering the case when P is normal in Q. We shall show in Theorem 5.8.4 that

the coproduct of crossed P-modules described in Section 4.1 may be used to give a presentation of

crossedQ-modules induced by the inclusion ι : P → Q analogous to known presentations of induced

modules.

Let us start by digressing a bit about crossed modules constructed from a given one using an

isomorphism.

Definition 5.8.1 Let µ : M → P be a crossed P-module and let α be an automorphism of P. The

crossed module µα : Mα → P associated to α is defined as follows. The group Mα is just M × {α},

the morphism µα is given by (m,α) 7→ αµm and the action of P is given by (m,α)p = (mα
−1p,α). 2

Proposition 5.8.2 The map µα : Mα → P is a crossed module. Moreover this crossed module is

isomorphic to µ since the map kα : M→Mα given by kαm = (m,α) produces an isomorphism over α.

Proof Let us check both properties of crossed module

µα(mα
−1p,α) = α(µmα

−1p) = α(α−1(p)−1µ(m)α−1(p)) = p−1αµ(m)p = p−1µα(m)p

and

(m,α)µα(m′,α) = (m,α)αµ(m
′) = (mα

−1αµ(m′),α) = (mµ(m′),α) = (m ′,α)−1(m,α)(m ′,α).
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It is immediate that the map kα : M→Mα is an isomorphism. Also, the diagram

M
kα //

µ

��

Mα

µα

��
P α

// P.

commutes and the map kα preserves the P-action over α. 2

Remark 5.8.3 Notice that if α = Id, there is a natural identification MId = M. 2

We continue to assume that P is a normal subgroup of Q. In this case, for any t ∈ Q, there is an

inner automorphism αt : P → P defined by αt(p) = t−1pt. Let us write (µt : Mt → P) instead of

(µαt
: Mαt

→ P).

Let recall that this crossed P-module is the same (µt : Mt → P) that we have used to construct

ι∗M in Section 5.6, namely Mt = M × {t}, the P-action was given by (m, t)p = (mtpt
−1

, t) and

the homomorphism µt was defined by µt(m, t) = t−1µmt. We have just seen that it is a crossed

P-module isomorphic to M.

Now let T be a right transversal of P in Q. We can form the precrossed Q-module M ′ = (∂ ′ :

M∗T → Q) as in Proposition 5.6.2. Recall that the Q-action is defined on generators as follows. For

any q ∈ Q, m ∈M, t ∈ T we define

(m, t)q = (mp,u),

where p ∈ P and u ∈ T are the only ones satisfying tq = pu. Also the homomorphism ∂ ′ is defined

by ∂ ′(m, t) = t−1pt

We had seen in Theorem 5.6.5 that the induced crossedQ-module ι∗M is the quotient ofM∗T by

the Peiffer subgroup associated to the Q-action. On the other hand, we have seen in Corollary 4.1.2

that the coproduct as crossed P-modules

∂ : M◦T → P

is the quotient of M∗T with respect to the Peiffer subgroup associated to the P-action. We are going

to check that they are the same.

Theorem 5.8.4 In the situation we have just described, the homomorphism

M◦T ∂
→ P

ι
→֒ Q

with the morphism of crossed modules

(i1, ι) : M→ (ι∂ : M◦T → Q)

is the induced crossed Q-module.

Proof It is immediately checked in this case that the Peiffer subgroup is the same whetherM∗T is

considered as a precrossed P-module M∗T → P or as a precrossed Q-module M∗T → Q. It can also

be directly checked. We leave that as an exercise. 2
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We remark that the result of Theorem 5.8.4 is analogous to well known descriptions of induced

modules, except that here we have replaced the direct sum which is used in the module case by

the coproduct of crossed modules. Corresponding descriptions in the non-normal case look to be

considerably harder.

As a consequence we obtain easily a result on p-finiteness that can be strengthened by topological

means ([BW95]). We prove it here for normal subgroups.

Proposition 5.8.5 If M is a finite p-group and P is a normal subgroup of finite index in Q, then the

induced crossed module ι∗M is a finite p-group.

Proof This follows immediately from the discussion in Section 4.1. 2

Now the induced module (ι∂ : M◦T → Q) in Theorem 5.8.4 may be described using Corollary

4.4.16, if the hypotheses there are satisfied. So let P be a normal subgroup of Q and T a transversal

as before, and let (µ : M→ P) be a crossed P-module.

We can divide the construction of the group M◦T into two steps. We define W = M◦T ′

the

coproduct of all but M1 = M. Then there is an isomorphism of crossed Q-modules

ι∗M ∼= M ◦W.

To apply Corollary 4.4.16 we have to assume that for all t ∈ T we have µt(M) ⊆ µ(M), i.e. that

for all t ∈ T we have t−1µ(M)t ⊆ µ(M) (notice that this is immediately satisfied if µM is normal in

Q), and that there is a section σ : µM →M of µ defined on µM. Most of the time we shall require

also that σ is P-equivariant.

Then there is an isomorphism

ι∗M ∼= M×
⊕

t∈T ′

(Mt)M

through which the morphisms giving the coproduct structure become

(i, ι) : (µ : M→ P) −→ (ξ = ιµpr1 : M×
⊕

t∈T ′

(Mt)M → Q)

where i = i1 : (m, 1) 7→ (m, 0) and

(it, ι) : (µ : Mt → P) −→ (ξ = ιµpr1 : M×
⊕

t∈T ′

(Mt)M → Q)

where for t 6= 1, it(m, t) = (σ((µm)t), [m, t]).

Let us describe first how the Q-action is defined on this last crossed Q-module. Later we shall

check the universal property.

The result we give is quite complicated, technical and non memorable. It is given principally

because it illustrates the method, and also shows that these methods give control over quite complex

actions in a way which seems to be unobtainable by traditional methods, which do not allow control

of nonabelian structures.

Theorem 5.8.6 The Q-action on the group M×
⊕
t∈T ′(Mt)M is given as follows,

(i) For any m ∈M, q ∈ Q

(m, 0)q =

{
(mq, 0) if v = 1,

(σ((µm)q), [mr, v]) if v 6= 1;
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where r ∈ P and v,∈ T , satisfy q = rv and [m, v] denotes the class of (m, v) in (Mv)M

(ii) If m ∈M, t ∈ T ′, q ∈ Q then

(1, [m, t])q =






(1, [mp, t]) if v = 1,

(σ(µmp)−1mp, −[σ((µmp)v
−1

), v]) if v 6= 1, u = 1,

(1, −[σ((µmp)uv
−1

), v] + [mp,u]) if v 6= 1, u 6= 1,

where p ∈ P, u ∈ T are the unique elements satisfying tq = pu.

Proof We use the description of the morphisms associated to the coproduct structure given above

to calculate the action given by Theorem 5.8.4.

The formulae (i) and (ii) for the case v = 1 follow from the description of the action of P on Mt

given at the beginning of this section.

The remaining cases will be deduced from the formula for the action of Q given in Theorem

5.8.4, namely if m ∈M, t ∈ T , q ∈ Q then

(it(m, t))q =

{
i1(m

p, 1) = (mp, 0), if tq = p ∈ P,

iu(mp,u) = (σ((µmp)u), [mp,u]), if tq = pu, p ∈ P, u ∈ T ′.

We first prove (i) for v 6= 1. We have since q = rv, v ∈ T ′,

(m, 0)q = (i1(m, 1))rv

= iv(m
r, v)

= (σ((µmr)v), [mr, v]).

To prove (ii) with v 6= 1, first note that

(1, [m, t]) = (σ((µm)t), 0)−1 (σ((µm)t), [m, t])

= (σ((µm)t), 0)−1 it(m, t).

But

(σ((µm)t), 0)q = (σ((µσ((µm)t))q), [(σ((µm)t))r, v])by (i)

= (σ((µm)tq), [σ((µm)tr), v]) since µσ = 1,

and, from the definition of the Q-action,

(it(m, t))q =

{
(mp, 0) if u = 1,

(σ((µm)tq), [mp,u]) if u 6= 1.

It follows that

(1, [m, t])q =

{
(σ(µmp)−1mp, − [σ((µmp)v

−1

), v]) if u = 1,

(1, − [σ((µmp)uv
−1

), v] + [mp,u]) if u 6= 1.

2

Now we check that the universal property is satisfied.

Theorem 5.8.7 For any crossed module N = (ν : N → Q) and any morphism of crossed modules

(β, ι) : M→ N, the induced morphism φ : M×
⊕
t∈T ′(Mt)M → N is given by

φ(m, 0) = βm, φ(m, [n, v]) = (βm)β(σ((µn)v))−1 (βn)v.
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Proof The formula for φ is obtained as follows:

φ(m, [n, v]) = φ(m, 0)φ(σ((µn)v), 0)−1φ(iv(n, v))

= (βm) (β(σ((µn)v))−1) (βn)v

where the definition of φ is taken from Theorem 5.8.4 2

We now include an example for Theorem 5.8.6 showing the action in the case v 6= 1, u = 1.

Example 5.8.8 Let n be an odd integer and let Q = D8n be the dihedral group of order 8n gen-

erated by elements {t,y} with relators {t4n,y2, (ty)2}. Let P = D4n be generated by {x,y}, and let

ι : P → Q be the monomorphism given by x 7→ t2, y 7→ y. Then let M = C2n be generated by

{m}. Define M = (µ : M → P) where µm = x2, mx = m and my = m−1. This crossed module is

isomorphic to a sub-crossed module of (D4n → Aut(D4n)) and has kernel {1,mn}.

The image µM is the cyclic group of order n generated by x2, and there is an equivariant section

σ : µM→M, x2 7→ mn+1 since (x2)(n+1) = x2 and gcd(n + 1, 2n) = 2. Then Q = P ∪ Pt, T = {1, t}

is a transversal, Mt is generated by (m, t) and µt(m, t) = x2. The action of P on Mt is given by

(m, t)x = (m, t), (m, t)y = (m−1, t).

Since M acts trivially on Mt,

ι∗M ∼= M×Mt
∼= C2n × C2n.

Using the section σ given above, Q acts on ι∗M by

(m, 0)t = (mn+1, [m, t]),

(m, 0)y = (m−1, 0),

(1, [m, t])t = (mn, (n− 1)[m, t]),

(1, [m, t])y = (1, −[m, t]).

2

It is worth recalling that our objective was not only to get an easier expression of the induced

crossed module, but also to have some information about the kernel of its boundary map. We can

obtain some information on the later in the case where P is of index 2 in Q, even without the

assumption that µM is normal in Q following [Bro80].

Suppose then that T = {1, t} is a right transversal of P in Q. Let the morphism M⋉Mt → P be

given as usual by (m, (n, t)) 7→ (µm)(µt(n, t)) = mt−1nt.

Write 〈M,Mt〉 for the subgroup of M×PMt generated by the elements

〈m, (n, t)〉 = (m−1mt
−1(µn)t, ((n, t)−1)m(n, t)),

for all m ∈M, (n, t) ∈Mt.

Proposition 5.8.9 Let µ : M → P and ι : P → Q be inclusions of normal subgroups. Suppose that P

is of index 2 in Q, and t ∈ Q \ P. Then the kernel of the induced crossed module (∂ : ι∗M → Q) is

isomorphic to

(M ∩ t−1Mt) / [M, t−1Mt].

In particular, if M is also normal in Q, then this kernel is isomorphic to M/[M,M], i.e. to M made

abelian.

Proof By previous results ι∗M is isomorphic to the coproduct crossed P-module M ◦Mt with a

further action of Q. The result follows from Corollary 4.3.8 2
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We now give some topological applications of the last result.

Example 5.8.10 Let ι : P = D4n → Q = D8n be as in Example 5.8.8, and let M = D2n be the

subgroup of P generated by {x2,y}, so that ιM � ιP � Q and t−1Mt is isomorphic to a second D2n

generated by {x2,yx}. Then

M ∩ t−1Mt = [M, t−1Mt]

(since [y,yx] = x2), and both are isomorphic to Cn generated by {x2}.

It follows from Proposition 5.8.9 that if X is the homotopy pushout of the maps

BD4n

��

// BC2

��
BD8n

// X

where the horizontal map is induced by D4n → D4n/D2n
∼= C2, then π2(X) = 0. 2

Example 5.8.11 Let M,N be normal subgroups of the group G, and let Q be the wreath product

Q = G ≀ C2 = (G× G) ⋊ C2.

Take P = G × G, and consider the crossed module (∂ : Z → Q) induced from M × N → P by the

inclusion P → Q. If t is the generator of C2 which interchanges the two factors of G × G, then

Q = P ∪ Pt and t−1(M×N)t = N×M. So

(M×N) ∩ t−1(M×N)t = (M ∩N)× (N ∩M)

and

[M×N,N×M] = [M,N]× [N,M].

It follows that if X is the homotopy pushout of

BG× BG

��

// B(G/M)× B(G/N)

��
B(G ≀ C2) // X

then

π2(X) ∼= ((M ∩N)/[M,N])2.

If ([m], [n]) denotes the class of (m,n) ∈ (M ∩N)2 in π2(X), the action of Q is determined by

([m], [n])(g,h) = ([mg], [nh]), (g,h) ∈ P, ([m], [n])t = ([n], [m]).

2

We end this section by giving a very concrete description of the induced crossed module in the

case that both M and P are normal subgroups of Q and M ⊆ P. It is proved by a direct verification

of the universal property for an induced crossed module.

There are two construction used in the description. The first one is the abelianisation Mab of a

group M. If n ∈M, then the class of n in Mab is written [n].

The second construction is the augmentation ideal IQ of a group Q, which we further develop

later on. For now let us say that the augmentation ideal I(Q/P) of a quotient group Q/P has basis

{t̄− 1 | t ∈ T ′} where T is a transversal of P in Q, T ′ = T \ {1} and q̄ denotes the image of q in Q/P.
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Theorem 5.8.12 LetM ⊆ P be normal subgroups of Q, so thatQ acts on P andM by conjugation. Let

µ : M→ P, ι : P → Q be the inclusions and let M = (µ : M→ P). Then the induced crossed Q-module

ι∗M is isomorphic as a crossed Q-module to

(ζ : M× (Mab ⊗ I(Q/P))→ Q)

where for m,n ∈M, x ∈ I(Q/P) :

(i) ζ(m, [n]⊗ x) =m;

(ii) the action of Q is given by

(m, [n]⊗ x)q = (mq, [mq]⊗ (q̄− 1) + [nq]⊗ xq̄).

The universal map i : M→M× (Mab ⊗ I(Q/P)) is given by m 7→ (m, 0).

Proof This could be proved directly (see [BW96]) but instead, in view of what has already been

set up, we will deduce it from Theorem 5.8.6. Specialising this theorem to the current situation, in

which σµ = 1 and it(m, t) = (mt, [m, t]), yields an isomorphism of crossed Q-modules

ι∗M→ X = (ξ = ιµ pr1 : M×
⊕

t∈T ′

(Mab)→ Q).

In X the action of Q is given as follows, where m ∈M, r ∈ P, q = rv and v ∈ T :

(i)

(m, 0)q =

{
(mq, 0) if v = 1,

(mq, [mr, v]) if v 6= 1.

(ii) if tq = pu, t ∈ T ′, p ∈ P and u ∈ T , then

(1, [m, t])q =






(1, [mp, t]) if v = 1,

(1, −[mpv
−1

, v]) if v 6= 1, u = 1,

(1, −[mpuv
−1

, v] + [mp,u]) if v 6= 1, u 6= 1.

Now we construct an isomorphism

ω : M×
⊕

t∈T ′

(Mab)→M× (Mab ⊗ I(Q/P))

where for m,n ∈M, t ∈ T ′,

ω(m, 0) = (m, 0), ω(m, [n, t]) = (m, [nt]⊗ (t̄ − 1)).

Clearly ω is an isomorphism of groups, since it is an isomorphism on the part determined by a fixed

t ∈ T ′, and I(Q/P) has a basis {t̄− 1 : t ∈ T ′} when considered as an abelian group. Now we prove

that ω preserves the action of Q. Let m,n ∈ M, t ∈ T ′, q ∈ Q. Let q = rv, tq = pu, p, r ∈

P, u, v ∈ T . When v = 1 we have tqt−1 ∈ P and so u = t. Then

ω((m, 0)q) =

{
ω(mq, 0) if v = 1,

ω(mq, [mr, v]) if v 6= 1.

=

{
(mq, 0) if v = 1,

(mq, [mq]⊗ (v̄− 1) if v 6= 1,

= (ω(m, 0))q.
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Further,

ω((1, [m, t])q) =






ω(1, [mp, t]) if v = 1,

ω(1, −[mpv
−1

, v]) if v 6= 1, u = 1,

ω(1, −[mpuv
−1

, v] + [mp,u]) if v 6= 1, u 6= 1,

=






(1, [mpt]⊗ (t̄− 1)) if v = 1,

(1, −[mp]⊗ (v̄− 1)) if v 6= 1, u = 1,

(1, −[mpu]⊗ (v̄− 1) + [mpu]⊗ (ū− 1)) if v 6= 1, u 6= 1,

= (1, −[mpu]⊗ (v̄− 1) + [mpu]⊗ (ū− 1) in every case,

= (1, [mtq]⊗ (t̄− 1)q̄),

= (ω(1, [m, t]))q

since, in I(Q/P),

(t̄ − 1)q̄ = pu− rv = ū− v̄ = (ū− 1) − (v̄− 1).

Finally, we have to compute the universal extension φ of β. For this, it is sufficient to determine

φ(1, [n]⊗ (q̄− 1)) = φω(1, [nv
−1

, v])

= φω((n−1, 0) iv(n
v−1

, v))

= β(n−1)β(nv
−1

)v

= β(n−1)β(nq
−1

)q

since β is a P-morphism and q̄ = rv = v̄. 2

With this description, we can get new results on the fundamental crossed module of a space

which is the pushout of classifying spaces. The following corollary is immediate.

Corollary 5.8.13 Under the assumptions of the theorem, let us consider the space X = BQ∪BPB(P/M).

Its fundamental crossed module Π2(X,BQ) is isomorphic to the above crossed Q-module

(ζ : M× (Mab ⊗ I(Q/P))→ Q).

In particular, the second homotopy group π2(X) is isomorphic to Mab ⊗ I(Q/P) as Q/M-module.

Proof The proof is immediate. 2

Note one of our major arguments: in order to compute an abelian second homotopy group, we

may have to use nonabelian algebraic methods which better reflect the structure of the problem than

the usual abelian methods.

Corollary 5.8.14 In particular, if the index [Q : P] is finite, and P is the crossed module (1 : P → P),

then ι∗P is isomorphic to the crossed module (pr1 : P × (Pab)[Q:P]−1 → Q) with action as above.

Remark 5.8.15 In this case, X = BQ ∪BP B(P/P) may be interpreted either as the space obtained

from BQ by collapsing BP to a point, or, better, as X = BQ ∪BP CB(P) the space got by attaching a

cone. This is a consequence of the gluing theorem for homotopy equivalences proved in [Bro06].

This crossed module is not equivalent to the trivial one. At first sight, it seems that the projection

pr2 : P × (Pab ⊗ I(Q/P))→ (Pab ⊗ I(Q/P))

determines a morphism of crossed modules to the trivial one 0 : (Pab ⊗ I(Q/P))→ I(Q/P)), but this

is not so because the map pr2 is not a Q-morphism.
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We are going to show later that this crossed module is not equivalent in a certain sense to the

projection crossed module. 2

We have now completed the applications of the 2-dimensional van Kampen Theorem which we

will give in this book. In the next chapter we give the proof of the theorem, using the algebraic

concepts of double groupoids. In the next section, we explain how the computer algebra system

GAP has been used to give further computations of induced crossed modules, and of course these

have topological applications according to the results of this chapter.

5.9 Computational issues for induced crossed modules

The following discusses significant aspects of the computation of induced crossed modules. Let us

consider the description of the induced module from a computational point of view. It involves the

copower, i.e. a free product of groups. This usually gives infinite groups, but let us consider how to

get a finite presentation in the case M ⊆ P ⊆ Q.

If M = 〈X | R〉 is a finite presentation of M, there is a finite presentation of M∗T with |X||T |

generators and |R||T | relations.

Let XP be the closure of X under the action of P. Then ι∗(M) = (M∗T )/N where N is the normal

closure in M∗T of the elements

〈(m, t), (n,u)〉 = (m, t)−1(n,u)−1(m, t)(n,u)δ(m,t) (m,n ∈ ΣP, t,u ∈ T). (5.9.1)

The homomorphism ι∗ is induced by the projection pr()m = (m, () ) onto the first factor, and the

boundary δ of ι∗M is induced from δ ′ as shown in the following diagram:

M
ι∗ //

µ

��

(M∗T )/N

δ

��
P ι

// Q

When Σ is a set and σ : Σ → Q any map, take M = P = F(Σ) to be the free group on Σ and let

FΣ = (idF(Σ) : F(Σ) → F(Σ) ). Then σ extends uniquely to a homomorphism σ ′ : F(Σ) → Q and

σ ′
∗FΣ is the free crossed module Fσ described in section 3.4. However, computation in free crossed

modules is in general difficult since the groups are usually infinite.

So, in order to compute the induced crossed module ι∗M for M = (µ : M → P) a conjugation

crossed module and ι : P → Q an inclusion, we construct finitely presented groups FM, FP, FQ

isomorphic to the permutation groupsM,P,Q and monomorphisms FM→ FP → FQ mimicking the

inclusions M→ P → Q.

As well as returning an induced crossed module, the construction should return a morphism of

crossed modules (ι∗, ι) : M→ ι∗M.

A finitely presented form FC for the copower M∗T is constructed with |X||T | generators. The

relators of FC comprise |T | copies of the relators of FM, suitably renumbered.

The inclusion δ ′ maps the generators of FM to the first |X| generators of FC. A finitely presented

form FI for ι∗M is then obtained by adding to the relators of FC further relators corresponding to

the list of elements in equation (5.9.1).

Then we can apply some Tietze transformations to the resulting presentation. During the result-

ing simplification, some of the first |X| generators may be eliminated, so the projection pr() may be
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lost. In order to preserve this projection, and so obtain the morphism ι∗, it is necessary to record

for each eliminated generator g a relator gw−1 where w is the word in the remaining generators by

which g was eliminated.

The Tietze transformation code in GAP was modified so that the resulting presentation presI

contained an additional field presI.remember, namely a list of (at least) |X||T | relators expressing

the original generators in terms of the final ones. (In the recent release 3.4.4 of GAP this facility has

been made generally available using the TzInitGeneratorImages function).

Let us see how this process works in some examples, and note some of the limitations of the

process.

Recall that a polycyclic group is a group G with power-conjugate presentation having generators

{g1, . . . ,gn} and relations

{goi

i = wii(gi+1, . . . ,gn), g
gj

i = w′
ij(gj+1, . . . ,gn) ∀ 1 6 j < i 6 n}. (5.9.2)

(These are implemented in GAP as AgGroups (see [Gro02], Chapters 24, 25)). Since subgroups

M 6 P 6 G have induced power-conjugate presentations, if T is a transversal for the right cosets of

P in G, then the relators of M∗T are all of the form in (5.9.2).

Furthermore, all the Peiffer relations in equation (5.9.1) are of the form g
gj

i = g
p
k, so one might

hope that a power conjugate presentation would result. Consideration of the cyclic-by-cyclic case in

the following example shows that this does not happen in general.

Example 5.9.1 Let Cn be cyclic of order n and let α : x 7→ xa be an automorphism of Cn of order

p. Take G = 〈g,h | gp,hn,hgh−a〉 ∼= Cp ⋉Cn. It follows from these relators that hig = ghai, 0 <

i < n and that h−1(ghi(1−a))h = gh(i+1)(1−a). So if we put gi = ghi(1−a), 0 6 i < n then

g
gj

i = g[j+a(i−j)]. When M = P = Cn � G Theorem 5.8.12 apply, and ι∗P ∼= Cmn . Now take

M = P = Cp, with power-conjugate form 〈g | gp〉, and ι : Cp → G. We may choose as transversal

T = {λ,h,h2, . . . ,hn−1}, where λ is the empty word. Then M∗T has generators {(g,hi) | 0 6 i < n},

all of order p, and relators {(g,hi)p | 0 6 i < n}. The additional Peiffer relators in equation (5.9.1)

have the form

(g,hi)(g,hj) = (g,hj)(gk,hl) where hih−jghj = gkhl

so k = 1 and l = [j + a(i − j)]. Hence θ : ι∗M → Q, (g,hi) 7→ gi is an isomorphism, and ι∗M is

isomorphic to the identity crossed module on Q. Furthermore, if we take M to be a cyclic subgroup

Cm of Cp then ι∗M is the conjugation crossed module (∂ : Cm ⋉ Cn → Cp ⋉ Cn). 2

Also, we know that many of the induced groups ι∗M are direct products. However the generating

sets in the presentations that arise following the Tietze transformation do not in general split into

generating sets for direct summands. This is clearly illustrated by the following simple example.

Example 5.9.2 Let Q = S4, the symmetric group of degree 4, and M = P = A4, the alternating

subgroup of Q of index 2. Since the abelianisation of A4 is cyclic of order 3, Theorem 5.8.12 shows

that ι∗M ∼= A4 × C3. However a typical presentation for A4 × C3 obtained from the program is

〈x,y, z | x3,y3, z3, (xy)2, zy−1z−1x−1,yzyx−1z−1,y−1x2y2x−1〉,

and one generator for the C3 summand is yzx2. Converting to an isomorphic permutation group H

gives a degree 12 representation with generating set

{(2, 9, 4)(3, 5, 6)(8, 12, 10), (1, 4, 2)(3, 5, 7)(10, 11, 12), (1, 8, 3)(2, 10, 5)(7, 9, 12)}.

Converting H to an AgGroup produces a 4-generator group with subnormal series A4 × C3 > A4 >

C2
2 > C2 > I, and g1g2g4 is a generator for the normal C3. After conversion of this AgGroup
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to a SpecialAgGroup, the corresponding generator is g1g2. In all these representations, the cyclic

summand remains hidden, and an explicit search among the normal subgroups must be undertaken

to find it. 2

We finish the results obtained in our computation by listing all the induced crossed modules

coming from subgroups of groups of order at most 23 (excluding 16) which are not covered by the

special cases mentioned earlier. This enables us to exclude abelian and dihedral groups, cases P�Q

and Q ∼= Cm ⋉ Cn.

In the first table, we assume given an inclusion ι : P → Q of a subgroup P of a group Q, and a

normal subgroupM of P. We list the crossed module ι∗M induced from (µ : M→ P) by the inclusion

ι. The kernel of ∂ : ι∗M → Q is written ν2(ι). This kernel is related to the second homotopy group

in the topological application (in some cases like Theorems 5.4.4 and 5.4.7 it is exactly the second

homotopy group).

In this table the labels I,Cn,D2n,An, Sn denote the identity, cyclic, dihedral, alternating and

symmetric groups of order 1,n, 2n,n!/2 and n! respectively. The group Hn is the holomorph of

Cn and H+
n is its positive subgroup in degree n. SL(2, 3) and GL(2, 3) are the special and general

linear groups of order 24, 48 respectively. Labels of the form m.n refer to the nth group of order m

according to the GAP numbering.

Table 1

|Q| M P Q ι∗M ν2(ι)

12 C2 C2 A4 H+
8 C4

C3 C3 A4 SL(2, 3) C2

18 C2 C2 C2 ⋉ C2
3 54.10 C3

S3 S3 C2 ⋉ C2
3 54.10 C3

20 C2 C2 H5 D10 C2

C2 C2
2 D20 D10 I

C2
2 C2

2 D20 D20 I

21 C3 C3 H+
7 H7+ I

The second table contains the results of calculations with Q = S4, where C2 = 〈(1, 2)〉, C′
2 =

〈(1, 2)(3, 4)〉, and C2
2 = 〈(1, 2), (3, 4)〉. The final column contains the automorphism group Aut(ι∗M)

(where known).
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Table 2

M P ι∗M ν2(ι) Aut(ι∗M)

C2 C2 GL(2, 3) C2 S4C2

C3 C3 C3 SL(2, 3) C6 144.?

C3 S3 SL(2, 3) C2 S4

S3 S3 GL(2, 3) C2 S4C2

C′
2 C′

2 128.? C4C
3
2

C′
2 C2

2,C4 H+
8 C4 S4C2

C′
2 D8 C3

2 C2 SL(3, 2)

C2
2 C2

2 S4C2 C2 S4C2

C2
2 D8 S4 I S4

C4 C4 96.219 C4 96.227

C4 D8 S4 I S4

D8 D8 S4C2 C2 S4C2
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Notes

9p. 86 The results of this chapter are taken mainly from [BH78, BW95, BW96, BW03].

General

There are a number of papers which prove Whitehead’s theorem 5.4.8, e.g. [Rat80], but it is

not generally acknowledged that the theorem is a consequence of a van Kampen type theorem in

dimension 2, a theorem which is not mentioned in, say, [HAM93], although other deductions from

it are given. A modern account of Whitehead’s proof is given in [Bro80].

Two recent papers using crossed modules are [Far08, FK08].

Remark 5.9.3 Note that in Theorem 5.5.2 we obtain immediately a result on the second absolute

homotopy group of Y∪C(A) without using any homology arguments. This is significant because the

setting up of singular homology, proving all its basic properties, and proving the absolute Hurewicz

theorem takes a considerable time. An exposition of the Hurewicz theorems occurs on pages 166-

180 of G. Whitehead’s text [Whi78], assuming the properties of singular homology. The cubical

account of singular homology in [Mas80] fits best with our story.

Again, one of the reason for emphasising these kinds of results is that they arise from a uniform

procedure, which involves first establishing a Higher Homotopy van Kampen Theorem. This theorem

has analogues for algebraic models of homotopy types which are more elaborate than just groups

or crossed modules; it has led to new results, such as a higher order Hopf formula [BE88], which is

deduced from an (n + 1)-adic Hurewicz Theorem [BL87a]. The only proof known of the last result

is as a deduction from a van Kampen Theorem for n-cubes of spaces [BL87b]. It has also stimulated

research into related areas.
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Chapter 6

Double groupoids and the

2-dimensional van Kampen Theorem.

In Chapter 2 we saw that an important topological example of crossed module was provided by the

fundamental crossed module of a based pair of spaces

Π2(X,A)(x) = (∂ : π2(X,A, x)→ π1(A, x)).

As in the case of the fundamental group, to prove the 2-dimensional van Kampen Theorem for

crossed modules, it is interesting, even necessary, to include in the same structure all the fun-

damental crossed modules when varying the base point x ∈ A. In the 1-dimensional case, we

generalised the fundamental group to the fundamental groupoid. To prove a 2-dimensional van

Kampen Theorem the idea was to use double groupoids but it took some time to find the required

2-dimensional analogue of the fundamental group. After a good deal of trying a structure that gives

the 2-dimensional van Kampen Theorem happens to be the double groupoids with connection or,

equivalently, the crossed module over a groupoid.

Now the question can be fairly put: Why introduce a new version? The answer is the usual

kind of answer, that sometimes the new version is useful for proving theorems. In particular, we are

unable to prove directly in terms of crossed modules the version of the 2-dimensional van Kampen

Theorem which gives a result in terms of the classical crossed modules. One reason for conceiving

of the homotopy double groupoid was to find an algebraic gadget more appropriate than groups for

giving an

algebraic inverse to subdivision.

This is the slogan underlying the work on Higher Homotopy van Kampen Theorems. Subdividing

a square into little squares has a convenient expression in terms of double groupoids, and much more

inconvenient expressions, if they exist at all, in terms of crossed modules. The 2-dimensional van

Kampen Theorem was conceived first in terms of double groupoids, and it was only gradually that

the link with crossed modules was realised. In the end, the aim of obtaining Whitehead’s Theorem

on free crossed modules (Corollary 5.4.8) as a corollary was an important impetus to forming a

definition of a homotopy double groupoid for a pointed pair of spaces, since that theorem involved

a crossed module defined for such a pair of spaces.

Further, the structure of double groupoids that we use was expressly sought in order to make

valid Lemma 6.8.4 in the proof of our 2-dimensional van Kampen Theorem in the last section. This

lemma shows that a construction of an element of a double groupoid is independent of all the choices

made. This makes use of the notion of commutative cube in a crucial way.

117
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This theory gives also in a sense an algebraic formulation of different ways which have been

classically used and found necessary in considering properties of second relative homotopy groups.

We find that the 2-dimensional double groupoid viewpoint is useful both for understanding the

theory and for proving theorems, while the crossed module viewpoint is useful both for specific

calculations, and because of its closer relation to chain complexes. The importance of the algebraic

formulation of the equivalence between crossed modules and double groupoids is the equivalence

between colimits, and in particular pushouts, in the two categories.

Since this is a longish chapter, it seems a good idea to include a more detailed sketch of the way

that all this material is presented here.

The first part describes the step up one dimension from groupoids to double groupoids. Since

these are double categories where all structures are groupoids and have either a connection pair or a

thin structure the first few sections are devoted to defining first double categories and then connec-

tions. In parallel another algebraic category is described, that of crossed modules over groupoids,

which is equivalent to that of double groupoids. The equivalence is finally proved in Section 6.6

The first Section gives the definition and properties of double categories. Some notions to be

used later are also presented here, e.g. the double category of commutative squares or 2-shells in a

groupoid.

With this model in mind, we can think of the elements of a double category D as squares. Also,

we can restrict our attention to the subspace γD of “squares” having all faces trivial but the top one.

If we restrict ourselves to double categories G that have all three structures groupoids, the space

γG is algebraically a crossed module over a groupoid. These algebraic structures are studied in

Section 6.2 and they are an easy step away from that of a crossed module over a group.

A direct topological example is the fundamental crossed module of a triple of topological spaces

(X,A,C) formed by all the crossed modules ∂ : π2(X,A, x)→ π1(A, x) for varying x ∈ C. We denote

this crossed module by Π2(X,A) and we shall prove that it is a crossed module in an indirect way

by showing in Proposition 6.3.7 that Π2(X,A) is the crossed module associated to the fundamental

double groupoid of a triple ρ(X,A,C) defined in Section 6.3.

Both the fundamental crossed module of a triple and the double category of commutative 2-

shells on a groupoid have some extra structure that can be defined in two equivalent ways: as a

thin structure (as in Section 6.4) and as a connection pair (in Section 6.5). In this way we define the

objects in the category of double groupoids.

Using 2-shells that ‘commute up to some element’, in Section 6.6 we associate to each crossed

module M a double groupoid λM in such a way that it is clear that γλM is naturally isomorphic

to M. It is a bit more challenging to prove that for any double groupoid G, λγG is also naturally

isomorphic to G. In order to do this we use the folding operation Φ : G2 → G2 which has the effect

of folding all faces of an element of G2 into the top face.

With all the algebra in place, we turn to the topological part. As seen in Chapter 1, the proof

of the 2-dimensional van Kampen Theorem uses the homotopy commutativity of squares. Thanks

to the algebraic machinery developed earlier, we can talk about commutative 3-cubes and prove

that any composition of commutative cubes is commutative. This commutativity of the boundary

of a cube in ρ(X,A,C) has a homotopy meaning stated in Section 6.7 which is analogous to the

1-dimensional case.

We finish this chapter by giving in Section 6.8 a proof of the 2-dimensional van Kampen Theorem

for the fundamental double groupoid and the main consequences.

The whole chapter can be seen as an introduction to the generalisation to all dimensions which
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is carried out in Part III. Chapter 13 generalises the algebraic part by giving an equivalence be-

tween crossed complexes and cubical ω-groupoids with connections, while Chapter 14 covers the

topological part, including the statement, proof and applications of the HHvKT.

6.1 Double categories

Let us start by pointing out that there are several candidates for the name “double groupoids”. We

are going to keep that name for the structures which are defined in Section 6.4 and are then used to

prove the 2-dimensional van Kampen Theorems. We start by investigating what a double category

should be.

It is interesting to think of a category in a different way that lends itself better to the generalisa-

tion to higher dimensions. As seen in the Appendix A, a category C is given by two sets: the set of

objects that we denote C0 and the set of morphisms that we call C1; three maps among them: the

source ∂− : C1 → C0, target ∂+ : C1 → C0 and identity 1 = ε : C0 → C1, satisfying

∂σε = Id,σ = ±

and a partial composition C1 ×C0
C1 → C1 that is associative and has 1x = ε(x) as right and left

identity.

Thus we can think of the elements of C0 as 0-dimensional, called points, and the elements of C1

as 1-dimensional and oriented, called arrows. An element a ∈ C1 is represented by

•
a

∂−a ∂+a
•

and for any x ∈ C0 its identity 1x = ε(x) is

•
1x

x x
•

The composition ab of two elements a,b ∈ C1 is described by juxtaposition:

•
a

∂−a ∂+a = ∂−b
•

b

∂+b
• = •

ab

∂−(ab) ∂+(ab)
•

This gives a 1-dimensional pictorial description of a category.

For a 2-dimensional generalisation, namely a double category D, apart from the sets of “points”,

D0 and of “arrows”, D1, we need a set of “squares”, D2. We shall also have two categories associated

to the “horizontal” and “vertical” structures on squares, with their faces and compositions. Also, we

should have all the appropriate compatibility conditions dictated by the geometry. In some sense

these categories are special since the objects of the horizontal and the vertical category structures

on squares are the same; in other words, the horizontal and vertical edges of the squares come from

the same category. This is the case we need in this book.

Thus we think of an element u ∈ D2 as a square

c

a u d

b

1

2
��

//
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where the directions are labeled as indicated, and we call a,b, c,d the edges, or faces of u.

Let us make it formal.

Definition 6.1.1 A double category is given by three sets D0,D1 and D2 and three structures of cat-

egory. The first one on (D1,D0) has maps ∂−,∂+ and ε and composition denoted as multiplication.

The other two are defined on (D2,D1), a “vertical” one with maps ∂−
1 ,∂+

1 and ε1 and composition

denoted by u +1 w and the “horizontal” one with maps ∂−
2 ,∂+

2 and ε2 and composition denoted by

u+2 v, satisfying some conditions.

Before describing the compatibility conditions it is worth getting used to the diagrammatic ex-

pression of the elements in a double category. Thus an element u ∈ D2 is represented using a matrix

like convention

∂−
1 u

∂−
2 u u ∂+

2 u

∂+
1 u

1

2
��

//

where the labels on the sides are given as indicated.

From this representation it seems indicated, and we assume, that the sources and targets have to

satisfy

∂τ∂σ1 = ∂σ∂τ2 for σ, τ = ±, (DC 1)

since they represent the same vertex. We shall find it convenient to represent the horizontal identity

in several ways, i.e.

ε2(a) = a a = =

In the first representation the unlabeled sides are identities:

∂σ1 ε2 = ε∂σ for σ = ±. (DC 2.1)

In the other two, the sides corresponding to those drawn in the middle are identities. Similarly, the

vertical identity is represented by

ε1(a) =

a

= =

a

with the same conventions as before. It has also the expected faces in the horizontal direction:

∂σ2 ε1 = ε∂σ for σ = ±. (DC 2.2)

There are also some relations between the identities. The two double degenerate maps are the

same and are denoted by 0:

ε2ε = ε1ε = 0. (DC 3)

So 0x = 0(x) is both a horizontal and a vertical identity and is represented as

=
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All elements ε(x), ε1(a), ε2(a) are called degeneracies.

The vertical and horizontal compositions can be represented by “juxtaposition” in the corre-

sponding direction, and are indicated by:

u+1 w =

u

w

u+2 v = u v

They satisfy all the usual rules of a category, and may be given a diagrammatic representation. For

example, the fact that ε2 is the horizontal identity may be represented as

u = u = u

The composition in one direction satisfies compatibility conditions with respect to the faces and

degeneracies in the other direction, i.e. these functions are homomorphisms. This can be read from

the representation. Thus the horizontal faces of a vertical composition are

∂σ2 (u+1 v) = (∂σ2u)(∂σ2 v) for σ = ±. (DC 4.1)

and the vertical faces of the horizontal composition are

∂σ1 (u+2 v) = (∂σ1u)(∂σ1 v) for σ = ±. (DC 4.2)

The same applies to the vertical and horizontal identities, i.e.

ε2(ab) = ε2(a) +1 ε2(b), (DC 5.1)

ε1(ab) = ε1(a) +2 ε1(b). (DC 5.2)

Our final compatibility condition is known as the “interchange law” and says that, when compos-

ing 4 elements in a square, it is irrelevant if we compose first in the horizontal direction and then in

the vertical one, or the other way around, i.e.

(u+2 v) +1 (w+2 x) = (u +1 w) +2 (v+1 x) (DC 6)

when both sides are defined. This can be represented as giving only one way of evaluating the

double composition

u v

w x

To complete the description of the category of double categories, a double functor between two

double categories D and D ′ is given by three maps Fi : Di → D ′
i for i = 0, 1, 2 which commute

with all structure maps (faces, degeneracies, composition, etc.). In particular, the pair (F1, F0) gives

a functor from (D1,D0) to (D ′
1,D

′
0).

With these objects and morphisms, we get the category DCat of double categories. 2
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Remark 6.1.2 Thus a double category has a structure which is called a 2-truncated cubical set with

compositions. Properties (DC 1-3) give the 2-truncated cube structure and (DC 4-6) the compatibility

with compositions. 2

Remark 6.1.3 On matrix notation. There is also a matrix notation for the compositions which will

be useful later on and is as follows:

u+1 w =

[
u

w

]
u+2 v = [u, v].

With this notation we can represent all the rules in the definition of double categories. For instance,

we have [
u
]

=
[
u,

]
= u.

Choosing the matrix description, the ‘interchange law’ (DC 6) may be written

[[
u

w

] [
v

x

]]
=

[ [
u w

]
[
w x

]
]

This common value is represented by [
u v

w x

]
.

Here is a caution about using this interchange law. Let u, v be squares in a double category such

that

w =
[
u v

]
= u+2 v

is defined. Suppose further that

u =

[
u1

u2

]
= u1 +1 v1 v =

[
v1

v2

]
= u2 +1 v2.

Then we can assert

w =

[
u1 v1

u2 v2

]

only when u1 +2 v1, and u2 +2 v2 are defined. Thus care is needed in 2-dimensional rewriting. 2

This matrix notation has a generalisation that we are going to use in proving several equalities.

Definition 6.1.4 Let D be a double category. A composable array (uij) in D, is given by elements

uij ∈ D2 (1 6 i 6 m, 1 6 j 6 n) satisfying

{
∂+

2 ui,j−1 = ∂−
2 ui,j (1 6 i 6m, 2 6 j 6 n),

∂+
1 ui−1,j = ∂−

1 ui,j (2 6 i 6m, 1 6 j 6 n).

It follows from the interchange law that a composable array (uij) in D can be composed both

ways, getting the same result which is denoted by [uij].

If u ∈ D2, and (uij) is a composable array in D satisfying [uij] = u, we say that the array (uij)

is a subdivision of u. We also say that u is the composite of the array (uij). 2
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Remark 6.1.5 Subdivisions and their use. The interchange law implies that if in the composable

array (uij) we partition the rows and columns into blocks which produce another composable array

and compute the composite vkl of each block, then [uij] = [vkl]. We call the (uij) a refinement of

(vkl) in this case.

This observation is used in several ways to prove equalities. The method consists usually in

starting from the definition of one side of the equation, then change the array using this subdivision

technique and compose the new array getting the other side of the equation.

Changes in a composable array that are clearly possible using this subdivision technique are

1. Select a block of an array and change it for another block having the same composition and

the same boundary (see Proposition 6.6.4)

2. Substitute some adjacent columns by another set of adjacent columns having the same bound-

ary and such that each row has the same horizontal composition in both cases. The same can

done with rows (see Proposition 6.4.4 and Theorem 6.4.6)

2

Example 6.1.6 Let us give a couple of examples of double categories associated to a category C.

The first one is the double category of “squares” or, better still, “2-shells” in a category C, denoted

by ′ C.

The points and arrows of ′ C and the category structure on (( ′ C)1, (
′ C)0) are the same as

those of C. The set of squares ( ′ C)2 is defined by

( ′ C)2 = {(a,d,b, c) ∈ C4
1 : ∂−b = ∂+a,∂−d = ∂+c,∂+b = ∂+d, and ∂−a = ∂−c}.

Its elements may be represented by “brackets”

(
c

a d
b

)

and the horizontal and vertical face and degeneracy maps are obvious from the representation. The

compositions are defined by

(
c

a d
b

)
+1

(
b

f h
g

)
=

(
c

af dh
g

)

and (
c

a d
b

)
+2

(
u

d w
v

)
=

(
cu

a w
bv

)

It is easy to see that ′ C is a double category and that ′ is a functorial construction. Moreover

this functor is right adjoint to the truncation functor which sends each double category D to the

category D1. We leave the proof of adjointness as an exercise.

There are several sub-double-categories of ′ C that can be obtained taking the same 0 and 1-

dimensional part and restricting the 2-dimensional part by putting some commutativity condition

on the 2-shells.

Let us consider C, the category of “commutative squares” or “commutative 2-shells” . Its

squares are

C2 = {(a,d,b, c) ∈ C4
1 : ab = cd}.
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The horizontal and vertical face and degeneracy maps and the compositions are the restriction

of those in ′ C.

There are quite a few categories that can be defined in a similar manner, but requiring that the

compositions ab and cd differ in some way by the action of an element of some fixed subset of C. It

is a good exercise to investigate which conditions C and the action have to satisfy to obtain a double

category. We shall come back to this in Example 6.1.8. 2

As we have stated above, our main objects of interest are double groupoids. These are double

categories where all the categories involved are groupoids and which also have an extra structure.

Let us start by studying double categories where all category structures are groupoids.

Definition 6.1.7 The category DCatG is the full subcategory of DCat that has as objects double

categories in which all three structures are groupoids. 2

First, recall that a groupoid is a category G which has a map ( )−1 : G1 → G1 such that

aa−1 = 1∂−a and a−1a = 1∂+a.

Thus in a double category G where all three category structures are groupoids, there are three

“inverse” maps

( )−1 : G1 → G1, −1 : G2 → G2 and −2 : G2 → G2,

where

(εia) +j (εia
−1) = 0∂−a, (εia

−1) +j (εia) = 0∂+a, for i 6= j.

From the compatibility conditions (DC 4.1, 4.2), we see that the boundary maps preserve inverses

in the other direction since they are homomorphisms, i.e.

∂σ1 (−2u) = (∂σ1 (u))−1, ∂σ2 (−1u) = (∂σ2 (u))−1. (DCG 4)

From the compatibility conditions (DC 5.1, 5.2), we get that the identity maps also preserve inverses,

i.e.

ε1(a
−1) = −2(ε1(a)), ε2(a

−1) = −1(ε2(a)). (DCG 5)

We also easily check from the interchange law that for u ∈ G2

−1 −2 u = −2 −1 u (DCG 6)

and we denote the “rotation” −1−2 by −12.

Example 6.1.8 In the case G is a groupoid, the double categories G of commutative 2-shells and
′G of 2-shells in G defined in Example 6.1.6 are all double groupoids, the inverses of the first

element in the following array being as follows:

u =

(
c

a d
b

)
, −1u =

(
b

a−1 d−1

c

)
, −2u =

(
c−1

d a
b−1

)
, −1 −2 u =

(
b−1

d−1 a−1

c−1

)
.

2

There are interesting differences between the category and groupoid cases with regard to com-

mutative 2-shells. If G is a groupoid, the commutativity condition of a 2-shell can also be stated as

c = abd−1 or even as abd−1c−1 = 0.
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Thus when searching for new examples of double categories an obvious generalisation of C

comes by considering 2-shells that are commutative up to an element lying in some subcategory

C′ ⊆ C. That is, instead of ab = cd we require abd−1c−1 ∈ C′ which works well in the groupoid

case.

It is a nice exercise that you should try at this stage, to check that this works if C is a group and

C′ is a normal subgroup.

This leads to a possible extension of the notion of normal subgroups to ‘normal subgroupoids’

(It is also a good exercise for you to think how this extension can be made). At a further stage, the

concept of normal subgroupoid can be ‘externalised’ as a crossed module of groupoids, analogously

to what has been done for groups. We shall define this concept and prove that it works in Section

6.2.

6.2 The category XMod of crossed modules of groupoids

We have explained that there was an early hint that crossed modules (of groupoids) were related to

double categories where all structures are groupoids. Since crossed modules appear quite naturally

in algebraic topology, that was a suggestion of strong links between higher order groupoids and

classical objects of algebraic topology.

Crossed modules of groupoids are an easy step away from crossed modules of groups and mimic

the structure of the family of fundamental crossed modules Π2(X,A, x) when x ∈ A ⊆ X. Also, for

any double category which has all three structures of groupoid, we get an associated crossed module

over a groupoid.

It is natural to define a crossed module of groupoids to be a groupoid morphism (µ : M → P)

with an action of P on M such that axioms equivalent to CM1) and CM2) are satisfied. Thus, we

start with a groupoid P where P0 its set of vertices, ∂−, ∂+ its initial and final maps. We write

P1(p,q) for the set of arrows from p to q (p,q ∈ P) and P1(p) for the group P1(p,p).

Definition 6.2.1 A crossed module over the groupoid P = (P1,P0) is given by a groupoid M =

(M2,P0) and a morphism of groupoids which is the identity on objects

M
µ // P

satisfying

- M is a totally disconnected groupoid with the same objects as P. Equivalently, it can be seen as a

family of groups {M2(p)}p∈P0
.

We shall use additive notation for all groups M2(p) and we shall use the same symbol 0 for all

their identity elements.

Also, µ is given by a family of homomorphisms {µp : M2(p)→ P1(p)}p∈P0
.

- The groupoid P operates on the right on M. The action is denoted (x,a) 7→ xa. If x ∈M2(p) and

a ∈ P1(p,q) then xa ∈M2(q). It satisfies the usual two axioms of an action:

i) (xab) = (xa)b,

ii) (xy)a = xaya.

(Thus M2(p) ∼=M2(q) if p and q lie in the same component of the groupoid P.)

- These data satisfy two properties
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CM1) µ preserves the actions, i.e. µ(xa) = (µx)a

CM2) For all c ∈ M2(p), µc acts on M by conjugation by c, i.e. for any x ∈ M2(p), x
µc =

−c+ x+ c.

Notice that M2(p) is a crossed module over P1(p) for all p ∈ P0. In the case when P0 is a single

point we call µ a crossed module over a group, or a reduced crossed module.

A morphism of crossed modules f : (µ : M → P) → (ν : N → Q) is a pair of morphisms of

groupoids f2 : M → N, f1 : P → Q inducing the same map of vertices and compatible with the

boundary maps and the actions of both crossed modules. We denote by XMod the resulting category

of crossed modules over groupoids. Notice that the category XMod/Groups studied in the preceding

chapters can be seen as the full subcategory of XMod whose objects are reduced crossed modules of

groupoids. 2

Example 6.2.2 As we have pointed out, there is an immediate topological example. For any topo-

logical pair (X,A) and C ⊆ A, we consider P = π1(A,C), the fundamental groupoid of (A,C). Recall

that the objects of π1(A,C) are the points of C and for any x,y ∈ C, the elements of π1(A,C)(x,y)

are the homotopy classes rel {0, 1} of maps

ω : (I, 0, 1)→ (A, x,y).

The fundamental crossed moduleΠ2(X,A,C) of the triple (X,A,C) is given by the family of groups

{π2(X,A, x)}x∈C. These groups have been defined already in Section 2.1.

Recall that any [α] ∈ π2(X,A, x) is a homotopy class rel J+ of maps

α : (I2,∂I2, J+)→ (X,A, x),

that can be represented as a square

A

x α x

x

1

2
��

//

that is the usual convention for R2 rotated clockwise through π/2 to make it equal to the algebraic

convention. We shall keep the axes drawn beside the square to make this easier to remember.

The action

π2(X,A, x)× π1(A,C)(x,y)→ π2(X,A,y)

was also described in Section 2.1.

The morphism of groupoids ∂ : π2(X,A,C)→ π1(A,C) is given, for each x ∈ C, by the restriction

to the top face 0× I, so giving

∂(x) : π2(X,A, x)→ π1(A, x).

As before, it could be proved directly that these maps satisfy the properties of a crossed module

over a groupoid, but we prefer the roundabout way of proving that this crossed module is the one

associated to a double groupoid called the fundamental double groupoid which will be defined in

Section 6.3. 2

Let us go back to the general theory and see how to associate to any object G ∈ DCatG a crossed

module of groupoids which we denote by γG = (∂ : γG → P). To make it a crossed module we
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need: groupoid structures on γG and P, a map of groupoids ∂ and an action satisfying CM1) and

CM2).

We start by defining P as the groupoid (G1,G0). Thus the objects of γG are (γG)0 = G0 and as

morphisms we choose all u ∈ G2 that have all faces degenerate except ∂−
1 u, i.e.

(γG)2 = {u ∈ G2 : ∂+
2 u = ∂−

2 u = ∂+
1 u = ε∂−∂−

1 u = ε∂+∂−
1 u}.

The reason we chose to use the subindex 2 in the set of morphisms M2 of M is now apparent:

because in this very important example they have “dimension” two. The elements in γG2, when

represented with a matrix like convention, are

∂−
1 u

1 u 1

1

1

2
��

//

With the obvious source, target, and identity, and the composition u+ v defined to be u+2 v, we

get a totally disconnected groupoid γG.

The next element we need to get a crossed P-module, is a morphism of groupoids. It is defined

by

∂ = ∂−
1 : γG2 → P1. (6.2.1)

The last ingredient is an action

γG2(x)×G1(x,y)→ γG2(y)

for all x,y ∈ G0. It is given by degeneration and conjugation: i.e. for any u ∈ γG2(x) and a ∈

G1(x,y),

ua = [−2ε1a, u, ε1a], (6.2.2)

or, in the usual representation,

1

(∂−
1 u)a

ua 1 =

a−1 ∂−
1 u

u

a

1 a−1
1 a

Now we have to check that this gives an action which satisfies both properties in the definition

of crossed module.

Proposition 6.2.3 The definition in (6.2.2) gives a right action of G1 on γG2.

Proof From the diagram, it is clear that ua ∈ γG2. It is also not difficult to prove all properties of

an action:

uab = (ua)b, (u+2 v)
a = ua +2 v

a and u+ = u.

2
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It remains to check the two axioms CM1) and CM2).

Proposition 6.2.4 γG = (∂−
1 : γG2 → G1) is a crossed module with the action defined by (6.2.2).

Proof For CM1) is clear from the diagram that the top face is the conjugate:

∂(ua) = ∂−
1 (ua) = ∂−

1 (−2ε1a)∂−
1 u∂

−
1 (ε1a) = a−1∂−

1 ua = (∂u)a.

Also, for any a = ∂v, v ∈ γG2, we may construct an array such that when computing both ways

gives the equality. In this case the array is

a−1

u

a

−2v v

Composing first in the horizontal direction and then in the vertical one, the first row gives ua

and the second one a degenerate square, so we get ua.

On the other hand, composing first vertically, we get

[−2v,u, v] = uv.

2

It is important to notice that this construction is functorial, thus giving a functor

γ : DCatG→ XMod.

Remark 6.2.5 We finish this section by pointing out that for a double category which has all three

structures groupoids we have not only one associated crossed module of groupoids but four, since

we may chose any of the sides to be the unique one not equal to the identity. Let us call γGij the

crossed module structure on the set of all elements of G2 having all faces degenerate but the i-face

in the j-direction defined by the map ∂ij. Then γG−
j and γG+

j are isomorphic. In general, γGj1 and

γG
j
2 are not isomorphic but we shall see that they are isomorphic in the case of interest here, namely

Example 6.2.2. 2

6.3 The fundamental double groupoid of a triple of spaces.

Granted the success of the fundamental groupoid and the known definition of double groupoid,

perhaps it was natural in 1966 to attempt to define a fundamental or homotopy double groupoid of

a space by considering maps I2 → X of a square. Nevertheless, it was not until 1974 that Brown and

Higgins realised that a successful theory could be obtained by considering a triple (X,A,C), i.e. a

space X and two subspaces C ⊆ A ⊆ X.

We shall start by describing the space of maps and some structure over it before taking homotopy

classes. We consider a triple (X,A,C). We shall use the triple (I2,∂I2,∂2I2) given by the square, its

boundary and the four vertices, respectively. We consider three sets

R0(X,A,C) = C

R1(X,A,C) = {σ : (I, {0, 1})→ (A,C)}

R2(X,A,C) = {α : (I2,∂I2,∂2I2)→ (X,A,C)}.



[6.3] 129

and call the elements of R2(X,A,C) filtered maps

α : (I2,∂I2,∂2I2)→ (X,A,C).

Remark 6.3.1 The elements of R2 can be represented by squares as follows.

A

A α

C

A

C

AC C

1

2
��

//

2

There is an obvious definition of the source and target maps given by restriction to the appropri-

ate faces of I2. More formally they are composition with the maps

∂σ1 (x) = (i, x) and ∂σ2 (x) = (x, i) for σ = ±

and they can be seen in the diagram

∂−
2

∂−
1

∂+
2

∂+
1

1

2
��

//

The identities are given by composing with the projection in the appropriate direction, i.e.

p1(x,y) = x and p2(x,y) = y

and we use the same notation for degenerate squares as in the previous section.

Also, there are several compositions on R given by juxtaposition. The one in R1 has been defined

when talking about the fundamental groupoid. The set R2 has two similar compositions given by

(α+1 β)(x,y) =

{
α(2x,y) if 0 6 x 6 1/2

β(2x− 1,y) if 1/2 6 x 6 1

and

(α +2 β)(x,y) =

{
α(x, 2y) if 0 6 y 6 1/2

β(x, 2y− 1) if 1/2 6 y 6 1.

We leave the reader to check that the interchange law holds for these two compositions. The reverse

of an element α ∈ R2, with respect these two directions are written −1α, −2α and are defined

respectively by (x,y) 7→ α(1 − x,y), (x,y) 7→ α(x, 1 − y).

All this structure means in particular that R(X,A,C) is a 2-truncated cubical set with composi-

tions. It is not a double category (no associativity, etc.). Nevertheless, it is useful to fix the meaning

of composition of arrays. We study this in the next remark.

Remark 6.3.2 For positive integersm,n letϕm,n : I2 → [0,m]×[0,n] be the map (x,y) 7→ (mx,ny).

Anm×n subdivision of a square α : I2 → X is a factorisation α = α ′ ◦ϕm,n; its parts are the squares

αij : I2 → X defined by

αij(x,y) = α ′(x + i− 1,y+ j− 1).
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We then say that α is the composite of the squares αij, and we write α = [αij]. Similar definitions

apply to paths and cubes.

Such a subdivision determines a cell-structure on I2 as follows. The intervals [0,m], [0,n] have

cell-structures with integral points as 0-cells and the intervals [i, i+1] as closed 1-cells. Then [0,m]×

[0,n] has the product cell-structure which is transferred to I2 by ϕ−1
m,n. We call the 2-cell ϕ−1

m,n([i −

1, i]× [j− 1]) the domain of αij. 2

Definition 6.3.3 To define the fundamental double groupoid associated to a triple of spaces (X,A,C)

we shall use the three sets

ρ0(X,A,C) = C

ρ1(X,A,C) = R1(X,A,C)/ ≡

ρ2(X,A,C) = R2(X,A,C)/ ≡ .

where ≡ is the relation of homotopy rel vertices on R1 and of homotopy of pairs rel vertices on R2.

That is, for such a homotopy Ht : I2 → X, we have Ht(c) = H0(c) for all t ∈ I and c ∈ ∂2I2. We

call this relation f-homotopy (or filter homotopy), to distinguish it from homotopy of maps I → A

or I2 → X which we shall write ≃. It is important that f-homotopy is rel vertices, that is that the

vertices of I and of I2 are fixed in the homotopies. This allows us to obtain the groupoid structures

on the filtered homotopy classes without adding any condition on the spaces.

The f-homotopy class of an element α is written 〈〈α〉〉. 2

We expect all the structure maps in ρ(X,A,C) to be those induced by the corresponding structure

maps of R(X,A,C). So we have to prove that they are compatible with the homotopies. In the case

of the structure maps for (ρ1, ρ0) this is clear, since they form the relative fundamental groupoid of

the pair (A,C).

Let us try the maps for the horizontal and vertical structure on (ρ2, ρ1). There is no problem

with the source and target since the homotopies are filtered. Also a homotopy between elements of

R1(X,A,C) gives easily a homotopy between the associated identities. The only problems appear to

be with the compositions.

We develop only the horizontal case; the other follows by symmetry. So, let us consider two

elements 〈〈α〉〉, 〈〈β〉〉 ∈ ρ2(X,A,C) such that 〈〈∂+
2 α〉〉 = 〈〈∂

−
2 β〉〉, i.e. we have continuous maps

α,β : (I2,∂I2,∂2I2)→ (X,A,C)

and a homotopy

h : (I,∂(I))× I→ (A,C)

from α|{1}×I to β|{0}×I rel vertices, i.e. h(0× I) = y and h(1× I) = x. We define now the composition

by

〈〈α〉〉 +2 〈〈β〉〉 = 〈〈α+2 h+2 β〉〉 = 〈〈[α,h,β]〉〉.

This is given in a diagram by

A

A α

x

h

A

β A

A y A

. (6.3.1)

Our first important step is that these compositions are well defined.
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Proposition 6.3.4 The compositions are well defined in ρ2(X,A,C) = R2(X,A,C)/ ≡ .

Proof To prove this we chose two other representatives α ′ ∈ 〈〈α〉〉 and β ′ ∈ 〈〈β〉〉 and a homotopy

h ′ from α ′|{1}×I to β ′|{0}×I. Using them, we get

A

A α ′

x

h ′

A

β ′ A

A y A

which should give the same composition in ρ2 as (6.3.1).

Since 〈〈α〉〉 = 〈〈α ′〉〉, 〈〈β〉〉 = 〈〈β ′〉〉 there are the f-homotopies φ : α ≡ α ′,ψ : β ≡ β ′ which can be

seen in the next figure, in which the thin lines denote edges on which the maps are constant.

α h β

α ′ h ′ β ′

φ ψ

-
?

�

1

2

3

Figure 6.1: Filling the hole in the middle

To complete this to an f-homotopy

α+2 h +2 β ≡ α
′ +2 h

′ +2 β
′

we need to “fill” appropriately the hole in the middle (see Figure 6.1).

Let k : I×∂I2 → A be given by (r, s, 0) 7→ h(r, s), (r, s, 1) 7→ h ′(r, s), (r, 0, t) 7→ φt(r, 1), (r, 1, t) 7→

ψt(r, 0). In terms of Figure 6.1, k is the map defined on the four side faces of the central hole. But

k is constant on the edges of the bottom face, since all the homotopies are rel vertices. So k extends

over {1}× I2 → A extending k to five faces of I3.

Now we can retract I3 onto any five faces by projecting from a point above the centre of the

remaining face. Composing with this retraction, we obtain a further extension k : I3 → A. The

composite cube φ+2 k+2ψ is an f-homotopy γ ≡ γ ′ as required: the key point is that the extension

maps the top face of the middle cube into A, since that is true for all the other faces of this middle

cube. 2

Once we have proved that compositions in ρ2 are well defined, we can easily prove that they are

groupoids, with 〈〈−iα〉〉 being the inverse of 〈〈α〉〉 for the composition +i, i = 1, 2. We also need to

prove the interchange law.

Proposition 6.3.5 The compositions +1, +2 in ρ2(X,A,C) = R2(X,A,C)/ ≡ satisfy the interchange

law.

Proof The argument involves “filling a hole”. We start with four elements 〈〈α〉〉, 〈〈β〉〉, 〈〈γ〉〉, 〈〈δ〉〉 ∈

ρ2(X,A,C) such that 〈〈∂+
2 α〉〉 = 〈〈∂−

2 β〉〉, 〈〈∂
+
2 γ〉〉 = 〈〈∂−

2 δ〉〉, 〈〈∂
+
1 α〉〉 = 〈〈∂−

1 γ〉〉 and 〈〈∂+
1 β〉〉 = 〈〈∂−

1 δ〉〉.

To prove that

(〈〈α〉〉 +2 〈〈β〉〉) +1 (〈〈γ〉〉 +2 〈〈δ〉〉) = (〈〈α〉〉 +1 〈〈γ〉〉) +2 (〈〈β〉〉 +1 〈〈δ〉〉)
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we construct an element of R2(X,A,C) that represents both compositions.

Using f-homotopies h : ∂+
2 α ≡ ∂

−
2 β, h ′ : ∂+

2 γ ≡ ∂
−
2 δ, k : ∂+

1 α ≡ ∂
−
1 γ and k ′ : ∂+

1 β ≡ ∂
−
1 δ given

because the compositions are defined we have a map defined on the whole square except on a hole

in the middle:
A

A α

x1

h

A

β A

x2 k

y

y ? y k ′ x3

A γ

y

h ′ δ A

A x4 A

We only need to fill appropriately the hole. But all homotopies are rel vertices, so the map is

constant on the boundary of the hole. So we extend with the constant map, and evaluate the

resulting composition in two ways to prove the interchange law. 2

Thus we have proved that ρ(X,A,C) is a double category where all three structures are groupoids.

We call this the fundamental double groupoid of the triple (X,A,C) and leave the study of its extra

structure which justifies its name till Section 6.4.

A map f : (X,A,C) → (X′,A ′,C′) of triples clearly defines a morphism ρ(f) : ρ(X,A,C) →

ρ(X′,A ′,C′) of double categories.

Proposition 6.3.6 If f : (X,A,C) → (X′,A ′,C′) is a map of triples such that each of f : X →

X′, f1 : A → A ′ are homotopy equivalences, and f0 : C → C′ is a bijection, then ρ(f) : ρ(X,A,C) →

ρ(X′,A ′,C′) is an isomorphism.

Proof This is an easy consequence of a cogluing theorem for homotopy equivalences. We give the

details for the analogous result for filtered spaces in an Appendix. 2

Now let us check the not quite so straightforward fact that the crossed module associated to

the fundamental double groupoid ρ(X,A,C) is the fundamental crossed module Π2(X,A,C), i.e.

γ(ρ(X,A,C))2 = Π2(X,A,C). Recall that γ(ρ(X,A,C))2(x) is formed by f-homotopy classes of

filtered maps α : (I2,∂I2,∂2I2) → (X,A, x) such that the restriction to all sides but the last vertical

one are homotopically trivial. On the other hand, π2(X,A, x) consists of homotopy classes of maps

α : (I2,∂I2, J+)→ (X,A, x). Let us check that they are the same.

Proposition 6.3.7 If x ∈ C, then the group γ(ρ(X,A,C))2(x) may be identified with the group

π2(X,A, x).

Proof Recall from the definitions that in both cases the elements are homotopy classes of maps

α : (I2,∂I2)→ (X,A).

For α to define an element in π2(X,A, x), which we are going to denote also by 〈〈α〉〉, the maps send

all J+ to x and the same is true for homotopies in this case. In the case 〈〈α〉〉 ∈ ρ(X,A,C)2(x) the

map sends only the vertices to x and the homotopy is rel vertices. Clearly the map

φ : π2(X,A, x)→ γ(ρ(X,A,C))2(x)
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defined by φ(〈〈α〉〉) = 〈〈α〉〉 is well defined, is a group homomorphism and preserves action. We only

have to prove that φ is bijective. We shall use a couple of filling arguments.

To see that φ is onto, let 〈〈α〉〉 ∈ γ(ρ(X,A,C))2(x), i.e. we have a map α : (I2,∂I2,∂2I2) →

(X,A,C) such that its restrictions to all faces of the square but the top one are homotopic rel vertices

to the constant map. Putting all these three homotopies in one diagram we get

x h1

A

α h2 x

x

x h3 x

x

x

We want to get a map β : (I2,∂I2, J+)→ (X,A, x) such that φ〈〈β〉〉 = 〈〈α〉〉 i.e filter homotopic rel

vertices to α.

We can fold the above diagram, getting a map defined on four of the six faces of a cube I3. Thus,

composing with the retraction of I3 onto such four faces, as seen in Figure 2.3, we get both the

desired β (the restriction to the top face) and the homotopy (the cube).

Intuitively, the map β is

x

h1

A

α h2

x

x

��
��

��
��

��
��

h3
x

??
??

??
??

??
??

x

and the homotopy is got by shrinking the bigger square into the smaller one.

It remains to prove that φ is injective, i.e. that Ker φ contains only the homotopy class of the

constant map.

Thus we start with a map α : (I2, {0} × I, J+) → (X,A, x) so that there is an f-homotopy h :

(I2,∂I2,∂2I2)× I→ (X,A, x) from α to 0. This h can be represented by a cube that is the constant x

���
���

���

x
α

Figure 6.2: f-homotopy from α to the constant map

both in the back face and in the four slanted lines.

We have to get a homotopy of maps of triples h ′ : α ≃ 0 rel J+. This h ′ : (I2, {0} × I, J+) × I →

(X,A, x) is α on the front 2-face and has to be constant not only on ∂2I2 × I as was h, but also on

({1}× I ∪ I× ∂I)× I.
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We will do that by changing h to h ′ in a similar way to the one used in the first part of this proof.

Instead of working in four dimensions, we are going to explain what to do in each section for a fixed

third coordinate with the 3-cube given by h. We have the following situation

Ax x

A ht A

Ax x

1

2
��

//

and we want to change this ht to an h ′
t sending all J+ to x.

So, using a filling argument like the one in 1.3 we extend ht

Ax

A ht A

x

x

Ax
____

1

2
��

//

to an square sending one side (the right one) to x. Also, the edge represented by the discontinuous

line goes in A, let us call it a.

To change another side, we need some way of ‘turning right’. This is produced by a degenerate

square got by composing a with the map σ : I2 → I given by σ(s, t) = max(s, t) that is represented

by

a

a

where the unlabeled sides are constant. Adding this square, we can use a similar filling argument

and extend to

Ax

A ht A

x

x

A
x

�
�
�
�

a

a

x

1

2
��

//

let us call by b the edge without label and repeat the filling argument to get

x

Ax

A ht A

x

x

b A
b

a

a

x

1

2
��

//

where the square ‘turning left’ in the bottom left corner is defined in a similar way as ‘turning right’.

It is clear that the edges without label goes in A.
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Therefore, the above constructions all fit together to obtain h ′
t as in the diagram below

x

x

A

A ht A

x

x

b
x

A
b

a

a x

x x x

1

2
��

//

Since we could do the above construction for any section t and all of them fit together, we get a

homotopy

h ′ : (I2, {0}× I, J+)→ (X,A, x)

from α to the constant map that is clearly continuous. 2

The reader will have noticed the widespread use of filling arguments in the above proofs. These

arguments become the key to the proof of corresponding results for higher dimensions which are

developed in Chapter 14.

6.4 Thin structures on a double category. The category DGpds of

double groupoids.

We have examples of double categories coming from two sources: first, the 2-shells commutative up

to an element of a crossed modules over groupoids hinted at the end of Section 6.1 and which will

be properly developed in Section 6.6, and second, the fundamental double groupoid of a topological

pair seen in Section 6.3. In both cases not only are all three structures groupoids but they have also

some extra structure. Let us see one way of introducing this structure.

We have already introduced in Example 6.1.6 the double category ′C of 2-shells in the category

C and its sub double category C of commuting 2-shells.

For any double category D there is a morphism of double categories D → ′D1 which is the

identity in dimensions 0,1 and in dimension 2 gives the bounding shell of any element. On the other

hand, there is no natural morphism the other way, from either ′D1 or D1, which is the identity

on D1.

In this Section, we are going to study double categories endowed with such a morphism, i.e. for

any given commuting shell in D1, there is a chosen ‘filler’ in D2. Next, in Section 6.5, we develop

an alternative approach using some extra degeneracies called connections.

Definition 6.4.1 We therefore define a thin structure on a double category D to be a morphism of

double categories

Θ : D1 → D

which is the identity on D1,D0. The 2-dimensional elements of the form Θα for α ∈ ( D1)2 will

be called thin squares in (D,Θ) or simply in D if Θ is given. 2

Equivalently, the axioms for thin squares are:

T0) Any identity square in D is thin.
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T1) Each commuting shell in D has a unique thin filler.

T2) Any composite of thin squares is thin.

By T0), particular thin squares represent the degenerate squares, namely those of the form

1

1 1

1

a

a

a a (6.4.1)

which we write in short as

.

Notice that identity edges are those drawn with a solid line. The notation is ambiguous, since for

example the second element is the same as the first if a = 1. Also we have not named the vertices.

Nevertheless, it is clear that they represent the degenerate squares since Θ is a morphism of double

categories.

We also have two new ‘degenerate’ squares

a

a a

a

(6.4.2)

which we write in short as

.

The fact that Θ is a morphism of double categories leads immediately to some equations for

compositions of such elements, i.e.

[ ]
=





 = . (6.4.3)

In writing such matrix compositions, of course we always assume that the compositions are defined.

The reason why these equations hold is that the composites are certainly thin, by T2), and since they

are determined by their shell, by T1), they are by T0) of the form given.

Here are some more consequences which are known as “transport laws”:





 = ,





 = . (6.4.4)

If in addition the category D1 is a groupoid then we have two further thin elements namely
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a

a

a−1

a−1

(6.4.5)

which we write

tr
.

Those elements give rise to new equations, for example

 tr


 = .

Note here that three of the sides are identities, and hence so also is the fourth, by commutativity.

Now we apply these ideas to the fundamental double groupoid ρ(X,A,C).

Proposition 6.4.2 The fundamental double groupoid ρ(X,A,C) has a natural thin structure in which

a class 〈〈α〉〉 is thin if and only it has a representative α such that α(I2) ⊆ A.

Proof Let a,b, c,d : I → A be paths in A such that ab ≃ cd in A. It is a standard property of

the fundamental groupoid that the given paths can then be represented by the sides of a square

α : I2 → A. We have to prove that such a square is unique in ρ2.

Let α ′ : I2 → A be another square whose edges a ′,b ′, c′,d ′ are equivalent in π1(A,C) to a,b, c,d

respectively. If we choose maps h, k, l : I2 → A giving homotopies rel end points a ≃ a ′,b ≃ b ′, c ≃

c′. These homotopies, with α and α ′ can be represented as

c′

x l

α ′

x

a ′ h

c

a α d

x b

x k

b ′

folding the diagram they give a map H from five 2-faces of I3 to A.

l

k

a a'

Figure 6.3: Box without a lateral face
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Now, using the retraction from I3, we can extend this to a map I3 → A. This gives an f-homotopy

as required.

Note that this is where we use the fact that an f-homotopy is allowed to move the edges of the

square within A. 2

Since this important example has this structure, it is reasonable to call them double groupoids.

This leads to:

Definition 6.4.3 A double groupoid is a double category such that all three structures are groupoids,

together with a thin structure. We write DGpds for the category of double groupoids taking as

morphisms the double functors that preserve the given thin structures.

We are interested in the restriction to this category of the functor defined in Section 6.2. It is still

denoted

γ : DGpds→ Crs.

2

Notice that the thin elements , in ρ(X,A,C) are, like , , determined by specific maps,

namely in the first two cases are composition of a path I→ A with the maps max, min : I2 → I. We

will say more on this in the next section.

An important consequence of the existence of a thin structure in a double groupoid is that the

vertical and horizontal groupoid structures in dimension 2 are isomorphic. The isomorphism is given

by “rotation” maps σ, τ : G2 → G2 which correspond to a clockwise and an anticlockwise rotation

through π/2.

Let G be a double groupoid. We define σ, τ for any u ∈ G2 by

σ(u) =


 u tr


 and τ(u) =




tr

u


 .

To prove the main properties of these operations is a diversion from our main aims, but one

which illustrates some points in higher dimensional algebra.

Let us start by proving that σ is a homomorphism from the horizontal to the vertical composition,

while τ is a homomorphism from the vertical to the horizontal composition. We next prove that τ

is an inverse to σ. It follows that in the case of a double groupoid the horizontal and the vertical

groupoid structures in dimension 2 are isomorphic.

Proposition 6.4.4 For any u, v,w ∈ G2,

σ([u, v]) =

[
σu

σv

]
and σ(

[
u

w

]
) = [σw,σu]

τ([u, v]) =

[
τv

τu

]
and τ(

[
u

w

]
) = [τu, τw]

whenever the compositions are defined.

Proof We prove only the first rule and leave the others to the reader.
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By definition, the element σ([u, v]) is the composition of the array




u+2 v tr




.

We get a refinement of this array by substituting each element for a box which has the initial element

as its composition as follows:




u v tr




.

By Remark 6.1.5 this new array has the same composition as the initial one. We now subdivide the

second column horizontally in two, getting a new refinement




u v tr




which still has the same composition. Finally, we expand the three middle rows into six in such a

way that we do not change the vertical composition of each column getting




u tr

v tr




.
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The composition of this array still is σ([u, v]) by Remark 6.1.5. To get the result, we now see that

the composition of the block given by the first four rows is σu and the composition of the other four

is σv. 2

It is a nice exercise to extend this result to any rectangular array using associativity.

Since thin elements are determined by their boundaries, the next result follows immediately.

Proposition 6.4.5 The images of thin elements under σ and τ are as follows

σ : 7→ , 7→ 7→ , 7→ tr 7→ 7→ 7→ ,

τ : 7→ , 7→ 7→ , 7→ 7→ 7→ tr 7→ .

A key fact is that σ is a bijection with inverse τ and that these maps together with the inverse

maps −1 and −2, generate all symmetries of a square.

Theorem 6.4.6 The isomorphisms −1, −2, σ, τ and their composites form a group of transformations

of G2 which is isomorphic to the group D8 of symmetries of a square.

Proof We choose a presentation of D8 and verify that the relations are satisfied:

D8 = 〈−1, −2,σ, τ : (−1)
2 = (−2)

2 = στ = (−12)
2 = Id , −1σ = τ−1 , σ2 = −12〉.

We already know that {Id, −1, −2, −12} form a Klein 4-group.

To verify the fourth relation, we show that for any u ∈ G2, we have τσ(u) = u. It is easily seen

that τσ(u) is the composition of the array




tr

u tr




.

Using Remark 6.1.5 four times, we can change the four blocks one by one and substitute them for

another four having the same boundary and composition, getting that τσ(u) is also the composition

of the array 


u




whose composition reduces to u.
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We next show that, for any u ∈ G2, we have

−1σ(u) = −1


 u tr


 =




tr

−1u


 = τ(−1u)

For the final relation we note that

σ2 = (σ−1)(−1σ) = (−1τ)(τ−2) = −12

2

Remark 6.4.7 When these results are applied to the fundamental double groupoid ρ(X,A,C), they

imply the existence of specific f-homotopies. Indeed one of the aims of higher order groupoid theory

is to give an algebraic framework for calculating with homotopies and higher homotopies.

6.5 Connections in a double category: equivalence with thin

structure.

The extension of the notion of thin structure to higher dimensions is not straightforward since it

would require the notion of commutative n-cube and this notion is not easy even for a 3-cube. We

shall return to this at the end of this section.

So, we look for an alternative which generalises more easily to higher dimensions. We take

as basic the two maps Γ−, Γ+ : D1 → D2, that correspond to the thin elements , , satisfying

the properties we have seen in (6.4.3) and (6.4.4). We make this concept clear and develop the

equivalence between the two notions in this section.

Definition 6.5.1 A connection pair on a double category D is a pair of maps

Γ−, Γ+ : D1 → D2

satisfying the four properties below.

The first one is that the shells are what one expects, i.e., if a : x → y in D1 then Γ−(a), Γ+(a)

shells are

Γ−(a) = a

a

1y

1y

Γ+(a) = 1x

1x

a

a

which can be more formally stated as

∂−
2 Γ

−(a) = ∂−
1 Γ

−(a) = a and ∂+
2 Γ

−(a) = ∂+
1 Γ

−(a) = ε∂+a (CON 1)

∂+
2 Γ

+(a) = ∂+
1 Γ

+(a) = a and ∂−
2 Γ

+(a) = ∂−
1 Γ

+(a) = ε∂−a. (CON′ 1)

We also assume that the connections associate to a degenerate element a double degenerate one:

Γ−ε(x) = 0x (CON 2)
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Γ+ε(x) = 0x. (CON′ 2)

The relation with composition is given by the “transport laws” (see (6.4.4)):

Γ−(ab) =

[
Γ−a

Γ−b

]
=

(CON 3)

Γ+(ab) =

[
Γ+a

Γ+b

]
=

(CON′ 3)

Intuitively, a feature that 2-dimensional movements can have extra to 1-dimensional movements

is the possibility of turning left or right. The transport laws state intuitively that turning left with

one’s arm outstretched is the same as turning left, and similarly for turning right.

A final condition deduced from the same idea is that they are “inverse” to each other in both

directions (corresponding to (6.4.3)), i.e.

Γ+(a) +2 Γ
−(a) = ε1(a) (CON 4)

Γ+(a) +1 Γ
−(a) = ε2(a). (CON′ 4)

2

It is interesting to notice that for double categories where all structures are groupoids we need

only a map Γ− satisfying the conditions CON 1-3 since Γ+ can be defined using (CON 4).

Proposition 6.5.2 For a double category in which all structures are groupoids, Γ− and Γ+ may be

obtained from each other by the formula

Γ+(a) = −2 −1 Γ
−(a−1).

Proof Let us define Γ ′′(a) = −2 −1 Γ
−(a−1).

Since Γ−(aa−1) = Γ−(1) = , we obtain from the transport law (CON 3.1) that Γ−(a−1) =

−1[Γ
−a, (ε1a

−1)]. Hence Γ ′′(a) = [(ε1a), −2Γ
−a].

This implies that Γ ′′(a) +2 Γ
−(a) = ε1(a), and so by (CON 4) Γ ′′(a) = Γ+(a). 2

If we use an analogue of our previous notations , for Γ−, Γ+ respectively then of course we

see that all these laws are the ones we have given before for thin elements. So it is not very difficult

to see that any thin structure has associated a unique connection, and that the given thin structure

is determined by this connection.

Proposition 6.5.3 If there is a thin structure Θ on D we have an associated connection defined by

Γ−a = Θ

(
a

a 1
1

)
and Γ+a = Θ

(
1

1 a
a

)
.
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Moreover, the morphism Θ can be recovered from the connection, since

Θ

(
c

a d
b

)
= (ε2a+1 Γ

+b) +2 (Γ−c+1 ε2d) = (ε1c+2 Γ
+d) +1 (Γ−a+2 ε1b). (CON 5)

Proof The results on the behaviour of Γ− and Γ+ with respect to boundaries and degeneracies are

immediate.

Before proving the relation with the compositions, it is worth mentioning that the values of Θ

on degenerate elements are determined by the fact that Θ is a morphism of double categories, so,

Θε1(b) = ε1(b) and Θε2(b) = ε2(b).

Applying Θ to the equation

(
ab

ab 1
1

)
=




(
a

a 1
1

) (
b

1 1
b

)

(
1

b b
1

) (
b

b 1
1

)




we get the transport law

Γ−(ab) =

[
Γ−a ε1b

ε2b Γ−b

]
.

and the one for Γ+ is obtained along the same lines.

Moreover, it is easy to see that on D, the element

(
c

a d
b

)

may by decomposed as the product of any of the two arrays




(
1

a a
1

) (
c

c 1
1

)

(
1

1 b
b

) (
1

d d
1

)




or




(
c

1 1
c

) (
1

1 d
d

)

(
a

a 1
1

) (
b

1 1
b

)




where in the first one we have to compose first columns then rows and in the second one the other

way about.

Applying Θ to these expressions, we get both formulae. 2

Remark 6.5.4 As we have seen in the proof of the preceding property, the thin elements are com-

position of degenerate elements and connections. Conversely, all degeneracies and connections lie

in the image of Θ, so any composition of such elements is a thin element. Thus we have an easy

characterisation of the thin elements. 2

There is more work in obtaining the other implication, i.e. getting the thin structure from the

connection maps.



144 [6.5] Nonabelian Algebraic Topology

Proposition 6.5.5 If there is a connection on D, we have an associated thin structure Θ defined by the

formula (CON 5) in Proposition 6.5.3. Moreover, the connection can be recovered from Θ, since

Γ−(a) = Θ

(
a

a 1
1

)
and Γ+(a) = Θ

(
1

1 a
a

)
.

Proof Let us first prove that either formulae gives the same function. This will make it easier to

prove the morphism property. We write

Θ1

(
c

a d
b

)
= (ε1c+2 Γ

+d) +1 (Γ−a+2 ε1b) =

c d

a b

where the last diagram is obtained adding the degenerate middle row, and

Θ2

(
c

a d
b

)
= (ε2a+1 Γ

+b) +2 (Γ−c+1 ε2b) =

a

b

c

d

Then we want to prove Θ1 = Θ2. A usual way of proving that two compositions of arrays produce

the same result is to construct a common subdivision. One that is appropriate for this case is

a

c

a

b

c

d

d

b

.

From this diagram, we may compose the second and third row using the transport law and then



[6.5] 145

rearrange things, getting Θ1 as indicated

a

c

ab cd

d

c d

a b

b

=

a

c

d

c d

a b

b

= Θ1

(
c

a d
b

)
.

Similarly, operating in the bottom left and the top right corner, we get

a

c

a

b

c

d d

b

=

a

c

a

b

c

d d

b

and this last diagram is, quite clearly Θ2. We write Θ for the common value.

We would like to prove that Θ is a morphism. From any of its representations, it is clear that Θ

commutes with faces and degeneracies. The only point we have to prove is that it commutes with

both compositions. In this direction, it is good to have two definitions of Θ. First, we use Θ = Θ2

to prove that Θ preserves the vertical composition. The use of Θ = Θ1 to prove that it preserves the

horizontal composition is similar.

So we want to prove

Θ2

(
c

a d
b

)
+1 Θ2

(
b

a ′ d ′

e

)
= Θ2

(
c

aa ′ dd ′

e

)
.
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As before we compute a common subdivision in two ways. The common subdivision we choose is

a

a ′

c

a ′

e

b

d ′

a

b

c

d d

d ′

b

e

.

If we compose the first two rows, they produce Θ2

(
c

a d
b

)
. Similarly, the two last rows give

Θ2

(
b

a ′ d ′

e

)
.

On the other hand, making some easy adjusts on the three middle rows, we get

a

a ′

c

a ′

e

a

b

d ′

c

d d

d ′

e

=

aa ′

c

aa ′

e

c

dd ′ dd ′

e

which clearly is Θ2

(
c

aa ′ dd ′

e

)
. 2

6.6 Equivalence between XMod and DGpds: folding.

In this section, we prove the equivalence between the category DGpds of double groupoids of Defi-

nition 6.4.3 and that of crossed modules of groupoids XMod of Definition 6.2.1.

On the one hand, the crossed module associated to a double groupoid is given by the functor

γ : DGpds→ XMod.

restriction of the one defined in Section 6.2.

On the other hand, there is a double groupoid associated to each crossed module as was already

hinted at the end of Section 6.1. We shall develop this idea in this Section. We recall that to

generalise the category of shells in a category, we use 2-shells which commute up to some element

in the image of the crossed module.
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Let M = (µ : M → P) be a crossed module over a groupoid. There is an associated double

groupoid G = λM whose sets are

G0 = P0, G1 = P1 and G2 = {(m, (b,a; c,d)) | µm = a−1b−1cd}.

The elements of G2 may be represented by

b m

c

d

a

where µm measures the lack of commutativity of the boundary, giving the composition of the sides

of the boundary in clockwise direction starting from the bottom right corner, considered as base

point of the square. This choice is conventional, and will influence many later formulae. You are

invited to consider the effect of other conventions on formulae below.

The category structure in (G1,G0) is the same as that of (P1,P0), so it is a groupoid. The hori-

zontal and vertical structures on (G2,G1) have source, target and identities defined as in P. The

definitions of the compositions in dimension 2 is the key to the work.

For the ‘horizontal’ composition we require the boundaries to be given as follows

h n

g

b

k

+2 b m

c

d

a

= h A

gc

d

ka

(6.6.1)

and for the ‘vertical composition’ we require

f u

g

e

c

+1 b m

c

d

a

= fb B

g

ed

a

(6.6.2)

The problem is to find reasonable values in M for A,B. With our convention the boundary of the

square A is:

(ka)−1h−1gcd = a−1k−1h−1gcd = a−1(k−1h−1gb)a(a−1b−1cd) = a−1µ(n)aµ(m).

So a good choice is

A = na m.

This agrees with intuition since n has to be ‘moved to the right’ by the edge a to have the same base

point as m. Similarly, and the calculation is left to you, a good choice is

B = mud,

since u has to be ‘moved down’ by the edge d. Notice that we use the rule CM1) for a crossed

module.
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It is not difficult to check that with these compositions all three categories are groupoids. We

now verify the interchange law, using the following diagram,

v u

n b

c

m d

a

Evaluating the rows first gives the first component of the composition, in an abbreviated notation

since the edges are omitted, as 

vcu

nav


 = (nam)(vcu)d

while evaluating the columns first gives the first component of the composition, in a similar notation,

as [
nvb mud

]
= (nvb)amud.

So to prove the interchange law we have to verify that

mvcd = vbam.

This follows from CM2) since µm = a−1b−1cd and then

m−1vbam = (vba)µm = vcd.

Remark These ‘childish calculations’ were a key to the whole theory, and will be part of the higher

dimensional theory in Chapter 13.

To finish, we define a thin structure on G by the obvious morphism

Θ : P → G2

given by Θ(a,b, c,d) = (1, (a,b, c,d)).

This gives a functor

λ : XMod→ DGpds

and that γλM is naturally isomorphic to M is trivial in dimensions 0,1 and in dimension 2 follows

from

(γλM)2 = {(m, (1, 1, 1,µm)) | m ∈M} ∼=M.

It is rather more involved to get a natural isomorphism from G to λγG for any double groupoid

G. In order to do this, we shall see first that a double groupoid is “generated” by the thin elements

and those that have only one non-degenerate face, which we assume to be the top face. To this end

we “fold” all faces to the chosen one.

Definition 6.6.1 Let G be a double groupoid. We define the folding map

Φ : G2 → (γG)2 ⊆ G2

by the formula Φu = [−2ε1∂
+
1 u, −2Γ

−∂−
2 u, u, Γ−∂+

2 u]. Notice that this can be defined only in the

groupoid case because we are using −2. 2
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In the usual description

Φu =

b−1 a−1

a u

c

d

d

b−1 b

Now let us see that the boundary ofΦu is the one we expect. As a consequenceΦ is well defined.

Proposition 6.6.2 All faces of Φu are identities except the first in the vertical direction, and

∂−
1 Φu = ∂+

1 u
−1∂−

2 u
−1∂−

1 u∂
+
2 u.

Thus Φu ∈ γG2 and Im Φ ⊆ γG2.

Proof All are easy calculations which are left as exercises. 2

Also from the definition, the following property is clear.

Proposition 6.6.3 All u ∈ γG2 satisfy Φu = u. Thus γG2 = Im Φ and ΦΦ = Φ.

Proof This is immediate since in this case all the elements making up Φu except u itself are

identities. 2

We are now able to define a map

Ψ : G2 → (λγ)G2

by mapping any element u ∈ G2 to the element given by the folding map Φu and the shell of u:

a u

c

d

b

7−→ a Φu

c

d

b

We shall see that this map is an isomorphism between the two double groupoids.

It is clear that Ψ preserves faces. Also Ψ preserves thin elements since Φ of a thin element is a

composition of thin elements and so is thin.

The most delicate part of the proof is the behaviour of the folding map Φ with respect to com-

positions. We obtain not a homomorphism but a kind of ‘derivation’, involving conjugacies, or,

equivalently, the action in the crossed module γG.

Proposition 6.6.4 Let u, v,w ∈ G2 be such that u+1 v,u+2w exist, and let b = ∂+
1 u,g = ∂+

2 v. Then

Φ(u+1 v) = [Φv, −2ε1g,Φu, ε1g] = Φv +2 (Φu)g

Φ(u+2 w) = [−2ε1b,Φu, ε1b,Φw] = (Φu)b +2 Φw.

Proof The proof of the second rule is simple, involving composition and cancelation in direction 2,

so we prove in detail only the first rule. As before, this is done by constructing a common subdivision
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and computing it in two ways. Namely if both u, v are represented by

a u

c

d

b

and e v

b

g

f

then

u+1 v = ae u+1 v

c

dg

f

So we have

Φ(u +1 v) =

f−1 (ae)−1

u+1 v

c dg

Applying both transport laws to the second and fourth square, we get a refinement

f−1 e−1 a−1

u

c d g

v

having the same composition by Remark 6.1.5. Next we get another array

f−1 e−1 b g g−1
b−1 a−1

u

c d g

v

having the same composite because each row has same composite in both cases (apply Remark

6.1.5). Now we can compose vertically in this last diagram to get

f−1 e−1

v

b g g−1
b−1 a−1

u

c d g

and this is clearly Φv +2 (Φu)g as stated. 2

The important consequence is that the map

Ψ : G2 → (λγG)2

we are studying is a homomorphism with respect to both compositions since the equations proved

in the preceding property are part of the definition of the compositions in (λγG)2.
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To end our proof of the equivalence between the categories of crossed modules over groupoids

and double groupoids, it just remains to prove that the map Ψ is bijective, and preserves the thin

structures. Let us start by characterising the thin elements of G2 using the folding map.

Proposition 6.6.5 An element u ∈ G2 is thin if and only if Φu = 1.

Proof As we pointed out in the Remark 6.5.4 an element u ∈ G2 is thin if and only if it is a

composition of identities and connections. By the preceding properties, it is clear that both identities

and connections go to 1 under the folding map, so the same remains true for their compositions.

Conversely, if u ∈ G2 is such that Φu = 1, by the definition of Φ, we have the following diagram

u = 1

Solving this equation for u, we get that it is a product of identities and connections:

u =

b b−1

u

= Φu

2

Corollary 6.6.6 The map Ψ preserves the thin structures.

Thus we can conclude that an element u ∈ G2 is uniquely determined by its boundary and its

image under the folding map.

Proposition 6.6.7 Given elements (a,b, c,d) ∈ G2 and m ∈ γG2, there is an element u ∈ G2 with

boundary (a,b, c,d) and Φu =m if and only if ∂−
1 m = b−1a−1cd. Moreover, in this case u is unique.

Proof As before, we can solve the equation for u getting

u = Φu

thus giving the construction of such element u. Uniqueness follows from the result before. 2

Corollary 6.6.8 The map Ψ : G2 → (λγG)2 is bijective and determines a natural equivalence of func-

tors 1 ≃ λγ.

Thus we have completed the proof that the functors γ and λ give an equivalence of categories.

Corollary 6.6.9 The functor γ preserves pushouts and, more generally, colimits.
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This allows us to prove first a 2-dimensional van Kampen Theorem for the fundamental double

groupoid and then deduce a corresponding theorem for the fundamental crossed module.

Remark 6.6.10 This equivalence also gives another way of checking some equalities on double

groupoids. To see that two elements are equal we just need to know that they have the same

boundary and that they fold to the same element. Alternatively, we can just check the equations in

a double groupoid of the form λ(M→ P). 2

6.7 Homotopy commutativity lemma.

As we saw in Chapter 1, the desire for the generalisation to higher dimensions of the concept of

commutative square was one of the motivations behind the search for higher dimensional group

theory.

Recall that when proving the classical van Kampen Theorem 1.6.1, the main idea in the second

part was to divide a homotopy into smaller squares and change each one to give a commutative

square in π1. Then we applied the morphisms and got composable commutative 2-shells in K; the

fact that in a groupoid any composition of commutative 2-shells is commutative gave the result.

To generalise this to a 2-dimensional van Kampen Theorem, we need several points:

- a concept of commutative 3-shell;

- to prove that the composition of 3-shells is commutative; and

- to relate commutative 3-shells with homotopy.

Those are the objectives of this section.

Before getting down to business, let us point out that there is a further generalisation to com-

mutative n-shells for all n which will be explained in Part III (Chapter 13). Nevertheless, in the

3-dimensional case this can be done using connections with some careful handling.

The process generalises the construction of the double categories of 2-shells and commutative

2-shells seen in Example 6.1.8. In the 3-dimensional case we get what could be labeled a “triple

category” but we are not formalising this concept at this stage because is not necessary now and can

be done in a more natural way in a more general setting (see Chapter 13).

First we consider 3-shells, the definition of which does not use the thin structure. Let us start

with the picture of a 3-cube (where we have drawn the directions to make things a bit easier to

follow)

���
���

���

��� 2

3

1

v0 v1

u0

u1

Figure 6.4: cube

Definition 6.7.1 Let D be a double category. A cube or (3-shell) in D,

α = (u0,u1, v0, v1,w0,w1)
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consists of squares in D2 which fit together as do the faces of a 3-cube, i.e. such that

∂σ1uτ = ∂τ1vσ; ∂σ2uτ = ∂τ1wσ; ∂σ2 vτ = ∂τ2wσ

for σ, τ = ±. We also define the faces of the shell to be ∂σ1α = uσ,∂σ2α = vσ, and ∂σ3α = wσ for

σ = ±. Among these, the even faces are ∂+
1 ,∂−

2 ,∂+
3 and the odd faces are ∂−

1 ,∂+
2 ,∂−

3 ; thus the parity

of a face ∂σi is the parity of i + l(σ) where l(−) = 0, l(+) = 1. 2

Now we make these 3-shells into a triple category by defining three partial compositions of 3-

shells as follows:

Definition 6.7.2 Let α = (u0,u1, v0, v1,w0,w1) and β = (x0, x1,y0,y1, z0, z1) be cubes in D.

(i) If u1 = x0 we define

(u0,u1, v0, v1,w0,w1)+1 (u1,u2,y0,y1, z0, z1) = (u0,u2, v0 +1y0, v1 +1y1,w0 +1 z0,w1 +1 z1).

(ii) If v1 = y0 we define

(u0,u1, v0, v1,w0,w1) +2 (x0, x1, v1, v2, z0, z1) = (u0 +1 x0,u0 +1 x0, v0, v2,w0 +2 z0,w1 +2 z1).

(iii) If w1 = z0 we define

(u0,u1, v0, v1,w0,w1)+3(x0, x1,y0,y1,w1,w2) = (u0+1x0,u0+1x0, v0+2y0, v1+2y1,w0,w2).

2

It is easy to check that these compositions yield a triple category, in the obvious sense. (This con-

struction will be extended to all dimensions in Chapter 13, Definition 13.5.5, using a notation more

suitable for the general case.)

Now we have to formulate the notion of commutative 3-shell. From the square case it seems that

the proper generalisation would be that the composition of the even faces of the shell equals the

composition of the odd faces. We shall take a different route which works in the groupoid case,

explaining the other route briefly later.

Let us try to give some meaning to one face of a cube being the composition of the remaining

five. We can start by thinking of the picture we get by folding flat those five faces of the cube.

w0 v1

u1

u0

v0

3

3

33

2

2

2

1 1 1

Figure 6.5: Five faces of a cube folded flat
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First, notice that already in this figure we need that the double category we are using has all

structures groupoids since we are using the inverse of some faces. Also, this Figure does not give a

composable array in any obvious sense. However we can use the connections in a double groupoid

with thin structure to fill the corners of the diagram to give a composable array:

−1u0 tr

−2v0 w0 v1

u1

We shall say that the above 3-shell α in a double groupoid commutes if the face w1 = ∂+
3 α is the

composition of the previous array involving the other five faces.

Remark 6.7.3 For a corresponding theory in higher dimensions it seems easier to take the connec-

tions rather than thin structure as basic, since the properties of connections in all dimensions are

easily expressed in terms of a finite number of axioms, each of which expresses simple geometric

features of mappings of cubes. This is developed in Chapter 13. It is then a main feature of the

algebra to develop the related notion of thin structure. The chief advantage of the latter is that

complicated arguments involving multiple compositions of commuting shells of cubes are reduced

to simple arguments on the composition of thin elements. 2

Now we get two results on commuting cubes which are key to the proof of our 2-dimensional van

Kampen Theorem 6.8.2, in particular in Lemma 6.8.4. The first one shows that two non-degenerate

faces of a ‘degenerate’ commutative 3-shell are equal.

Theorem 6.7.4 Let α be a commutative 3-shell in a double groupoid G. Suppose that all the faces of α

not involving direction 3 are degenerate. Then ∂−
3 α = ∂+

3 α.

Proof In this case the array containing the five faces is

∂+
3 α

whose composition is clearly ∂+
3 α. Thus the commutativity of the 3-shell implies that ∂−

3 α = ∂+
3 α.

2

Our second result is about the composition of commutative 3-shells .

Theorem 6.7.5 In a double groupoid with connections, any composition of commutative 3-shells is

commutative.
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Proof It is enough to prove that any composition of two commutative 3-shells is commutative.

So, let us consider α = (u0,u1, v0, v1,w0,w1) and β = (x0, x1,y0,y1, z0, z1) two commutative

3-shells in a double groupoid G. This means that w1 and z1 are respectively given by

−1u0 tr −1x0 tr

w1 = −2v0 w0 v1 z1 = −2y0 z0 y1

u1 x1

We are going to check that composing in any of the three possible directions gives a commutative

3-shell.

If v1 = y0, the face ∂+
3 (α+2 β) = w1 +2 z1 of α+2 β is given by

−1u0 tr −1x0 tr

w1 +2 z1 = −2v0 w0 v1 −2v1 z0 y1

u1 x1

Adding first the central two columns of this array and then the central three columns of the resulting

array, we get

−1u0 −1x0 tr −1(u0 +2 x0) tr

w1 +2 z1 = −2v0 w0 z0 y1 = −2v0 w0 +2 z0 y1

u1 x1 u1 +2 x1

Thus α+2 β is a commutative 3-shell.

Working vertically in the same way we can prove that α+1 β, when it is defined, is commutative

if both α and β are commutative.
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The case α+3 β is a bit different. In this case w1 = z0, thus we have

−1u0 tr −1x0 tr

w1 = −2v0 w0 v1 w2 = −2y0 w1 y1

u1 x1

Substituting w1 in the second array for the first array and subdividing the other blocks to get a

composable array, we get that

−1u0 tr

−1x0 tr

w2 = −2v0 −2y0 z0 y1 v1

x1

u1

Now, we can compose by blocks and, using the transport law, we get

−1(u0 +1 x0) tr

w2 = −2(v0 +2 y0) w0 v1 +2 y1

u1 +1 x1

Thus α+3 β is also a commutative 3-shell. 2

Let us go now to the case of the fundamental double groupoid of a triple (X,A,C). In particular,

we will see that some 3-cubes h : I3 → X produce a commutative 3-shell in ρ(X,A,C). This we call a

‘homotopy commutativity lemma’ reserving the term homotopy addition lemma which we give later

for a result expressing the boundary of a cube or simplex in terms of a ‘sum’ of the faces.

For the statement of the lemma we introduce some notation that represents the changes of

coordinates suggested by Figure 6.5. So, if h : I3 → X is a cube in X, then the faces of h are given by

restriction to the corresponding faces of the cube, i.e.

∂αi h = h ◦ ηαi ,
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where ηαi (x1, x2) = (y1,y2,y3), the yj being defined by yj = xj for j < i,yi = α, and yj = xj−1 for

j > i.

Also in some of the cases we are going to need some switching of coordinates, so let us consider

η̃α1 (x1, x2) = (α, x2, x1).

Proposition 6.7.6 (the Homotopy Commutativity Lemma) Let (X,A,C), ρ be as in section 6.3. Let

h be a cube in X with edges in A and vertices in C. Then the 3-shell in ρ(X,A,C) given by the boundary

of h is commutative.

Proof What the proposition says is that if the elements uα, vα,wα of ρ2 represented by its faces

are respectively the classes of h ◦ η̃α1 ,h ◦ ηα2 ,h ◦ ηα3 (α = 0, 1). Then

w1 =




−1u0 tr

−2v0 w0 v1

u1




in ρ2 where the corner elements are thin elements as above.

Consider the maps ϕ0,ϕ1 : I2 → I3 defined by

ϕ0 =



−2 −1 Γ −1(η̃

0
1) −1Γ

−2η
0
2 η−

3 η1
2

−2Γ η̃1
1 Γ


 , ϕ1 =



−2 −1 Γ 1 −1Γ

0 η1
3 0

−2Γ 1 Γ


 .

where Γ is the map induced by γ : I2 → I given by γ(x1, x2) = max(x1, x2). Notice that ϕ0,ϕ1 agree

on ∂I2 and so, since I3 is convex, the linear homotopy

F : I2 × I → I3

(x1, x2), t 7→ tϕ0(x1, x2) + (1 − t)ϕ1(x1, x2)

gives an homotopy rel ∂I2 between ϕ0 and ϕ1.

Now hφ0,hφ1 are the two compositions given in the next Figure:

w0 v1−2v0

u1

−1u0 tr

w1

Figure 6.6: Two arrays with the same boundary

Hence 〈〈hϕ0〉〉 = 〈〈hϕ1〉〉 in ρ2. So the 3-shell defined by h is commutative. 2

Remark 6.7.7 In the case whereD is a double category with thin structure, we cannot get a formula

of the above type, because of the lack of inverses. What we can expect as commuting boundary is
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a formula saying that some composition of the even faces is the same as a composition of the odd

faces. Let us investigate this case.

If we fold flat the faces of the 3-cube, the six faces look like:

1 1

1 1

3

3

3

3

2

2

2

2

v0 w1

u0

w0 v1

u1

Figure 6.7: Cube boundary folded in a plane

This diagram can be nicely cut in two pieces such that each one can be transformed into a

composable array using connections as follows:

1 1

1 1

2

2

2

2

3

3

3

3

w0 v1

u1

u0

w1v0

Figure 6.8: Cube boundary decomposed in two

It seems that we could say that a 3-shell is commutative if both compositions are the same, but

this does not work because the two squares have different boundary. We expand both squares to get

the same boundaries:

w0 v1

u1

u0

v0 w1

Therefore, we can say that a 3-shell α in a double category with thin structure commutes if the above

compositions are equal. This definition works (see the Notes). 2
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6.8 Proof of the 2-dimensional van Kampen Theorem.

In this last section of Part I we shall prove a 2-dimensional van Kampen Theorem (6.8.2) which

includes as a particular case Theorem 2.3.1 some of whose algebraic consequences have been studied

in Chapters 4 and 5.

Theorem 6.8.2 is true for triples of spaces (X,A,C) satisfying some connectivity conditions which

can be expressed as algebraic conditions on the π0 and π1 functors.

Definition 6.8.1 We say that the triple (X,A,C) is connected if the following conditions hold:

(‡)0. The maps π0(C)→ π0(A) and π0(C)→ π0(X) are surjective.

(‡)1. The morphism of groupoids π1(A,C)→ π1(X,C) is piecewise surjective.

Notice that condition (‡)0 is equivalent to saying that C intersects all path components of X

and all of A. Also condition (‡)1 just says that the function π1(A)(x,y) → π1(X)(x,y) induced

by inclusion is surjective for all x,y ∈ C. It may be shown that given (‡)0, condition (‡)1 may be

replaced by

(‡ ′)1. For each x ∈ C, the homotopy fibre over x of the inclusion A→ X is path connected.

That both conditions can be stated in terms of connectivity, explains the origin of the term ‘con-

nected’. 2

Let us introduce some notation which will be helpful in both the statement and the proof of

Theorem 6.8.2. Suppose we are given a cover U = {Uλ}λ∈Λ of X such that the interiors of the sets

of U cover X. For each ν = (λ1, · · · , λn) ∈ Λn we write

Uν = Uλ1 ∩ . . . ∩Uλn .

An important property of this situation is that a continuous function f on X is entirely determined

by a family of continuous functions fλ : Uλ → X which agree on all pairwise intersections Uλ1 ∩Uλ2 .

This is expressed by saying that the following diagram

⊔
λ1,λ2∈Λ

Uλ1 ∩Uλ2

i1 //

i2
//
⊔
λ∈ΛU

λ i // X

is a coequaliser in the category of topological spaces. The functions i1, i2 are determined by the

inclusions Uν = Uλ1 ∩ Uλ2 → Uλ1 , and Uν → Uλ2 for each ν = (λ1, λ2) ∈ Λ2, and i is determined

by the inclusions Uλ → X for each λ ∈ Λ.

It is not difficult to extend this to the case of a triple (X,A,C). If we define Aν = Uν ∩ A, and

Cν = Uν ∩ C, we get a similar coequaliser diagram in the category of triples of spaces:

⊔
ν∈Λ2(Uν,Aν,Cν)

i1 //

i2
//
⊔
λ∈Λ(Uλ,Aλ,Cλ)

i // (X,A,C).

Now we move from this to the homotopical situation, by applying ρ to the coequaliser diagram of

triples. So the homotopy double groupoids in the following ρ-sequence of the cover are well-defined:

⊔
ν∈Λ2 ρ(Uν,Aν,Cν)

i1 //

i2
//
⊔
λ∈Λ ρ(U

λ,Aλ,Cλ)
i // ρ(X,A,C). (6.8.1)

Here
⊔

denotes disjoint union, which is the coproduct in the category of double groupoids. It is an

advantage of the approach using a set of base points that the coproduct in this category is so simple
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to describe. The morphisms i1, i2 are determined by the inclusions Uν = Uλ1 ∩ Uλ2 → Uλ1 , and

Uν → Uλ2 for each ν = (λ1, λ2) ∈ Λ2, and i is determined by the inclusions Uλ → X for each λ ∈ Λ.

Theorem 6.8.2 (2-dimensional van Kampen Theorem for the fundamental double groupoid) Assume

that for every finite intersection Uν of elements of U the triple (Uν,Aν,Cν) is connected. Then

(Con) the triple (X,A,C) is connected, and

(Iso) in the above ρ-sequence of the cover, i is the coequaliser of i1, i2 in the category of double groupoids.

Proof The proof follows the pattern of the 1-dimensional case (Theorem 1.6.1) and it will take

several stages.

We shall be aiming for the coequaliser result (Iso) because the connectivity part (Con) is obtained

along the way. So we start with a double groupoid G and a morphism of double groupoids

f ′ :
⊔

λ∈Λ

ρ(Uλ,Aλ,Cλ)→ G

such that f ′i1 = f ′i2. We have to show that there is a unique morphism of double groupoids

f : ρ(X,A,C)→ G

such that fi = f ′.

Recall that by the structure of coproduct in the category of double groupoids, the map f ′ is just

the disjoint union of maps fλ : ρ(Uλ,Aλ,Cλ)→ G and the condition f ′i1 = f ′i2 translates to fλ1 and

fλ2 being the same when restricted to ρ(Uν,Aν,Cν) for ν = (λ1, λ2).

To define f on ρ(X,A,C) we shall describe how to construct an F(α) ∈ G2 for all α ∈ R2(X,A,C).

Then we define f(〈〈α〉〉) = F(α) and prove independence of all choices.

Stage 1.- Define F(α) ∈ G2 when α = [αij] such that each αij lies in some R2(U
λ,Aλ,Cλ).

The easiest case is when the image of α lies in some Uλ of U. Then α determines uniquely an

element αλ ∈ R2(U
λ,Aλ,Cλ). The only way to have fi = f ′ is by defining

F(α) = fλ(〈〈αλ〉〉).

This definition does not depend on the choice of λ, because of the condition f ′i1 = f ′i2.

Next, suppose that the element α ∈ R2(X,A,C) may be expressed as the composition of an array

α = [αij]

such that each αij belongs to R2(X,A,C), and also the image of αij lies in some Uλ of U which we

shall denote by Uij.

α = [αij]

where αijAij

Cij Aij Cij

Aij

CijAijCij

Figure 6.9: Case α = [αij] with αij ∈ R2(U
ij,Aij,Cij)
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We can define F(αij) for each ij as before. Since the composite [αij] is defined, it is easy to check

using f ′i1 = f ′i2, that the elements F(αij) compose in G2. We define F(α) to be the composite of

these elements of G2, i.e.

F(α) = F([αij]) = [F(αij)],

although a priori this definition could depend on the subdivision chosen.

Stage 2.- Define F(α) ∈ G2 by changing α by an f-homotopy to a map of the type used in Stage

1.

This is done analogously to the 1-dimensional case (Theorem 1.6.1). So, first we apply the

Lebesgue covering lemma to get a subdivision α = [αij] such that for each i, j, αij lies in some

element Uij of the covering. In general, we will not have αij ∈ R2(U
ij,Aij,Cij), so we have to

deform α to another β satisfying this condition. The homotopy for this is given by the next lemma.

In this we use the cell-structure on I2 determined by a subdivision of α as in Remark 6.3.2, and also

refer to the ‘domain’ of αij as defined there.

Lemma 6.8.3 Let α ∈ R2(X,A,C) and let α = [αij] be a subdivision of α such that each αij lies in

some Uij of U. Then there is an f-homotopy h : α ≡ α ′, with α ′ ∈ R2(X,A,C), such that, in the

subdivision h = [hij] determined by that of α, each homotopy hij : αij ≃ α ′
ij satisfies:

(i) hij lies in Uij;

(ii) α ′
ij belongs to R2(X,A,C), and so can be considered an element of R2(U

ij,Aij,Cij);

(iii) if a vertex v of the domain of αij is mapped into C, then h is constant on v;

(iv) if a cell e of the domain of αij is mapped by α into A(resp. C), then e × I is mapped by h into

A(resp. C), and hence α ′(e) is contained in A(resp. C).

Proof Let K be the cell-structure on I2 determined by the subdivision α = [αij], as in Remark

6.3.2. We define h inductively on Kn × I ∪ K × {0} ⊆ K × I using the connectivity conditions of the

statement, where Kn is the n-skeleton of K for n = 0, 1, 2.

Step 1.- Extend α|K−×{0} to h0 : K− × I→ C.

Since the triples (Uν,Aν,Cν) are connected for all finite sets ν ⊆ Λ, the map π0(C
ν)→ π0(U

ν)

is surjective. For each vertex v ∈ K we can choose a path lying in the intersection of all the Uλ

corresponding to all the 2-cells of K containing v (one to four according to the situation of v) and

going from α(v) to a point of C.

In particular, when α(v) ∈ C we choose the constant path and if α(v) ∈ A, using that π0(C
ν)→

π0(A
ν) is also surjective, we choose the path lying in A . These paths give a map h0 : K− × I→ C.

Step 2.- Extend α|K+×{0} ∪ h0 to h1 : K+ × I→ A.

For each 1-cell e ∈ K with vertices v1 and v2, we have the following diagram

h0|v1×I h0|v2×I

α|e

where on the three sides of e× I the definition of h1 is given as indicated. We proceed to extend to

e× I with some care.
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If α(e) ⊆ A we consider two cases. When v1, v2 are mapped into C, we extend to e× I using α at

each level e × {t}. If α(e) ⊆ A, and v1, v2 are not both mapped into C, since all edges go to A, then

we can use a retraction to extend the homotopy.

Otherwise, the product of these three paths defines an element of π1(U
ν,Cν) where Uν is the

intersection of the Uλ corresponding to all the 2-cells containing e (1 or 2 according to the situation

of e). Using the condition on the surjectivity of the π1, we have a homotopy rel {0, 1} to a path in

(Aν,Cν). This homotopy gives h1|e×{1}.

Step 3.- Extend α|K×{0} ∪ h1 to h : K× I→ X.

This is done using for each 2-cell e the retraction of e× I to ∂e× I ∪ e× 0

Figure 6.10: Projecting from above in a 3-cube

given by projecting from a point above the centre of the top face. 2

The three steps in the construction of h in this Lemma are indicated in Figure 6.11 where the

third and fourth diagrams look the same from this direction but from the back the third one looks

like a hive with square cells while the fourth diagram is solid.

α h0 ∪ α h1 ∪ α h

Figure 6.11: Steps in constructing h in Lemma 6.8.3

Notice that the connectivity result (Con) follows immediately from this lemma, particularly (iv),

applied to doubly degenerate or to degenerate squares representing elements of an appropriate π0

or π1.

We can now define F for an arbitrary element α ∈ R2(X,A,C) as follows. First we choose a

subdivision [αij] of α such that for each i, j, αij lies in some Uij. Then we apply Lemma 6.8.3 to get

an element α ′ = [α ′
ij] and an f-homotopy h : α ≡ α ′ decomposing as h = [hij], the image of each

hij lying in some Uij.

We define

F(α) = F(α ′) = [F(α ′
ij)],
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i.e the composition of the array in G got by applying the appropriate fλ to the decomposition re-

sulting on the back face of the last diagram in Figure 6.11. Since this in principle depends on the

subdivision and the homotopy h we will sometimes write this element as F(α, (hij)).

Stage 3.- Key lemmas

The tools for our independence of choices are going to be proved at this stage. They are two

lemmas considering a homotopyH of maps in α,β ∈ R2(X,A,C) with a given subdivisionH = [Hijk].

They are represented in the Figure 6.12.

�� ��

��

H
Hijk

Figure 6.12: Decomposition of a homotopy H = [Hijk]

The first lemma is a rather short application of previous results on commutative cubes and states

that F(α) = F(β) gives particular conditions on α,β and on an f-homotopy H : α ≡ β.

Lemma 6.8.4 Let H : I3 → X be an f-homotopy of maps α,β : (I2,∂I2,∂2I2) → (X,A,C). Suppose

given a subdivision H = [Hijk] of H such that each Hijk maps its domain Dijk of I3 into a set Uijk

of the cover and maps the vertices and edges of Dijk into C and A respectively, i.e. all its faces lie in

R2(U
ijk,Aijk,Cijk). Then for the induced subdivisions α = [αij],β = [βij] we have in G that

F(α) = F(β). (*)

Proof The assumptions imply that eachHijk satisfy the conditions of the homotopy commutativity

lemma (6.7.6) and thus defines a commutative 3-shell in ρ(Uijk,Aijk,Cijk)). This is mapped by fijk

to give a commutative 3-shell in G. The condition f ′i1 = f ′i2 implies that these 3-shells are compos-

able in G, and so, by Theorem 6.7.5, their composition is a commutative cube in G. The assumption

that H is an f-homotopy allows us to apply Theorem 6.7.4, and to deduce (*), as required. 2

Now we have to prove that we can always obtain from a general f-homotopy between two maps

an f-homotopy between associated maps that satisfies the conditions of the previous Lemma. This is

where our connectivity assumptions are used again.

Lemma 6.8.5 Let H : I3 → X be an f-homotopy of maps α,β : (I2,∂I2,∂2I2) → (X,A,C). Suppose

given a subdivision H = [Hijk] of H such that each Hijk maps its domain Dijk of I3 into a set Uijk of

the cover. Then there is a homotopy Φ of H to a homotopy H ′ such that such that in the cell structure

K determined by the subdivision of H,

(i) H ′ maps the 0-cells of K into C and the 1-cells into A;

(ii) if a 0-cell v of K is mapped by H into C, then Φ is constant on v, and if v is mapped into A by H,

then so also is v× I by Φ;
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(iii) if a 1-cell e of K is mapped by H into C, then Φ is constant on e, and if e is mapped into A by H,

then so also is e× I by Φ.

Proof As in Remark 6.3.2, but now in dimension 3, there is a cell structure K on I3 appropriate to

the subdivision of H. We define a homotopyΦ : K× I→ X of H by induction on Kn× I∪k× {0} ⊆ K.

The first two steps are as in Lemma 6.8.3. This takes us up to K1 × I ∪ K× {0}. Finally, we extend Φ

over the 2- and 3-skeleta of K by using retractions, i.e. by a careful use of the Homotopy Extension

Property. 2

Remark 6.8.6 The map H ′ constructed in the Lemma gives an f-homotopy from α ′ = H ′
0 to β ′ =

H ′
1. Also there is a decomposition of α ′ = [α ′

ij] and β ′ = [β ′
ij] which has each element lying in

some R2(U
λ,Aλ,Cλ). Moreover, the homotopy Φ induces homotopies h : α ≡ α ′ and h ′ : β ≡ β ′ of

the type described in Lemma 6.8.3 and later used to define F(〈〈α〉〉).

In particular, if all the maps in the induced subdivisions α = [αij] and β = [βij] lie in some

R2(U
λ,Aλ,Cλ), the map H ′ constructed in the lemma gives an f-homotopy H ′ : α ≡ β. 2

Stage 4.- Independence of choices inside the same f-homotopy class.

Now we can prove that f is well defined, proving independence of two choices.

1.- Independence of the subdivision and the homotopy h of Lemma 6.8.3.

Let us consider two subdivisions of the same map α ∈ R2(X,A,C). As there is a common re-

finement we can assume that one is a refinement of the other. We shall write them α = [αij] and

α = [α
ij
kl] where for a fixed ij we have αij = [α

ij
kl].

Using Lemma 6.8.3, we get f-homotopies h : α ≡ α ′, with α ′ ∈ R2(X,A,C), such that, in the

subdivision h = [hij] determined by that of α, each homotopy hij : αij ≃ α ′
ij and h ′ : α ≡ α ′′, with

α ′′ ∈ R2(X,A,C), such that, in the subdivision h ′ = [h ′ij
kl] determined by that of α, each homotopy

h ′ij
kl : α

ij
kl ≃ α

′′ij
kl. We want to prove that

[F(α ′
ij)] = [F(α ′′ij

kl)].

�
�
�

�
�
�

�
�
�

,,,,

,,
α ′′ij
kl

Figure 6.13: Independence of subdivision

The situation for a fixed ij is described in Figure 6.13 where the smaller cube at the front repre-

sents h ′ij
kl and the larger cube at the back is hij.

If we denote by h ′
ij the composition of the array h ′

ij = [h ′ij
kl] and by α ′

ij the composition of the

array α ′
ij = [α ′ij

kl], we have h ′
ij : αij ≃ α ′′

ij.

Now hh ′ gives an f-homotopy satisfying the conditions of Lemma 6.8.5 if we denote by h the

homotopy given by h(x,y, t) = h(x,y, 1 − t). First, we change this homotopy using Lemma 6.8.5
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and we then apply Lemma 6.8.4, to get

[F(α ′
ij)]) = [F(α ′′

ij)].

On the other hand since the second is a refinement of the first, we have

[F(α ′′
ij)]) = [F(α ′′ij

kl)].

As a consequence to define the element F(α) we can choose whatever subdivision and homotopy

we want insofar as the conditions of Lemma 6.8.3 are met.

2.- Independence of the choice inside the same f-homotopy class.

Let H : α ≡ β be an f-homotopy of elements of R2(X,A,C). We choose a subdivision H = [Hijk]

of H so that each Hijk maps into a set of U. On both extremes there are induced subdivisions

α = [αij],β = [βij]. We apply Lemma 6.8.3 to H, getting H ′ : α ′ ≡ β ′.

As indicated in the Remark 6.8.6, these α ′,β ′ satisfy the conditions to be used when defining

F(α) and F(β). Also H ′ satisfies the conditions of Lemma 6.8.4. Thus

F(α) = [F(α ′
ij)] = [F(β ′

ij)] = F(β).

Stage 5.- End of proof

Now we have proved that there is a well-defined map f : ρ(X,A,C)2 → G2, given by f(〈〈α〉〉) =

F(α, (hij)), which satisfies fi = f ′ at least on the 2-dimensional elements of ρ.

The remainder of the proof of (Iso), that is the verification that f is a morphism, and is the only

such morphism, is straightforward. It is easy to check that f preserves addition and composition of

squares, and it follows from (iii) of Lemma 6.8.3 that f preserves thin elements.

It is now easy to extend f to a morphism f : ρ(X,A,C)→ G of double groupoids, since the 1- and

0-dimensional parts of a double groupoid determine degenerate 2-dimensional parts. Clearly this f

satisfies fi = f ′ and is the only such morphism.

This completes the proof of Theorem 6.8.2. 2

Of especial interest (but not essentially easier to prove) is the case of the Theorem in which the

cover U has only two elements; in this case Theorem 6.8.2 gives a push-out of double groupoids. In

the applications in previous chapters we have considered only path-connected spaces and assumed

that C = {x} is a singleton. Taking x as base point, the double groupoids can then be interpreted as

crossed modules of groups to give the 2-dimensional analogue of the Seifert-van Kampen Theorem

given as Theorem 2.3.1 earlier. We do not know how to prove that theorem without using groupoids

in some form. A higher dimensional form of this proof and theorem is given in the second part of

this book.

Proof of Theorem 2.3.1 In the case where (X,A) is a based pair with base point x, ρ(X,A, x)

is abbreviated to ρ(X,A). That we obtain a pushout of crossed modules under the hypothesis of

Theorem 2.3.1 is simply a special case of Theorem 6.8.2, together with Proposition 6.3.7, which

gives the equivalence between double groupoids and crossed modules.

The corresponding result of Theorem 2.3.3 follows from Theorem 2.3.1 by standard techniques

using mapping cylinders. For analogues of these techniques for the fundamental groupoid, see

Chapter 8 of [Bro06].

Remark 6.8.7 An examination of the proof of Theorem 6.8.2 shows that conditions (‡)0 and (‡)1
are required only for 8-fold intersections of elements of U. However, it has been shown by Razak-

Salleh [RS76] that in fact one need only assume (‡)0 for 4-fold intersections and (‡)1 for 3-fold
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intersections. Further, these conditions are best possible. The reader may like to try to recover these

results using the tool of Lebesgue covering dimension as in the paper [BRS84].

Remark 6.8.8 Theorem 6.8.2 contains 1-dimensional information which includes most known re-

sults expressing the fundamental group of a space in terms of an open cover, but it does not assume

that the spaces of the cover or their intersections are path-connected. That is, it contains the classical

van Kampen Theorem on π1(X,A) given in Chapter 1.

Thus we have completed the aims of Part I, to give a reasonably full and we hope comprehensible

account of what we understand as 2-dimensional nonabelian algebraic topology, which is essentially

the theory and application to algebraic topology of crossed modules, double groupoids and related

structures.

Now in Part II we move on to the higher dimensional theory. The situation is more complicated

because there are several generalisations of crossed modules and double groupoids, with applica-

tions to algebraic topology, basically in terms of crossed complexes, or in terms of crossed n-cubes

of groups. The theory of crossed complexes is limited in its applications, because it starts as being

a purely ‘linear’ theory. However, even this theory has advantages, in the range of applications,

its relation to well known theories, such as chain complexes with a group of operators, its use of

groupoids, and its intuitive basis as a development of the methods of Part I. So this is the account

we give, in the space we have here.

Notes

(In this we diverge from the definition given in [BH78].)

(they were called special double groupoids with special connections in [BS76a], since more

general connections were discussed there)

The name ‘transport laws’ was given because they were initially borrowed from a transport law

for path connections in differential geometry, as explained in [BS76b].

, and it was already done by Brown and Spencer ([BS76a]) in the case that all structures are

groupoids,

We follow the proof given by Brown and Mosa for the case of double categories ([BM99]). It

is easier for double groupoids and in this case the proof may be traced back to Brown-Higgins

([BH78]). Nevertheless it is interesting to give the proof in the more general case for the possible

applications in other situations.

This is how properties of rotations were verified in [BS76b]. The direct proofs are due to Philip

Higgins.

Another aspect of the equivalence of categories is that it gives us a large source of double

groupoids. Indeed one motivation of the equivalence in the work of [BS76b, BS76a] was simply

to find new examples of double groupoids and these were found since there is a large source of

crossed modules.

Work on the double category case, proving the equivalence with 2-categories, was done by

Spencer in [Spe77] and additional work by Brown and Mosa [BM99]. This work has been extended

to all dimensions in [AABS02].

In fact, as has already been pointed out, one of the reasons for introducing connections in the

paper [BS76b] was to be able to discuss the notion of commutative 3-shell in a double groupoid.
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Introduction to Part II

The utility of crossed modules for certain nonabelian homotopical calculations in dimension 2 has

been shown in Part I, mainly as applications of a 2-dimensional van Kampen Theorem. In Part II,

we obtain homotopical calculations using what we call crossed complexes. Again, a Higher Homo-

topy van Kampen Theorem (HHvKT) plays a key role, but we have to cover also a range of new

techniques.

One new tool is the classifying space functor

B : Crs→ Top.

We shall also set up a notion of homotopy in the category Crs of crossed complexes. A major

application of crossed complexes is a homotopy classification theorem, that there is a bijection of

homotopy classes

[X,BC] ∼= [ΠX∗,C]

for a crossed complex C and skeletal filtration X∗ of a CW-complex X. This we explain in Chapter

10. Its proof requires almost all of the major properties of crossed complexes, of which the key ones

are fully justified in Part III.

Chapter 7.5 sets up the basic theory of crossed complexes, on which the rest of Parts II and III are

built. Crossed complexes are made up of groupoids, crossed modules over groupoids, and modules

over groupoids. In order to handle various constructions on these, particularly the calculation of

colimits, we use results on fibrations and cofibrations of categories give in Appendix A.7. This

enables one theory for a number of examples. Another important part of this chapter is section 7.5

on the relation between crossed complexes and chain complexes with operators, In accordance with

the spirit of this book, and necessitated by the mathematics, we use a groupoid rather than the group

of operators traditional in algebraic topology. This is also important mathematically, in relating the

monoidal closed structures of crossed complexes and chain complexes with operators, in Chapter 9.

Chapter 8 is devoted to the statement and immediate applications of the Higher Homotopy van

Kampen Theorem for crossed complexes.

Chapter 9 introduces a crucial monoidal closed structure on the category of crossed complexes.

Chapter 10 deals with the classifying space of a crossed complex. We find it convenient to define

this cubically, and so set up the needed cubical theory. Some of the results on collapsings in this

chapter are used in Part III, Chapter 14.

There is one contrast between the 2-dimensional case and that in higher dimensions. Homotopy

2-types are well modeled by crossed modules, but, for n > 3, crossed complexes give only a partial

model of homotopy n-types. Thus crossed complexes give only a limited amount of information

on many problems we would like to study. Further, the HHvKT itself has strong connectivity as-

sumptions which again limit its utility. However the theorem does yield applications which are not

obtainable by other means.

169
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A major point is that crossed complexes can be used for some explicit calculations involving

nonabelian information coming from the fundamental group. The fact that a van Kampen Theorem

holds shows that this algebra gives a tool for some nonabelian local to global problems in dimensions

> 1. Thus our aim is not just solve some specific problems in homotopy theory or algebraic topology,

but also to suggest the kind of tools that might be required for a wider investigation of local to global

problems, in view of the important part such problems play in mathematics and its applications.

Recall that Part I has given a transition from 1-dimensional to 2-dimensional homotopy theory.

Dimension 1 involves in a natural way the fundamental groupoid and the theory of groupoids.

Dimension 2 homotopy has been expressed principally using the fundamental crossed module

Π(X,A, x) = (π2(X,A, x)
∂
−→ π1(A, x))

of a pointed pair of spaces x ∈ A ⊆ X, and the theory of crossed modules. A Higher Homotopy

van Kampen Theorem (HHvKT) in dimension 2 allowed for many nonabelian computations of this

crossed module, and so of these second relative homotopy groups. However for the proof of the

HHvKT we had to move to the category of double groupoids, and in this respect it was convenient

to use also the fundamental crossed module of groupoids

Π(X,A,C) = (π2(X,A,C)
∂
−→ π1(A,C))

for a triple of spaces C ⊆ A ⊆ X, so that C is thought of as a set of base points. This groupoid

viewpoint will be essential in this Part II.

It is also an important feature of crossed modules over groupoids that they model all weak

homotopy 2-types. This modeling is done via the classifying space functor on crossed modules of

groupoids

B : XMod→ Top.

However the definition of this functor and the proof of its properties requires the work of this Part

II, since it involves the generalisation from crossed modules to crossed complexes (see Chapter 10).

Some aspects of the situation in dimensions > 3 are analogous to that in lower dimensions. In

particular, a convenient generalisation of a triple of spaces is a filtered space

X∗ : X0 ⊆ X1 ⊆ · · · ⊆ Xn ⊆ · · · ⊆ X,

so that the case of a triple is where Xn = Xn+1 = X for n > 2. The above fundamental crossed

module of a triple generalises to the fundamental crossed complex of a filtered space

Π(X∗) : · · ·
∂
−→ πn(Xn,Xn−1,X0)

∂
−→ πn−1(Xn−1,Xn−2,X0)

∂
−→ · · ·π2(X2,X1,X0)

∂
−→ π1(X1,X0).

Our first task is to explain the algebraic notion of crossed complex and the structure and properties

of this Π(X∗).

Chapter 7 sets up the basic structures we need. In order to relate these, and in particular to

discuss induced constructions in general, it is convenient to use the language of fibrations and

cofibrations of categories. This area is covered in a Appendix A.7.

The first major result we state and apply in Chapter 8, is that this functor

Π : FTop→ Crs

satisfies a Higher Homotopy van Kampen Theorem (HHvKT): Π preserves certain colimits. Part of

Chapter 7 thus discusses colimits of crossed complexes and in particular the notion of free crossed

complex.

Consequence of the HHvKT are some results which are commonly regarded as basic in algebraic

topology and homotopy theory, for example:
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1. the Brouwer degree theorem: homotopy classes of maps Sn → Sn are classified by their degree

while any map Si → Sn is inessential if i < n (see Corollary 8.3.11);

2. the relative Hurewicz theorem: if πi(X,A) = 0 for 1 < i < n and X,A are connected, then the

Hurewicz map

πn(X,A, x)→ Hn(X,A)

determines Hn(X,A) as πn(X,A, x) factored by the action of π1(A, x) (see Theorem 8.3.18);

3. if n > 2, then πn(A ∪ {enλ },A, x) is a free π1(A, x)-module (crossed π1(A, x)-module if n = 2)

on the characteristic maps of the n-cells (see Theorem 8.3.13);

4. if X∗ is the skeletal filtration of a CW-complex, then Π(X∗) is a free crossed complex.

Put in another way, these results lend some support to the idea that crossed complexes give a

convenient algebraic formalism for the theory and applications of relative homotopy theory.

This was first recognised in a 1946 paper by Blakers ([Bla48]) using the name “group system”

for what is now called crossed complex (of groups). The applications were next developed by

J.H.C.Whitehead in his 1949 paper ([Whi49b]) This paper has been considerably neglected in sharp

contrast with the first part ([Whi49a]) where the definition of CW-complexes has contributed a

basic tool for algebraic topology. (For more history see [BH82].)

A second major set of results, stated in Chapter 9 and applied there and in later chapters, deals

with homotopies for filtered spaces and for crossed complexes. We introduce the latter homotopies

briefly in subsection 7.1.5, and discuss them later in the context of monoidal closed categories and

the cylinder construction.

The category of filtered spaces has a tensor product X∗ ⊗ Y∗ defined by

(X∗ ⊗ Y∗)n =
⋃

p+q=n

Xp × Yq

for filtered spaces X∗, Y∗. This models the skeletal filtration of a product X × Y of CW-complexes,

where the n-cells of the product are of the form ep × eq for all p+ q = n and p-cells ep of X, q-cells

eq of Y.

This tensor product allows one to define homotopies for filtered spaces as maps I∗ ⊗ X∗ → Y∗

where I∗ is the unit interval with its usual cell structure. There is also an internal hom filtered space

FTOP(Y∗,Z∗), with total space Top(X, Y), and an exponential law

FTop(X∗ ⊗ Y∗,Z∗) ∼= FTop(X∗, FTOP(Y∗,Z∗)).

We require analogous structures for crossed complexes, and indeed it is these which give crossed

complexes extra power.

In Chapter 9 we define for crossed complexes D,E an internal hom crossed complex CRS(D,E),

whose elements in dimension 0 are morphisms D → E of crossed complexes, in dimension 1 are

homotopies of morphisms, and in higher dimensions are forms of ‘higher homotopies’. The definition

is completely explicit, except that the verification of the axioms for a crossed complex is left till Part

III. Then a tensor product C ⊗ D of crossed complexes is defined precisely so that the exponential

law holds, i.e. there is a natural bijection

Crs(C⊗D,E) ∼= Crs(C, CRS(D,E))

for all crossed complexes C,D,E. This adjoint relation enables us to prove that a tensor product of

free crossed complexes is free.
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Here C ⊗ D is generated in dimension n by all elements c ⊗ d for c ∈ Cp,d ∈ Dq and with

p+q = n. The complication of the rules required to hold reflects the complications of the geometry

which is being modeled, namely that of the product Ep×Eq where the cell Ep has a cell subdivision

E0 = e0, E1 = e0± ∪ e
1, Ep = e0 ∪ ep−1 ∪ ep, p > 2.

Thus in general the product has 9 cells, and a ‘cylinder’ E1×Ep has cells in dimensions 0, 1, p−1, p,

p + 1. The capacity to contain information on what happens in a range of dimensions is what gives

crossed complexes the extra power over chain complexes, even with a group of operators. A precise

comparison with the latter and crossed complexes is given in Chapter 9, Section 7.5.

We have to assume some properties of the tensor product and of the functor Π whose proofs

are deferred to Part III. There we give a precise algebraic relation between crossed complexes and

a cubical algebraic theory; this relation is the engine behind the power of the crossed complexes

theory and applications.

One of the results we are able to prove on this basis is that the functor Π preserves homotopies.

This uses an important natural transformation

η : ΠX∗ ⊗ ΠY∗ → Π(X∗ ⊗ Y∗)

which enables us to translate homotopies from filtered spaces to crossed complexes. Further, η is an

isomorphism if ΠX∗,ΠY∗ are free crossed complexes, for example if X∗, Y∗ are CW-filtered spaces.

One consequence of these results is the Homotopy Addition Lemma for a simplex: intuitively, this

says that the boundary ∂σ of an n-simplex σ is the ‘sum’ of all its faces. How to express this

intuition in precise terms was one of the problems that led to the foundation of algebraic topology.

One longstanding description of this in chain complexes and homology is that for all n > 0

∂σ =

n∑

i=0

(−1)i∂iσ

where for any n-simplex σ, ∂iσ is the face opposite to the i-th vertex, so that the vertices are given

the structure of a totally ordered set. However, for homotopical purposes we need to involve not the

abelian homology groups, but instead the fundamental groupoid and its action on relative homotopy

groups. This leads to differing formulae for n = 1, 2, 3 and n > 4. We shall show that we can model

in crossed complexes the inductive construction of an n-simplex as a cone on the (n − 1)-simplex,

and hence give an algebraic deduction of these formulae, based on the algebraic formulae in the

tensor product of crossed complexes (see Theorem 9.9.4).

In Chapter 10, we start the development of cubical theory to define the classifying space functor

B : Crs→ Top.

The main result is a homotopy classification theorem stating that if X∗ is a CW-filtered space, and C

is a crossed complex, then there is natural bijection of homotopy classes

[X,BC] ∼= [ΠX∗,C].

We show how this leads to some specific calculations of homotopy classes of maps. We also develop

the notion of fibration of crossed complexes, and its relation with fibration of spaces.

It is time to remember from Part I that crossed modules had two origins: from Topology the

fundamental crossed module of a triple of spaces, and, from Algebra, combinatorial group theory,

i.e. presentations of groups and identities among relations. Until now, we have presented the

generalisation to crossed complexes of the first source. It is time to turn to Algebra.



[6.8] 173

In Chapter 11 we move in this direction by considering the notion of free crossed resolution of a

group or groupoid. This develops the work on Identities among Relations in Chapter 3 of Part I. We

prove that any two of these resolutions are homotopy equivalent, thus making the homotopy com-

putations independent of the resolution chosen. In particular, we give some examples of resolutions

that have few generators and so make computations feasible.

Also related to the concept of resolution is the theory of acyclic models for crossed complexes; we

introduce this theory and give several important applications.

Chapter 11 gives a procedure for generating free crossed resolutions associated to a given pre-

sentation of a finite group G. It generalises the classical procedure of constructing trees in Cayley

graphs. This procedure works by constructing for the universal covering groupoid G̃ of G, obtained

from the adjoint action of G on itself, a free crossed resolution F∗(G̃) together with a contracting

homotopy of this resolution. This can be interpreted as using ‘Cayley graphs with relations’, and

with still higher syzygies. For these higher syzygies , covering morphisms of crossed complexes give

a useful algebraic model and one appropriate for calculations.

We end this Chapter by applying this procedure to get some free resolutions. In particular, for

each group G, we get the free standard crossed resolution Fst∗ (G), a crossed complex version of the

bar construction much used in homological algebra. Also, we get free crossed resolutions with few

generators that have been used in Chapter 11.

As a consequence of the general theory of this Chapter, we get a relation between the free

standard crossed resolution and the bar resolution of a group. In particular, for a crossed complex

C and chain complex L there is a natural isomorphism

CRS(C,ΘL) ∼= ΘCHN(∇C,L),

giving a bijection

[C,ΘL] ∼= [∇C,L]

between the corresponding homotopy classes.

Since the chain complex associated by ∇ to the free standard crossed resolution of a group G is

the bar resolution, we can redefine the cohomology of a group G with coefficients in a G-module

using free crossed resolutions. This is carried out at the beginning of Chapter 12.

This natural theory generalises in a number of ways, for example giving cohomology of a group

or space with coefficients in a crossed complex. This somewhat nonabelian theory allows for more

calculations than are easily possible in the abelian theory, for example of the k-invariant of a crossed

module.

This ends our account of the theory and application of crossed complexes, apart from the proofs

in Part III for crossed complexes and associated functors of a number of major properties which have

been used extensively in Part II.
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Chapter 7

The basics of crossed complexes

Introduction.

This first Chapter of Part II gives the background on crossed complexes which is required for the

statement and applications of the Higher Homotopy van Kampen Theorem (HHvKT) for the functor

Π : (filtered spaces)→ (crossed complexes)

given in the next chapter.

This is a substantial chapter, so you are encouraged to read the definition of crossed complex and

of the functor Π, and then skip to the next chapters, returning to this one for further information as

required.

Recall that, as said in the preface:

“Some of the main aims of the book can be summarised by stating that we construct a diagram,

which we call the Main Equivalence(ME):

(filtered spaces)

Π

wwnnnnnnnnnnnnnnnnn
ρ

&&NNNNNNNNNNNNNNNN

(crossed complexes)
λ //

(ω-groupoids)
γ

oo

(ME)

such that

(A) γ, λ give an equivalence of categories;

(B) γρ is naturally equivalent to Π;

(C) ρ, and hence also Π, preserves certain colimits.

The final statement we call a Higher Homotopy van Kampen Theorem (HHvKT).”

We deal in this Chapter with the part of the diagram (ME) involving Π, but here giving only its

definition. Even the proof that Π gives a crossed complex is left to Part III, since that proof fits with

the Main Equivalence, which is the engine driving this Part II, purring quietly in the background.

175
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This Chapter contains generalisations to all dimensions of concepts introduced in Chapter 2 of

Part I, that is of the fundamental crossed module of a pair of spaces, and of some results of Chapters

4 and 5.

A basic construction for all of Parts II and III is the following: associated to a filtration

X∗ := X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ Xn ⊆ · · · ⊆ X

of a space X, and to a base point x ∈ X0, there is a sequence of morphisms of relative homotopy

groups

· · ·
δn+1 // πn(Xn,Xn−1, x)

δn // πn−1(Xn−1,Xn−2, x)
δn−1 // · · ·

δ3 // π2(X2,X1, x)
δ2 // π1(X1, x) .

All these sequences, for varying x, and with an additional structure of operations from the funda-

mental groupoid π1(X1,X0), form what we call the fundamental crossed complex Π(X∗) of the filtered

space X∗.

Accordingly, the first Section of this Chapter contains:

• a quick introduction of the category FTop of filtered topological spaces paying attention to the

standard example, the skeletal filtration of a CW-complex, and using the tensor product as a

source of examples;

• an introduction to Crs the category of crossed complexes;

• the definition in terms of relative homotopy groups of the fundamental crossed complex func-

tor Π : FTop→ Crs.

The statement and applications of the Higher Homotopy van Kampen Theorem (HHvKT), which

says in general terms that the functor Π preserves some colimits (coequalisers of some special maps)

is left to the next Chapter. This Theorem allows calculation with this homotopically defined functor;

it is thus central to the main theme of this book. Analogously to Part I, the proof of the HHvKT

requires cubical techniques of what are called ω-groupoids, and is delayed to Part III.

We define these categories and this functor in the first section of this chapter, and proceed to

explain in following sections how to compute the colimits which arise naturally in the applications.

The HHvKT and immediate applications are given in the next chapter. It is therefore quite reasonable

for the reader to make sure of the basic definitions, and then skip to the next chapter, returning to

this chapter as necessary.

The next two Sections detail the algebraic facts necessary to apply the HHvKT to deduce the

homotopical consequences given in Section 8.2. In Section 7.3 we define some categories related

to Crs which we need to analyse colimits of crossed complexes, namely: Crsn the category of n-

truncated crossed complexes; and Mod the category of modules over groupoids.

The n-truncated crossed complexes have the structure of the first n dimensions of a crossed

complex. In particular, Crs2, the 2-truncated crossed complexes, are simply the crossed modules

over groupoids as seen in Chapter 6. This category thus includes the crossed modules over groups

studied in Chapters 2–5.

We are also interested for n > 3 in the phenomena arising in a crossed complex just in dimensions

1 and n. In these dimensions, a crossed complex gives a pair (M,G) where G is a groupoid and M

is a G-module, and so we need to study Mod, the category of these objects. This category is not so

well known even for the case of groups, since we are varying G.
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The generalisation to groupoids is necessary for many of the applications of the fundamental

crossed complex since it allows the use of several base points and takes into account the full action

of the fundamental groupoid.

The second algebraic Section (7.3.2) is devoted to the study of colimits in the category Crs; the

results are necessary to do any computations with the HHvKT.

It is an easy consequence of the appropriate functors having right adjoints (and hence preserving

colimits) that the colimits in Crs can be computed by taking colimits in three categories. First a col-

imit in groupoids, then a colimit of crossed modules and, last, colimits of modules in all dimensions

n > 3.

Moreover, the computation of colimits in Mod (and XMod) can be done in two steps. First a

change of base groupoid (via the induced module construction), and then, a colimit in the category

of modules over a fixed groupoid.

We proceed to explain a bit further how to compute induced modules and how to define free

modules as a special kind of induced modules (indicating the same results for crossed modules) and

end the Section with some examples of colimits.

The last Section 7.4.3, gives the notion of free crossed complex. As is usual for such a concept,

morphisms from a free crossed complex can be constructed in terms of their values on a free basis,

so this is a basic concept for many homotopy classification results. A consequence of our results

is that the skeletal filtration of a CW-complex X is a connected filtration, and that its fundamental

crossed complex is a free crossed complex, on a basis determined by the characteristic maps of the

cells of X.

For these results it is essential to use groupoids rather than groups, and so we set up enough of

the general theory of fibred categories to handle the notions of pullback and induced constructions

which arise in a variety of situations.

In a final section, we relate the notion of crossed complex to the more widely familiar notion of

chain complex with operators. The usual notion is that of a group of operators, but in order to model

the geometry, and to have better properties, it is again essential to generalise this to a groupoid of

operators.

7.1 Our basic categories and functors.

7.1.1 The category FTop of filtered topological spaces.

By a space is meant a compactly generated topological space X, i.e. one which has the final topology

with respect to all continuous functions K→ X for all compact Hausdorff spaces K. The category of

spaces and continuous maps will be written Top. We will assume the basic properties of these spaces

and this category given in, for example, [Bro06, Section 5.9].

Definition 7.1.1 A filtered space X∗ consists of a space X and an increasing sequence of subspaces

of X:

X∗ := X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ Xn ⊆ · · · ⊆ X

which we call a filtration of X.

A filtration preserving map

f : X∗ → Y∗
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is a continuous map f : X→ Y such that f(Xn) ⊆ Yn for all n > 0.

These objects and morphisms form the category FTop of filtered spaces and filtered maps. 2

Definition 7.1.2 A standard way of constructing a new filtered space from given ones X∗, Y∗ is the

tensor product with total space X× Y and filtration given by

(X∗ ⊗ Y∗)n =
⋃

p+q=n

Xp × Yq.

We write I for the unit interval [0, 1] with its skeletal filtration with 0-cells 0,1, and one 1-cell. We

write In for the standard n-cube,

Remark 7.1.3 The category FTop is, like the category Top, both complete and complete. Colimits

are calculated filtration wise: that is, if T : C→ FTop is a small diagram in FTop, then Tn : C→ Top

is well defined, and L = colim T is the filtered space with Ln as the colimit in Top colim Tn, provided

Ln is a subspace of Ln+1. This will happen in the cases we use. (That this is not so in general is

shown by subspaces of adjunction spaces.)

Example 7.1.4 Here are some standard filtered spaces.

1) We denote the standard n-simplex by ∆n. We take this to be the subset of Rn+1 of points

(x0, x1, . . . , xn) for which xi > 0 and x0 + · · · + xn = 1. We set ∆nr = ∆n for r > n, and for

0 6 r < n we let it be the set of points (x0, . . . , xn) for which n− r of the xi are 0. This defines the

filtered space ∆n∗ .

2) The filtered space I = [0, 1] has I0 = {0, 1} and I1 = I, and we write In for the n-fold product of

I with itself and In∗ for the corresponding tensor product filtered space, which we call the skeletal

filtration of the standard n-cube.

3) To define the filtered n-ball, we fix some notation. The standard n-ball and (n− 1)-sphere are the

usual subsets of the Euclidean space of dimension n:

En = {x ∈ Rn | ||x|| 6 1}, Sn−1 = {x ∈ Rn | ||x|| = 1}

where ||x|| is the standard Euclidean norm.

We write En∗ for the filtered space of the filtration of the n-ball given by the base point up to

dimension n− 2, Sn−1 in dimension n− 1 and En in dimensions > n. Thus

E1
∗ = I∗ = ∆1

∗,

and for n > 2, En∗ is the filtration

{1}
0

= · · · = {1}
n−2

⊆ Sn−1

n−1

⊆ En

n

2

Further standard examples of filtered spaces which include all the previous ones are the skeletal

filtrations of CW-complexes. These are spaces built up in inductive fashion by attaching cells. We

recall their construction, which also gives a preparation for Section 7.4.3 where we work analogously

with crossed complexes.
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We begin by explaining the process of attaching cells to a space. For background to this idea, we

refer to [Bro06, Section 4.7]. Let A be a space, Λ a set of indexes, {fλ}λ∈Λ a family of continuous

maps fλ : Smλ−1 → A. We form the adjunction space

X = A ∪{fλ} {emλ}λ∈Λ,

given by the pushout diagram,

⊔
λ∈Λ Smλ−1

(fλ) //

��

A

j

��⊔
λ∈Λ Emλ

(hλ) // X.

Then we say that the space X is obtained from A by attaching cells. By standard properties of adjunc-

tion spaces (see [Bro06, Chapter 4]), the map j is a closed injection, and so we usually assume it is

an inclusion. As examples, we have

E1 = {0, 1}∪ e1 and En = e0 ∪ en−1 ∪ en for n > 2.

The maps hλ : Emλ → X are called the characteristic maps of the cells. It is a standard fact that

they are homeomorphisms on the interior of each Emλ . The images emλ = hλ(E
mλ) in X are called

the closed cells of X relative to A. We say that X is obtained from A by attaching the cells {emλ}λ∈Λ.

It is important to notice that a map f : X → Y is continuous if and only f|A is continuous and each

composite fhλ is continuous.

We construct a relative CW-complex (X∗,A) by attaching cells in the following inductive process.

We start with a space A and form a sequence of spaces Xn by setting X0 to be the disjoint union of

A and a discrete space Λ0. Then, inductively, we form Xn by ‘attaching’ to Xn−1 a family of n-cells

indexed by a set Λn. That is for each n > 0 we choose a family of maps fλ : Sn−1 → Xn−1, λ ∈ Λn,

and define

Xn = Xn−1 ∪{fλ} {enλ }λ∈Λn
and X = colim Xn.

The canonical map j : A→ X is also called a relative CW-complex. Clearly, the Xn (called the relative

n-skeleton) form a filtration of X which we write X∗. If A = ∅, we say that X is a CW-complex.

The cells, characteristic maps, etc., are regarded as part of the structure of a relative CW-

complex. The advantage of this structure is that it allows proofs by induction on n. For example, a

map f : X → Y is continuous if and only each restriction fn : Xn → Y is continuous and this holds

if and only if f|A is continuous and each composite fhλ is continuous, for all λ ∈ Λn and all n > 0.

Thus we may construct a map f : X → Y by induction on skeleta starting with X0, which is just the

disjoint union of A and Λ0.

We can conveniently write

X = A ∪ {enλ }λ∈Λn,n>0,

and may abbreviate this in some cases, for example to X = A ∪ en ∪ em.

All filtered spaces given in Example 7.1.4 are CW-complexes. More detail of this, including the

characteristic maps, is given, for example, in [Bro06].
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7.1.2 The category Crs of crossed complexes.

The structure of crossed complex is suggested by the canonical example, the fundamental crossed

complex Π(X∗) of the filtered space X∗, in particular that of a CW-complex with its skeletal filtration.

We discuss this further in the next subsection.

Definition 7.1.5 Let C1 be a groupoid. We write C0 for its objects, C1(x,y) for the set of morphisms

from x to y (x,y ∈ C0) and C1(x) for the group C1(x, x). The source and target maps are s, t : C1 →

C0 and the composition of a : x→ y and b : y→ z is written ab : x→ z.

A crossed complex C over C1 is written as a sequence

· · · // Cn
δn // Cn−1

δn−1 // · · · · · ·
δ3 // C2

δ2 // C1

and it is given by the following three sets of data:

1.- For n > 2, Cn is a totally disconnected groupoid (abelian if n > 3) with the same set of objects

as C1, namely C0. This is equivalent to say that Cn is a family of groups {Cn(x)}x∈C0
and for n > 3,

the groups Cn(x) are abelian. The target or base point map t : Cn → C0 sends Cn(x) to x.

We shall generally use additive notation for all groups Cn(x),n > 3, and multiplicative notation

for n = 1, 2, and we shall use the symbol 0 or 1 for their respective identity elements. However, in

dealing with the tensor product in the next chapter, it is often convenient to use additive notation in

all dimensions > 1.

2.- For n > 2, an action of the groupoid C1 on the right of each Cn,

Cn × C1 → Cn

written (c, c1) 7→ cc1 , such that if c ∈ Cn(x) and c1 ∈ C1(x,y) then cc1 ∈ Cn(y).

Later on, we shall see that this property is equivalent to say thatCn is a C1-module (see Definition

??).

We shall always consider C1 as acting on C1 by conjugation, i.e. cc1 = c−1
1 cc1 for all c ∈ C1(x)

and c1 ∈ C1(x,y).

As an example of our use of notation, two of the conditions for an action are written cc1c
′

1 =

(cc1)c
′

1 and c1 = c in all dimensions, but the third condition is expressed as (cc′)c1 = cc1c′
c1 for

n = 1, 2, and (c + c′)c1 = cc1 + c′
c1 for n > 3.

A consequence of the existence of this action is that Cn(x) ∼= Cn(y) if there is a morphism in

C1(x,y), i.e. when x and y lie in the same component of the groupoid C1.

3.- For n > 2, δn : Cn → Cn−1 is a morphism of groupoids over C0 and preserves the action of C1.

These three sets of data have to satisfy two conditions:

CX1) δn−1δn = 0 : Cn → Cn−2 for n > 3 (thus C has analogies with chain complexes);

CX2) Im δ2 acts by conjugation on C2, and trivially on Cn for n > 3.

Notice that CX2) actually has two parts. The first part, together with the condition that δ2
preserves the action ofC1, says thatC2 is a crossed module over the groupoid C1, since for c, c′ ∈ C2,

cδ2c
′

= c′
−1
cc′. The second part implies that for n > 3, C1 acts on Cn through π1(C) = Cok δ2.

These two axioms give a good reason for the name ‘crossed complex’: it has a ‘root’ which is a

crossed module (over C1) and a ‘trunk’ that is a (kind of) chain complex (over π1(C)). The interplay

of these two actions is important in what follows.
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A morphism of crossed complexes f : C → D is a family of morphisms of groupoids fn : Cn →

Dn (n > 1) all inducing the same map of vertices f0 : C0 → D0, and compatible with the boundary

maps and the actions of C1 and D1. This means that δnfn(c) = fn−1δn(c) and fn(cc1) = fn(c)f1(c1)

for all c ∈ Cn and c1 ∈ C1. We represent a morphism of crossed complexes by the commutative

diagram

· · · // Cn
δn //

fn
��

Cn−1

δn−1 //

fn−1

��

· · ·
δ3 // C2

δ2 //

f2
��

C1

f1
��

· · · // Dn
δn

// Dn−1
δn−1

// · · ·
δ3

// D2
δ2

// D1

We denote by Crs the resulting category of crossed complexes.

In the case when C0 is a single point we call C a reduced crossed complex, or a crossed complex

over a group. These crossed complexes give a full subcategory of Crs, which we write Crsred.

We can also fix the groupoid C1 to be a groupoid G and restrict the morphisms to those inducing

the identity on G, getting then the category CrsG of crossed complexes over G. 2

7.1.3 The fundamental crossed complex functor.

As explained in the Introduction to this Part, for any filtered space X∗ and any x ∈ X0, there is a

sequence of groups and homomorphisms (abelian for n > 3):

· · ·
δn+1 // πn(Xn,Xn−1, x)

δn // πn−1(Xn−1,Xn−2, x)
δn−1 // · · ·

δ3 // π2(X2,X1, x)
δ2 // π1(X1, x) .

In this sequence, the πn(Xn,Xn−1, x) are the relative homotopy groups, δn are the boundary maps

defined

πn(Xn,Xn−1, x)
∂n−→ πn−1(Xn−1, x)

in−1
−→ πn−1(Xn−1,Xn−2, x),

for n > 2 and δ2 : π2(X2,X1, x) → π1(X1, x); the composition in these groups and the action of the

groupoid π1(X1,X0) on these relative groups for varying x ∈ X0 were studied in Section 2.1 of Part

I.

It is convenient to combine these structures over all base points x ∈ X0 and so to use crossed

complexes over groupoids. So we get groupoids πn(Xn,Xn−1,X0) for n > 2, and the groupoid

π1(X1,X0), all having the same set X0 of objects.

Definition 7.1.6 This structure of groupoids, morphisms, and actions define the fundamental crossed

complex of the filtered space X∗:

Π(X∗) : · · ·
δn+1 // πn(Xn,Xn−1,X0)

δn // · · · · · ·
δ3 // π2(X2,X1,X0)

δ2 // π1(X1,X0) .

That Π(X∗) has the properties of a crossed complex can be proved directly, in a manner similar

to that of Chapter 2. Instead, we shall deduce these properties from the full construction and

properties of the homotopy ω-groupoid ρ(X∗), since the relation between these constructions, given

in Part III, is a kind of engine which drives this book. It turns out that Π(X∗) can be considered as

a substructure γρ(X∗) of ρ(X∗), and in this way we obtain in Chapter 14 a verification that ΠX∗ is a

crossed complex. In fact the intuition for the required structure on ρ(X∗) is clear, but the proof that

this intuition works is not simple. The relations between these two structures form a basis for this
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whole work, even though this may be disguised in Part II, in which our main object is the study and

use of Π.

The homotopical definition of this crossed complex implies immediately that it gives a functor

Π : FTop→ Crs.

Note also that in each of the categories FTop, Crs, disjoint unions are the coproducts; this is one

of the advantages of a groupoid approach. The homotopical definition of Π implies easily that it

preserves disjoint unions.

An obvious property of Π is that it is preserved by isomorphisms of filtered space.

Proposition 7.1.7 An isomorphism f : X∗ → Y∗ in the category FTop induces an isomorphism of

crossed complexes Πf : ΠX∗ → ΠY∗.

A more subtle property is the following:

Proposition 7.1.8 Let f : X∗ → Y∗ be a map of filtered space such that f0 : X0 → Y0 is a bijection, and

for n > 1, fn : Xn → Yn is a homotopy equivalence. Then Πf : ΠX∗ → ΠY∗ is an isomorphism.

Proof This follows from basic properties of relative homotopy groups. 2

Thus the advantage of the functor Π is that its topological and indeed homotopical invariance in

the above sense is clear. The fact that we can calculate to some extent with Π comes from the Higher

Homotopy van Kampen Theorem in the next Chapter.

We will discuss in a later chapter how the functorΠ behaves with respect to homotopies of filtered

maps (such a homotopy is a map in FTop, I∗ ⊗ X∗ → Y∗). This discussion requires the development

of more algebraic machinery, and in particular the tensor product of crossed complexes.

We emphasise that the use of crossed complexes over groupoids is central to this theory, both for

the development of the algebra and for the modeling of the topology.

7.1.4 Homotopy and homology groups of crossed complexes.

Let us recall some definitions and define some new functors giving direct algebraic and set theoretic

invariants of crossed complexes. The first one expresses the connectivity of the basic groupoid C1.

Definition 7.1.9 The set of components of the crossed complex C, written π0(C), is just the set of

components of the groupoid C1. This definition gives a functor

π0 : Crs→ Sets. 2

Example 7.1.10 It is easy to see that for the skeletal filtration of a CW-complex, π0Π(X∗) is bijective

with π0(X). 2

The next invariant we have used is π1(C), the cokernel of the crossed module part of the crossed

complex.

Definition 7.1.11 The fundamental groupoid of a crossed complex C is the groupoid π1(C) given

by the cokernel of δ2,

π1(C) = Cok δ2 =
C1

Im δ2
.
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A morphism f : C → D of crossed complexes induces morphisms f∗ : π1(C) → π1(D), giving a

functor

π1 : Crs→ Gpds. 2

Example 7.1.12 By the homotopy long exact sequence of a pair, it is clear that if X∗ is a filtered

space such that the morphism induced by inclusion π1(X1, x)→ π1(X2, x) is surjective for all x ∈ X0,

then π1Π(X∗) ∼= π1(X2,X0). The 2-dimensional van Kampen theorem for the fundamental groupoid

implies, in particular, that for the skeletal filtration of a CW-complex, we have π1Π(X∗) ∼= π1(X,X0).

2

Now we consider the homology of the Abelian part of a crossed complex, getting π1(C)-modules

associated to a crossed complex C.

Definition 7.1.13 For any crossed complex C and for n > 2 there is a totally disconnected groupoid

Hn(C) given by the family of abelian groups

Hn(C, x) =
Ker δn(x)

Im δn+1(x)

for all x ∈ C0. This is called the family of n-homology groups of the crossed complex C.

For n > 2, a morphism f : C → D of crossed complexes induces morphisms f∗ : Hn(C) →

Hn(D). 2

Exercise 7.1.14 Prove that for a crossed complex C and n > 2, the homology groups are a family

of Abelian groups, and that there is an induced action of π1(C) on the family Hn(C) of homology

groups making Hn(C) a π1(C)-module. Thus each such homology group gives a functor

Hn : Crs→ Mod. 2

Definition 7.1.15 A morphism f : C → D is a weak equivalence if it induces a bijection π0(C) →

π0(D) and isomorphisms π1(C, x)→ π1(D, fx), Hn(C, x)→ Hn(D, fx) for all x ∈ C0 and n > 2. 2

Example 7.1.16 We shall see in the next chapter (Section 8.4) that if X∗ is the skeletal filtration of

a CW-complex, then Hn(ΠX∗, x) is isomorphic to Hn(X̃x), the nth homology group of the universal

cover of X based at x. 2

Remark 7.1.17 In the next subsection, we shall introduce the notion of homotopy of morphisms of

crossed complexes. It is then an easy exercise to define homotopy equivalences of crossed complexes

and check that they are weak equivalences. The converse is true for free crossed complexes (which

we define later (subsection 7.4.3), but this is a non trivial result. 2

7.1.5 Homotopies of morphisms of crossed complexes

It is useful at this stage to complete some basic properties of the category Crs by defining the notion

of homotopy of morphisms. However the justification of this definition will have to wait till Chapter

9 where it is put in the context of a tensor product structure on Crs and a homotopy can then be

seen as a morphism I⊗ C→ D from a ‘cylinder object’ I⊗ C to D.
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Definition 7.1.18 A homotopy f− ≃ f of morphisms f−, f : C → D of crossed complexes is a pair

(h, f) where h is a family of functions hn : Cn → Dn+1 with the following properties, in which tc

for c ∈ C is c, if c ∈ C0, is tc, if c ∈ C1, and is x if c ∈ Cn(x), n > 2. So we require:

thn(c) = tf(c) for all c ∈ C; (i)

h1(cc
′) = h1(c)

fc′

h1(c
′) if c, c′ ∈ C1 and cc′ is defined; (ii)

thn(c) = tf(c) for all c ∈ C; (iii)

h2(cc
′) = h2(c) + h2(c

′) if c, c′ ∈ C2 and cc′ is defined; (iv)

thn(c) = tf(c) for all c ∈ C; (v)

hn(c + c′) = hn(c) + hn(c′) if c, c′ ∈ Cn, n > 3 and c+ c′ is defined; (vi)

thn(c) = tf(c) for all c ∈ C; (vii)

hn(cc1) = (hnc)
fc1 if c ∈ Cn,n > 2, c1 ∈ C1, and cc1 is defined. (viii)

thn(c) = tf(c) for all c ∈ C; (ix)

Then f−, f are related by

f−(c) =






sh0c if c ∈ C0,

(h0sc)(fc)(δ2h1c)(h0tc)
−1 if c ∈ C1,

{(fc)(h1δ2c)(δ3h2c)}
(h0tc)

−1

if c ∈ C2,

{fc+ hn−1δnc+ δn+1hnc}
(h0tc)

−1

if c ∈ Cn, n > 3.

(x)

Exercise 7.1.19 Prove directly from this definition that homotopy of morphisms is an equivalence

relation.

Example 7.1.20 Retracting homotopies

From the above we can deduce formulae for a retraction. Suppose then in the above formulae we

take C = D, f0 = 1C, f = 0 where 0 denotes the constant morphism on C mapping everything to a

base point 0. Then the homotopy h : 1 ≃ 0 must satisfy:

(ri)

sh0c = c if c ∈ C0, (rii)

δ2h1c = (h0sc)
−1c (h0tc) if c ∈ C1, (riii)

δ3h2c = (h1δ2c)
−1ch0tc if c ∈ C2, (riv)

δn+1hnc = −hn−1δnc+ ch0tc if c ∈ Cn,n > 3, (rv)

hn(cc1) = (hnc) if c ∈ Cn,n > 2, c1 ∈ C1, and cc1 is defined. (rvi)

Further, in this case h1 is a morphism by (ii) and for n > 2, hn is by (vi) a morphism which by (viii)

trivialises the operations of C1. All these conditions (ri)-(rvi) are necessary and sufficient for h to be

a contracting homotopy. 2

A connected groupoid G is known to be isomorphic to G(x0) ∗ T where x0 ∈ ObG and T is a

wide tree subgroupoid of G, [Bro06, 8.1.5]. See also equation (1.7.1). Further, T determines a

strong deformation retraction G→ G(x0). We now show the same applies to crossed complexes. We

extend the term ‘tree subgroupoid’ to a subcrossed complex T of C such that T1 is a tree groupoid,

and Tn(x) is trivial for all x ∈ T0 and n > 2. The final part of the following Proposition generalises

[Bro06, 6.7.3]. It is related to Proposition 1.7.1.



[7.2] 185

Proposition 7.1.21 Let C be a connected crossed complex, let x0 ∈ C0 and let T be a wide tree sub-

crossed complex of C. Let C(x0) be the subcrossed complex of C at the base point x0. Then the natural

morphism

φ : C(x0) ∗ T → C

determined by the inclusions is an isomorphism, and T determines a strong deformation retraction

r : C→ C(x0).

Further, if f : C→ D is a morphism of crossed complexes which is the identity on C0 → D0 then we

can find a retraction r ′ : D→ D(x0) giving rise to a pushout square

C

f
��

r // C(x0)

f ′

��
D

r ′
// D(x0)

(7.1.1)

in which f ′ is the restriction of f.

Proof Let i : C(x0) → C, j : T → C be the inclusions. We verify the universal property of the free

product. Let α : C(x0)→ E,β : T → E be morphisms of crossed complexes agreeing on x0. Suppose

g : C→ E satisfies gi = a,gj = b. Then g is determined on C0. Let c ∈ C1(x,y). Then

c = (τx)((τx)−1c(τy))(τy)−1 (*)

and so

gc = g(τx)g((τx)−1c(τy))g(τy)−1

= β(τx)α((τx)−1c(τy))β(τy)−1 .

If c ∈ Cn(x),n > 2, then

c = (cτx)(τx)−1

(**)

and so

g(c) = α(cτx)β(τx)−1

.

This proves uniqueness of g, and conversely one checks that this formula defines a morphism g as

required.

In effect, equations (*) and (**) give for the elements of C normal forms in terms of elements of

C(x0) and of T .

This isomorphism and the constant map T → {x0} determine the strong deformation retraction

r : C→ C(x0).

The retraction r ′ is defined by the elements fτ(x), x ∈ C0, and then the diagram (7.1.1) is a

pushout since it is a retract of the pushout square

C

f
��

1 // C

f
��

D
1

// D

2
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7.2 Some fibrations of categories

In order to describe further basic properties of the relations between crossed complexes and various

parts of the structure, such as groupoids, crossed modules, modules, and so forth, it is convenient

to use the language of fibred categories, or fibrations of categories. These notions are developed in

the Appendix A.7, and these sections assume that language.

7.2.1 Groupoids bifibred over sets

We see in Example A.7.3 that the functor Ob : Gpds→ Sets is a fibration. It also has a left adjoint D

assigning to a set I the discrete groupoid on I, and a right adjoint assigning to a set I the codiscrete

groupoid on I.

It follows from general theorems on algebraic theories that the category Gpds is cocomplete, and

in particular admits pushouts, and so it follows from previous results that Ob : Gpds → Sets is also

a cofibration. A construction of the cocartesian liftings of u : I → J for G a groupoid over I is

given in terms of words, generalising the construction of free groups and free products of groups, in

[Hig71, Bro06]. In these references the cocartesian lifting of u to G is called a universal morphism,

and is written u∗ : G → Uu(G). This construction is of interest as it yields a normal form for the

elements of Uu(G), and hence u∗ is injective on the set of non-identity elements of G.

A homotopical application of this cocartesian lifting is the following theorem on the fundamental

groupoid. It shows how identification of points of a discrete subset of a space can lead to ‘identifica-

tions of the objects’ of the fundamental groupoid:

Theorem 7.2.1 Let (X,A) be a pair of spaces such that A is discrete and the inclusion A → X is a

closed cofibration. Let f : A→ B be a function to a discrete space B. Then the induced morphism

π1(X,A)→ π1(B ∪f X,B)

is the cocartesian lifting of f.

This theorem immediately gives the fundamental group of the circle S1 as the infinite cyclic group C,

since S1 is obtained from the unit interval [0, 1] by identifying 0 and 1. The theorem is a translation

of [Bro06, 9.2.1], where the words ‘universal morphism’ are used instead of ‘cocartesian lifting’.

Section 8.2 of [Bro06] shows how free groupoids on directed graphs are obtained by a generalisation

of this example.

The calculation of colimits in a fibre GpdsI is similar to that in the category of groups, since both

categories are protomodular, [BB04]. Thus a colimit is calculated as a quotient of a coproduct, where

quotients are themselves obtained by factoring by a normal subgroupoid. Quotients are discussed in

[Hig71, Bro06].

Theorem A.9.4 now shows how to compute general colimits of groupoids.

We refer again to [Hig71, Bro06] for further developments and applications of the algebra of

groupoids; we generalise some aspects to modules, crossed modules and crossed complexes in later

subsections.

7.2.2 Abelianisation of groupoids

We will need in sections 7.5.3 and 14.7 the notion of abelianisation of a groupoid.



[7.2] 187

Let Ab, Groups, Gpds denote respectively the categories of abelian groups, groups, and groupoids.

Each of the inclusions

Ab→ Groups→ Gpds (7.2.1)

has a left adjoint. That from groupoids to groups is called the universal group UG of a groupoid G

and is described in detail in [Bro06, Chapter 8] and [Hig71]. In particular, the universal group of a

groupoid G is the free product of the universal groups of the transitive components of G.

It follows that we have what we call the universal abelianisation Gtotab of a groupoid, namely

the usual abelianisation of the group UG. It is isomorphic to the direct sum of the Gtotab
i over all

components Gi of G. Any transitive groupoid G may be written in a non canonical way as the free

product G(a0)∗ T of a vertex group G(a0) and an indiscrete or tree groupoid T (This result has been

used to suggest that ‘groupoids reduce to groups’; but this is analogous to suggesting that vector

spaces reduce to numbers!). Then

UG ∼= G(a0) ∗UT

and UT is the free group on the elements x : a0 → a in T for all a ∈ Ob(T), a 6= a0. So for a

transitive groupoid G with a0 ∈ ObG

Gtotab ∼= G(a0)
ab ⊕ F

where F is the free abelian group on the elements x : a0 → a in T for all a ∈ Ob(T),a 6= a0, for T a

wide tree subgroupoid of G.

However we shall also need a more restrictive abelianisation of a groupoid G with object set I,

which we write Gab. Here the abelianisation takes place in the category of groupoids with object set

I, and an abelian groupoid over I is one in which all vertex groups are abelian. It is this construction

which we shall apply to C2 as part of the abelianisation ∇C of a crossed complex C, giving a chain

complex with π1C as groupoid of operators, in section 7.5.3.

Exercise 7.2.2 A groupoid G is abelian if all its vertex groups are abelian. Show that the abelian

groupoids for a reflexive subcategory of the category of all groupoids. 2

7.2.3 Groupoid modules bifibred over groupoids

Modules over groupoids are a useful generalisation of modules over groups, and also form part of

the basic structure of crossed complexes. Homotopy groups πn(X;X0),n > 2, of a space X with a

set X0 of base points form a module over the fundamental groupoid π1(X,X0), as do the homotopy

groups πn(Y,X : X0),n > 3, of a pair (Y,X).

Definition 7.2.3 A module over a groupoid is a pair (M,G), where G is a groupoid with set of

objects G0, M is a totally disconnected abelian groupoid with the same set of objects as G, and

with a given action of G on M. Thus M comes with a target function t : M → G0, and each

M(x) = t−1(x), x ∈ G0, has the structure of Abelian group. The G-action is given by a family of

maps

M(x)×G(x,y)→M(y)

for all x,y ∈ G0. These maps are denoted by (m,p) 7→ mp and satisfy the usual properties, i.e.

m1 = m, (mp)p
′

= m(pp′) and (m +m ′)p = mp +m ′p, whenever these are defined. In particular,

any p ∈ G(x,y) induces an isomorphism m 7→ mp from M(x) to M(y).

A morphism of modules is a pair (θ, f) : (M,G) → (N,H), where f : G → H and θ : M → N are

morphisms of groupoids and preserve the action. That is, θ is given by a family of group morphisms

θ(x) : M(x)→ N(f(x))
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for all x ∈ G0 satisfying θ(y)(mp) = (θ(x)(m))f(p), for all p ∈ G(x,y),m ∈M(x).

This defines the category Mod having modules over groupoids as objects and the morphisms of

modules as morphisms. If (M,G) is a module, then (M,G)0 is defined to be G0. 2

We have a forgetful functor ΦM : Mod→ Gpds in which (M,G) 7→ G.

Proposition 7.2.4 The forgetful functorΦM : Mod→ Gpds has a left adjoint and is fibred and cofibred.

Proof The left adjoint of ΦM assigns to a groupoid G the module written 0 → G which has only

the trivial group over each x ∈ G0.

Next, we give the pullback construction to prove that ΦM is fibred. This is entirely analogous to

the group case, but taking account of the geometry of the groupoid.

So let v : G → H be a morphism of groupoids, and let (N,H) be a module. We define (M,G) =

v∗(N,H) as follows. For x ∈ G0 we set M(x) = {x} × N(vx) with addition given by that in N(vx).

The operation is given by (x,n)p = (y,nvp) for p ∈ G(x,y).

The construction of N = v∗(M,G) for (M,G) a G-module is as follows.

For y ∈ H0 we let N(y) be the abelian group generated by pairs (m,q) with m ∈ M,q ∈ H,

and t(q) = y, s(q) = v(t(m)), so that N(y) = 0 if no such pairs exist. The operation of H on N is

given by (m,q)q
′

= (m,qq′), addition is (m,q) + (m ′,q) = (m +m ′,q) and the relations imposed

are (mp,q) = (m, v(p)q) when these make sense. The cocartesian morphism over v is given by

ψ : m 7→ (m, 1vt(m)). 2

Remark 7.2.5 The relation between a module over a groupoid and the restriction to the vertex

groups is discussed in Theorem 7.1.21 in the general context of crossed complexes. However it is

useful to give the general situation of many base points to describe the relative homotopy group

πn(X,A,a0) when X is obtained from A by adding n-cells at various base points. The natural

invariant to consider is then πn(X,A,A0) where A0 is an appropriate set of base points.

We now describe free modules over groupoids in terms of the inducing construction. The interest

of this is two fold. Firstly, induced modules arise in homotopy theory from a HHvKT, and we get

new proofs of results on free modules in homotopy theory. Secondly, this indicates the power of the

HHvKT since it gives new results.

Definition 7.2.6 LetQ be a groupoid. A free basis for a module (N,Q) consists of a pair of functions

tB : B→ Q0, i : B→ N such that tNi = tB and with the universal property that if (L,Q) is a module

and f : B→ L is a function such that tLf = tN then there is a unique Q-module morphism φ : N→ L

such that φi = f. 2

Proposition 7.2.7 Let B be an indexing set, and Q a groupoid. The free Q-module (FM(t),Q) on

t : B → Q0 may be described as the Q-module induced by t : B → Q from the discrete free module

ZB = (Z× B,B) on B, where B denotes also the discrete groupoid on B.

Proof This is a direct verification of the universal property. 2

Remark 7.2.8 Proposition A.8.7 shows that the universal property for a free module can also be

expressed in terms of morphisms of modules (FM(t),Q)→ (L,R). 2
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7.2.4 Crossed modules bifibred over groupoids

Out homotopical example here is the family of second relative homotopy groups of a pair of spaces

with many base points.

A crossed module over a groupoid, [BH81d], consists first of a morphism of groupoids µ : M→ P

of groupoids with the same set P0 of objects such that µ is the identity on objects, and M is a

family of groups M(x), x ∈ P0; second, there is an action of P on the family of groups M so that if

m ∈M(x) and p ∈ P(x,y) then mp ∈M(y). This action must satisfy the usual axioms for an action

with the additional properties:

CM1) µ(mp) = p−1µ(m)p, and

CM2) m−1nm = nµm

for all p ∈ P, m,n ∈M such that the equations make sense. These form the objects of the category

XMod in which a morphism is a commutative square of morphisms of groups

M

µ
��

g // N

ν
��

P
f

// Q

which preserve the action in the sense that g(mp) = (gm)fp whenever this makes sense.

The category XMod is equivalent to the well known category 2 − Gpd of 2-groupoids, [BH81b].

However the advantages of XMod over 2-groupoids are:

• crossed modules are closer to the classical invariants of relative homotopy groups;

• the notion of freeness is clearer in XMod and models a standard topological situation, that of

attaching 1- and 2-cells;

• the category XMod has a monoidal closed structure which helps to define a notion of homo-

topy; these constructions are simpler to describe in detail than those for 2-groupoids, and they

extend to all dimensions.

We have a forgetful functor Φ1 : XMod→ Gpds which sends (M→ P) 7→ P. Our first main result

is:

Proposition 7.2.9 The forgetful functor Φ1 : XMod→ Gpds is fibred and has a left adjoint.

Proof The left adjoint of Φ1 assigns to a groupoid P the crossed module 0→ P which has only the

trivial group over each x ∈ P0.

Next, we give the pullback construction to prove thatΦ1 is fibred. So let f : P → Q be a morphism

of groupoids, and let ν : N→ Q be a crossed module. We define M = ν∗(N) as follows.

For x ∈ P0 we set M(x) to be the subgroup of P(x)×N(fx) of elements (p,n) such that fp = νn.

If p1 ∈ P(x, x ′),n ∈ N(fx) we set (p,n)p1 = (p−1
1 pp1,n

f(p1)), and let µ : (p,n) 7→ p. We leave the

reader to verify that this gives a crossed module, and that the morphism (p,n) 7→ n is cartesian. 2

The following result in the case of crossed modules of groups appeared in our earlier chapter

5, described in terms of the crossed module ∂ : u∗(M) → Q induced from the crossed module

µ : M→ P by a morphism u : P → Q.

Proposition 7.2.10 The forgetful functor Φ1 : XMod→ Gpds is cofibred.
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Proof We prove this by a direct construction, generalising that given earlier.

Let µ : M → P be a crossed module, and let f : P → Q be a morphism of groupoids. The

construction of N = f∗(M) and of ∂ : N→ Q requires just care to the geometry of the partial action

in addition to the construction for the group case.

Let y ∈ Q0. If there is no q ∈ Q from a point of f(P0) to y, then we set N(y) to be the trivial

group.

Otherwise, we define F(y) to be the free group on the set of pairs (m,q) such that m ∈ M(x)

for some x ∈ P0 and q ∈ Q(fx,y). If q′ ∈ Q(y,y′) we set (m,q)q
′

= (m,qq′). We define

∂ ′ : F(y) → Q(y) to be (m,q) 7→ q−1(fm)q. This gives a precrossed module over ∂ : F → Q, with

function i : M→ F given by m 7→ (m, 1) where if m ∈M(x) then 1 here is the identity in Q(fx).

We now wish to change the function i : M→ F to make it an operator morphism. For this, factor

F out by the relations

(m,q)(m ′,q) = (mm ′,q),

(mp,q) = (m, (fp)q),

whenever these are defined, to give a projection F → F′ and i ′ : M → F′. As in the group case, we

have to check that ∂ ′ : F → Q induces ∂ ′′ : F′ → H making this a precrossed module. To make this

a crossed module involves factoring out Peiffer elements, whose theory is as for the group case in

[BH82]. This gives a crossed module morphism (φ, f) : (M,P)→ (N,Q) which is cocartesian. 2

We recall the algebraic origin of free crossed modules, but in the groupoid context.

Let P be a groupoid, with source and target functions written s, t : P → P0. A subgroupoid N of

P is said to be normal in P, written N� P, if N is wide in P, i.e. N0 = P0, and for all x,y ∈ P0 and

a ∈ P(x,y), a−1N(x)a = N(y). If N is also totally intransitive, i.e. N(x,y) = ∅ when x 6= y, as we

now assume, then the quotient groupoid P/N is easy to define. (It may also be defined in general

but we will need only this case.)

Now suppose given a family R(x), x ∈ P0 of subsets of P(x). Then the normaliser NP(R) of R

is well defined as the smallest normal subgroupoid of P containing all the sets R(x). Note that the

elements of NP(R) are all consequences of R in P, i.e. all well defined products of the form

c = (rǫ1

1 )a1 . . . (rǫn
n )an , ǫi = ±1,ai ∈ P,n > 0 (7.2.2)

and where ba denotes a−1ba. The quotient P/NP(R) is also written P/R, and called the quotient of

P by the relations r = 1, r ∈ R.

As in group theory, we need also to allow for repeated relations. So we suppose given a set R

and a function ω : R → P such that sω = tω = β, say. This ‘base point function’, saying where the

relations are placed, is a useful part of the information.

We now wish to obtain ‘syzygies’ by replacing the normal subgroupoid by a ‘free object’ on the

relations ω : R→ P. As in the group case, this is done using free crossed modules.

Remark 7.2.11 There is a subtle reason for this use of crossed modules. A normal subgroupoid N

of P (as defined above) gives a quotient object P/N in the category GpdsX of groupoids with object

set X = P0. Alternatively, N defines a congruence on P, which is a particular kind of equivalence

relation. Now an equivalence relation is in general a particular kind of subobject of a product,

but in this case, we must take the product in the category GpdsX. As a generalisation of this,

one should take a groupoid object in the category GpdsX. Since these totally disconnected normal

subgroupoids determine equivalence relations on each P(x,y) which are congruences, it seems clear

that a groupoid object internal to GpdsX is equivalent to a 2-groupoid with object set X. 2
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Definition 7.2.12 A free basis for a crossed module ∂ : C→ P over a groupoid P is a set R, function

β : R → P0 and function i : R → C such that i(r) ∈ C(βr), r ∈ R, with the universal property that if

µ : M→ P is a crossed module and θ : R→M a function over the identity on P0 such that µθ = ∂i,

then there is a unique morphism of crossed P-modules φ : C→M such that φi = θ. 2

Example 7.2.13 Let R be a set and β : R → P0 a function. Let id : F1(R) → F2(R) be the identity

crossed module on two copies of F(R), the disjoint union of copies C(r) of the infinite cyclic group

C with generator cr ∈ C(r). Thus F2(R) is a totally intransitive groupoid with object set R. Let

i : R→ F1(R) be the function r 7→ cr. Let β : R→ R be the identity function. Then id : F1(R)→ F2(R)

is the free crossed module on i. The verification of this is simple from the diagram

R

θ

%%

i
// F1(R)

id
��

f
//____ M

µ
��

F2(R)
id

// F2(R)

The morphism f simply maps the generator cr to θr. 2

Proposition 7.2.14 Let R be a set, and µ : M→ P a crossed module over the groupoid P. Let β : R→

P0 be a function. Then the functions i : R → M such that sµ = tµ = β are bijective with the crossed

module morphisms (f,g)

F1(R)

id
��

f //M

µ

��
F2(R)

g
// P

such that sg = β.

Further, the free crossed module ∂ : C(ω) → P on a function ω : R → P such that sω = tω = β is

determined as the crossed module induced from id : F1(R)→ F2(R) by the extension ofω to the groupoid

morphism F2(R)→ P.

Proof The first part is clear since g = µf and f and i are related by f(cr) = i(r), r ∈ R.

The second part follows from the first part and the universal property of induced crossed modules

as shown in the following diagram:

F1(R)

id
��

θ
))

f
// C(ω)

φ
//___

∂
��

M

µ

��
F2(R)

g
// P =

// P

2

7.3 Some substructures of crossed complexes and their interre-

lations.

Previous sections have shown groupoids as having related structures in dimensions 0 and 1, and this

was used to study calculations with groupoids; in particular we studied subcategories GpdsX of Gpds
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for various sets X, and their relationships through functions X → Y. This was seen in the general

context of fibred categories, studied in Appendix A.7.

In this section, we carry out a similar study on crossed complexes, using the idea that crossed

complexes have algebraic structure in a range of dimensions. The particular functors of truncation,

skeleton, coskeleton, cotruncation, have importance not only for particular calculations of colimits

of crossed complexes, but also for the theoretical studies of Part III on the equivalence of crossed

complexes and ω-groupoids, whose utility is at the heart of this book, even if at this stage in a way

which may be mysterious.

First, we study the category Crsn of n-truncated crossed complexes and the functors relating it

to Crs. The category Crs2 of 2-truncated crossed complexes is the same as the category XMod of

crossed modules over groupoids studied in Chapter 6 and in earlier sections of this chapter.

7.3.1 n-truncated crossed complexes.

We will use finite-dimensional versions of crossed complexes.

Definition 7.3.1 An n-truncated crossed complex is a finite sequence

Cn
δn // Cn−1

// · · · · · ·
δ3 // C2

δ2 // C1

satisfying all the axioms for a crossed complex in so far as they make sense. In a similar way,

we define morphism between n-truncated crossed complexes. They define Crsn the category of n-

truncated crossed complexes. 2

Notice that a 1-truncated crossed complex is simply a groupoid, and a 2-truncated crossed com-

plex is a crossed module over a groupoid. Thus we can write Crs1 = Gpds and Crs2 = XMod.

Definition 7.3.2 We define the n-truncation functor

trn : Crs→ Crsn

which applied to a crossed complex C gives only its n-dimensional part. 2

There is also a functor in the other direction:

Definition 7.3.3 The n-skeleton functor

skn : Crsn → Crs

maps an n-truncated crossed complex C : Cn
δn // Cn−1

δn−1 // · · · // C2

δ2 // C1 to

skn(C) : · · · // 0 // Cn
δn // Cn−1

δn−1 // · · · // C2

δ2 // C1 ,

which agrees with C up to dimension n and is trivial thereafter.

It is also convenient to write Skn = skn trn, so that an n-truncated crossed complex is also thought

of as a crossed complex C with Ck = 0 for k > n. This n-Skeleton functor allows us to consider Crsn
as a full subcategory of Crs.
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Proposition 7.3.4 The n-skeleton functor skn is left adjoint to the n-truncation functor trn.

Proof For any crossed complexD and n-truncated crossed complex C there is an obvious bijection

Crs(skn(C),D)→ Crsn(C, trn(D))

because a morphism of crossed complexes

f : skn(C)→ D

is given just by the first n maps fi, since all the others are the 0 maps as in the diagram

· · · // 0 //

0
��

Cn
δn //

fn
��

Cn−1

δn−1 //

fn−1

��

· · · · · ·
δ3 // C2

δ2 //

f2
��

C1

f1
��

· · · // Dn+1
// Dn

δ ′n

// Dn−1
δ ′n−1

// · · · · · ·
δ ′3

// D2
δ ′2

// D1

2

The n-truncation functor has also a right adjoint which is a modification of the n-skeleton functor.

Definition 7.3.5 We define the n-coskeleton functor

coskn : Crsn → Crs,

on an n-truncated crossed complex C : Cn
δn // Cn−1

δn−1 // · · · · · · // C2

δ2 // C1 by

coskn(C) := · · · // 0 // Ker δn // Cn
δn // Cn−1

δn−1 // · · · · · · // C1

for n > 2 and by

cosk1(C) := · · · // 0 // Inn(C1) // C1 ,

where Inn(C1) is the totally disconnected groupoid formed by the object groups of C1. 2

We also write Coskn = coskn trn as a functor Crs → Crs. Notice that the only difference of the

coskeleton from the skeleton functor is in the existence of elements of dimension n + 1. The impor-

tance of this is realised when proving adjointness.

Proposition 7.3.6 The n-coskeleton functor coskn is right adjoint to the n-truncation functor trn.

Proof Let n > 2. For any crossed complex C and n-truncated crossed complex C′ there is an

obvious bijection

Crs(C, coskn(D))→ Crsn(trn(C),D)

because a morphism f from C to coskn(D) is just given by the first n maps since the (n+ 1)st has to

be the restriction of fnδn+1 to its image and all others have to be the 0 maps as in the diagram

· · · // Cn+2
//

0
��

Cn+1

δn+1 //

fnδn+1

��

Cn
δn //

fn
��

Cn−1

δn−1 //

fn−1

��

· · · · · ·
δ3 // C2

δ2 //

f2
��

C1

f1
��

· · · // 0 // Ker δ ′n
// Dn

δ ′n

// Dn−1
δ ′n−1

// · · · · · ·
δ ′3

// D2
δ ′2

// D1

Notice that we need the (n + 1)st dimensional part of coskn(D) to be Kerδ ′n, in order to be able to

define fn+1 as above because δ ′nfnδn+1 = fn−1δnδn+1 = 0.

We leave the case n = 1 to the reader. 2
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We will use later a left adjoint to skn.

Proposition 7.3.7 For n > 1, the cotruncation functor cotrn : Crs → Crsn which assigns to a crossed

complex C the n-truncated crossed complex over C0

cotrn C := (Cn/ Im δn+1)→ Cn−1 → · · · → C2 → C1

is left adjoint to skn.

Proof We leave details to the reader, including the proof that cotrn C inherits the structure of

crossed complex. 2

In summary, we have functors

trn, cotrn : Crs→ Crsn, skn, coskn : Crsn → Crs

such that trn has left adjoint skn, and right adjoint coskn, while skn has right adjoint trn and left

adjoint cotrn.

Corollary 7.3.8 The functors skn, trn preserve limits and colimits; coskn preserves limits; cotrn pre-

serves colimits. In particular, the fundamental groupoid functor π : Crs → Gpds, which coincides with

cotr1, preserves colimits.

Definition 7.3.9 For n > 2, we define the restriction to dimension n functor

resn : Crs→ Mod

to be given on objects by

resn(C) =

{
(Cn,π1C) if n > 3,

(Cab
2 ,π1C) if n = 2.

and with the obvious extension to morphisms. 2

Definition 7.3.10 For each n > 3, we define the functor

Fn : Mod→ Crs

to have value on a module (M,G) the crossed complex

· · · // 0 //M
1M //

n

M //
n−1

0 // · · · // 0 // G
1

,

where the twoMs are in dimensions n and n−1, the map between them is the identity, and all other

boundary maps are 0. The value of Fn on morphisms is defined similarly. Notice that for n > 3,

Fn(Z, 0) = F(n) as defined earlier, and this explains our notation. 2

Proposition 7.3.11 For n > 2, the functor resn is left adjoint to Fn+1.

Proof Suppose n > 3. We need to study Crs(C, En+1(M,G)), i. e. morphisms of crossed com-

plexes

· · · // Cn+2

δn+2 //

0
��

Cn+1

δn+1 //

fn+1

��

Cn
δn //

fn
��

· · ·
δ3 // C2

δ2 //

0
��

C1

f1
��

· · · // 0
0

//M
1M

//M
0

// · · ·
0

// 0
0

// G
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Since f1δ2 = 0) and θ = fn, this diagram produces a morphism of modules

(θ, f) : (Cn,π1(C))→ (M,G)

where f : π1(C)→ G is induced by f1.

On the other hand, given a morphism of modules

(θ, f) : (Cn, Cok δ2)→ (M,G)

we get a morphism of crossed modules on putting f1 = fφ (φ being the projection φ : C1 → Cok δ2),

fn = θ and fn+1 = fnδn+1.

These correspondences give the adjointness for this case. We leave the case n = 2 to the reader. 2

Corollary 7.3.12 For n > 2, the functor resn : Crs→ Mod preserves colimits.

Exercise 7.3.13 Give the proof of the case n = 2 of the last proposition. 2

Exercise 7.3.14 There is another restriction functor for n > 3

res ′n : Crs→ Mod

given by res′n C = ((Cn)/(δn+1Cn+1),C1). This is useful in two ways: Firstly, the inclusion

Kn : Mod→ Crs

defined on objects by

Kn(M,G) := · · · // 0 //M //

n

0 // · · · // 0 // G
1

gives an embedding of Mod as a full subcategory of Crs for any dimension n > 3, since it is the

right inverse of res′n. Secondly, the functor res ′n is right adjoint to Kn. This functor will be used

(with a slightly different notation) in Section 12.5 in connection with the homotopy classification of

maps. 2

7.3.2 Colimits of crossed complexes.

The HHvKT Theorem 8.1.5 in the next Chapter states that the functor Π : FTop → Crs preserves

certain colimits. The proof, which we give in Part III, does not require knowledge of the existence

of colimits in the category Crs. It is true that these colimits exist: this follows from general facts on

algebraic theories which do not need to go into here. However, in order to apply the HHvKT we

need to know, not that they exist in general, but how to compute colimits of crossed complexes in

more familiar terms and in specific situations.

As an illustration, recall that we have regarded as topologically and algebraically significant the

description of the infinite cyclic group C∞ as given by a pushout of groupoids:

{0, 1}

��

// {0}

��
I // C∞

Here we give a similar example involving modules, the details of which we leave to the reader.
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Example 7.3.15 Consider for n > 2 the following pair of maps of spaces:

Sn → Sn ∨ [0, 1] ⊔ {2}→ Sn ∨ S1

the first being an inclusion and the second an identification of the three vertices. A first basic test of

our theory is to be able to model directly simple examples like this. Here is how the modelling goes.

Consider the diagram of modules over groupoids consisting of two pushouts:

(0, 0)

��

(0, f)
// (0, I ⊔ {2})

��

(0,g)
// (0, C∞)

��
(Z, 0) // (f∗(Z), I ⊔ {2}) // (g∗f∗(Z), C∞)

each defining an induced module. Here (Z, 0) is the module consisting of the integers, with generator

a, together with the action of the trivial group G = 0. Let H be the groupoid with three objects 0, 1, 2

and exactly one arrow ι : 0 → 1, so that H = I ⊔ {2}. Let G → H be the inclusion. Let C∞, regarded

as a groupoid with object 0, have generator c. Let G
f
−→ H

g
−→ C∞ be the morphisms in which

f(0) = 0,g(ι) = c. Then f∗(M) is the H-module consisting of the integers over each of 0, 1 with

generators a,aι, and the zero group over 2. Finally, (gf)∗(M) = g∗f∗(M) is the free C∞-module

on one generator a, say, and so as an abelian group is the direct sum of copies of Z, one for each

element of C∞, and the action of this group is given by translation among these copies. 2

We can now easily show that the determination of colimits in Crs can be reduced to the determi-

nation of colimits in:

(i) the category Gpds of groupoids;

(ii) the category XMod of crossed modules over groupoids, and

(iii) the category Mod of modules over groupoids.

We have already proved using the notion of fibred and cofibred category prove that constructing

colimits of connected diagrams in either of Mod and XMod may be done in two steps. First, we

change the base groupoids of the modules of a diagram so that they become the same for all modules

or crossed modules and then we take the colimit in ModG or XModG.

Proposition 7.3.16 Let C = colim Cλ be a colimit in the category Crs of crossed complexes. Then

(i) for n = 1, the groupoid tr1C = C1 is the colimit in Gpds of the groupoids tr1C
λ = Cλ1 , i.e.

C1 = colimGpds C
λ
1 ;

(ii) for n = 2, the crossed complex tr2C is the colimit in XMod of the crossed modules tr2C
λ, i.e.

(C2 → C1) = colimXMod (Cλ2 → Cλ1 );

(iii) for each n > 3, the groupoid Cn as a module over π1(C) is the colimit in the category Mod of the

groupoids Cλn as modules over π1(C
λ
n), i.e.

(Cn,π1(C)) = colimMod (Cλn,π1(C
λ)).
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Proof All these facts hold because the functors appropriate to each case have right adjoints and,

consequently, they preserve colimits:

(i) and (ii) follow because we have proved in Proposition 7.3.6 that the coskeleton functors

cosk1 : Gpds → Crs and cosk2 : XMod → Crs are the right adjoints of the truncation functors

Tr1 : Crs→ Gpds and Tr2 : Crs→ XMod.

(iii) follows because we have proved in Proposition 7.3.11 that the functor En+1 : Mod→ Crs is

right adjoint to the restriction functor (−)n : Crs→ Mod.

Note that, this description of Tr2 C and Cn for n > 3 as colimits gives not only the modules,

but also the boundary maps δ : Cn → Cn−1; these can be recovered as induced by the maps

δλ : Cλn → Cλn−1, for all λ. 2

7.4 Free constructions.

In Part I we have used free groups, and studied free crossed modules over groups; free modules over

a group are common knowledge. Now we generalise all this to the groupoid case, in order to arrive

at the notion of free crossed complexes. These are important in their own right in algebra, and also

in topology because they gives a useful algebraic model CW-complexes.

In particular, free constructions given here model the process of attaching cells to a space.

Attaching 1-cells to a discrete space gives graphs, with the well known free groupoids as algebraic

models. In higher dimensions, for a spaceAwe may form X = A∪fi
e2i where the cells e2i are attached

by maps fi : S1 → A. We may take the base point of S1 to be say 1, and set ai = fi(1),A0 = {ai}.

We then want to express π2(X,A,A0) as a free crossed module over the fundamental groupoid

π1(A,A0). We also want to see, if A has itself a base point say a0, how to calculate the crossed

module of groups π2(X,A,a0)→ π1(A,a0).

So we must extend the notions of free groupoid to the higher dimensions of free crossed modules

and free crossed complexes. Because of the given geometric structure of crossed complexes, this

extension is quite simple.

We first need to say something on free groupoids.

7.4.1 Free groupoids.

We explain the notion of free groupoid on a graph – this is used implicitly in combinatorial group

theory, for example in paths in a Cayley graph, and is required for combinatorial groupoid theory.

We will exploit this in a later chapter, when calculating crossed resolutions.

Definition 7.4.1 By a graph Γ = (E(Γ),V(Γ), s, t) we mean a set E(Γ) of edges, a set V(Γ) of vertices

and two functions s, t : E(Γ)→ V(Γ) called the source and target maps.

A morphism f : Γ → Γ ′ of graphs is a pair of functions E(f) : E(Γ) → E(Γ ′),V(f) : V(Γ) → V(Γ ′)

which commute with the source and target maps. This gives the category Grphs of graphs. 2

Remark 7.4.2 This is commonly called a directed graph, but we shall use only these. Also we shall,

in keeping with the terminology for categories and groupoids, use also the term objects of the graph

instead of vertices. As for groupoids, we write a : x→ y if a is an edge and sa = x, ta = y, say a is

from x to y, and we write Γ(x,y) for the set of edges from x to y in Γ .
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Proposition 7.4.3 The forgetful functorU : Gpds→ Grphs has a left adjoint, whose arrows can be seen

as paths in the graph.

Proof We outline a proof and leave the details as an exercise.

Let 2 denote the graph with two vertices 0, 1 and one edge ι : 0 → 1. A given graph Γ can be

regarded as obtained from a disjoint union of copies of the graph 2 by an appropriate identification

of the vertices. The same identification for a similar disjoint union of copies of the groupoid I gives

the free groupoid F(Γ) on Γ .

Then F(Γ)(x,y) can be seen as made up of classes of ‘paths’ from x to y in Γ , where such a path

is a sequence of edges or a formal inverse of an edge, which are composable, and which starts at x

and ends at y. (See also [Bro06, Section 8.2].) 2

Exercise 7.4.4 Use the functor f∗ to construct and verify the properties of a free groupoid on a

directed graph. In particular give the universal property, and show that the graph morphism Γ →

F(Γ) is injective on vertices and on edges. 2

Exercise 7.4.5 Formulate and discuss the notion of generating graph for a groupoid. 2

7.4.2 Free crossed modules, and free modules, over groupoids.

We first note that a set of generators for a crossed module µ : M→ P must be a family R(x) of subsets

of M(x) for all x ∈ P0 such that M itself is the smallest subcrossed P-module of M containing R.

This means thatM consists of all consequences of R, where a consequence, analogously to the group

case, is an element of the form

c =

n∏

i=1

((ri)
εi)pi

where ri ∈ R, εi = ±1,pi ∈ P1. The difference from the group case is that here if c ∈ M(x) then

ri ∈ M(xi) if and only if pi ∈ P(xi, x). Thus a set of generators comes with a function ω : R → P

such that sω = tω.

Definition 7.4.6 A function ω : R→ P together with a function i : R→M such that µi = ω is said

to give a set of free generators of the crossed module µ : M → P if it has the universal property that

for any crossed P-module ν : N → P and function j : R → N such that νj = i, there is a unique

morphism φ : M→ N of crossed P-modules such that φi = j.

Proposition 7.4.7 Given a groupoid P, and a function ω : R → P such that sω = tω, then the free

crossed P-module on ω exists.

Proof We present this free crossed module as an induced module, analogously to the group case.

Let F = F(R, t ′) be the (totally disconnected) free groupoid over P0 on the family of sets given by

t ′ = tω : R → P0. Thus for each x ∈ P0, F(R, t ′)(x) is the free group on t ′−1(x). Let ω ′ : F → P be

the groupoid morphism over P0 determined by ω.

Since F is totally disconnected, we can form the ‘conjugacy crossed module’ 1 : F→ F, in which

F acts on itself by conjugation. Then the free crossed P-module onω is given by the induced crossed

module, as in the diagram:

F

1

��

i // C(ω)

∂

��
F

ω′

// P
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We leave the reader to check the defining universal property. 2

We now have to give the analogous, but simpler, theory for free modules. Let P be a groupoid,

and t : R→ P0 be a function. The development is missing.

7.4.3 Free crossed complexes.

Free crossed complexes model algebraically the topological notion of inductively attaching cells, as

in relative CW-complexes.

Definition 7.4.8 We write F(n) for the crossed complex freely generated by one generator cn in di-

mension n. So

- F(0) is {1} in dimension n = 0 and trivial elsewhere;

- F(1) is the crossed complex sk1 I, where I is the groupoid which has only two objects 0, 1 and

non-identity elements c1 : 0 → 1 and its inverse c−1
1 : 1 → 0. Thus F(1) has {0, 1} in dimension

n = 0, I in dimension n = 1, the trivial crossed module 0I in dimension n = 2 and trivial elsewhere;

- F(n) for n > 2 is in dimensions n and n − 1 an infinite cyclic group with generators cn and

cn−1 = δcn respectively, and is otherwise trivial. The only non trivial δ is defined by δn(cn) = cn−1.

Notice that F(n) is just another name for En(Z).

Also, we shall write S(n−1) for the subcomplex of F(n) which agrees with F(n) up to dimension

n − 1 and is trivial otherwise. Thus the only difference between F(n) and S(n − 1) is at dimension

n, where F(n)n is isomorphic to Z and S(n − 1)n is trivial. 2

Remark 7.4.9 1.- Notice that this definition satisfies what we would assume is a characterisation

of free in this context, i.e. for any crossed complex C and any element c ∈ Cn there is a unique

morphism of crossed modules

ĉ : F(n)→ C

such that ĉ(cn) = c. That is, there is a natural bijection of sets Cn ∼= Crs(F(n),C).

2.- It is a straightforward consequence of convexity of the interval E1 that Π(E1
∗)

∼= F(1). It will be

proved in Corollary 8.3.12 in the next Chapter that Π(En∗ ) ∼= F(n) for all n.

3.- That Π(S1
∗)

∼= S(1), is in essence the fact that the fundamental group of S1 is isomorphic to Z,

as has been proved in Section 1.7. It will be proved in Corollary 8.3.11 in the next Chapter that

Π(Sn∗ ) ∼= S(n) for n > 1 and it follows from this that Π(En∗ ) ∼= F(n). 2

Now, using F(n), we may define the notion of ‘adding free generators in dimension n ’.

Definition 7.4.10 Let A be a crossed complex. We say that a morphism of crossed complexes f :

A → C is of pure relative free type of dimension n > 0 if there is a set of indexes Λ and a family of

morphisms fλ : S(n − 1)→ A for λ ∈ Λ, such that the following square is a pushout in Crs:

⊔
λ∈Λ S(n − 1)

(fλ)
//

��

A

j
��⊔

λ∈Λ F(n) // C.

We write

C = A ∪ {xnλ }λ∈Λ,

and may abbreviate this in some cases, for example to C = A ∪ xn. 2
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Example 7.4.11 To have a clearer view of the last definition it is good to take some pains and

describe the change on adding just one free generator, i.e. C = A ∪ xn. Let us see the cases

according to dimension

1. When n = 0, adding one generator is just adding an extra point x to the set of objects. Thus

C0 = A0 ∪ {x} and Cn = An for all n > 0.

2. The case n = 1 is most delicate, because when we are adding a free generator x to the groupoid

A1, we are also adding all elements ax for a ∈ An, n ∈ N.

3. In the case n > 1 we add only a free generator in dimension n. This gives a coproduct with

f∗(F). [This is a bit unclear. There is an identification of base points, which is where the

coproduct comes in, but one has to explain the category in which the coproduct takes place. ]

2

We consider now the situation when the free generators are added in increasing order of dimen-

sion. In the limit we get a special kind of ‘subcomplexes’ j : A → C which we shall call a crossed

complex morphism of relative free type.

Definition 7.4.12 Let A be any crossed complex. We define a sequence of complexes Cn and mor-

phisms jn : Cn−1 → Cn starting with C0 = A, and choosing a family of morphisms fλn : S(n − 1)→

Cn−1 for λ ∈ Λn such that Cn is got by forming the pushout

⊔
λ∈Λn

S(n − 1)
(fλn)

//

��

Cn−1

jn
��⊔

λ∈Λn
F(n) // Cn.

Let C = colim Cn, and let j : A → C be the canonical morphism. We call j : A → C a crossed

complex morphism of relative free type. The images xn of the elements cn in C are called basis

elements of C relative to A. We can conveniently write

C = A ∪ {xn}λ∈Λn,n>0,

and may abbreviate this in some cases, for example to C = A ∪ xn ∪ xm, analogously to standard

notation for CW-complexes. 2

Remark 7.4.13 Let us describe the structure we get on C in each dimension.

1. C0 is the disjoint union of A0 and Λ0;

C0 = A0 ⊔Λ0 in Sets

2. C1 is the coproduct of two groupoids with set of objects C0,

C1 = A∗
1 ⊔C0

F(Λ1) in GpdsC0
,

where A∗
1 is the groupoid obtained from A1 by adjoining the objects of C not already in A, and

F(Λ1) is the free groupoid on Λ1 considered as a graph over C0 via the maps fλ1 ;
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3. C2 is the coproduct of two crossed C1-modules

C2 = A∗
2 ∗ F(Λ2) in XModC1

,

where A∗
2 is the C1-crossed module induced from the A1-crossed module A2 by the morphism

of groupoids A1 → C1, and F(Λ2) is the free crossed C1-module on Λ2 via the maps fλ2 ;

4. Cn, for n > 3, is the direct sum of two π1(C1)-modules

Cn = A∗
n ⊕ F(Λn) in Modπ1(C)1 ,

where A∗
n is the module induced from the π1(A1)-module An by the morphism of groups

π1(A1)→ π1(C1), and F(Λn) is the free π1(C1)-module on Λn.

The boundary maps are in all cases induced by the boundary maps in A and by the maps fλn.

Thus at each dimension Cn is the coproduct in the suitable category of the n-dimensional part

of A (appropriately modified) and a free structure with as many generators as the n-cells we

are attaching. 2

Example 7.4.14 It will be a corollary of the HHvKT in the next chapter that for the skeletal filtration

X∗ of a CW-complex X, the crossed complex ΠX∗ is free; and that if Y∗ is a subcomplex of X∗ then

the induced morphism ΠY∗ → ΠX∗ is relatively free. 2

Of course, the advantage of a having a free basis X∗ for a crossed complex C is that a morphism

f : C → D is defined completely by the values of f on X∗ provided the following conditions are

satisfied:

(i) They have the appropriate source and target,

i.e. sf1x = f0sx and tf1x = f0tx, for all x ∈ X1, and tfn(x) = f0(tx) for all x ∈ Xn,n > 2.

(ii) They produce a morphism of crossed complex,

i.e. δnfn(x) = fn−1δn(x), x ∈ Xn,n > 2.

Notice that in (ii), fn−1 has to be constructed on all of Cn−1 from its values on the basis for

Cn−1, before this condition can be verified.

If further D is free, then to specify fn(x) we simply have to give the expression of fn(x) in terms

of the basis in dimension n for Dn.

Later we will see that homotopies can be specified similarly (see Corollary 9.6.5).

We end this Section by stating some results about the good behaviour of relatively free morphisms

with respect to some colimits. The way to prove all of them is to check for the case when all

generators have the same dimension and go to the general case by a colimit argument.

First such morphisms are preserved by composition:

Proposition 7.4.15 Given two morphism of relative free type, so is their composite.

Then they are preserved by pushout:
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Proposition 7.4.16 If in a pushout square

C′ //

��

D ′

��
C // D

the morphism C′ → C is of relative free type, so is the morphism D ′ → D.

Last, they are preserved by sequential colimits:

Proposition 7.4.17 If in a commutative diagram

C0 //

��

C1 //

��

. . . // Cn //

��

. . .

D0 // D1 // . . . // Dn // . . .

each vertical morphism is of relative free type, so is the induced morphism colimn C
n → colimnD

n.

In particular:

Corollary 7.4.18 If in a sequence of morphisms of crossed complexes

C0 → C1 → · · · → Cn → · · ·

each morphism is of relative free type, so are the composites C0 → Cn and the induced morphism

C0 → colimn C
n.

7.5 Crossed complexes and chain complexes

As we have seen in Section 7.3, a crossed complex is a kind of nonabelian chain complex with

operators, the nonabelian features being confined to dimensions 6 2. In this section, we begin to

make the relation between the two complexes more precise. The adjoint constructions will be used

later in section 9.5 to help understand tensor products of crossed complexes.

Definition 7.5.1 Let G be a groupoid. A chain complex A = (An,∂n)n>0 over G is a sequence

· · ·
∂
−→ An

∂
−→ An−1

∂
−→ · · ·

∂
−→ A1

∂
−→ A0

ofG-modules and G-morphisms satisfying ∂∂ = 0. A morphism of chain complexes f : (A,G)→ (B,H)

is a family of morphisms fn : (An,G)→ (Bn,H) (over some f0 : G→ H, independent of n) satisfying

∂fn = fn−1∂. These form a category Chn and, for a fixed groupoid G, we have a subcategory ChnG
of chain complexes over G. Also reducing the basis to groups we get back the category Chn∗ of chain

complexes over groups. 2

Our aim now is to construct a functor

∇ : Crs→ Chn

which gives a form of ‘semiabelianisation’ of the crossed module part of a crossed complex, which

keeps information on the fundamental groupoid. It will be important later that this functor ∇ has
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a right adjoint (called Θ). We will use this adjoint pair in later chapters to investigate the tensor

product of crossed complexes, and the homotopy classification of maps from a free crossed complex.

The definition of ∇ is easy in dimensions > 3, when we set (∇C)n = Cn, with boundary ∂ just

δ: we shall leave everything as it is. We are left with

C3
δ3−→ C2

δ2−→ C1

where δ2 is a crossed module with cokernel φ : C1 → G and we want to change it to get

C3
∂3−→ L2

∂2−→ L1
∂1−→ L0

where L2, L1 and L0 are G-modules. We can use φ to associate to C2 the G-module L2 = Cab2 . It is

more difficult to get the correct candidates for L1 and L0, but again they crucially involve φ.

In the first subsection, we study the candidates for L0, the ‘adjoint module’ and the ‘augmentation

module’ and prove that they give functors which have right adjoints. In subsection 7.5.2 we study

the candidate for L1, the ‘derived module’. A big advantage of working with the category Mod (which

includes modules over all groupoids) is that we can exploit the formal properties of the functorial

constructions used.

In the penultimate subsection we give the right adjoint Θ of ∇ : Crs → Chn, and the last subsec-

tion illustrates with a specific calculation the fact that ∇ preserves colimits.

7.5.1 Adjoint module and augmentation module.

Basic constructions used to linearise the theory of groups in homological algebra are, for a group

G, the group ring ZG and the augmentation ideal IG. We extend these constructions to the case of

groupoids: however for a groupoid G we obtain not a ‘groupoid ring’ but what we call the ‘adjoint

module’
−→
ZG, and from this we get the ‘augmentation module’

−→
I G. We use the distinctive notation

for the groupoid case, even though if G is a group then the constructions of ZG and
−→
ZG, IG and

−→
I G, coincide: one reason is that they denote different structures, and another is that there is a

second generalisation to a groupoid G of the usual group ring of a group, in which we obtain a ‘ring

with several objects’ ZG which is an additive category with objects the same as those of G and in

which ZG(x,y) is the free abelian group on G(x,y).

We will often write G0 for ObG for a groupoid G.

Definition 7.5.2 Let G be a groupoid. For q ∈ G0, we define
−→
ZG(q) to be the free Abelian group

on the elements of G with target q. Thus an element has uniquely the form of a finite sum Σinigi

with ni ∈ Z and gi ∈ G with t(gi) = q.

Clearly,
−→
ZG becomes a (right) G-module under the action

(a,g) 7→ ag

of G on basis elements. Thus
−→
ZG = {

−→
ZG(q)}q∈G0

is a G-module, which we call the adjoint module of G (over Z), since it involves the adjoint action

of G on itself. This construction defines the functor

−→
Z (−) : Gpds→ Mod. 2
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Notice that
−→
ZG is ‘G-free on G0’, i.e. it is freely generated as G-module by G0 (embedded in

−→
ZG

as the set of identities of G).

There is also a generalisation to groupoids of constructions well known in the case of groups:

the augmentation map and the augmentation ideal.

For a fixed groupoid G, is also useful to have a trivial G-module, corresponding to the integers

Z.

Definition 7.5.3 Let
−→
Z be the (right) G-module consisting of the constant family

−→
Z (p) = Z for

p ∈ G0, with trivial action of G (which, as usual, means that each g ∈ G(p,q) act as the identity

Z(p)→ Z(q)). We shall regard the Z(p) as distinct, so that
−→
Z depends also on the object set G0.

The augmentation map

ε :
−→
ZG→

−→
Z ,

given by Σnigi 7→ Σni is a morphism of G-modules and its kernel
−→
I G is called the (right) augmen-

tation module of G.

Any morphism of groupoids φ : H → G induces a module morphism
−→
ZH →

−→
ZG over φ which

maps
−→
I H to

−→
I G.

Since the augmentation map is natural, the augmentation module defines also a functor

−→
I : Gpds→ Mod. 2

Exercise 7.5.4 Prove that for q ∈ Ob(G), the abelian group
−→
I G(q) has Z-basis consisting of all

g− 1q, for g a non-identity element of G with target q. 2

We will prove that both
−→
Z and

−→
I preserve colimits by giving right adjoints for them. That for

−→
I

has a direct construction: the semidirect product.

Definition 7.5.5 Given a module (M,G), the semidirect product G⋉M of G and M is the groupoid

with the same set of objects as G, and

(G⋉M)(p,q) = G(p,q) ⋉M(q),

i.e. as a set is G(p,q) ×M(q) and the composition is given by (x,m)(y,n) = (xy,my + n), when

x ∈ G(p,q),y ∈ H(q, r), and m ∈ M(q),n ∈ M(r). This semidirect product construction gives a

functor

⋉ : Mod→ Gpds. 2

For the study of this, it is convenient to have a generalised notion of derivation, which will be used

a lot later in connection with homotopies of morphisms of crossed complexes.

Definition 7.5.6 Let φ : H→ G be a morphism of groupoids, and let M be a G-module. A function

f : H→M is called a φ-derivation if it maps H(p,q) to M(φq) and satisfies

f(xy) = (fx)φy + fy

whenever xy is defined in H. In particular, if H = G, then a 1G-derivation is called simply a

derivation.
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Exercise 7.5.7 Let G be a groupoid. Prove that the mapping κ : G→
−→
I G sending g 7→ g− 1tg is a

derivation, and has the universal property: if f : G→ N is a derivation to a G-module N, then there

is a unique G-morphism f ′ :
−→
I G→ N such that f ′κ = f. 2

Proposition 7.5.8 The functor ⋉ : Mod → Gpds is a right adjoint of
−→
I : Gpds → Mod. Hence

−→
I

preserves colimits.

Proof Let us begin by studying Gpds(H,G⋉M) for a groupoid H and module (M,G). A morphism

H→ G⋉M

is of the form x 7→ (φx, fx) where

φ : H→ G

is a morphism of groupoids and

f : H→M

is a φ-derivation. (In particular, all sections

G→ G⋉M

are of the form x 7→ (x, fx) where f : G→M is a derivation.)

By Exercise 7.5.7, the map κ : H →
−→
I H, given by κ(x) = x − 1q for x ∈ H(p,q), is a universal

derivation.

On the other hand, if φ : H → G is a morphism of groupoids and M is a G-module, then any

φ-derivation f : H→M is uniquely of the form f = f̂κ where f̂ :
−→
I H→M is a morphism of modules

over φ. Thus we have a natural bijection

Mod((
−→
I H,H), (M,G)) ∼= Gpds(H,G⋉M). 2

The right adjoint to
−→
Z comes from the pullback of a groupoid along a map defined in Example

?? in conjunction with the adjoint module of a groupoid.

Definition 7.5.9 Given a module (M,G), we consider M as a set UM with the target map t :

UM → ObG. We may therefore form the pullback groupoid P(M,H) = t∗H. This construction

gives a functor

P : Mod→ Gpds. 2

The groupoid P(M,G), with its canonical morphism to G, (m,g,n) 7→ g, is universal for mor-

phisms φ : H→ G of groupoids such that Obφ factors through maps β : M→ ObG.

Proposition 7.5.10 The functor P : Mod → Gpds is a right adjoint of
−→
Z : Gpds → Mod. Hence

−→
Z

preserves colimits.

Proof By the definition of P(M,G), the groupoid morphisms H→ P(M,G) are naturally bijective

with pairs (α,φ) where α : ObH→ UM is a map, φ : H→ G is a morphism and Obφ is of the form

β ◦ α.

However, since
−→
ZH is freely generated as H-module by H0 (embedded in

−→
ZH as the set of iden-

tities of H), such pairs (α,φ) are naturally bijective with morphisms of modules (γ,φ) : (
−→
ZH,H)→

(M,G). 2



206 [7.5] Nonabelian Algebraic Topology

These constructions are related as follows:

Proposition 7.5.11 The inclusion,
−→
I G →

−→
ZG, regarded as a natural transformation, is conjugate

under the above adjunction to the natural transformation θ = θ(M,G) where

θ(M,G) : P(M,G)→ G⋉M

is given by θ(m,g,n) = (g,mg − n). For each module (M,G), this θ(M,G) is a covering morphism of

groupoids.

Proof Any commutative triangle

(
−→
I H,H)

(α,φ) %%JJJJJJJJJ
i // (

−→
ZH,H)

(γ,φ)yyttttttttt

(M,G)

in Mod corresponds to a commutative triangle

G⋉M P(M,G)
θoo

H

ξ

bbFFFFFFFFF η

;;wwwwwwwww

in Gpds, where θ is natural and, if h ∈ H(p,q), then

ξh = (φh,α(h − 1q)) and ηh = (γ1p,φh,γ1q).

Given (m,g,n) ∈ P(M,G), we may take G = H, φ = id, and choose γ so that γ1p = m, γ1q = n.

Then

θ(m,g,n) = ξg

= (φg,α(g− 1q))

= (g,γ(g− 1q))

= (g,γ(1ph) − γ1q)

= (g,mg − n).

Finally, let (g, x) ∈ G ⋉ M, with g ∈ G(p,q) and x ∈ M(q), and let m ∈ M(p) be an object of

P(M,G) lying over the source p of (g, x). Then there is a unique n ∈ M(q) such that mg − n = x.

Hence there is a unique arrow (m,g,n) over (g, x) with source n. 2

Note that if one restricts attention to groups, and modules over groups, the restricted functor
−→
Z (−) does not have a right adjoint since, for example, it converts the initial object 1 in the category

of groups to the module (
−→
Z , 1) which is not initial in the category of modules over groups. However,

the functor
−→
I , does, when restricted to groups, have a right adjoint given by the split extension as

above.

7.5.2 The derived module

Another basic construction used to linearise the theory of groups in homological algebra is the

derived moduleDφ of a group morphism φ : H→ G, usually appearing in the formDφ = IH⊗HZG.

We extend this construction to the case of groupoids.
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Definition 7.5.12 Let φ : H→ G be a morphism of groupoids. Its derived module is a G-module Dφ
with a universal φ-derivation hφ : H→ Dφ: that is, for any φ-derivation f : H→M to a G-module

M, there is a unique G-morphism f ′ : Dφ →M such that f ′hφ = f. 2

Proposition 7.5.13 Let φ : H→ G be a morphism of groupoids. If H is a free groupoid on X, then Dφ
is a free G-module on hφ(X).

Proof Let Y = hφ(X). Let f : Y → M be graph morphism to a G-module M. Let h ′ : X → M

be determined by hφ and f. Since H is free on X, this graph morphism extends uniquely to a φ-

derivation f ′ : H→M. (We see this since a φ-derivation H→M is equivalent to a groupoid section

of the projection H⋉M→ H.) This φ-derivation determines uniquely a G-morphism f ′′ : Dφ →M

extending f as required. 2

Exercise 7.5.14 Give a direct construction of the derived module as follows: for q ∈ ObG, let F(q)

be the free G-module on the family of sets of elements x of H such that φ(x) has target q. Then F(q)

has an additive basis of pairs (x,g) such that φ(x)g is defined in G, and the action of G is given by

(x,g)g
′

= (x,gg ′)

when gg ′ is defined in G. There is a natural map

i : H→ F,

given by i(x) = (x, 1q), where φ(x) has target q. Now we impose on F the relations

i(xy) = i(x)φ(y) + i(y)

whenever xy is defined in H. This gives a quotient G-module Dφ, a quotient morphism s : F→ Dφ

and a φ-derivation hφ = si : H→ Dφ. 2

For any category C we define the category C2 to have objects the arrows of C and morphisms

(f,g) : a→ b to be the commutative squares in C

·
f //

a
��

·

b
��

·
g

// ·

with composition the obvious horizontal one.

The universal property of the derived module construction shows that it gives a functor

D : Gpds2 → Mod

given by D(H
φ
−→ G) = (Dφ,G).

Remark 7.5.15 Alternatively, regarding the category of G-modules as the functor category (Ab)G,

any functorM : H→ Ab has a left Kan extension φ∗M : G→ Ab along φ : H→ G. Then the derived

module Dφ is canonically isomorphic to φ∗(
−→
I H), the G-module induced from

−→
I H by φ : H → G.

In the case of a group morphism φ, this induced module is just IH⊗H ZG, where ZG is viewed as a

left H-module via φ and left multiplication. 2

Now we obtain a right adjoint
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Proposition 7.5.16 The functor D has a right adjoint Mod→ Gpds2 given by

(M,G) 7→ (G ⋉M
pr1−→ G).

Proof This is an immediate consequence of the adjointness of
−→
I and ⋉ seen in Proposition 7.5.8

and the formula Dφ = φ∗(
−→
I H). 2

Exercise 7.5.17 Verify that:

1. The augmentation module
−→
I G is the derived module of the identity morphism G→ G.

2. If G is a totally disconnected groupoid on the set X, and φ : G → X is the unique morphism

over X to the discrete groupoid on X, then the derived module of φ is the abelianisation Gab

of G. We suggest more on abelianisation of a groupoid in Exercise 7.5.26.

3. Discuss the derived module of a composition of morphisms G→ H→ K. 2

7.5.3 The derived chain complex of a crossed complex

Now we can construct our functor

∇ : Crs→ Chn.

Theorem 7.5.18 Let C be a crossed complex, and let φ : C1 → G be a cokernel of δ2 of C. Then there

are G-morphisms

Cab
2

∂2−→ Dφ
∂1−→
−→
ZG

such that the diagram

· · · // Cn

=

��

δn // Cn−1

=

��

// . . . // C3

=

��

δ3 // C2

α2

��

δ2 // C1

α1

��

φ // G

α0
��

· · · // Cn
∂n

// Cn−1
// · · · // C3

∂3

// Cab
2 ∂2

// Dφ
∂1

// −→ZG

commutes and the lower line is a chain complex over G. Here α1 is the universal φ-derivation, α0 is the

G-derivation x 7→ x− 1q for x ∈ G(p,q), as a composition G→
−→
I G→

−→
ZG, and ∂n = δn for n > 4.

Proof Let X = G0, and let X also denote the discrete groupoid on X. The functor D : Gpds2 → Mod,

applied to the sequence of morphisms

· · · // C3

ζ3
��

δ3 // C2

ζ2
��

δ2 // C1

φ
��

φ // G

=
��

. . . // X // X // G // G

gives a sequence of module morphisms

. . .→ (Dζ3 ,X)→ (Dζ2 ,X)→ (Dφ,G)→ (
−→
I G,G).

Since a derivation Cn →M over a null map ζn : Cn → X is just a morphism to an Abelian groupoid,

we may identify Dζn
with Cab

n and its universal derivation with the Abelianisation map. The map

∂1 is the composition Dφ →
−→
I G→

−→
ZG. Thus we obtain the stated commutative diagram in which
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the vertical maps are the corresponding universal derivations (followed by an inclusion, in the case

of α0).

This establishes all the stated properties except the G-invariance of ∂2 and the relations ∂2∂3 = 0,

∂1∂2 = 0.

Clearly ∂2∂3 = α1δ2δ3 = 0.

Also ∂1∂2α2 = α0φδ2 = 0 and since α2 is surjective, this implies ∂1∂2 = 0.

Finally, if x ∈ Cab
2 , g ∈ G and xg is defined, choose a ∈ C2, b ∈ C1 such that α2a = x, φb = g.

Then

∂2(x
g) = α1δ2(a

b)

= α1(b
−1cb), where c = δ2a,

= [(α1(b
−1))φc + α1c]

φb + α1b, since α1 is a φ-derivation,

= (α1(b
−1))φb + [α1c]

φb + α1b, since φc = 1,

= −α1b+ (α1c)
φb + α1b since α1 is a φ-derivation,

= (α1c)
φb since Dφ is Abelian,

= (∂2x)
g, as required. 2

Remark 7.5.19 Suppose δ2 : C2 → C1 is a crossed module such that C2 is the free crossed module

on R and C1 is the free groupoid on X. Let φ : C1 → G be the cokernel of δ2. Then the corresponding

G-module morphism ∂2 : Cab2 → Dφ may by the above results be interpreted as the Fox derivative

(∂r/∂x), [CF77].

Definition 7.5.20 For any crossed complex C, ∇C is the chain complex given in the bottom row of

the main diagram of Theorem 7.5.18. This gives a derived functor

∇ : Crs→ Chn. 2

7.5.4 Exactness and lifting properties of ∇

Proposition 7.5.21 Let C = {Cr} be a crossed complex and suppose that the sequence of groupoids

C3
δ
−→ C2

δ
−→ C1

φ
−→ G→ 1

is exact. Then the sequence of G-modules in ∇ ′C:

C3
∂
−→ CAb2

∂
−→ Dφ

∂′

−→
−→
I G→ 0

is exact.

Proof The exactness of C2 → C1
φ
−→ G→ 1 implies that

(C2 → 1) //

��

(C1
φ
−→ G)

��
(1→ 1) // (G

=
−→ G)
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is a pushout square in the arrow category Gpds2. Applying D : Gpds2 → Mod, as in the proof of

Theorem 7.5.18, and noting that D preserves colimits by Proposition 7.5.16, we obtain a pushout

square

CAb2

∂ //

��

Dφ

��
over

1 //

��

G

��
0 // −→

I G 1 // G

in Mod. Since ∂ : CAb2 → Dφ is in fact a G-morphism, it follows that

CAb2 → Dφ →
−→
I G→ 0

is an exact sequence of G-modules.

To prove exactness of C3 → CAb2 → Dφ, write N = Kerφ = δC2 and note that the exactness of

C3 → C2 → N→ 1

implies the exactness of

C3 → CAb2 → NAb → 1.

It remains, therefore, to show that the map γ : NAb → Dφ induced by ∂ : CAb2 → Dφ is injective.

Now φ : C1 → G is a quotient morphism of groupoids with totally intransitive kernel N. In

these circumstances the additive groupoid structure of Dφ is given by generators [c] ∈ Dφ(q) for

c ∈ C1(p,q), with defining relations

[cy] = [c] + [y] for c ∈ C1(p,q), y ∈ N(q);

the groupoid C1 acts on this additive groupoid by

[c]x = [cx] − [x]

and N acts trivially, making Dφ a G-module; the canonical φ-derivation α1 : C1 → Dφ is given by

α1(c) = [c].

Choose coset representatives t(c) ∈ cN of N in C1 with t(1q) = 1q. Then for all c ∈ C1,

c = t(c)s(c) where s(c) ∈ N. The map s : C1 → N satisfies s(y) = y for y ∈ N and

s(cy) = s(c)y for all c ∈ C1(p,q), y ∈ N(q).

Consequently, there is an additive map s∗ : Dφ → NAb defined by s∗[c] = αs(c), where α is the

canonical map N→ NAb. Since, for any u = αy in NAb,

s∗γu = s∗γαy = s∗α1y = αs(y) = αy = u,

γ is injective, as required. 2

Corollary 7.5.22 If δ : C2 → C1 is a crossed module with kernel K, and φ : C1 → G is the cokernel of

δ, then the sequence K→ CAb2 → Dφ is exact.

Proof Put C3 = K in Proposition 7.5.21. 2
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Definition 7.5.23 The crossed complex C (or crossed module) is regular if K ∩ [C2,C2] = 0, where

K is the kernel of δ : C2 → C1. 2

Corollary 7.5.24 If C2 → C1 is a regular crossed module with kernel K, then the sequence 0 → K →

CAb2 → Dφ is exact.

Proof This follows from Corollary 7.5.22 and the definition of regular. 2

The following is a useful result for applications to free crossed resolutions and to identities among

relations.

Proposition 7.5.25 If in the crossed complex C, the groupoidC1 is free, then C is regular. In particular,

the fundamental crossed complex ΠX∗ of a CW-complex X∗ is regular.

Proof Since N = δC2 is a subgroupoid of C1, it is a free groupoid (in fact a family of free groups).

Hence the map δ : C2 → N has a homomorphic section s. But the kernel K of δ is in the centre of C2,

since C2 is a crossed module over C1. Hence C2 = K×C0
s(N) is a groupoid, that is, for each p ∈ C0,

C2(p) = K(p)× sN(p). This implies that [C2,C2] = [sN, sN] and hence that K ∩ [C2,C2] = 0. 2

In the following exercises, we sketch in a special case another description of the derived module

which is useful later in section 8.4. We need the notion of abelianisation of a groupoid.

Exercise 7.5.26 If G is a groupoid its abelianisation is a morphism υ : G→ Gab which is universal

for morphisms to abelian groups. Show abelianisation is defined and gives a left adjoint to the

inclusion of the category of abelian groups into the category Gpds of groupoids. Refer to the notion

of universal group UG of a groupoid G in [Bro06, Section 8.1], and prove that Gab ∼= (UG)ab.

Calculate Gab in terms of the transitive components of G, and show that if G is a tree groupoid

in the sense of [Bro06] then Gab is a free abelian group. Hence calculate Gab for any transitive

groupoid in terms of a vertex group and a tree. 2

Exercise 7.5.27 Let φ : F→ G of an epimorphism of groups. Form the universal covering groupoid

p : G̃→ G, [Bro06, Chapter 10], and let q : F̂→ F be the pullback of p byφ. Then q is also a covering

morphism of groupoids. There is a function υ : F → F̂ which sends a ∈ F to the unique covering

element of a which ends at the object 1 ∈ F. Prove that F̂ab admits the structure of G-module and

that the composite F
υ
−→ F̂→ F̂ab is a φ-derivation Prove that the morphism ofG-modulesDφ → F̂ab

given by the universal property of F→ Dφ is an isomorphism by using the 5-lemma on a map from

the exact sequence of Proposition 7.5.21 to one derived from an analysis of F̂ab using the previous

exercise. 2

7.5.5 The right adjoint of the derived functor

The main task of this subsection is to construct a functor Θ : Chn→ Crs and prove it is right adjoint

to ∇. This shows that some information on a crossed complex C can be recovered from the chain

complex ∇C, and also has the important consequence that ∇ preserves colimits. We will use ∇

in Chapter 9 to give a convenient description in dimensions > 2 of the tensor product of crossed

complexes.

In order to construct Θ we use an intermediate functor Θ ′.

Definition 7.5.28 For a chain complex L over a groupoid H, Θ ′L = Θ ′(L,H) is the crossed complex

Θ ′L := · · · // Ln
∂ // Ln−1

// · · · // L3
∂ // L2

(0,∂)
// H⋉ L1 .
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Here H⋉ L1 acts on Ln (n > 2) via the projection H⋉ L1 → H, so that L1 acts trivially. 2

Note that Θ ′L does not involve L0. To correct this, we use another construction which brings in L0

in an essential way. Let us begin by defining ΘL and checking that the definition works.

Definition 7.5.29 For any chain complex L, we consider the canonical covering morphism

θ : P(UL0,H)→ H⋉ L0

of Proposition 7.5.11. We define

Θ(L) = θ∗Θ ′L,

the pull-back along θ of the crossed complex of Definition 7.5.28.

We obtain a commutative diagram

· · · // E3
//

σ3

��

E2
//

σ2

��

E1
//

σ1

��

P(L0,H)

θ

��
· · · // L3

// L2
(0,∂)

// H⋉ L1
(1,∂)

// H⋉ L0

in which each En is a groupoid over E0 = L0, and each σn is a covering morphism.

For n > 2, the composite map Ln → H⋉ L0 is 0 and, since Ker θ is discrete, it follows that En is

just a family of groups each isomorphic to a group of Ln. There is also an action of E1 on En (n > 2)

induced by the action of H ⋉ L1 on Ln; for if e1 ∈ E1(x,y), where x ∈ L0(p), y ∈ L0(q), and if

en ∈ En(x), then σ1e1 acts on σnen to give an element of Ln(q) which lifts uniquely to an element

of En(y).

It is now easy to see that E = {En}n>0 is a crossed complex and that the σi form a morphism

σ : E→ Θ ′L of crossed complexes.

This gives a functor

Θ : Chn→ Crs. 2

An explicit description of E = Θ(L,H) can be extracted from the constructions given above. The

set of objects of every En is L0.

An arrow of E1 from x to y, where x ∈ L0(p), y ∈ L0(q), p,q ∈ H0, is a triple (h,a,y), where

h ∈ H(p,q), a ∈ L1(q), and xh = y+ ∂a. Composition in E1 is given by

(h,a,y)(k,b, z) = (hk,ak + b, z)

whenever hk is defined in H and yk = z+ ∂b.

For n > 2, En is a family of groups; the group at the object y ∈ L0(q) has arrows (a,y) where

a ∈ Ln(q), with composition

(a,y) + (b,y) = (a + b,y).

The boundary map δ : E2 → E1 is given by

δ(a,y) = (1q,∂a,y) for a ∈ L2(q), y ∈ L0(q).

The boundary map δ : En → En−1 (n > 3) is given by δ(a,y) = (∂a,y) and the action of E1 on En
(n > 2) is given by

(a,y)(k,b,z) = (ak, z),

where k ∈ H(q, r), a ∈ Ln(q), y ∈ L0(q) and yk = z+ ∂b.
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Proposition 7.5.30 The functor Θ is a right adjoint of ∇. Hence ∇ preserves colimits.

Proof A morphism (β,ψ) : (∇C,G) → (L,H) in Chn is equivalent to a commutative diagram in

Mod:

· · · // C3
//

β3

��

Cab
2

//

β2

��

Dφ //

β1

��

−→
I G

i //

β ′
0

��

−→
ZG

β0||yy
yyy

yyy

· · · // L3
∂

// L2
∂

// L1
∂

// L0

(over some morphism ψ : G → H) and hence, by Propositions 7.5.8, 7.5.16, to a commutative

diagram in Gpds:

· · · // C3
//

β3

��

C2
//

β2
��

C1

φ //

γ1

��

G

ξ
�� %%KKKKKKKKKKK

· · · // L3
∂

// L2
(0,∂)

// H⋉ L1
(1,∂)

// H⋉ L0 P(L0,H)
θ

oo

where (. . . ,β3,β2,γ1) is a morphism of crossed complexes, and θ is the canonical covering mor-

phism. This in turn is equivalent to a commutative diagram

· · · // C3
//

β3

��

C2
δ //

β2
��

C1
ω //

γ1

��

P(L0,H)

θ
��

· · · // L3
∂

// L2
// H⋉ L1

// H⋉ L0

because, in any such diagram, θωδ = 0 and θ is a covering morphism, soωδ = 0, that is,ω factorises

through φ : C1 → G.

This diagram is therefore equivalent to a morphism of crossed complexes C → E. Hence (β,ψ)

is therefore equivalent to a morphism of crossed complexes C → E. This shows that the functor

Θ : Chn→ Crs is right adjoint to ∇. 2

7.5.6 Some colimits in chain complexes.

The fact that ∇ : Crs → Chn preserves all colimits implies that the Higher Homotopy van Kampen

theorem proved in section 8.2 for the fundamental crossed complex ΠX∗ of a filtered space X∗ can

be converted into a similar theorem for the chain complex CX∗ = ∇ΠX∗. The interpretation of this

result will be discussed in Section 8.4.

The following simple example illustrates some of the interesting features that arise in computing

colimits in Crs and Chn. Note that if all the crossed complexes in a diagram {Cλ} are reduced then

the colimit of {Cλ} is reduced provided that the diagram is connected, in which case the colimit of

{∇Cλ} can be computed in the category of chain complexes over groups instead of groupoids.

Thus we consider a simple connected diagram of reduced crossed modules. Note that in the

reduced case, we can abbreviate
−→
I ,
−→
Z to I, Z.

Example 7.5.31 Let M → P, N → P be crossed modules over a group P. Their coproduct in the
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category of crossed modules over P is given by the pushout in Crs:

(· · · 0→M→ P)

))TTTTTTTTTTTTTTT

(· · · 0→ 0→ P)

55llllllllllllll

))RRRRRRRRRRRRRR
(· · · 0→M ⊲⊳ N→ P)

(· · · 0→ N→ P)

55jjjjjjjjjjjjjjj

where the group M ⊲⊳ N is the Peiffer product described by Brown in [Bro84]. 2

Example 7.5.32 To find the corresponding chain complexes let G = P/δM, H = P/δN and write

φ, ψ for the quotient maps P → G, P → H. Then the corresponding derived modules are Dφ =

IP ⊗P ZG and Dψ = IP ⊗P ZH.

Now we wish to compute the pushout in Chn (or in chain complexes over groups) of

(· · · 0→Mab → IP ⊗P ZG→ ZG,G)

(· · · 0→ 0→ IP → ZP,P)

33ggggggggggggggggggggg

++WWWWWWWWWWWWWWWWWWWWW

(· · · 0→ Nab → IP ⊗P ZH→ ZH,H)

To do this, we first form the pushout K of

G

P

99ssssss

%%LLLLLL

H

namely K = P/(δM · δN); this is the group acting on the pushout chain complex. Next we form the

induced modules over K of each module in the diagram and then form pushouts of K-modules in

each dimension. This gives the chain complex

(· · · 0→ (Mab ⊗P ZK)⊕ (Nab ⊗P ZK)→ IP ⊗P ZK→ ZK,K).

Since K = P/δMδN, and δM acts trivially on Mab, we have

Mab ⊗P ZK = Mab/[Mab,N];

similarly Nab ⊗P ZK = Nab/[Nab,M]. Thus the pushout in dimension 2 is

Mab/[Mab,N]⊕Nab/[Nab,M],

which is easily identifiable as (M ⊲⊳ N)ab, confirming that ∇ preserves this pushout. 2

7.6 Notes

Blakers in [Bla48] defined what he calls a ‘group system’ associated to a (reduced) filtered space,

and which we now call a reduced crossed complex. Thus he gives the definition of ΠX∗ in that case.
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The techniques are used to relate homology and homotopy. Blakers attributes to S. Eilenberg the

suggestion of considering the whole structure.

The idea was also used by J.H.C. Whitehead in his paper [Whi49b], in the case of the skeletal

filtration of CW-complexes, and there called the ‘homotopy system’ of the CW-complex. This paper

contains some profound theorems, and was an inspiration for the work of Brown and Higgins. The

results of our Section 7.5 (which come largely from [BH90]) are intended to give a more general

setting and more detailed analysis of Whitehead’s results in this paper. The section also brings

together results from [Cro61, Cro71], and for the construction of ∇ from [GR80]. Proposition

7.5.25 for the reduced case is due to Whitehead [Whi49b].

It is interesting that the construction of ∂2 in Theorem 7.5.18 was given by Whitehead (in

[Whi49b] in the group case) well before the publication of work of Fox on his free differential

calculus [Fox53], and the relation between the two works seems not to have been generally noticed.

Our Proposition 7.5.21 gives an extension of the exact module sequence of Crowell [Cro61,

Cro71]; see also [ML63, p.120].
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Chapter 8

The Higher Homotopy van Kampen

Theorem (HHvKT) and its

applications

Introduction

Now we turn to the first of our series of homotopical applications of crossed complexes and the

functor

Π : FTop→ Crs,

namely the consequences of a Higher Homotopy van Kampen Theorem (HHvKT).

The statement and many of the applications of the theorem are entirely analogous to those of

the theorem in dimension 2 given in Part I. The method of proof is also analogous to that in Part I,

but is much more complicated algebraically and topologically. So the proof is deferred to Part III.

There are some interesting contrasts between the results of this Part and those in Part I. The

applications in Part I involved crossed modules, a nonabelian structure. Hence those results are

largely unobtainable by traditional methods of algebraic topology.

The applications of the HHvKT in dimensions > 2 involve modules, rather than crossed modules,

over the fundamental group or groupoid, and so are much nearer to traditional results of algebraic

topology. Thus, even though the coproduct Theorem 8.3.5, and the homotopical excision Theorem

8.3.7, do not appear in traditional texts, or papers, they are possibly reachable by methods of sin-

gular homology and covering spaces, using the latter to bring in the operations of the fundamental

group. Handling many base points is less traditional.

However our aim is to show how such results follow in a uniform way by a study of the homo-

topically defined functor Π. Thus the Relative Hurewicz Theorem, a key result in this borderline

between homology and homotopy theory, is seen in a broader context which includes nonabelian

results in dimensions 1 and 2. This has been useful to envisage and prove generalisations which are

nonabelian in all dimensions. We discuss this further in a final chapter on Further Prospects.

The results of this Chapter on the functor Π are crucial for later applications, such as the notion of

classifying space BC of a crossed complex C and the application of this to the homotopy classification

of maps of topological spaces, where the fundamental group or groupoid is involved.

217
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In evaluating these results, and comparing with traditional expositions, it should be borne in

mind that we use subdivision methods, but only cubically, as these may be modeled algebraically in

higher homotopy groupoids. So simplicial approximation is not used, except where we need results

from the theory of simplicial sets. Also we do not use homology theory, except to relate our results

to traditional ones.

It is hoped that this re-vision of basic algebraic topology will suggest wider applications, since

notions of homotopy and deformations are crucial in many areas.

Crossed complexes give in a sense a linear algebraic model of homotopy theory. This limits their

rôle for many problems. On the other hand, as in many areas of mathematics, a linear approximation

can be useful! More general applications also follow once the tensor product of crossed complexes

has been set up and applied in later chapters.

Thus it is hoped that this use of crossed complexes to give a coherent account of this area of

algebraic topology will stimulate further developments.

8.1 HHvKT for crossed complexes

The HHvKT gives a mode of calculation of the fundamental crossed complex functor

Π : FTop→ Crs

from filtered topological spaces to crossed complexes. This functor is defined homotopically, i.e.

in terms of certain homotopy classes of certain maps, and not in terms of any other combinatorial

model of the filtered space. So it is remarkable that we can calculate in this way, starting with simple

information on the trivial values of the functor on simple filtrations of contractible spaces.

An easy consequence of the definition of Π is that it preserves coproducts, which are in these two

categories just disjoint union. This is one of the advantages of the groupoid approach. Much more

subtle is the application to ‘gluing’ spaces, and we approach this concept, as in Part I, Chapter 6,

through the notion of coequaliser.

As we have seen in Chapter 1, the version of the classical van Kampen theorem for the funda-

mental groupoid rather than group gives useful results for non connected spaces, but still requires a

‘representativity’ condition in dimension 0. The corresponding theorem for crossed modules, which

computes certain second relative homotopy groups, as discussed in Chapter 6, also needs a “1-

connected” condition. It is thus not surprising that our general theorem requires a connectivity

condition in all dimensions.

Proposition 8.1.1 For a filtered space X∗ the following conditions (i),(ii) and (iii) are equivalent:

(i) (φ)0: The function π0X0 → π0Xr induced by inclusion is surjective for all r > 0; and, for all i > 1,

(φi) : πi(Xr,Xi, v) = 0 for all r > i and v ∈ X0.

(ii) (φ′
0): The function π0Xs → π0Xr induced by inclusion is surjective for all 0 = s < r and bijective

for all 1 6 s 6 r; and, for all i > 1,

(φ′
i) : πj(Xr,Xi, v) = 0 for all v ∈ X0 and all j, r such that 1 6 j 6 i < r.

(iii) (φ′
0) and, for all i > 1,

(φ′′
i ) : πj(Xi+1,Xi, v) = 0 for all j 6 i, and v ∈ X0.
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The proof is a straightforward argument on the exact homotopy sequences of various pairs and

triples and is omitted.

Definition 8.1.2 We call a filtered space satisfying any of the conditions (i), (ii), (iii) of the previous

proposition connected. 2

Remark 8.1.3 This condition is satisfied in many important cases. The HHvKT will allow us to

construct some new connected filtered spaces as colimits of old ones. In particular, we will prove

that the skeletal filtration of a CW-complex X is a connected filtration.

Note also that the condition π1(Xr,X1, x) = 0 means that any path in Xr joining x to a point in

X1 is homotopic in Xr rel end points to a path in X1. This condition is equivalent to π1(X1, x) →

π1(Xr, x) is surjective. 2

Example 8.1.4 Clearly, a disjoint union of connected filtered spaces is connected.

Now we have set the background to state the HHvKT in the most general form we are going to

use. Its algebraic content is that under some connectedness conditions, the fundamental crossed

complex functor Π preserves certain colimits. Since Π preserves the coproducts in FTop, Crs, and

colimits can be constructed from coproducts and coequalisers, the meat of the theorem is in the

statement on preservation of certain coequalisers.

In order to give background to the statement of the HHvKT, we recall that if the space X is the

union of two open sets U,V then we have a pushout diagram of spaces:

U ∩ V //

��

U

��
V // X

If X is the union of three open sets U,V ,W then we have a diagram

V ∩W

��

{{xx
xx

xx
xx

x

U ∩ V //

��

V

��

U ∩W

yyssssssssss
// W

{{xx
xx

xx
xx

x

U // X

and a map f : X → Y is entirely determined by maps fU, fV , fW defined on U,V ,W, with values in

Y, and which agree on the two fold intersections V ∩W,W ∩U,U ∩ V .

The most general situation of this type is expressed by the notion of coequaliser, which we have

used already in Chapter 6 of Part I. Suppose given a cover U = {Uλ}λ∈Λ of X such that the interiors

of the sets of U cover X. Then we can form the diagram

⊔
ζ∈Λ2 Uζ

a //
b

//
⊔
λ∈ΛU

λ c // X

where c is determined by the inclusions Uλ → X and a,b are determined by the inclusions Uζ →

Uλ,Uζ → Uµ for ζ = (λ,µ) ∈ Λ2. Note that ca = cb, and that a map f :
⊔
λ∈ΛU

λ → Y determines
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uniquely a map f ′ : X→ Y with f ′c = f, if and only if fa = fb. Thus we say that c is a coequaliser of

a,b in the category Top.

Now suppose further that X∗ is a filtered space. For each ζ = (ζ1, · · · , ζn) ∈ Λn we set

Uζ = Uζ1 ∩ · · · ∩Uζn

and consider the induced filtration

Uζ∗ := Uζ0 ⊆ U
ζ
1 ⊆ · · · ⊆ U

ζ

where Uζi = Uζ ∩ Xi for each i ∈ N. Then we have a coequaliser diagram of filtered spaces

⊔
ζ∈Λ2 Uζ∗

a //
b

//
⊔
λ∈ΛU

λ
∗

c // X∗ .

Theorem 8.1.5 (Higher Homotopy van Kampen Theorem) Let X∗ be a filtered space, and U =

{Uλ}λ∈Λ a family of subsets of X whose interiors cover X. Suppose that for every finite intersection

Uζ of elements of U, the induced filtration Uζ∗ is connected. Then

(Conn) X∗ is connected, and

(Iso) in the following Π-diagram of the cover,

⊔
ζ∈Λ2 ΠUζ∗

a //
b

//
⊔
λ∈ΛΠU

λ
∗

c // ΠX∗ ,

c is the coequaliser of a,b in the category Crs of crossed complexes.

Remark 8.1.6 The proof of the theorem will be given in Chapter 15, using the cubical techniques of

ω-groupoids. The conclusion of the theorem on connectivity is important and non trivial. It can be

proved by the deformation arguments given in Part III, without introducing the algebraic category

of ω-groupoids given there. The isomorphism part, which determines ΠX∗ in terms of the pieces

ΠUλ∗ , should be seen as an all dimensional, nonabelian, local-to-global result in homotopy theory.

8.2 Some immediate consequences of the HHvKT

We obtain many usable applications by specialising the HHvKT.

Definition 8.2.1 A filtered space X∗ is reduced if X0 consists of a single point, i.e. X0 = {∗}; then ∗

is taken as base point of each Xn,n > 0, and the relative homotopy groups of X∗ are abbreviated

to πn(Xn,Xn−1). The base point in X0 is nondegenerate if each inclusion X0 → Xn, is a closed

cofibration for all n > 1. 2

Here are a few applications.

8.2.1 Coproducts with amalgamation

Let us consider a covering where any two elements intersect along a fixed subspace X0

Theorem 8.2.2 Let X∗ be a filtered space and suppose:

(i) U = {Uλ}λ∈Λ is a family of subsets of X whose interiors cover X;
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(ii) U0 is a subset of X such that Uλ ∩Uµ = U0 for all λ,µ ∈ Λ such that λ 6= µ;

(iii) U0
∗ and Uλ∗ , λ ∈ Λ are connected filtrations. Then

(Conn) the filtration X∗ is connected, and

(Iso) the following is a coequaliser diagram of crossed complexes:

ΠU0
∗

(aλ)
−→

⊔

λ∈Λ

ΠUλ∗
c
−→ ΠX∗,

where aλ, c are induced by inclusions.

Proof Note that the conditions we give immediately imply the connectivity conditions required

for the theorem. 2

Another consequence gives the homotopy groups of a wedge of spaces.

Corollary 8.2.3 Suppose, in addition to the assumptions of the Theorem, that X∗ is a reduced filtered

space (i.e. X0 is a singleton), and ΠU0
∗ is the trivial crossed complex. Then the morphisms ΠUλ∗ → ΠX∗

induced by inclusions define an isomorphism

∗λΠU
λ
∗ → ΠX∗

from the coproduct crossed complex in Crs∗ to ΠX∗.

8.2.2 Pushouts

In the case of a covering by two open sets we obtain the Higher Homotopy van Kampen Theorem in

the pushout form either directly from Theorem 8.1.5 or as a particular case of Theorem 8.2.2.

Theorem 8.2.4 Let X∗ be a filtered space and suppose:

(i) X is the union of the interiors of U1 and U2;

(ii) U0 = U1 ∩U2;

(iii) U0
∗,U

1
∗,U

2
∗ are connected filtrations. Then

(Conn) X∗ is connected, and

(Pushout) the following diagram of morphisms of crossed complexes

ΠU0
∗

��

// ΠU1
∗

��
ΠU2

∗
// ΠX∗

induced by inclusions, is a pushout diagram in Crs.

This pushout form of HHvKT can be generalised to allow the case when X is the adjunction space

of V and a map f : A→ U.
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Theorem 8.2.5 (The pushout HHvKT for cofibrations) Suppose that the commutative diagram of

filtered spaces

A∗
f //

i

��

U∗

ı

��
V∗

f

// X∗

is such that for n > 0, the maps in : An → Vn are closed cofibrations, An = A ∩ Vn, and Xn is the

adjunction space Un ∪fn
Vn. Suppose also that the filtrations U∗,V∗,A∗ are connected. Then

(Con) X∗ is connected, and

(Iso) the induced diagram

ΠA∗
//

��

ΠU∗

��
ΠV∗

// ΠX∗

is a pushout of crossed complexes.

Proof This is a deduction of standard kind from Theorem 8.3.5 using mapping cylinders. 2

We are going to illustrate the use of Theorem 8.2.5 in several situations. First a direct application

to quotient filtrations.

Theorem 8.2.6 Let V∗ be a filtered space, A ⊆ V , and X = V/A. We define the filtrations A∗, and X∗

by An = Vn ∩ A, and Xn = Vn/An,n > 0. Suppose that each An → Vn is a closed cofibration, and

both A∗,V∗ are connected. Then

(Con) X∗ is connected, and

(Iso) we have a pushout of crossed complexes

ΠA∗
//

i∗

��

0

��
ΠV∗

// ΠX∗.

Proof All we have to do is to apply Π to the diagram

A∗
f //

i

��

{∗}

ı

��
V∗

f

// X∗

that satisfies the conditions of Theorem 8.2.5. 2

Applying to this result the fact that the dimension functors (−)n preserve colimits, we get some

results on homotopy groups. Let us first fix some notation.

Corollary 8.2.7 Let V∗,A∗ and X∗ be filtered space as in Theorem 8.2.6. If V∗ is reduced, then we have

πn(Xn,Xn−1) =
πn(Vn,Vn−1)

N

where N is the π1V1-submodule generated by all elements {u − ua | u ∈ πn(Vn,Vn−1),a ∈ i∗π1A1}

and i∗πn(An,An−1).
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8.3 Results on pairs of spaces: induced modules and relative

homotopy groups

All this Section relates to the case when the filtration is reduced to two stages. The HHvKT in this

setting becomes Theorem 8.3.5 and gives quite easily some computations of homotopy groups of

pairs of spaces and, as consequence, some classical results (the Suspension Theorem, the Brouwer

degree Theorem, and the Relative Hurewicz Theorem). These are basic theorems in homotopy

theory, and it should be noted that we obtain them without the machinery of homology theory.

It will be clear from Part I that a major aspect of this work is to tie in the fundamental group

and higher homotopy groups. This contrasts with previous approaches, where the action of the

fundamental group is often obtained by passing to the universal covering space. It was an aesthetic

objection to this diversion to obtain the fundamental group of the circle which led to the groupoid

work in [Bro06] and so to the present work. It is also unclear at present how to obtain the results

of Part I by covering space methods.

8.3.1 Specialisation to pairs

Although there are important results on pointed pairs of spaces (X,A) we still have to use the case

where A may not be path connected or at any rate has a set of base points, which we will always

write A0. Thus (X,A) with the subset A0 of A will be called a based pair (and a based pair (U,C)

will have set of base points C0).

To relate the homotopy groups of a pair of spaces to the fundamental crossed complex of a

filtered space we associate to a based pair of spaces (X,A) a special filtration as follows:

Definition 8.3.1 For any based pair of spaces (X,A) and dimension n > 2, the filtration En(X,A) of

X associated to the based pair (X,A) is given by

A0

0

⊆ A

1

⊆ · · · ⊆ A

n−1

⊆ X

n

⊆ · · · ⊆ X

r

⊆ · · · ,

i.e. it is A0 in dimension 0, A in dimensions 0 < r < n, and X in dimensions r > n. 2

The fundamental crossed complex of En(X,A) has only two non zero stages: the groupoid in

dimension 1 is π1(A,A0) and the n-dimensional module (crossed module if n = 2) is πn(X,A,A0).

This is the crossed complex we called En(πn(X,A,A0),π1(A,A0)). The following is clear.

Proposition 8.3.2 Consider a based pair (X,A), and suppose n > 2. Then the fundamental crossed

complex Π(En(X,A)) of its associated filtration is the crossed complex

En(πn(X,A,A0),π1(A,A0)) = ( · · · // 0 // πn(X,A,A0)

n

// 0 // · · · // 0 // π1(A,A0)

1

)

associated to the π1(A)-module πn(X,A).

All we need to make that appropriate for use of the HHvKT is to translate the connectivity of

En(X,A) into conditions on the pair (X,A) and see what form the HHvKT takes in this case. The

following is clear.
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Proposition 8.3.3 The filtration En(X,A) associated to a based pair of spaces (X,A) is connected if

and only the induced maps from π0A to π0A and π0X are surjective, and for all x ∈ A0, πi(X,A, x) = 0

for 1 6 i < n.

Note that the condition π1(X,A, x) = 0 means that any path in X from x to a point in A is homotopic

rel end points to a path in A.

Definition 8.3.4 If the conditions in the previous proposition hold, we say the based pair (X,A) is

(n − 1)-connected.

8.3.2 Coproducts with amalgamation

Let us translate Theorem 8.2.2 to the case of pairs.

Theorem 8.3.5 Let (X,A) be a based pair, and suppose:

(i) X = {Xλ}λ∈Λ is a family of subsets of X whose interiors cover X;

(ii) X0 is a subset of X such that Xλ ∩ Xµ = X0 for all λ,µ ∈ Λ such that λ 6= µ;

(iii) for λ = 0 or λ ∈ Λ, the based pairs (X0,A0), (Xλ,Aλ), formed by intersection with X0 and Xλ,

are (n − 1)-connected.

Then:

(Conn) the based pair (X,A) is (n − 1)-connected, and

(Iso) the following is a coequaliser diagram in XMod if n = 2 and in Mod if n > 2 :

(πn(X0,A0,A0),π1(A
0,A0

0))
(aλ)
−→

⊔

λ∈Λ

(πn(Xλ,Aλ,Aλ0 ),π1(A
λ,Aλ0 ))

c
−→ (πn(X,A,A0),π1(A,A0)),

where aλ, c are induced by inclusions.

Remark 8.3.6 In particular, when Λ = {1, 2}, the theorem produces a pushout diagram:

(πn(X0,A0,A0
0),π1(A

0,A0
0))

//

��

(πn(X1,A1,A1
0),π1(A

1,A1
0))

��
(πn(X2,A2,A2

0),π1(A
2,A2

0))
// (πn(X,A,A0),π1(A,A0))

We apply this result in the next subsections to deduce some classical results, including the de-

scription of the fundamental crossed complex of the skeletal filtration of a CW-complex as a free

crossed complex.

8.3.3 Induced modules and homotopical excision

We now specialise the pushout part of the theorem of the previous subsection into an excision result

which has many applications:

Theorem 8.3.7 (Homotopical Excision 1) Let X be the union of the interiors of two subspaces U and

V , and A = U∩V . Suppose also thatU,V ,A are path-connected and (V ,A) is (n−1)-connected. Then:
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(Con) the pair (X,U) is (n − 1)-connected, and

(Iso) for n > 3, πn(X,U) as π1U-module is isomorphic to the module induced from the π1A-module

πn(V ,A) by λ = i1∗ : π1A→ π1U the map given by the inclusion i1 : A→ U, i.e.

πn(X,U) = λ∗πn(V ,A).

Proof This is just Theorem 8.3.5 applied to En−1(X,A). 2

Remark 8.3.8 This should be compared with the excision axiom for relative homology, which in one

form simply says that if X is the union of open sets U,V then the map in homology Hi(U,U ∩ V)→

Hi(U ∪ V ,V) induced by inclusion, is an isomorphism for all i > 0. It is this result which makes

homology calculable. By contrast, this homotopical excision result has connectivity conditions, it

determines only one group, but it also links two groups in separated dimensions, where the lower

one is usually nonabelian.

This theorem applies to give a comparable result, but for closed cofibrations:

Theorem 8.3.9 (Homotopical Excision 2) Suppose that in the commutative square of spaces

A
f //

i

��

U

ı

��
V

f

// X = U ∪f V

the map i is a closed cofibration and X is the adjunction space U ∪f V . Suppose also that U,V ,A are

path-connected and (V ,A) is (n − 1)-connected. Then:

(Con) the pair (X,U) is (n − 1)-connected, and

(Iso) for n > 3, πn(X,U) as π1U-module is isomorphic to the module induced from the π1A-module

πn(V ,A) by the map induced by λ = f∗ : π1A→ π1U, i.e.

πn(X,U) = λ∗πn(V ,A).

Proof This can be obtained either from the previous theorem using mapping cylinder arguments

or directly from Theorem 8.2.5 applied to En−1(X,A). 2

Of course the corresponding results for n = 2, with ‘module’ replaced by ‘crossed module’ are

also true; they have been given in Part I, and a number of consequences of a nonabelian type were

deduced.

Now we give several applications of Theorem 8.3.7, starting with the pair (CA,A) where CA

denotes the cone on the space A. Now CA is contractible and so has zero homotopy groups. By

the homotopy exact sequence of the pair, the boundary map ∂ : πr(CA,A, x) → πr−1(A, x) is an

isomorphism for all x ∈ A. Thus the pair (CA,A) is n-connected if and only if A is (n−1)-connected,

i.e. if A is connected and πr(A, x) = 0 for 1 6 r < n.

First we derive the first n homotopy groups of the n-sphere Sn, using suspension and induction.

Since the suspension is just a quotient of the cone, we can use Theorem 8.3.7 to relate the homotopy

groups of the suspension SA to those of the base A.

Theorem 8.3.10 (The Suspension Theorem) For a spaceA, consider SA the (unreduced) suspension

of A. If A is (n − 2)-connected, for n > 3, then

(Con) SA is (n − 1)-connected and

(Iso) πnSA ∼= πn−1A.
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Proof We define V = CA the cone on A, U = {∗} a point and f the constant map. Then X = U∪fV

is the (unreduced) suspension of A, and we can consider the diagram

A
f //

i

��

{∗}

ı

��
CA

f

// X = SA.

Since A is (n − 2)-connected if and only if (CA,A) is (n − 1)-connected, we can apply Theorem

8.3.7, getting that (X, ∗) is (n − 1)-connected and

πnSA ∼= πn(CA,A).

Using again the homotopy exact sequence of this pair, we have πn(CA,A) ∼= πn−1A. 2

Corollary 8.3.11 (Brouwer Degree Theorem) For n > 1, Sn is (n − 1)-connected and

πn(Sn, 1) ∼= Z.

Proof Recall that in Part I we have seen that if n = 2 and A is a path-connected space then SA is

1-connected and

π2(SA, x) ∼= π1(A, x)ab.

Given the value of π1(S
1, 1) as Z (a result proved in Section 1.7), we deduce π2(S

2, 1) ∼= Z.

The induction step follows easily from the Theorem. 2

This is actually a non elementary result: that the sphere Sn is (n− 1)-connected means that any

map Sr → Sn for r < n is nullhomotopic, while the determination of Π(Sn, 1) includes the Brouwer

degree theorem, that the maps Sn → Sn are classified up to homotopy by an integer, called the

degree of the map. This was one of the early triumphs in homotopy classification results. Proofs of

these results have to use some kind of subdivision argument, often through the route of simplicial

approximation, which we avoid completely.

Corollary 8.3.12 Let En∗ be the skeletal filtration of the n-cell with cell structure E0 = e0,E1 = e0±∪e
1,

and for n > 2, En = e0 ∪ en−1 ∪ en. Then ΠEn∗
∼= F(n), the free crossed complex on one generator of

dimension n, for all n > 0.

Proof This follows from the Brouwer Degree Theorem and the homotopy exact sequence of the

pair(En, Sn−1). 2

Corollary 8.3.13 Let X∗ be a connected filtration, and let Y∗ = X∗∪{enλ } be formed by attaching n-cells

by filtered maps fλ : Sn−1
∗ → X∗, λ ∈ Λ. Then Y∗ is connected, and has fundamental crossed complex

formed from ΠX∗ by attaching free generators xnλ in dimension n.

Proof This follows from the previous corollary and the pushout version of the HHvKT. Note that

in this application, we are using many base points in the disjoint union of copies of n-cells. 2

Corollary 8.3.14 If X is a CW-complex with skeletal filtration X∗, then X∗ is a connected filtration,

and ΠX∗ is the free crossed complex on the classes of the characteristic maps of X.

Proof This follows from the previous corollary by induction on the skeleta of X. 2
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Remark 8.3.15 We note that the use of many base points and so groupoids rather than groups is

not a luxury in these applications. Non reduced CW-complexes occur naturally, for example the

geometric n-simplex, and a non trivial covering space of reduced CW-complex is no longer reduced.

8.3.4 Attaching a cone, and the Relative Hurewicz Theorem

We see what Theorem 8.3.7 implies in the case when we are attaching a cone CA via a map of the

space A.

Proposition 8.3.16 Let X = U ∪f CA for some map f : A→ U. For any n > 3, if U is path connected

and A is (n − 2)-connected, then

(Con) (X,U) is (n − 1)-connected and

(Iso) the π1(U)-module πn(X,U) is isomorphic to the induced module λ∗(πn−1(A)), i.e.

πn(X,U) ∼= πn−1A⊗ Z(π1U).

2

A consequence is the effect of attaching n-cells on some of the homotopy groups of a space.

Exercise 8.3.17 Let A,B,U be path-connected, based spaces. Let X = U∪f(CA×B) whereCA is the

(unreduced) cone on A and f is a map A×B→ U. The homotopy exact sequence of (CA×B,A×B)

gives

πi(CA× B,A× B) ∼= πi−1A, i > 2, and π1(CA× B,A× B) = 0.

Suppose now that n > 2 andA is (n−2)-connected. Then π1A = 0. We conclude from Theorem 8.3.7

that (X,U) is (n − 1)-connected and πn(X,U) is the π1U-module induced from πn−1A, considered

as trivial π1B-module, by λ = f∗ : π1B→ π1U. Hence πn(X,U) is the π1U-module

πn−1A⊗Z(π1B) Z(π1U).

2

Now we deduce a version of the classical relative Hurewicz Theorem.

Theorem 8.3.18 (Relative Hurewicz Theorem) Let (V ,A) be a pair of spaces. Suppose n > 3, A

and V are path connected and (V ,A) is (n− 1)-connected. Then

(Con) V ∪CA is (n− 1)-connected, and

(Iso) the natural map

πn(V ,A, x)→ πn(V ∪CA,CA, x)
∼=
−→ πn(V ∪ CA, x)

presents πn(V ∪ CA, x) as πn(V ,A, x) factored by the action of π1(A, x).

Proof Let X = V ∪ CA. We would like to apply Theorem 8.3.5 to the diagram of inclusions

A //

��

CA

ı

��
V

f

// X = V ∪CA

but the subspaces do not satisfy the interior condition. We change the subspaces to A ′ = A× [0, 1
2
[⊆

CA and V ′ = V ∪ A ′. Those subspaces have the same homotopy type as A and V (moreover the
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pair (V ′,A ′) has the homotopy type of (V ,A)) and we can apply Theorem 8.3.5 to the diagram of

inclusions

A ′ //

��

CA

ı

��
V ′

f

// X = V ∪ CA

This yields that X is (n − 1)-connected, and that

πn(X,CA) = λ∗πn(V ,A),

the module induced from the π1A-module πn(V ,A) by λ = f∗ : π1A→ π1CA = 0.

It follows, since π1CA = 0, that λ∗πn(V ,A) is obtained from πn(V ,A) by killing the π1A-action.

(If n = 2 that would give the abelianisation).

To finish, note that using that CA is contractible, we get that πr(X,CA, x) is isomorphic to

πr(X, x), by the homotopy exact sequence of the pair. 2

The usual forms of the Hurewicz Theorem involve homology groups, which lie outside the main

scope of this book, although many readers will be well familiar with them. Here we make a few

remarks to give a brief account of the relation between the to approaches.

The homology functors Hn, n > 0, assign to any topological space A or pair of spaces (V ,A)

abelian groups Hn(A), Hn(V ,A) such that: there is a natural exact sequence

· · · → Hn+1(V ,A)
∂
−→ Hn(A)→ Hn(V)→ Hn(V ,A)→ Hn−1(A)→ · · · ;

if A is a point then H0(A) ∼= Z; and the excision and homotopy axioms, which we do not state here,

hold. These axioms imply that the boundary ∂ : Hn+1(E
n+1, §n) → Hn(§n) is an isomorphism; it

follows by induction that Hn(§n) ∼= Z for n > 0. Choose a generator ιn of this group, giving a

generator, also written ιn+1, of Hn+1(E
n+1, §n). The Hurewicz morphisms

ωn : πn(A, x)→ Hn(A), ωn+1 : πn+1(V ,A, x)→ Hn(V ,A)

are then defined by sending the class of a map f in such a homotopy group to f∗(ι
n), f∗(ι

n+1) where

f∗ is the induced map in homology. This leads to a morphism from the exact homotopy sequence of

a pair to the exact homology sequence,which we use in the next theorem.

We have the following:

Theorem 8.3.19 (Absolute Hurewicz Theorem) If X is an (n−1)-connected space, then the Hurewicz

morphism ωi : πi(X, x)→ Hi(X) is an isomorphism for 0 6 i 6 n and an epimorphism for i = n + 1.

We shall outline a proof of this result in Theorem 14.7.9. The use of filtered spaces is quite appro-

priate for this proof, and follows the lines of some classical papers.

The usual version of the Relative Hurewicz Theorem involves not πn(V ∪CA, x) but the homology

Hn(V ,A). It is possible to get this more usual version from the one we have just proved in a three

stage process.

First, notice that, given the conclusion of our theorem, that V ∪ CA is (n − 1)-connected, then

πn(V ∪ CA, x) is isomorphic to Hn(V ∪CA) by the absolute Hurewicz Theorem.

Then it is easy to prove that Hn(V ∪ CA) is isomorphic to Hn(V ∪ CA,CA) by the homology

exact sequence, using that CA is acyclic because it is contractible.
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Last, we notice that, by excision, the morphism induced by inclusion Hn(V ,A) → Hn(V ∪

CA,CA) is an isomorphism.

Here is another corollary of the Relative Hurewicz Theorem, which assumes a bit more on the

Hurewicz morphism from homotopy to homology. We call it Hopf’s theorem, although he gave only

the case n = 2.

Proposition 8.3.20 (Hopf’s theorem) Let (V ,A) be a pair of pointed spaces such that:

(i) πi(A) = 0 for 1 < i < n;

(ii) πi(V) = 0 for 1 < i 6 n;

(iii) the inclusion A→ V induces an isomorphism on fundamental groups.

Then the pair (V ,A) is n-connected, and the inclusion A → V induces an epimorphism HnA → HnV

whose kernel consists of spherical elements, i.e. of the image of πnA under the Hurewicz morphism

ωn : πn(A)→ Hn(A).

Proof That (V ,A) is n-connected follows immediately from the homotopy exact sequence of the

pair (V ,A) up to πn(V). We now consider the next part of the exact homotopy sequence and its

relation to the homology exact sequence as shown in the commutative diagram:

πn+1(V ,A)

ωn+1

��

∂ // πn(A)

ωn
��

// πn(V)

��

// πn(V ,A)

��
Hn+1(V ,A)

∂ ′
// Hn(A)

i∗
// Hn(V) // Hn(V ,A)

The Relative Hurewicz Theorem implies that Hn(V ,A) = 0, and that ωn+1 is surjective. Also ∂ in

the top row is surjective, since πn(V) = 0. It follows easily that the sequence πn(A) → Hn(A) →

Hn(V)→ 0 is exact. 2

8.4 The chain complex of a filtered space and of a CW-complex.

In this section we identify for certain filtered spaces X∗ the chain complex ∇ΠX∗ in terms of chains

of universal covers.

All spaces which arise will now be assumed to be Hausdorff and to have universal covers. Recall,

[Bro06, 10.5.8], that if X is a topological space and v ∈ X then the universal coving map p : X̃(v)→

X, can be constructed by topologising the fundamental groupoid π1(X) and considering the final

point map t : π1X→ X, writing

X̃(v) = t−1(v)

and identifying p with the initial point map s. This space has a canonical base point, 1v ∈ π1X.

These spaces form a bundle over X on which π1X operates by composition, but not preserving the

base point.

Let X∗ be a filtered space. For v ∈ X0, i > 0, let X̂∗(v) denote the filtered space consisting of X̃(v)

and the family of subspaces

X̂i(v) = p−1(Xi).
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Definition 8.4.1 We define for a filtered space X∗ the chain complex with operators CX∗ to have

CiX∗(v) = Hi(X̂i(v), X̂i−1(v)), C0X∗ = H0(X̂0(v)),

for all , v ∈ X0, i > 1, and to have groupoid of operators π1(X,X0) with operation induced by the

bundle operations given above. This defines the functor fundamental chain complex of a filtered space

C : FTop→ Chn.

Proposition 8.4.2 If X∗ is a connected filtered space, then

CX∗ = ∇ΠX∗.

Proof Notice that, in this case, X̂i(v) is the universal cover of Xi based at v for i > 2.

We will use the Relative Hurewicz Theorem 8.3.18.

Let v ∈ X0 and let i > 3. The pair (X̂i(v), X̂i−1(v)) is (i − 1)-connected, and X̂i−1(v)) is simply

connected, and so

πi(Xi(v),Xi−1, v) ∼= πi(X̂i(v), X̂i−1(v), 1v) since p is a covering,

∼= Hi(X̂i(v), X̂i−1(v)) by the relative Hurewicz theorem,

since X̂i(v) and X̂i−1(v) are in fact the universal covers at v of Xi and Xi−1 respectively. If i = 2, a

similar argument applies but in this case π1(X̂1, v) = δπ2(X̂2(v), X̂1(v), 1v). So the relative Hurewicz

theorem in dimension 2 (Theorem 5.5.2) now gives

H2(X̂2(v), X̂1(v)) ∼= π2(X̂2(v), X̂1, 1v)
ab

∼= π2(X2,X1, v)
ab

= (∇ΠX∗)2.

The case i = 1 is essentially the result of Crowell [Cro71, Section 5]. For another sketch proof, we

can use the result of Exercises ?? on the abelianisation of π1(X,X0), and the result of our Exercise

7.5.27 giving a description of the derived module in terms of an abelianisation of a groupoid. 2

Corollary 8.4.3 Let X∗ be a filtered space and suppose that X is the union of a family U = {Uλ}λ∈Λ of

open sets such that U is closed under finite intersection. Let Uλ∗ be the filtered space obtained from X∗

by intersection with Uλ. Suppose that each Uλ∗ is a connected filtered space. Then X∗ is connected and

the natural morphism in Chn

colimλCUλ∗ → CX∗

is an isomorphism.

Proof This is an easy consequence of the HHvKT 8.1.5 which gives a similar result for Π rather

than C. Then we apply ∇ which has a right adjoint and so preserves colimits. 2

We note that results such as this have been used by various workers ([Lom81, PS85]) in the case

X∗ is the skeletal filtration of a CW-complex and the family U is a family of subcomplexes, although

usually in simple cases. The general form of this ‘Van Kampen Theorem’ for CX∗ does not seem to

have been noticed, and this is probably due to the unfamiliar form of colimits in the category Chn of

chain complexes over varying groupoids. Even in the group case these colimits are not quite what

might be expected (see Example 7.5.31).



Chapter 9

Tensor products and homotopies of

crossed complexes

This Chapter is built around the notion of monoidal closed category, and on the use of such a structure

on the category Crs of crossed complexes.

This monoidal closed structure for the category Crs gives a natural ‘exponential law’ of a natural

isomorphism

e : Crs(C⊗D,E) ∼= Crs(C, CRS(D,E)),

for crossed complexes C,D,E. Here ‘monoidal’ refers to the ‘tensor product’ C⊗D and ‘closed’ refers

to the ‘internal hom’ CRS(D,E). The elements of CRS(D,E) may be written out explicitly – they are

morphisms D → E in dimension 0, homotopies of morphisms in dimension 1, and ‘higher homo-

topies’ for n > 1. One advantage of this procedure is that we can use crossed complex techniques

not only on filtered spaces but also on maps and homotopies of filtered spaces.

For C⊗D we can give in the first instance only generators c⊗ d, c ∈ Cm,d ∈ Dm,m,n > 0 and

the structure and axioms on these.

This will raise conceptual difficulties for those not used to the ideas, and in the case of crossed

complexes it also raises technical difficulties, since there is an elaborate set of formulae for the so

called ‘tensor product’. So we shall give some background and introduction in Section 9.1.

Sometimes we use a formal description of this monoidal closed structure on the category of

crossed complexes, but the fact that we can if necessary get our hands dirty, that is write down some

complex formulae and rules and calculate with them, is one of the aspects of the theory that gives

power to the category of crossed complexes.

The complication of the rules for the tensor product is due to their modeling the geometry of the

product of cells. It is important to get familiar with these formulae for the tensor product as they

will be used frequently in the applications of this and the next few chapters.

The natural way to be sure this structure exists is not to define it directly, but through the equiv-

alence with the category of ω-groupoids and the natural definition of tensor product and internal

hom in that category. This ensures that the definitions for the category Crs will work, and this we do

in Chapter 15. Here, we state directly the Definition that results from this detour, risking that this

could make the rules for the tensor product in Crs seem too awkward.

We give a direct description of C ⊗ D first of all in dimensions 1 and 2, in subsections 9.4.1,

9.4.2. Then we use the monoidal closed structure on the category Chn of chain complexes with a

231
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groupoid of operators, in order to get a clearer description of (C⊗D)n for n > 2 as (∇C ⊗∇D)n.

As an introduction to the crossed complex case, and because we need this example, we describe

in Section 9.2 the structure of monoidal closed category for the category Mod of modules over

groupoids. This gives a natural equivalence in Mod

Mod((M⊗N,G×H), (L,K)) ∼= Mod((M,G), MOD((N,H), (L,K)).

Then in Section 9.3 we define CRS(D,E) by defining the elements of CRSn(D,E) (with special

emphasis on the homotopies CRS1(D,E)). The rules for addition, action and boundaries are related

to the geometry associated to the free crossed complexes.

Analogously to the development of the tensor product for R-modules indicated above, the set of

morphisms of crossed modules

C→ CRS(D,E)

is bijective to the set of ‘bimorphisms’

(C,D)→ E,

where these bimorphisms play for crossed complexes the same role that bilinear maps play for

modules.

Then, we can form the tensor product of crossed modules, as in the case of R-modules, by taking

free objects and quotienting out by the appropriate relations.

We end the algebraic part of this Chapter by proving in Section 9.6 the important result that the

tensor product preserves freeness. This uses crucially the adjoint relation of the tensor product to

the internal hom.

The second part of the Chapter deals with the topological applications, namely relations between

the monoidal closed category of Crs and the fundamental crossed complex functor

Π : FTop→ Crs.

We start by giving in Section 9.7 a structure of monoidal closed category to FTop the category of

filtered topological spaces and filtered maps that is a straightforward generalisation of the cartesian

closed category structure of Top already mentioned in this introduction.

The way the two structures of monoidal closed category on FTop and Crs are related is explained

in Section 9.8. As before, we leave the proofs for Chapter 15 to Part III of the book. The main result

is Theorem 9.8.1 stating how the functor Π behaves with respect to tensor products. In particular, if

X∗, Y∗ are filtered spaces, then there is a natural transformation

θ : Π(X∗)⊗ Π(Y∗)→ Π(X∗ ⊗ Y∗)

which is an isomorphism if X∗, Y∗ are CW-complexes.

The tensor product in the categories FTop and Crs allows homotopies to be interpreted in these

categories as maps from a ‘cylinder functor’ which in FTop is of the form I∗⊗−. Thus an immediate

consequence of Theorem 9.8.1 is that the fundamental crossed complex functor Π is a homotopy

functor. This, and the analysis of the cone of a crossed complex, leads in Section 9.9 to computations

on the fundamental crossed complex of an n-simplex providing a version of the simplicial Homotopy

Addition Lemma (Theorem 9.9.4). A similar result is true for n-cubes giving a cubical Homotopy

Addition Lemma (Proposition 9.9.9).
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9.1 Some exponential laws in topology and algebra

The start of the idea of a monoidal closed category is that a function of two variables f : R×R→ R
can also be regarded as a variable function of one variable. This is the basis of partial differentiation.

In general, this transforms into the idea that if ZY denotes the set of functions from the set Y to the

set Z, then we have a bijection of sets

e : ZX×Y → (ZY)X

given by

e(f)(x)(y) = f(x,y), x ∈ X,y ∈ Y.

This corresponds to the exponential law for numbers mnp = (mn)p, and so the previous law is

called the exponential law for sets.

Because there is a bijection X× Y → Y × X this also means we can set up bijections between the

three set of functions

X→ ZY , Y → ZX, X× Y → Z.

This becomes particularly interesting in its interpretation when Y = I = [0, 1], the unit interval,

since the functions I → Z can be thought of as paths in Z, and so the set of these functions is a

kind of space of paths; in practice we will want to have topologies on these sets and speak only of

continuous functions, but let us elide over that for the moment.

The functions X → Z we can intuitively call ‘configurations of X in Z’. A function X × I → Z

we can think of as a deformation of configurations. This can be seen alternatively as a path in the

configuration space ZX, or as a configuration X → ZI in the path space of Z. These alternative

points of view have proved strongly useful in mathematics.

It is useful to rephrase the exponential law slightly more categorically, so as make analogies for

other categories, so we write it also as a bijection

e : Set(X× Y,Z) ∼= Set(X, SET(Y,Z)).

Here the distinction between Set and SET, i.e. between external and internal to the category, is less

clear than it will be in our other examples.

Now suppose that X, Y,Z are topological spaces, and Top(Y,Z) denotes the set of continuous

maps Y → Z. We would like to make this set into a topological space TOP(Y,Z) so that the expo-

nential correspondence gives a natural bijection

Top(X× Y,Z) ∼= Top(X, TOP(Y,Z)).

However this turned out not to be possible for all topological spaces, and in the end a reasonable

solution was found by restricting to what are called ‘compactly generated spaces’, and working

entirely in the category of these spaces. In this book Top will mean the category of compactly

generated spaces. An account of this category is given by Brown in [Bro06], and we assume this to

be known. The existence of the exponential law as above is summarised by saying that the category

Top is a cartesian closed category. Here ‘cartesian’ refers to the fact that we use the categorical

product in the category, and ‘closed’ means that there is a space TOP(Y,Z) for all spaces Y,Z in the

category Top. The space TOP(Y,Z) is also called the internal hom in Top.

It is a deduction from the exponential law that there is also a natural homeomorphism

TOP(X× Y,Z) ∼= TOP(X, TOP(Y,Z)).
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We leave the proof of this to the reader.

There are a couple of special characteristics to this example. First, the underlying set of the space

TOP(Y,Z) is the set Top(Y,Z), but for other exponential laws there is no reason why this should be

so. We shall come later to this point.

Second, the product we are using is the categorically defined product in the category. There are

analogous laws which do not involve the cartesian product in the category.

For example, if ModR denotes the category of left modules over a commutative ring R with

morphisms the R-linear maps, then we can for R-modules M,N form an R-module structure on the

set ModR(M,N) to form an R-module which we write MODR(M,N). This we call the internal hom

in the category ModR.

For another R-module L we can then consider

ModR(L, MODR(M,N)).

However this set is bijective with the set of R-bilinear maps (L,M) → N, by which is meant the

functions L×M→ N which are linear in each variable. Then we have an exponential law

BiLinR((L,M);N) ∼= ModR(L, MODR(M,N)),

where the left hand side denotes the set of bilinear maps.

A standard construction is the ‘universal bilinear map’ (L,M)→ L⊗RM so as to obtain a natural

bijection

BiLinR((L,M);N) ∼= ModR(L ⊗RM,N)

and hence a natural bijection

ModR(L⊗RM,N) ∼= ModR(L, MODR(M,N)).

However the tensor product construction, i.e. the bifunctor,

−⊗R − : ModR ×ModR → ModR,

does not give a categorical product in the category ModR. To describe this situation, category theo-

rists have developed the notion of monoidal closed category.

The exponential law is an adjoint relationship. In the last situation it states that for all M the

functor −− ⊗RM is left adjoint to MODR(M, −−). This has some immediate consequences on the

preservation of colimits and limits by these functors, and these consequences are valuable.

IfM,N are left R-modules, then M⊗RN can be constructed as the free R-module F on elements

m⊗ n for m ∈M,n ∈ N factored by the relations

(m +m ′)⊗ n = (m⊗ n) + (m ′ ⊗ n),

m⊗ (n + n ′) = (m⊗ n) + (m⊗ n ′),

rm⊗ n = m⊗ rn,

for all m,m ′ ∈M,n,n ′ ∈ N, r ∈ R.

Notice that the two first families of relations have some consequences like

m⊗ 0 = 0⊗ n = 0

(−m)⊗ n = m⊗ (−n) = −(m⊗ n)
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while the third family of relations can be used to define an structure of R-module by the action

r(m⊗ n) = rm⊗ n = m⊗ rn.

This gives as a consequence the linearity on both variables of the tensor product

(rm + r ′m ′)⊗ n = r(m⊗ n) + r ′(m ′ ⊗ n),

m⊗ (sn + s ′n ′) = s(m⊗ n) + s ′(m⊗ n ′).

An important feature is the universal bilinear map

M×N→M⊗R N

given by (m,n) 7→ m⊗ n.

By the given construction, an element of M ⊗R N is an R-linear combination of decomposable

elements of the form m ⊗ n. In general, it is not quite so obvious what are the actual elements of

M⊗R N for specific M,N,R. Nonetheless, the tensor product of R-modules plays an important role

in module theory. One reason is that whereas a bilinear map does not have a defined notion of

kernel, a morphism M ⊗R N → P to an R-module P does have a kernel. This process of using a

universal property to replace a function with complicated properties by a morphism is a powerful

procedure in mathematics.

Both as a reminder of and as an introduction to the more involved crossed complex case, this

process is described in Section 9.2 for the category Mod of modules over groupoids.

The main part of this Chapter revolves around the monoidal closed category structure of Crs.

The way to be sure that the definition we gives is natural and convenient, and works, is to define it

through the equivalence of the category Crs with the category of ω-groupoids, and the natural defi-

nition of monoidal closed structure on that category. That is the procedure of Chapter 15. Here, we

state directly the Definition that results from this construction, even if this could make the definition

of the internal hom and tensor product in Crs seem somehow artificial. Nevertheless, it is important

to get acquainted soon with the formulae for the tensor product because this structure, and the way

it reflects certain geometry, is one of the features that gives crossed complexes considerable power.

This structure will be used frequently in the applications of the next few chapters.

First a few words relating the closed category structure with homotopy. We have already ob-

served that in any crossed complex C, the set of n-dimensional elements Cn is bijective to the set

of morphisms of crossed complexes Crs(F(n),C), where F(n) is the free crossed complex on one

generator of dimension n (see Remark following Definition 7.4.8).

A monoidal closed category structure on Crs is given by a tensor product of crossed complexes

−⊗− construction, an internal hom construction CRS(−, −), which is going to be a crossed complex

having Crs(−, −) as set of objects, and a natural isomorphism

Crs(C⊗D,E) ∼= Crs(C, CRS(D,E)),

for all crossed complexes C,D,E. When we take C = F(n), we have

Crs(F(n)⊗D,E) ∼= Crs(F(n), CRS(D,E)) ∼= CRSn(D,E)

So, the elements of CRSn(D,E) can be seen as ‘n-fold left homotopies’ D→ E. In particular, for

n = 1, we may define the set of homotopy classes of morphisms of crossed complexes and prove

[D,E] = π0(CRS(D,E)).
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9.2 Monoidal closed structure on Mod.

There are well known definitions of tensor product and internal hom functor for Abelian groups

(without operators). If one allows operators from arbitrary groups the tensor product is easily

generalised, with the tensor product of a G-module and an H-module being a (G × H)-module.

However, the adjoint construction of internal hom functor does not exist, basically because the

group morphisms from G to H do not form a group. To rectify this situation we allow operators

from arbitrary groupoids, rather than groups, and we give a discussion of the monoidal closed

category structure of Mod the category of modules over groupoids introduced in Definition ??.

As is customary, we write M for the G-module (M,G) when the operating groupoid G is clear

from the context. Also, to simplify notation, we will assume throughout this chapter that the Abelian

groups M(x) for x ∈ G0 are all disjoint; any G-module is isomorphic to one of this type.

In many of our categories, it will be easier to describe internal homs explicitly, than the corre-

sponding tensor product. We illustrate this by describing the internal hom structure in the category

Mod.

First note that in the Appendix B we describe an internal hom groupoid GPDS(G,H) in the cate-

gory Gpds, whose objects are functors f : G→ H and whose morphisms are natural transformations

φ : f → f ′. Notice also that these natural transformation φ are given by a family {φ(x)}x∈G0
where

φ(x) ∈ H(f(x), f ′(x)) and the diagram

f(x)
φ(x) //

f(g)

��

f ′(x)

f′(g)

��
f(y)

φ(y)

// f ′(y)

commutes for all g ∈ G(x,y).

Definition 9.2.1 Let (M,G), (N,H) be modules. To construct the internal hom MOD((M,G), (N,H))

we consider the set of morphisms of modules

Mod((M,G), (N,H)) = {(θ, f) : (M,G)→ (N;H) | (θ, f) is a morphism of modules}

and we have to give this set the structure of module over a groupoid. Notice that θ is given by a

family {θ(x)}x∈G0
where

θ(x) : M(x)→ N(f(x))

are group morphisms satisfying θ(x)(mg) = θ(x)(m)f(g).

For a fixed functor f : G→ H, we define the set of morphisms of modules over f,

Mod((M,G), (N,H))(f) = {(θ, f) : (M,G)→ (N;H) | (θ, f) is a morphism of modules}

It is easy to see that each Mod((M,G), (N,H))(f) forms an Abelian group under element-wise addi-

tion, so all morphisms Mod((M,G), (N,H)) form a family of Abelian groups indexed by the set of

objects of the groupoid GPDS(G,H).

MOD((M,G), (N,H)) = {Mod((M,G), (N,H))(f)}f∈Gpds(G,H).

It remains to describe the action of GPDS(G,H) on MOD((M,G), (N,H)), i.e. for each f, f ′ ∈

Gpds(G,H) we need a map

Mod((M,G), (N,H))(f) × GPDS(G,H)(f, f ′)→ Mod((M,G), (N,H))(f ′)
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So let θ be such that (θ, f) is a morphism of modules and let φ : f→ f ′ be a natural transformation.

We define

(θ, f)φ = (θφ, f ′)

where θφ is a family of morphisms

θφ(x) : M(x)→ N(f ′(x)),

where x ∈ G0 and θφ(x) is defined as the composition

M(x)
θ(x)
−→ N(f(x))

( −)φ(x)

−→ N(f ′(x)),

i.e. θφ(x)(m) = (θ(x)(m))φ(x). They give a morphism because

θφ(x)(mg) = (θ(x)(mg))φ(x) = (θ(x)(m))f(g)φ(x) = (θ(x)(m))φ(x)f′(g) = (θφ(x)(m))f
′(g).

It is not difficult to prove that this definition satisfies the properties of an action giving a structure

of module

MOD(M,N) = (Mod((M,G), (N,H)), GPDS(G,H))

which is the internal hom functor in Mod. 2

It is quite straightforward to see that, as in the group case, we can characterise the elements of

this internal hom functor in terms of ‘bilinear’ maps.

Definition 9.2.2 A bilinear map of modules over groupoids (M,G) × (N,H) → (P,K) is given by a

pair of maps (θ, f) where f : G × H → K is a map of groupoids and θ : M × N → P is given by a

family of bilinear maps θ(x,y) : M(x)×N(y)→ P(f(x,y)) which preserve actions, i.e.

θ(x,y)(mg,nh) = (θ(x,y)(m,n))f(g,h).

2

Proposition 9.2.3 There is a natural bijection between bilinear maps M ×N → P and morphisms of

modules from M to MOD(N,P)).

Proof Let us consider an element (θ, f) ∈ Mod(M, MOD(N,P)) then we can define

f̂(x,y) = f(x)(y) and θ̂(m,n) = θ(m)(n).

It is easy to see that (θ̂, f̂) is a bilinear map and that this assignation is a natural bijection. 2

Now the tensor product as just defined is the one that transforms these bilinear maps into mor-

phisms of modules.

Definition 9.2.4 The tensor product in Mod of modules (M,G), (N,H) is the module

(M⊗N,G×H)

where, for x ∈ G0, y ∈ H0, (M⊗N)(x,y) = M(x)⊗Z N(y) and the action is given by

(m⊗ n)(g,h) =mg ⊗ nh.

2
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Remark 9.2.5 The module M⊗N is the (G×H)-module generated by all elements

{m⊗ n | m ∈M,n ∈ N}

subject to the relations

(m +m ′)⊗ n = (m⊗ n) + (m ′ ⊗ n),

m⊗ (n + n ′) = (m⊗ n) + (m⊗ n ′),

(m⊗ n)(g,h) =mg ⊗ nh.

Thus to define a morphism M⊗N→ P all we need is a bilinear map M×N→ P. 2

Proposition 9.2.6 There is a natural bijection between bilinear maps M ×N → P and morphisms of

modules from M⊗N to P.

Proof Let us consider a bilinear map (θ, f) : M×N→ P. Then we can define

f̂(x,y) = f(x)(y) and θ̂(m⊗ n) = θ(m,n).

It is easy to see that (θ̂, f̂) is a morphism of modules ant that this assignation is a natural bijection. 2

The tensor product gives the category Mod a symmetric monoidal structure with unit object the

module (Z, 1), where 1 denotes the trivial group seen as a groupoid.

Let us see that both the tensor product and the internal morphisms just defined give Mod the

structure of symmetric monoidal closed category.

Proposition 9.2.7 There is a natural bijection

MOD(L⊗M,N) ∼= MOD(L, MOD(M,N)).

Proof It is straightforward to verify the natural bijection

Mod(L⊗M,N) ∼= Mod(L, MOD(M,N)),

where L is a G-module.

These families of groups are modules over GPDS(G × H,K) ∼= GPDS(G, GPDS(H,K)) and the

actions agree, giving a natural isomorphism of modules

MOD(L⊗M,N) ∼= MOD(L, MOD(M,N)).

2

Should not symmetry be checked?

9.3 Monoidal closed structure on Crs

Analogously to the way the internal morphisms gave a correspondence from morphisms in the in-

ternal hom construction to bilinear maps and then to morphisms of the tensor product, as in

ModR(C⊗D,E) ∼= ModR(C, MODR(D,E)),

so we obtain an internal hom CRS(D,E) for crossed complexes D,E as part of an exponential law

Crs(C⊗D,E) ∼= Crs(C, CRS(D,E)),
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for crossed complexes C,D,E where the internal hom CRS(D,E) is of course again a crossed com-

plex. Crossed complexes have structure in a range of dimensions, whereas R-modules have structure

in just one dimension, so the description of the internal hom in Crs has to be much more compli-

cated than that in ModR, and indeed this complication is part of its value in modeling complicated

geometry.

We define the internal hom for crossed complexes as giving a ‘home’ for the notion of ‘higher di-

mensional homotopy’, and then explain the tensor product for crossed complexes. This necessitates

defining the notion of bimorphism

b : (C,D)→ E

for crossed complexes C,D,E, so that such bimorphisms correspond exactly to morphisms C →

CRS(D,E).

The algebraic properties of bimorphisms are quite complicated, but also reflect some important

geometric properties, namely the cellular subdivision of products Em × En of cells Em. Here we

have

E0 = {1}, E1 = e0± ∪ e
1, Em = e0 ∪ em−1 ∪ em, m > 2,

where e0− = −1, e0+ = 1. Thus in general the product of these cells has a cell structure with 9 cells.

The picture for the cylinder E1 × E2 is as follows.

[Cylinder picture, horizontally for E1 direction]

We cannot draw the picture for E2 × E2, but that structure contains two solid tori, one of which

is pictured as follows

[torus picture]

and which can be seen as the above cylinder with the two ends identified. Note that the boundary

of E2 × E2 is homeomorphic to a 3-sphere. This can be represented as the set of points (x,y, z,w) ∈

R4 such that x2 + y2 + z2 + w2 = 1 and one of the solid tori is represented by the subset of S3 of

points such that

x2 + y2 6 1/2, whence z2 +w2 > 1/2.

The corresponding algebraic expression for the boundary of the solid cylinder e1 × e2 should

involve the cells e1×e1, e0−×e
2, e0+×e

2. Our conventions set the base point of the cylinder at (1, 1),

i.e. at the ‘top’ end of the cylinder. In the end we take the boundary to be

δ(e1 × e2) = −(e1 × e1) − (1× e2) + (−1× e2)e
1×1,

where the conventions as to sign and order of the terms come from some other considerations which

we explain later. When we come to take the boundary in the solid torus in E2 × E2 we get a similar

formula, except that now −1× e2, 1× e2 are identified to 1× e2 and so the formula becomes

δ(e1 × e2) = −(e1 × e1) − (1 × e2) + (1 × e2)e
1×1,

which relates to our picture of the solid torus.

Another complication is when we glue two cylinders together as in

[gluing picture].

The base point of the whole cylinder is at the right hand end, but the base point of the first

cylinder is half way along. Thus the algebraic formulae have to reflect this.

Finally, we have to distinguish the formulae for Em × En for m,n odd, even, and equal to 0,1,or

> 2.
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All these complications are reflected in the notion of a bimorphism given in subsection 8.3.3.

They imply quite different formulae for the operations on c ⊗ d for the dimensions of c or d being

0, 1 or > 2.

9.3.1 The internal hom structure in Crs

Recall from the introduction to this Chapter, that the elements of CRSn(C,D) can be seen as n-fold

homotopies

F(n)⊗ C→ D

reflecting the geometry of F(n). In particular, F(1) = I is the unit interval, giving a cylinder con-

struction.

An advantage of this viewpoint is that the elements of the internal hom crossed complex CRS(B,C)

in dimension n have a nice interpretation. What is not so clear is that these elements taken alto-

gether can be given the structure of crossed complex.

This difficulty is overcome in Chapter 15 in Part III by working with a different but equivalent

structure, that of ω-groupoids, which is based on cubes.

So in this section, our aim is not to give the full justification of the results, but hope to explain

their intuitive content. We begin the definition of CRS(C,D) from the bottom dimension upwards.

In dimension 0, CRS(C,D)0 is a set defined as

CRS0(C,D) = Crs(C,D).

For dimension 1, we use the concept of left (1-)homotopy, which has many points of contact with

the concept of homotopy between morphisms of chain complexes.

Definition 9.3.1 Let C,D be crossed complexes and let

f0, f1 : C→ D

be morphisms of crossed complexes (i.e. elements of CRS0(C,D)). A left (1-)homotopy from f0 to f1

H : f0 ∼ f1

is a “map of degree 1 from C to D over f00 starting at f0 and ending at f1”. Here is the definition of

this term.

1.- “a map of degree 1” from C to D

For each n > 0, we have a map

Hn : Cn → Dn+1.

This sequence of maps can be written

· · · // Cn+1

δn+1 //

Hn+1

}}zz
zz

zz
zz

zz
zz

Cn
δn //

Hn

||zz
zz

zz
zz

zz
zz

Cn−1

δn−1 //

Hn−1

||zz
zz

zz
zz

zz
zz

· · ·
δ3 // C2

δ2 //

H2

~~}}
}}

}}
}}

}}
}

C1

H1

~~}}
}}

}}
}}

}}
}

s,t // C0

H0

~~}}
}}

}}
}}

}}
}

f0

��
· · · // Dn+1

δn+1 // Dn
δn // · · ·

δ4 // D3

δ3 // D2

δ2 // D1

s,t // D0

2.- All Hn for n > 0 have to be “over f00”, i.e. Hn is a family of maps {Hn(x)}x∈C0
as follows:
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• In dimension 0, for each x ∈ C0, H0(x) connects f0 and f1, i.e.

H0(x) : f10x→ f00x

• For n > 1, the map is over f00, i.e., for each x ∈ C0,

Hn(x) : Cn(x)→ Dn+1(f
0
0x).

3.- Moreover, for n > 1, we ask the Hn to preserve operation and action in the best possible

way:

• For n > 2,

- Hn preserve action over f01, i.e. if c ∈ Cn and c1 ∈ C1, if cc1 is defined, then

Hn(cc1) = Hn(c)f
0
1(c1) and

- Hn are linear, i.e. for c, c′ ∈ Cn, if c+ c′ is defined, then

Hn(c+ c′) = Hn(c) +Hn(c′).

•When n = 1, H1 is a (left) derivation over f0, i.e. for c, c′ ∈ C1, if cc′ is defined, then

H1(cc
′) = H1(c)

f01(c′) +H1(c
′).

(see Remark 9.3.4 for more details)

To have maps Hn satisfying the preceding properties is just to have a homotopy.

4.- The homotopy H is “from f0 to f1” if in the diagram

Cn
δn //

f0n

��

f1n

��

Hn

||zz
zz

zz
zz

zz
zz

Cn−1

Hn−1

||zz
zz

zz
zz

zz
zz

Dn+1

δn+1 // Dn

the “difference” between the two vertical maps is given by the sum of the two triangles. This requires

some care with the base point and to treat as different the cases n > 2 and n = 1

• For n > 2,

f1n(c) = [f0n(c) +Hn−1(δnc) + δn+1(Hnc)]
−H0(tc),

where f0n(c) + Hn−1(δnc) + δn+1(Hnc) comes from the diagram and the action is used to change

base point from f00(tc) to f10(tc), and

• for n = 1,

f11(c) = H0(sc)f
0
1(c)δ2(H1c)H0(tc)

−1,

With all these preliminaries, we define the groupoid CRS1(C,D) as having Crs0(C,D) = Crs(C,D)

as objects, the morphisms from f0 : C→ D to f1 : C→ D are the homotopies, i.e.

CRS1(C,D)(f0, f1) = {H : f0 ∼ f1 | homotopies from f0 to f1}.

The composition is given as follows:

Let H : f0 ∼ f1 and K : f1 ∼ f2 be left homotopies, then we define H+ K : f0 ∼ f2 by

(H + K)n(c) =

{
Kn(c) +Hn(c)K0(tc) if c ∈ Cn,n > 1,

H0(c) + K0(c) if c ∈ C0.

2
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Exercise 9.3.2 Prove that CRS1(C,D) is, with this addition, a groupoid. Deduce that homotopy

between morphisms of crossed complexes is an equivalence relation. The quotient set is called

[C,D]. 2

Exercise 9.3.3 Define the notion of homotopy equivalence f : C → D of crossed complexes. Recall

that a morphism f : C→ D of crossed complexes induces morphisms of the fundamental groupoids

and homology groups. Prove that a homotopy equivalence of crossed complexes induces an equiv-

alence of fundamental groupoids. What can you say about the induced morphism of homology

groups? 2

Remark 9.3.4 Let us expand a bit on the fact that H1 is an f0-derivation. Note that C1 operates

on D2 via f0 and so we can form the semidirect product groupoid C1 ⋉ D2 with projection pr1 to

C1. This groupoid has objects C0 and arrows pairs (c,d) ∈ C1 ×D2, such that f00δ1(c) = t(d), with

composition (c,d)(c′,d ′) = (cc′,df
0c′

d ′). This can be seen in the picture

•d ′

•d •df
0c′

• //c • //c
′

•

=
•df

0c′

d ′

• //cc
′

•

It is then easily seen that an f0-derivation H1 is determined completely by a morphism H ′
1 : C1 →

C1 ⋉D2 such that pr1H
′
1 = 1C1

. A corollary is that if C1 is a free groupoid, then an f0-derivation is

completely determined by its values on a set of free generators of C1. 2

Remark 9.3.5 Notice that the definition of the derivation has been on the left. Sometimes ‘right

derivations’ are useful governed by the rule

H1(cc
′) = H1(c

′) +H1(c)
f01(c′).

2

Now we turn to the general structure, defining CRSm(C,D)(f) for dimension m > 2 and f ∈

Crs(C,D); providing it with an action of CRS1(C,D) and defining the “boundary” maps.

Definition 9.3.6 Let C,D be crossed complexes and let m > 2. Then an m-fold homotopy from C to

D over f is a pair (H, f), where f : C → D is a morphism of crossed complexes (the base morphism

of the homotopy) and H is a map of degree m from C to D given by functors Hn : Cn → Dn+m for

each n > 0 that are morphism of modules over the morphism f1 of groupoids, i.e.,

• Relations with actions for n > 2

Hn preserve action, i.e. if c ∈ Cn and c1 ∈ C1, then

Hn(cc1) = Hn(c)f1(c1).

• Relations with operations for n > 1

- Hn are linear for n > 2, i.e. if c, c′ ∈ Cn and c+ c′ is defined, then

Hn(c+ c′) = Hn(c) +Hn(c′).

- H1 is a derivation over f, i.e. if c, c′ ∈ C1 and c+ c′ is defined, then

H1(cc
′) = H1(c)

f1(c′) +H1(c
′);
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Thus, in each dimension, H and f preserve structure in the only reasonable way. (However,

there is no requirement that H should be compatible with the boundary maps δn : Cn → Cn−1 and

δ ′n : Dn → Dn−1).

We define

CRS(C,D)m(f) = {H | (H, f) are m-fold homotopies}.

2

Remark 9.3.7 Form > 2 there is no difference between definition on the left (as given) and on the

right, because Hn takes images in abelian groupoids for n > 1. 2

Let us see how this family of sets get the structure of a crossed complex.

Definition 9.3.8 The operations, action and boundary maps on CRSm(C,D) are given by:

1.- Operations on CRSm(C,D).- If (H, f), (K, f) are m-fold homotopies C → D over the same base

morphism f, where m > 2, we define

(H+ K)(c) = H(c) + K(c)

for all c ∈ C.

2.- Actions on CRSm(C,D).- If (H, f0) is an m-fold homotopy C → D and if K : f0 ∼ f1 is a left

homotopy, then we define

HK(c) = H(c)K(tc)

for all c ∈ C. Then (HK, f1) is a morphisms of modules.

3.- Boundaries on CRSm(C,D).- If (H, f) is an m-fold homotopy with m > 2, we define the bound-

ary

δ(H, f) = (δH, f)

where δH is the (m − 1)-fold homotopy given by

(δH)(c) =






δ(H(c)) + (−1)m+1H(δc) if c ∈ Cn(n > 2),

(−1)m+1H(sc)f(c) + (−1)mH(tc) + δ(H(c)) if c ∈ C1,

δ(H(c)) if c ∈ C0.

For 1-homotopies the boundaries are the source and the target already defined (the initial and

final morphisms). 2

Theorem 9.3.9 The above operations give CRS(C,D) the structure of crossed complex.

Proof This would be somewhat tedious to verify directly, and instead we rely on the fact that this

internal hom structure for Crs is derived from the more easily verified internal hom structure on the

category ofω-groupoids, given in Chapter15, and the equivalence between the two categories given

in Chapter 13. 2
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The specific conventions used for constructing the equivalence between crossed complexes and

ω-groupoids impose the conventions we use for the internal hom structure on Crs, and hence for

the tensor product. The fact that CRS(C,D) is a crossed complex contains a lot of information.

The formulae for m-fold homotopies are exactly what is needed to express the geometry of the

cylinder I∗ × En∗ because a 1-homotopy can be seen as a morphism I ⊗ C → D. We shall now

concentrate on 1-homotopies.

Remark 9.3.10 An important observation which we will use later is that if f0, f1 are given and

c ∈ Cn then δn+1Hn(c) is determined by H0tc and Hn−1δn(c). This is a key to later inductive

constructions of homotopies. 2

9.3.2 The bimorphisms as an intermediate step

With the structure of crossed complex on CRS(C,D) just described, we may study the crossed com-

plex morphisms Crs(C, CRS(D,E)), see how they are defined and reorganise the data. Such a mor-

phism is given by a family of maps fm : Cm → CRSm(D,E) commuting with the boundary maps.

For each c ∈ Cm, fm(c) is a homotopy, i.e. a family of maps fm(c)n : Dn → Em+n satisfying some

conditions.

We can reorganise these maps, getting a family

fm,n : Cm ×Dn → Em+n

and see what the different conditions mean for these maps. That gives the notion of bimorphism.

For the rest of this subsection we use additive notation in all dimensions (including 1 and 2) to

reduce the number of formulae.

Definition 9.3.11 A bimorphism θ : (C,D)→ E for crossed complexes C,D,E is a family of maps

θmn : Cm ×Dn → Em+n

so that, for every c ∈ Cm, the map θm(c) = {θmn(c, −)}n∈N is an m-homotopy. That means that

the θmn have to satisfy the following conditions, where c ∈ Cm,d ∈ Dn, c1 ∈ C1,d1 ∈ D1:

• Source and target They preserve target and, whenever appropriate, source

t(θ(c,d)) = θ(tc, td) for all c ∈ C,d ∈ D .

s(θ(x,d)) = θ(x, sd) if m = 0,n = 1 ,

s(θ(c,y)) = θ(sc,y) if m = 1,n = 0 .

• Actions They preserve the action in dimensions > 2

θ(c,dd1) = θ(c,d)θ(tc,d1) if m > 0,n > 2 ,

θ(cc1 ,d) = θ(c,d)θ(c1,td) if m > 2,n > 0 .

• Operations They preserve compositions in c and d as far as possible:

- For m 6= 1 or n 6= 1, the θmn are bimorphisms

θ(c,d + d ′) = θ(c,d) + θ(c,d ′) if m = 0,n > 1 or m > 1,n > 2 ,

θ(c+ c′,d) = θ(c,d) + θ(c′,d) if m > 1,n = 0 or m > 2,n > 1.
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- Whenever m = 1 or n = 1 they behave in each of c,d like derivations

θ(c,d + d ′) = θ(c,d)θ(tc,d′) + θ(c,d ′) if m > 1,n = 1 ,

θ(c + c′,d) = θ(c′,d) + θ(c,d)θ(c′,td) if m = 1,n > 1 .

• Boundaries The complications here reflect the geometry.

- In high dimensions, the boundary is analogous to that in chain complexes:

δm+n(θ(c,d)) = θ(δmc,d) + (−1)mθ(c, δnd) if m > 2,n > 2.

- When one of the elements has dimension 1, we have to take account of the action to put

elements at the right base point

δm+n(θ(c,d)) =






− θ(c, δnd) − θ(tc,d) + θ(sc,d)θ(c,td) if m = 1,n > 2 ,

(−1)m+1θ(c, td) + (−1)mθ(c, sd)θ(tc,d) + θ(δmc,d) if m > 2,n = 1 ,

− θ(tc,d) − θ(c, sd) + θ(sc,d) + θ(c, td) if m = n = 1 .

- And, whenever one of the elements has dimension 0, we operate only on the other part.

δm+n(θ(c,d)) =

{
θ(c, δnd) if m = 0,n > 2 ,

θ(δmc,d) if m > 2,n = 0 .

2

You should look at these carefully and note (but not necessarily learn!) the way these formulae

reflect the geometry and algebra of crossed complexes, which allow for differences between the

various dimensions, and also for change of base point.

The bimorphisms are used as an intermediate step in the construction of the tensor product due

to the following property

Theorem 9.3.12 For crossed complexes C,D,E, there is a natural bijection from Crs(C, CRS(D,E)),

to the set of bimorphisms θ : (C,D)→ E.

9.3.3 The tensor product of two crossed complexes

Following the pattern in the tensor product of R-modules, we now ‘internalise’ the concept of bimor-

phism. That is, we construct a crossed complex, the tensor product C⊗D of two crossed complexes,

and a universal bimorphism

Υ : (C,D)→ C⊗D,

so that the bimorphisms (C,D)→ E correspond exactly to the morphisms C⊗D→ E. In effect, this

implies that C ⊗D is generated by elements c ⊗ d, with c ∈ Cm and d ∈ Dn, m,n > 0, subject to

the relations given by the rules of bimorphisms with θ(c,d) replaced by c⊗ d.

We shall also describe (C⊗D)p in terms of pieces (C⊗D)m,n with m+ n = p, which, from the

rules for θmn, can be given more explicitly in terms of the structures on Cm,Dn.

Let us start by making clear the implication for the groupoid part of C⊗D.

For p = 0, we define

(C⊗D)0 = C0 ×D0
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as sets.

For p = 1, the groupoid (C⊗D)1 over (C⊗D)0 is determined by two parts, namely (C⊗D)1,0 =

C1 ×D0 and (C ⊗D)0,1 = C0 ×D1. Then (C ⊗D)1 is their coproduct as groupoids over (C ⊗D)0,

we write

(C⊗D)1 = C1 #D1.

This groupoid may be seen also as generated by the symbols

{c⊗ y | c ∈ C1} ∪ {x⊗ d | d ∈ D1}

for all x ∈ C0 and y ∈ D0 subject to the relations given by the products in C1 and on D1. We shall

return to this in Subsection 9.4.1.

Also, we shall prove in Subsection 9.4.2 that the image of δ2(C ⊗D)2 in (C ⊗D)1 is generated

by all the elements of the set

{δc⊗ y | c ∈ C2} ∪ {x× δd | d ∈ D2} ∪ {(c⊗ y)(x⊗ d)(c ⊗ y′)−1(x ′ ⊗ d)−1 | c ∈ C1,d ∈ D1}

for all x ∈ C0 and y ∈ D0 (Notice that the last set consists of the commutators of the generators of

(C⊗D)1,0 = C1 ×D0 and (C⊗D)0,1 = C0 ×D1).

Now this has been recorded, we can proceed with the definition of (C ⊗D)p for p > 2.

Definition 9.3.13 Let C,D be crossed complexes. For any c ∈ Cm,d ∈ Dn we consider the symbol

c⊗ d. Whenever m+ n > 2, we define its source and target

s(c⊗ d) = t(c⊗ d) = tc⊗ td.

(Notice that for elements of dimension 0 we define t(x) = x and t(y) = y.)

For p > 2, we consider Fp the free (C⊗D)1-module (or crossed module if p = 2) on

{c⊗ d | c ∈ Cm,d ∈ Dn,m,n ∈ N,m+ n = p}.

To get (C ⊗ D)p we have to quotient out by some relations with respect to the additions and

actions. Notice that all relations are “dimension preserving”. There are two essentially different

cases.

• When both m,n 6= 1, we do not have to worry about source and target (both are the same),

and the relations are easier:

- Additions: The relations to make ⊗ compatible with additions are

c⊗ (d + d ′) = c⊗ d + c⊗ d ′ if n > 2

(c+ c′)⊗ d = c⊗ d + c′ ⊗ d if m > 2.

- Action: The relations to make ⊗ compatible with the actions are

(c⊗ d)(tc⊗d1) = c⊗ dd1 if m > 0,n > 2 ,

(c⊗ d)(c1⊗td) = cc1 ⊗ d if m > 2,n > 0 .

what does the following mean? and it is compatible with the relations.

- Cokernel. When m+ n > 3, we have to kill the action of δ2(C⊗D)2 ⊆ (C⊗D)1

•When one element has dimension 1.
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- Then the operation has to be related with the action because the groupoid part acts on itself by

conjugation.

c⊗ dd ′ = (c⊗ d)(tc⊗d′) + c⊗ d ′ if m > 1,n = 1 ,

cc′ ⊗ d = c′ ⊗ d + (c⊗ d)(c′⊗td) if m = 1,n > 1 .

- Cokernel. When m+ n > 3, we have to kill the action of δ2(C⊗D)2 ⊆ (C⊗D)1.

With this, we get (C⊗D)p as the quotient of Fp by all these relations.

To finish the structure of C⊗D as a crossed complex, the boundaries are defined on generators

with formulae varying according to dimensions.

•When both have dimension > 2

δm+n(c⊗ d) = δmc⊗ d + (−1)m(c⊗ δnd)

•When one has dimension 1 and the other one has dimension > 1

δm+n(c⊗ d) =






− (c ⊗ δnd) − (tc⊗ d) + (sc⊗ d)(c⊗td) if m = 1,n > 2 ,

(−1)m+1(c ⊗ td) + (−1)m(c⊗ sd)(tc⊗d) + (δmc⊗ d) if m > 2,n = 1 ,

− (tc⊗ d) − (c⊗ sd) + (sc⊗ d) + (c⊗ td) if m = n = 1

•When one has dimension 0

δm+n(c⊗ d) =

{
(c⊗ δnd) if m = 0,n > 2 ,

(δmc⊗ d) if m > 2,n = 0 .

and these definitions are compatible with the relations.

2

Remark 9.3.14 Notice that if we denote by Fm,n the free (C⊗D)1-module on {c⊗ d | c ∈ Cm,d ∈

Dn} for some fixed m,n ∈ N, Fp is the coproduct of {Fm,n}m+n=p.

Since the relations with respect to the additions and actions we are using to get (C⊗D)p preserve

the decomposition of Fp as the coproduct of Fm,n, (C ⊗ D)p also decomposes as coproduct of the

quotient of Fm,n respect to the corresponding relations. We shall call (C⊗D)m,n this quotient. 2

Remark 9.3.15 There is an alternative way of defining Fm,n that works whenm,n 6= 0, m+n > 3.

We could define F′m,n as the free abelian groupoid on {c⊗ d | c ∈ Cm,d ∈ Dn} and quotient out

by the relations on operations included in the previous definition getting an abelian groupoid C′
m,n.

This quotient is isomorphic to (C⊗D)m,n as abelian groupoid.

Next we define the (C ⊗D)1-action on C′
m,n by the formulae in the previous definition (notice

that the definition is different when m = 1 or n = 1). It is not difficult to prove that this gives an

action and that C′
m,n is isomorphic to (C⊗D)m,n as (C⊗D)1-modules 2

Exercise 9.3.16 Check the rule δδ(c⊗d) = 0 for some low dimensional cases, such as dim(c⊗d) =

3, 4, seeing how the crossed module rules come into play. 2
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Those familiar with the tensor product of chain complexes may note that in that theory the single

and simple formula we need is

∂(c⊗ d) = (∂c)⊗ d+ (−1)mc⊗ (∂d)

where dim c = m. So it is not surprising that the tensor product of crossed complexes has much

more power than that of chain complexes, and can handle more complex geometry.

The specific conventions in writing down the formulae for this tensor product of crossed com-

plexes come from another direction, which is explained fully in Chapter 15 in Part III, namely the

relation with cubical ω-groupoids with connection. The tensor product there comes out simply, be-

cause it is based on the formula Im × In ∼= Im+n. The distinction between that formula and that for

the product of cells as above lies at the heart of many difficulties in basic homotopy theory. The rela-

tion between ω-groupoids and crossed complexes gives an algebraic expression of these geometric

relationships.

Using this definition, it can be proved that the tensor product gives a symmetric monoidal struc-

ture to Crs the category of crossed modules by defining the maps on generators and checking that

they preserve the relations.

Theorem 9.3.17 With the bifunctor −⊗ −, the category Crs of crossed complexes has a structure of a

symmetric monoidal category, i.e.

i) For crossed complexes C,D,E, there are natural isomorphisms of crossed complexes

(C⊗D)⊗ E ∼= C⊗ (D⊗ E),

ii) for all crossed complexes C,D there is a natural isomorphism of crossed complexes

T : C⊗D→ D⊗ C

satisfying the appropriate axioms.

Proof The existence of both isomorphisms could be established directly, giving the values on

generators in the obvious way:

i) is given by (c⊗ d)⊗ e 7→ c⊗ (d⊗ e) and

ii) is given by T(c⊗ d) = (−1)mnd⊗ c if c ∈ Cm and d ∈ Dn.

and then checking that the relations on generators c⊗d in Definition (9.3.13) are preserved by both

maps. The necessary coherence and naturality conditions are obviously satisfied.

But to check all the cases even for such simple maps seems tedious. An alternative approach is

to go via ω-groupoids where the tensor product fits more closely to the cubical context. This shall

be done in Chapter 15. 2

This proof of commutativity is somehow unsatisfactory because, although it is clear that c⊗d 7→

d ⊗ c does not preserve the relations in Definition 9.3.13, the fact that c ⊗ d 7→ (−1)mnd ⊗ c does

preserve them seems like a happy accident. A better explanation is provided by the transposing

functor T (see Section 15.4).

Note that while the tensor product can be defined directly in terms of generators and relations

and this can sometimes prove useful, such a definition may make it difficult to verify essential

properties of the tensor product, such as that the tensor product of free crossed complexes is free.

We shall prove that later (Section 9.6), using the adjointness of ⊗ and the internal hom functor as a

necessary step to prove that −⊗ C preserves colimits.
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Nevertheless, this Definition is interesting for its relation to the tensor product of filtered spaces

which we shall study in Section 9.8.

Theorem 9.3.18 For crossed complexes C,D,E, there is a natural exponential law giving a natural

isomorphism

Crs(C⊗D,E) ∼= Crs(C, CRS(D,E)).

This gives the category Crs of crossed complexes a structure of monoidal closed category. Moreover, they

produce isomorphisms of crossed complexes

CRS((C⊗D),E) ∼= CRS(C, CRS(D,E)).

It is also important that we have to use crossed complexes of groupoids to make sense of the

exponential law in Crs. This is analogous to the fact that the category of groups has no internal hom,

while that of groupoids does.

Remark 9.3.19 Consider the groupoid I having one arrow ι : 0→ 1 so that t(ι) = 1 (we have seen

that this groupoid is Π(E1). A ‘1-fold left homotopy’ of morphisms f0, f1 : C → D is seen to be a

morphism I ⊗ C → D which takes the values of f0 on 0 ⊗ C and f1 on 1 ⊗ C . The existence of this

‘cylinder object’ I⊗C allows a lot of abstract homotopy theory [KP97] to be applied immediately to

the category Crs. This is useful in constructing homotopy equivalences of crossed complexes, using

for example the gluing lemma [KP97, Lemma 7.3]. 2

9.4 Analysis of the tensor product of crossed complexes

The Definition of the tensor product of two crossed complexes C ⊗ D is quite complex. We are

going to devote this Section to clarify the definition. It happens that at each dimension, the tensor

product (C⊗D)p decomposes as the coproduct of simpler bits (C⊗D)m,n that can be identified to

(or related with) some better known constructions. As is usual in the crossed complex situation, the

description is different (and more complicated) in low dimensions.

So, first we study the groupoid (C ⊗ D)1. It is just the coproduct over C0 × D0 of the two

groupoids C1 ×D0 and C0 ×D1. This description is important since all the (C ⊗D)p are modules

(or crossed modules) over (C⊗D)1

Then, we study the crossed module part of C⊗D. It has three parts, two of them being got from

the crossed modules C2×D0 → C1×D0 and C0×D2 → C0×D1 using the induced crossed module

construction for the inclusions C1 ×D0 → (C⊗D)1 and C0 ×D1 → (C⊗D)1.

With respect to higher dimensions, (C⊗D)p decomposes in many pieces (C⊗D)m,n form+n =

p. When both m,n > 3, (C ⊗ D)m,n is just the tensor product as modules studied in Section 9.2.

When one (or both) of the dimensions is 2, (C⊗D)m,n is the tensor product of the abelianisation.

It remain the cases when m = 0 or m = 1 (and the symmetric cases). To identify them, we shall

introduce a couple of constructions associated to a groupoid: the right regular H-module ~ZH, and

the right augmentation module~IH.

9.4.1 The groupoid part of the tensor product.

In order to become more familiar with the definition of the tensor product of crossed complexes, in

this Section we are going to do the computations with some detail in low dimensions.
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Notice first that it is clear from the definition that to construct (C ⊗D)p we only need to know

{Cm}m6p and {Dn}n6p since there are no relations among the generators in (C⊗D)p coming from

higher dimensions. Let us see what this means for low dimensions.

The case p = 0 is immediate. Let us start with the case p = 1.

Proposition 9.4.1 For any pair of crossed complexes C,D ∈ Crs the groupoid (C⊗D)1 of their tensor

product is the following pushout in the category of groupoids

0C1
× 0D1

//

��

C1 × 0D1

��
0C1
×D1

// (C⊗D)1

where, for any groupoid G, 0G denotes the trivial sub-groupoid consisting of all identity elements of G.

It is easy to see that this pushout is the coproduct of C1×0D1
and 0C1

×D1 in the category of groupoids

over C0 ×D0

Let us give a description of this groupoid. By the previous Proposition, it is actually a construction

in the category of groupoids. So, let us consider a pair of groupoids G and H and let us define

G#H = G× 1H ∗ 1G ×H,

the coproduct in the category of groupoids over G0 ×H0.

The groupoid G#H is generated by all elements (1x,h), (g, 1y) where g ∈ G,h ∈ H, x ∈ G0,y ∈

H0. We will sometimes write g for (g, 1y) and h for (1x,h). This may seem to be willful ambiguity,

but when composites are specified in G#H, the ambiguity is resolved; for example, if gh is defined

in G#H, then g must refer to (g, 1y), where y = sh, and h must refer to (1x,h), where x = tg.

This convention simplifies the notation and there is an easily stated solution to the word problem

for G#H. Every element of G#H is uniquely expressible in one of the following forms:

(i) an identity element (1x, 1y);

(ii) a generating element (g, 1y) or (1x,h), where x ∈ G0,y ∈ H0,g ∈ G,h ∈ H and g,h are not

identities;

(iii) a composite k1k2 · · · kn(n > 2) of non-identity elements of G or H in which the ki lie alter-

nately in G and H, and the odd and even products k1k3k5 · · · and k2k4k6 · · · are defined in G

or H.

For example, if g1 : x → y,g2 : y → z in G, and h1 : u → v,h2 : v → w in H, then the word

g1h1g2h2g
−1
2 represents an element of G#H from (x,u) to (y,w). Note that the two occurrences

of g2 refer to different elements of G#H, namely (g2, 1v) and (g2, 1w). This can be represented as

a path in a 2-dimensional grid as follows

(x,u)

g1

��

(x, v) (x,w)

(y,u)
h1 // (y, v)

g2

��

(y,w)

(z,u) (z, v)
h2 // (z,w)

g−1
2

OO
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The similarity with the free product of groups is obvious and the normal form can be verified in

the same way; for example, one can use ‘van der Waerden’s trick’. We omit the details (They may be

found in [Hig71]).

9.4.2 The crossed module part of the tensor product.

To identify the crossed module in the title for crossed complexes C,D, we need to use two construc-

tions from the theory of crossed modules: the coproduct of crossed modules over the same base and

the induced crossed module.

In the case when G is a group, the construction of the coproduct M ◦G N of crossed G-modules

M and N has been studied in Part I. This construction works equally well when G is a groupoid. The

family of groups M acts on N via G, so one can form the semidirect product M⋉N. It consists of a

semidirect product of groups Mp ⋉Np at each vertex p of G and it is a pre-crossed module over G.

One then obtains the crossed G-module M ◦G N from M⋉N by factoring out its Peiffer groupoid.

Now, recall that (C⊗D)2 as (C1 #D1)-crossed module is the coproduct

(C ⊗D)2 = (C⊗D)2,0 ◦ (C ⊗D)1,1 ◦ (C⊗D)0,2

where these last crossed modules have been defined in Remark 9.3.14.

Since C2 is a crossed module over the groupoid C1, C2 ×D0 is a crossed module over C1 ×D0.

Using embedding

µ1 : C1 ×D0 → C1 #D1

we get an induced crossed module

Ĉ2 = µ1∗(C2 ×D0).

It is not difficult to see that

(C⊗D)2,0 ∼= Ĉ2

as (C1 #D1)-crossed modules. In the same way, we identify

(C⊗D)2,0 ∼= D̂2

where D̂2 = µ2∗(C0 ×D2).

It remains to identify (C ⊗D)1,1. To do this, we need to consider only the case when C and D

are just groupoids.

To make things more clear we restrict ourselves to crossed complexes associated to groupoids

since the higher dimensional part does not intervene. So Cn = Dn = {0} for all n > 2. Then

we know (C ⊗ D)p = {0} for all p > 3 and we have computed that (C ⊗ D)0 = C0 × D0 and

(C ⊗D)1 = C1 #D1. Also, to make notation easier, let us write G and H for the groupoids C1 and

D1.

Notice that there is a canonical morphism

σ : G#H→ G×H

induced by the inclusions 1G × H → G × H and G × 1H → G × H. This morphism is defined on a

word k1k2k3 · · · , by separating the odd and even parts, i.e.

σ(k1k2k3 · · · ) = (k1k3 · · · , k2k4 · · · ).

That is, the map σ introduces a sort of commutativity between G and H.
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The kernel of σ will be called the Cartesian subgroupoid of G#H and will be denoted by G2H,

i.e.

G2H = Kerσ.

It consists of all identities and all words k1k2 · · · kn for which both odd and even products are trivial.

Clearly, it is generated by all ‘commutators’ [g,h] = g−1h−1gh, where g ∈ G,h ∈ H and g,h are not

identities. (Note that [g,h] is uniquely defined in G#H for any such pair of elements g,h, but the

two occurrences of g (or of h) do not refer to the same element of G#H.)

Proposition 9.4.2 The Cartesian subgroupoid G2H of G#H is freely generated, as a groupoid, by

all elements [g,h] where g,h are non-identity elements of G,H, respectively. Thus, G2H is the disjoint

union of free groups, one at each vertex, and the group at vertex (x,y) has a basis consisting of all [g,h]

with tg = x and th = y (g and h not identity elements).

Proof In the notation introduced above the ‘commutators’ [h,g] satisfy the same formal identities

as in the group case:

[h,g] = [g,h]−1,

[hh1,g] = [h,g]h1 [h1,g],

[h,gg1] = [h,g1][h,g]g1

whenever gg1,hh1 are defined in G,H. These identities are to be interpreted as equations in

G#H, with the obvious meaning for conjugates: [h,g]h1 means h−1
1 h−1g−1hgh1, which represents

a unique element of G#H.

Now G2H is an intransitive free groupoid with basis consisting of all [g,h](g ∈ G,h ∈ H,g,h 6=

1) (see Gruenberg [Gru57], Levi [Lev40]). 2

Theorem 9.4.3 The tensor product of the groupoids G and H, considered as crossed complexes of rank

1, is the crossed complex

G⊗H = (· · · → 0→ · · · → 0→ G2H→ G#H)

with g⊗ h = [h,g], x⊗ h = (1x,h),g⊗ y = (g, 1y) for g ∈ G,h ∈ H, x ∈ G0,y ∈ H0.

Proof G2H is a normal subgroupoid of G#H, so

δ : G2H→ G#H

is a crossed module which we view as a crossed complex C, trivial in dimension > 3. One verifies

easily that the equations θ(g,h) = [h,g], θ(g, ·) = g, θ(·,h) = h define a bimorphism θ : (G,H)→ C;

the equations in Definition 9.3.11(iii) reduce to the standard commutator identities

[hh1,g] = [h,g]h1 [h1,g],

[h,gg1] = [h,g1][h,g]g1 ,

and the rest are trivial.

It follows that if

φ : (G,H)→ D

is any bimorphism, there is a unique morphism of groups φ2 : G2H → D2 such that φ2([h,g]) =

φ(g,h) for all g ∈ G,h ∈ H. (Note that the definition of bimorphism implies that φ(g,h) = 1 if
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either g = 1 or h = 1.) There is also a unique morphism φ1 : G#H→ D1 such that φ1(g) = φ(g, ·)

and φ1(h) = φ(·,h) for all g ∈ G,h ∈ H. These morphisms combine to give a morphism

φ : C→ D

of crossed complexes as we show below, and this proves the universal property making C the tensor

product of G and H, with g⊗ h = [h,g].

We need to verify that φ : C→ D is a morphism of crossed modules. This amounts to

(i) φ is compatible with δ : G2H →֒ G#H. Now

δφ2([h,g]) = δφ(g,h)

= −φ(·,h) − φ(g, ·) + φ(·,h) + φ(g, ·) by (9.3.11)(iv)

= [φ(·,h),φ(g, ·)] = [φ1(h),φ1(g)] = φ1[h,g]

and

(ii) φ preserves the actions of G#H and D1. Now

φ2([h,g]g1) = φ2([h,g1]
−1[h,gg1])

= −φ(g1,h) + φ(gg1,h)

= φ(g,h)φ(g1,·) by (9.3.11)(iii)

= φ2([h,g])φ1(g1).

There is a similar calculation for the action of h1 ∈ H, and the result follows. 2

That gives a useful description of the crossed module part of the tensor product of two crossed

complexes C and D.

Theorem 9.4.4 There is an isomorphism of (C1 #D1)-crossed modules

(C⊗D)2 ∼= µ1∗(C2 ⊗D0) ◦G2H ◦ µ2∗(C0 ⊗D2).

This isomorphism maps c⊗y and x⊗d to the corresponding generators in µ1∗(C2⊗D0) and µ2∗(C0⊗

D2) and c⊗ d to the commutator (c⊗ y)(x ′ ⊗ d)(c⊗ y′)−1(x⊗ d)−1. So the subgroupoid δ2(C⊗D)2

is generated as a groupoid by the elements

{δc⊗y | c ∈ C2}∪ {x⊗δd | d ∈ D1}∪ {(c⊗y)(x⊗d)(c⊗y′)−1(x ′⊗d)−1 | c ∈ C1(x, x
′),d ∈ D1(y,y

′)}

where x, x ′ ∈ C0,y,y
′ ∈ D0.

The description in Theorem 9.4.3 is much easier for the case of groups. Any group G can be

viewed as a crossed complex E1(G) with E1(G)0 = {·}, E1(G)1 = G, E1(G)n = 0 for n > 2. The

tensor product of two such crossed complexes will have one vertex and will be trivial in dimension

> 3, that is, it will be a crossed module. We use multiplicative notation for G for reasons which will

appear later.

Proposition 9.4.5 The tensor product of groups G,H, viewed as crossed complexes of rank 1, is the

crossed module G2H→ G ∗H, where G2H denotes the Cartesian subgroup of the free product G ∗H,

that is, the kernel of the map G ∗ H → G × H. If g ∈ G,h ∈ H, then g ⊗ h is the commutator

[h,g] = h−1g−1hg = [g,h]−1 in G ∗H.
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Remark 9.4.6 This tensor product of (non-Abelian) groups is related to, but not the same as, the

tensor product defined by Brown and Loday and used in their construction of universal crossed

squares of groups [BL87a]. The Brown-Loday product is defined for two groups acting compatibly

on each other. It also satisfies the standard commutator identities displayed above. The relation

between the two tensor products is clarified by Gilbert and Higgins in [GH89]. See also the results

of Baues and Conduché in [BC90]. 2

9.5 Tensor products and chain complexes

9.5.1 Monoidal closed structure on chain complexes

We have seen that the symmetric monoidal closed structure on the category Crs of crossed com-

plexes, constructed in Section 9.3 from tensor products and homotopies, relies crucially on the

consideration of crossed complexes over groupoids as well as over groups. The same is true for

chain complexes with operators that we study in this section as an introduction.

There are well known definitions of tensor product and internal hom functor for chain complexes

of Abelian groups (without operators). If one allows operators from arbitrary groups the tensor

product is easily generalised (the tensor product of a G-module and an H-module being a (G ×H)-

module) but the adjoint construction of internal hom functor does not exist, basically because the

group morphisms fromG to H do not form a group. To rectify this situation we allow operators from

arbitrary groupoids and we start with a discussion of the monoidal closed category structure of Mod

the category of modules over groupoids given in Definition ??.

The ideas for the monoidal closed category Mod can be extended with little extra trouble to chain

complexes over groupoids.

Definition 9.5.1 The tensor product of chain complexes C, D over groupoids G, H respectively is

the chain complex C⊗D over G×H where

(C⊗D)n =
⊕

i+j=n

(Ci ⊗Dj).

Here, the direct sum of modules over a groupoid G is defined by taking the direct sum of the Abelian

groups at each object of G. The boundary map

∂ : (C⊗D)n → (C⊗D)n−1

is defined on the generators a⊗ b of (C⊗D)n by

∂(a⊗ b) = ∂a⊗ b+ (−1)ia⊗ ∂b,

where a ∈ Ci, b ∈ Dj, i+ j = n. 2

This tensor product clearly gives a symmetric monoidal structure to the category Chn, with unit

object the complex

C(Z, 0) = · · · → 0→ · · · → 0→ Z

over the trivial group. The symmetry map C⊗D→ D⊗ C is given by

x⊗ y 7→ (−1)ijy⊗ x

for x ∈ Ci,y ∈ Dj.
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Definition 9.5.2 The internal hom functor CHN(−, −) is defined as follows. Let C, D be chain

complexes over the groupoids G, H respectively. As in the case of morphisms of modules, it is easy

to see that the morphisms of chain complexes Chn(M,N) form an GPDS(G,H)-module. We write

S0 = Chn(M,N)

for this module and take it as the 0-dimensional part of the chain complex S = CHN(C,D).

The higher-dimensional elements of S are chain homotopies of various degrees. An i-fold chain

homotopy (i > 1) from C to D is a pair (s, f) where s : C→ D is a map of degree i (that is, a family

of maps s : Cn → Dn+i for all n > 0) which in each dimension is a morphism of modules over

f : G→ H.

Again the i-fold homotopies

Si = {s : C→ D | i-fold homotopies}

have a structure of an GPDS(G,H)-module and we define the boundary map

∂ : Si → Si−1 (i > 1)

by

(∂s)(x) = ∂(s(x)) + (−1)i+1s(∂x),

the morphism f : G→ H being the same for ∂s as for s.

We observe that ∂s is of degree i− 1. Also ∂s commutes or anticommutes with ∂, namely

∂((∂s)(x)) = (−1)i+1(∂s)(∂x).

It follows that ∂∂ : Si → Si−2 is 0 for i > 2. We define CHN(C,D) to be the chain complex

CHN(C,D) = · · · −→ Si
∂
−→ Si−1 −→ · · · −→ S0

over F = GPDS(G,H). 2

Proposition 9.5.3 The functors ⊗ and CHN give Chn the structure of symmetric monoidal closed cate-

gory.

Proof Again, if L is a chain complex over G, there is an exponential law giving a natural bijection

Chn(L⊗ C,D) ∼= Chn(L, CHN(C,D))

which extends to a natural isomorphism of chain complexes

CHN(L⊗ C,D) ∼= CHN(L, CHN(C,D))

over GPDS(G×H,K) ∼= GPDS(G, GPDS(H,K)). 2

9.5.2 Abelianisation and the closed category structure

In Subsection 9.3.1 an internal hom functor Crs(−, −) was defined for crossed complexes similar to

that defined in Subsection 9.5.1 for chain complexes over groupoids. The relationship between the

two monoidal closed structures is best described in terms of the adjoint functors ∇ and Θ.
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Theorem 9.5.4 For crossed complexes B, C and chain complexes L there are natural isomorphisms

(i) CRS(C,ΘL) ∼= ΘCHN(∇C,L),

(ii) ∇(B ⊗ C) ∼= ∇B⊗∇C.

Proof The two natural isomorphisms are equivalent because

CHN(∇(B ⊗ C),L) ∼= Crs(B⊗ C,ΘL)

∼= Crs(B, CRS(C,ΘL)),

while

Chn(∇B⊗∇C,L) ∼= Chn(∇B, CHN(∇C,L))

∼= Crs(B,ΘCHN(∇C,L)).

The isomorphism (i) is easier to verify than (ii) because we have explicit descriptions of the elements

of both sides, whereas in (ii) we have only presentations.

In dimension 0 we have on the left of (i) the set Crs(C,ΘL) of morphisms f̂ : C→ ΘL; on the right

we have the set Chn(∇C,L) of morphisms (f̃,ψ) : ∇C → L, where ψ is a morphism of groupoids

from G = π1C to H, the operator groupoid for L. These sets are in one-one correspondence, by

adjointness, and their elements are also equivalent to pairs (f,ψ) where ψ : G→ H and f is a family

· · ·
δ // C2

δ //

f2

��

C1

δ0 //

δ1
//

f1

��

C0

f0

��
· · ·

∂ // L2
∂ // L1

∂ // L0

such that

(i) f0(p) ∈ L0(ψ(p)) (p ∈ C0),

(ii) f1 is a ψφ-derivation, where φ is the quotient map C1 → G,

(iii) fn is a ψ-morphism for n > 2,

(iv) ∂fn+1 = fnδ (n > 1),

(v) ∂f1(x) = (f0δ
0x)ψφx − (f0δ

1
x) (x ∈ C1).

Such a family will be called a ψ-derivation f : C→ L.

We recall from Definition 9.3.6 that an element in CRSi(C,E) is an i-fold homotopy (ĥ, f̂) : C→ E,

where f̂ is a morphism C→ E and ĥ is a family of maps

· · · // C2
//

ĥ2

��

C1

//
//

ĥ1

��

C0

ĥ0

��
· · · Ei+2 Ei+1 Ei

satisfying
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(i) ĥ0(p) ∈ Ei(f̂0(p)) (p ∈ C0);

(ii) ĥ1 is a f̂1-derivation;

(iii) ĥn is a f̂1-morphism for n > 2.

In the case E = ΘL, where L is a chain complex over H, it is easy to see that, if i > 2, such a

homotopy is equivalent to the following data: a morphism of groupoids ψ : G→ H; a ψ-derivation

f : C→ L as in diagram (*); and a family h of maps

· · · // C2
//

h2

��

C1

//

δ1

//

h1

��

C0

h0

��
· · · Li+2 Li+1 Li

satisfying

(i) h0(p) ∈ Li(ψp) (p ∈ C0);

(ii) h1 is a ψφ-derivation;

(iii) hj is a ψ-morphism for j > 2.

The maps ĥj of diagram (**) are then given by

ĥj(x) = (hj(x), f0(q)) if x ∈ Cj(q), j > 2,

ĥ1(x) = (h1(x), f0(q)) if x ∈ C1(p,q),

ĥ0(q) = (h0(x), f0(q)) if q ∈ C0.

In the case i = 1, because of the special form of E1, we also need a map τ : C0 → H satisfying

(iv) τ(q) ∈ H(ψ ′(q),ψ(q)) for some ψ ′(q) ∈ ObH,

and in this case ĥ0(q) = (τ(q),h0(q), f0(q)).

It is now an easy matter to see that these data are equivalent to an element of dimension i in

ΘCHN(∇C,L). In the case i = 1, the map τ defines a natural transformation τ̃ : ψ ′ → ψ, where

ψ ′(g) = τ(p)ψ(g)τ(q)−1 for g ∈ G(p,q). This τ̃ is an element of the groupoid GPDS(G,H) (the

operator groupoid for CHN(∇C,L)) and provides the first component of the triple (τ̃, h̃, f̃) which is

the required element of Θ1CHN(∇C,L); the other components are f̃ : ∇C → L, the morphism of

chain complexes induced by f, and h̃, the 1-fold homotopy ∇C → L induced by h. Here h̃0(1p) =

h0(p) and h̃nαn = hn for n > 1, where the αi are as in the diagram in Theorem (7.5.18). The rest

of the proof is straightforward. 2

9.6 The tensor product of free crossed complexes is free

The exponential law in Crs of Theorem 9.3.18 has as a consequence that the tensor product of free

crossed complex is a free crossed complex.

We start by proving the result for the standard models.
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Proposition 9.6.1 Consider the inclusions S(n − 1)→ F(n) and S(m − 1)→ F(m) then

S(n − 1)⊗ F(m) ∪ F(n)⊗ S(m − 1)→ F(m)⊗ F(n)

is of relative free type.

Proof Let us remark that they differ only in dimension (m+n). We have to check that the diagram

S(n +m − 1) //

��

S(n − 1)⊗ F(m) ∪ F(n)⊗ S(m − 1)

��
F(n +m) // F(m)⊗ F(n)

given on generators by mapping xm+n 7→ xm ⊗ xn is a pushout of crossed complexes and this is

easily done. 2

The proof of the general theorem builds inductively on the previous case and the next Lemma.

Lemma 9.6.2 If the following squares are pushouts

C //

��

D

��
E // F

U //

��

V

��
W // X

then so is the induced square

C⊗W ∪ E⊗U //

��

D⊗ X ∪ F⊗ V

��
E⊗W // F⊗ X

Theorem 9.6.3 If C′ → C and D ′ → D are morphisms of relative free type then so also is C′ ⊗D ∪

C⊗D ′ → C⊗D, where C′ ⊗D ∪ C⊗D ′ denotes the pushout of the pair of morphisms

C′ ⊗D← C′ ⊗D ′ → C⊗D ′.

Proof Since the tensor product − ⊗ − is symmetric and − ⊗ B has a right adjoint, the functors

−⊗ C and D⊗− preserve colimits.

Since Y ⊗ − and − ⊗ Z preserve coproducts, we deduce the result in the case when C′ → C,

D ′ → D are of the type
∐
λ S(n − 1)→

∐
λ F(n) and

∐
λ S(m − 1)→

∐
λ F(m).

Putting morphisms of this type in Lemma 9.6.2, and using Lemma 7.4.16, easily follows that the

theorem is true for morphisms of simple relative free type, that is for morphisms C′ → C, D ′ → D

obtained as pushouts

∐
λ S(n − 1) //

��

C′

��∐
λ F(n) // C

∐
µ S(m − 1) //

��

D ′

��∐
µ F(m) // D

Next, using Lemmas 7.4.16, 7.4.15, 9.6.2 we can prove the result for composites of morphisms of

relative free type. A general morphism of relative free type is a colimit of simple ones, as in Corollary

7.4.18, and the full result now follows from this Corollary 7.4.15 and Lemma 9.6.2. 2
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Corollary 9.6.4 If C′ → C is a morphism of relative free type and W is a crossed complex of free type,

then C′ ⊗W → C⊗W is of relative free type.

Corollary 9.6.5 If C is a free crossed complex and f : C→ D is a morphism of crossed complexes, then

a homotopy H : f0 ≃ f1 of morphisms is entirely determined by its values on the free basis of C.

9.7 The monoidal closed category of filtered spaces

We proceed a step further and consider the category FTop of filtered spaces and look for a natural

structure of closed category.

The categorical product in FTop is given by

(X∗ × Y∗)n = Xn × Yn, n > 0.

This product is convenient for maps into it, as for any categorical product. However our main exam-

ple of filtered spaces, that of CW-complexes, suggests a different product as worth consideration,

and this will turn out to be convenient for maps from it, to other filtered spaces.

If X∗, Y∗ are CW-filtrations, then the product X × Y of the spaces (in the category of compactly

generated spaces) has a natural and convenient CW-structure in which the n-dimensional cells are

all products ep × eq of cells of X∗, Y∗ respectively where p + q = n. This suggests the following

definition.

Definition 9.7.1 If X∗, Y∗ are filtered spaces, their tensor product X∗ ⊗ Y∗ is the filtered space given

on X× Y by the family of subspaces

(X⊗ Y)n =
⋃

p+q=n

Xp × Yq

where the union is simply the union of subspaces of X× Y. 2

Exercise 9.7.2 1. We have said that the filtration X∗ ⊗ Y∗ is not the product in the category FTop.

Verify that our definition above does define the product X∗ × Y∗ in the category FTop.

2. Is there a structure of cartesian closed category on FTop? i.e. is there an internal hom that is

adjoint to the cartesian product? 2

Notice that, for example, In∗ is the n-fold tensor product of I∗ with itself because In∗ is the CW-

filtered space of the standard n-cube.

With the product ⊗, FTop is a monoidal category. The tensor product is also commutative.

We now show how to define an ‘internal hom’ FTOP(Y∗,Z∗) in the category FTop so as to make

that category a monoidal closed category with an exponential law giving a natural bijection

e : FTop(X∗ ⊗ Y∗,Z∗) ∼= FTop(X∗, FTOP(Y∗,Z∗)).

To see how this comes about, note that a filtered map f : X∗ ⊗ Y∗ → Z∗ will map Xp × Yq to

Zp+q, by definition of the filtration on the tensor product of filtered spaces. Under the exponential

law for topological spaces we have

Top(Xp × Yq,Zp+q) ∼= Top(Xp, TOP(Yq,Zp+q)).
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This suggests the definition:

FTOP(Y∗,Z∗)p = {g ∈ Top(Y,Z) | g(Yq) ⊆ Zp+q for all q > 0}.

This gives a filtration on the topological space TOP(Y,Z) and so defines the filtered space

FTOP(Y∗,Z∗)p. The exponential law in the category Top now gives the exponential law

e : FTop(X∗ ⊗ Y∗,Z∗) ∼= FTop(X∗, FTOP(Y∗,Z∗)),

from which one can deduce the exponential law

e : FTOP(X∗ ⊗ Y∗,Z∗) ∼= FTOP(X∗, FTOP(Y∗,Z∗)).

either using the general result in the Appendix B or directly as is left as an exercise.

An advantage of having this internal hom for filtered spaces is that we can apply our fundamental

crossed complex functor Π to it. To say more on this, we first discuss the notion of homotopy in FTop.

The convenient definition of homotopy H : f0 ≃ f1 : Y∗ → Z∗ of maps f0, f1 of filtered spaces is

that H is a map I × Y → Z which is a homotopy f0 ≃ f1 such that H(I × Yq) ⊆ Zq+1 for all q > 0.

This last condition is equivalent to H being a filtered map I∗⊗Y∗ → Z∗. Equivalently, we can regard

H also as a map

I∗ → FTOP(Y∗,Z∗), or Y∗ → FTOP(I∗,Z∗),

although the latter interpretation involves the twisting map I∗ ⊗ Y∗ → Y∗ ⊗ I∗.

It is also possible to consider ‘higher filtered homotopies’ as filtered maps

En∗ ⊗ Y∗ → Z∗

or equivalently as maps

En∗ → FTOP(Y∗,Z∗).

This will fit with results on crossed complexes.

9.8 Tensor products and the fundamental crossed complex

In order to obtain the homotopy classification Theorem 10.4.17, we need to use tensor products and

homotopies of crossed complexes and its relation to homotopies of filtered maps.

We have defined the notion of homotopies for maps of filtered spaces. They give 1-homotopies

between the induced morphisms of fundamental crossed complexes. Again, it is possible to prove

this directly, but it follows more elegantly from later more general results.

In particular,

Theorem 9.8.1 If X∗ and Y∗ are filtered spaces, then there is a natural morphism

θ : ΠX∗ ⊗ ΠY∗ → Π(X∗ ⊗ Y∗)

such that:

i) θ is associative;
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ii) if ∗ denotes a singleton space or crossed complex, then the following diagrams are commutative

ΠX∗

∼= %%JJJJ
JJJ

JJJ
(ΠX∗)⊗ ∗

∼=oo

θ

��
Π(X∗ ⊗ ∗)

∗ ⊗ ΠX∗

θ

��

∼= // ΠX∗

∼=yyttttttttt

Π(∗ ⊗ X∗)

iii) θ is commutative in the sense that if Tc : C ⊗ D → D ⊗ C is the natural isomorphism of crossed

complexes described in Theorem 9.3.17, and Tt : X∗ ⊗ Y∗ → Y∗ ⊗ X∗ is the twisting map, then the

following diagram is commutative

ΠX∗ ⊗ ΠY∗
θ //

Tc

��

Π(X∗ ⊗ Y∗)

Π(Tt)

��
ΠY∗ ⊗ ΠX∗

θ // Π(Y∗ ⊗ X∗);

iv) if X∗, Y∗ are the skeletal filtrations of CW-complexes, then θ is an isomorphism.

The proof is deferred to Chapter 15 where we can use the techniques of ω-groupoids. Note that

the construction of the natural transformation θ could in principle be proved directly, but this would

be technically difficult because of the complications of the relations for the tensor product of crossed

complexes.

In fact θ is an isomorphism under more general conditions (see the result by Baues and Brown

in [BB93]).

In a similar spirit, let us now prove that the functor Π : FTop→ Crs is a homotopy functor.

Proposition 9.8.2 There is a natural morphism of crossed complexes

ψ : Π(FTOP(X∗, Y∗))→ CRS(ΠX∗,ΠY∗)

which is Π in dimension 0.

Proof It is sufficient to construct the morphism ψ̂ as the composition in the following commutative

diagram

Π(FTOP(X∗, Y∗))⊗ ΠX∗
ψ̂ //

θ **UUUUUUUUUUUUUUUUU
ΠY∗

Π(FTOP(X∗, Y∗)⊗ X∗)

Πe

66nnnnnnnnnnnnn

where e : FTOP(X∗, Y∗) ⊗ X∗ → Y∗ is the evaluation morphism, i.e. the adjoint to the identity on

FTOP(X∗, Y∗). 2

Corollary 9.8.3 In particular, a homotopy F : f0 ≃ f1 : X∗ → Y∗ in FTop induces a (left) homotopy

ΠF : Πf0 ≃ Πf1 : ΠX∗ → ΠY∗ in Crs.

Proof This is an immediate consequence of the information given by ψ in dimension 1. 2
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Similar statements hold for right homotopies of crossed complexes. A right homotopy C→ D is

a morphism C ⊗ I → D, or, equivalently, a morphism C → CRS(I,D). We may also define a right

homotopy in FTop to be a map Y∗ ⊗ I∗ → Z∗. By Theorem 9.8.1, such a map gives rise to a right

homotopy ΠY∗ ⊗ I→ ΠZ∗.

9.9 The homotopy addition lemma for a simplex.

In this section we describe explicitly and algebraically a free basis and the boundary for the crossed

complex Π∆n where ∆n is the topological n-simplex with its standard filtration by dimension. This

formula is called the homotopy addition lemma for a simplex. We call Π∆n the ‘n-simplex crossed

complex’, and its description is used in many places later

It is a feature of our exposition using crossed complexes that the homotopy addition lemma can

be seen as an algebraic fact which models accurately the geometry. That happens because crossed

complexes model well the geometry, and a key aspect of that is the use of groupoids to handle all

the vertices of the simplex.

Definition 9.9.1 First it is useful to write out all the rules for the cylinder Cyl (C) = I ⊗ C, as a

reference. Let C be a crossed complex. We apply the relations in the definition of tensor product of

crossed complexes (Definition 9.3.13) to this case.

For all n > 0 and c ∈ Cn, I ⊗ C is generated by elements 0 ⊗ c, 1 ⊗ c of dimension n and

ι⊗ c, ι−1 ⊗ c of dimension (n+ 1) with the following defining relations for a = 0, 1, ι:

Source and target

t(a⊗ c) = ta⊗ tc for all a ∈ I, c ∈ C

s(a⊗ c) = a⊗ sc if a = 0, 1,n = 1 ,

s(a⊗ c) = sa⊗ c if a = ι, ι−1,n = 0 .

Relations with operations

a⊗ cc
′

= (a⊗ c)ta⊗c
′

if n > 2, c′ ∈ C1.

Relations with additions

a⊗ (c + c′) =

{
a⊗ c+ a⊗ c′, if a = 0, 1,n > 1 or if a = ι, ι−1, n > 2,

(a⊗ c)ta⊗c
′

+ a⊗ c′, if a = ι, ι−1,n = 1

(ι−1)⊗ c =

{
−(ι⊗ c) if n = 0,

−(ι⊗ c)(ι−1)⊗tc if n > 1.

Boundaries

δ(a⊗ c) =






−(a⊗ δc) − (ta⊗ c) + (sa⊗ c)a⊗tc if a = ι, ι−1, n > 2,

−ta⊗ c− a⊗ sc+ sa⊗ c+ a⊗ tc if a = ι, ι−1, n = 1,

a⊗ δc if a = 0, 1, n > 2.

2

These rules simplify if instead of the cylinder, we analyse the cone.
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Definition 9.9.2 Let C be a crossed complex. The cone Cone(C) is defined by

Cone (C) = (I⊗ C)/({1}⊗ C) ,

which can alternatively be seen as a pushout

{1}⊗ C

��

// {v}

��
I⊗ C // Cone (C).

We call v the vertex of the cone. 2

Proposition 9.9.3 So Cone (C) is generated by elements 0⊗c, ι⊗c of dimensions n,n+1 respectively,

and v of dimension 0 with the rules

Source and target

t(a⊗ c) =

{
0⊗ tc, if a = 0,

v otherwise.

Relations with operations

a⊗ cc
′

= a⊗ c if n > 2, c′ ∈ C1.

Relations with additions

a⊗ (c + c′) = a⊗ c+ a⊗ c′.

and

(ι−1)⊗ c =

{
−(ι⊗ c) if n = 0,

−(ι⊗ c)(ι−1)⊗tc if n > 1.

Boundaries

δ(ι⊗ c) =

{
−(ι⊗ δc) + (0 ⊗ c)ι⊗tc if n > 2,

−ι⊗ sc+ 0⊗ c+ ι⊗ tc if n = 1,

δ(0⊗ c) = 0⊗ δc if n > 2.

The simplicity of the rules for operations and additions is one of the advantages of the form of our

definition of the cone, in which the end at 1 is shrunk to a point.

We use the above to work out the fundamental crossed complex of the simplex ∆n in an algebraic

fashion. We regard ∆n topologically as the topological cone

Cone (∆n−1) = (I× ∆n−1)/({1}× ∆n−1).

The vertices of ∆1 = I are ordered as 0 < 1. Inductively, we get vertices v0, . . . , vn of ∆n with vn = v

being the last introduced in the cone construction, the other vertices vi being (0, vi). The fact that

our algebraic formula corresponds to the topological one follows from facts stated earlier on the

tensor product and on the HHvKT stated in the next section.

We now define inductively top dimensional generators of the crossed complex Π∆n by, in the

cone complex:

σ0 = v, σ1 = ι, σn = (ι⊗ σn−1), n > 2
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with σ0 being the vertex of Π∆0. convention for vn?

We give conventions for the faces of σn, as illustrated in the following diagram:

σ2 = ι⊗ σ1

ι⊗ 0 = ∂1σ
2

2 = v2

??���������

���������

0 = 0⊗ 0 1 = 0⊗ 1∂2σ
2 = 0⊗ σ1

//

ι⊗ 1 = ∂0σ
2

__?????????

?????????

σ10 = ∂1σ
1 1 = ∂0σ

1

//

We define inductively

∂iσ
n =

{
ι⊗ ∂iσn−1 if i < n,

0⊗ σn−1 if i = n.

Theorem 9.9.4 (Homotopy Addition Lemma) The following formulae hold, where un = ι⊗ vn−1:

δ2σ
2 = −∂1σ

2 + ∂2σ
2 + ∂0σ

2, (9.9.1)

δ3σ
3 = (∂3σ

3)u3 − ∂0σ
3 − ∂2σ

3 + ∂1σ
3, (9.9.2)

while for n > 4

δnσ
n = (∂nσ

n)un +

n−1∑

i=0

(−1)n−i∂iσ
n. (9.9.3)

Proof For the case n = 2 we have

δ2σ
2 = δ2((ι⊗ ι))

= −ι⊗ 0 + 0⊗ ι + ι⊗ 1

= −∂1σ
2 + ∂2σ

2 + ∂0σ
2.

For n = 3 we have:

δ3σ
3 = δ3(ι⊗ σ

2)

= (0 ⊗ σ2)ι⊗v2 − ι⊗ δ2σ
2

= (0 ⊗ σ2)u3 − ι⊗ (−∂1σ
2 + ∂2σ

2 + ∂0σ
2)

= (∂3σ
3)u3 − ∂0σ

3 − ∂2σ
3 + ∂1σ

3.

We leave the general case to the reader. The key points that make it easy are the rules on operations

and additions of Proposition 9.9.3. 2

Remark 9.9.5 (i) Notice the formula of δ2 gives a groupoid formula, and the one of δ3 gives a

formula in a crossed module which is nonabelian.

(ii) There are many possible conventions for the Homotopy Addition Lemma, and that given here is

unusual. However, our formula follows naturally from the geometry of the cone and our algebra for

the tensor product.
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(iii) It is a good exercise to prove that δ2δ3 = 0. It is not so easy to prove directly from the formula

that δ3δ4 = 0, and a direct proof (given for example by G.W.Whitehead in his book [Whi78]) does

use the second law for a crossed module. Of course we know these composites are 0 since we are

working in the category of crossed complexes. 2

The representation Cone (∆n−1) = ∆n gives a cellular contracting homotopy of ∆n−1, and so

Π∆n is a contractible crossed complex. We shall use this fact later.

We can now state the formula in terms of free generators and boundaries for the whole crossed

complex Π∆n. It has a free generator σn in dimension n and also free generators ασm in dimension

m for all 0 6 m < n and all increasing functions α : [m] → [n]. The boundary of such a ασm is

given by the simplex homotopy addition lemma in dimension m.

Example 9.9.6 The fundamental crossed complex of a simplicial set. Let K be a simplicial set.

The fundamental crossed complex ΠK is to have free generators in dimension n given by the ele-

ments of Kn and the boundary δk for k ∈ Kn is given by the homotopy addition lemma in dimension

n.

Example 9.9.7 The simplicial nerve of a groupoid Let G be a groupoid. Its simplicial nerve N∆G

is the simplicial set which in dimension 0 consists of the objects of G and in dimension n > 0 consists

of the composable sequences of arrows of G, i.e. sequences [g1, . . . ,gn] such that the target of gi is

the source of gi+1 for 1 6 i < n. The face operators ∂i are defined on these elements so that each

face of dimension 2 is commutative. This leads to the following pictures in dimensions 2 and 3:

2

0

gh

??�
�

�
�

�
�

g
// 1

h

OO

3

2

k

OO

0 g
//

gh

??�
�

�
�

�
�

ghk

CC

�

�
�

�


�
�

1

hk

[[

(
*

,
/

1
3

6

h

__>>>>>>>>>>>

and the face operators (∂i gives the face opposite to the vertex i):

∂0[g,h, k] = [h, k],∂1[g,h, k] = [gh, k],∂2[g,h, k] = [g,hk],∂3[g,h, k] = [g,h].

This tetrahedral picture shows the relation of this construction to associativity of the groupoid oper-

ation.

The general formulae are:

∂i[g1, . . . ,gn] =






[g2, . . . ,gn] if i = 0,

[g1, . . . ,gigi+1, . . . ,gn] if 1 < i < n,

[g1, . . . ,gn−1] if i = n.

We can also define degeneracy operators for i = 0, . . . ,n by

εi[g1, . . . ,gn] = [g1, . . . ,gi−1, 1i,gi, . . . ,gn]

where 1i denotes uniquely the identity at the object i for which 1i gives a composable sequence of

length n+ 1. In terms of the notation of the homotopy addition lemma in which un = ∂n−1
0 we also

have un[g1, . . . ,gn] = gn. So we have a formula for δn[g1, . . . ,gn] which we shall use later.
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Remark 9.9.8 From the simplicial nerve N∆(G) of a groupoid G it is natural to form the crossed

complex ΠN∆(G); this has a free generator for each simplex of N∆(G) and boundary given by the

simplicial homotopy addition lemma. Then there is a natural isomorphism π1ΠN
∆(G) ∼= G, and also

ΠN∆(G) is aspherical, i.e. all homology in dimensions > 1 vanishes. When we discuss resolutions in

Chapter 11 we will see ΠN∆(G) as the standard free crossed resolution of G. However the proof of

asphericity is best done using the notion of universal covering crossed complex, which we introduce

in Chapter 11, section 11.2.2. 2

We can also obtain a cubical homotopy addition lemma using the cube crossed complex ΠIn =

I⊗n. In this crossed complex, let cn = ι⊗ · · · ⊗ ι be the n-fold tensor product of ι with itself, and for

α = 0, 1 let cαi = ∂αi c
n be the element of dimension (n − 1) obtained by replacing in cn the ι in the

ith place by α. The formulae for the boundary in the tensor product then yield by induction, using

I⊗n = I⊗ I⊗(n−1):

Proposition 9.9.9 [Cubical Homotopy Addition Lemma]

δnc
n =






−c11 − c02 + c01 + c12 if n = 2,

−c13 − (c02)
u2c − c11 + (c03)

u3c + c12 + (c01)
u1c if n = 3,

∑n
i=1(−1)i{c1i − (c0i )

uic} if n > 4,

(where c = cn and ui = ∂1
1∂

1
2 · · · ı̂ · · ·∂

1
n+1).

It should be said that this suggested ‘proof’ is not quite fair, since we are using a lot of results on

crossed complexes the proofs of some of which rely on the cubical homotopy addition lemma es-

tablished independently. However, this calculation shows how the results tie in, and that once we

have these results established they give powerful means of calculation, some of which are inher-

ently nonabelian, and which usually involve module operations not so easily handled by traditional

methods.

9.10 Notes

The homotopy addition lemma for a simplex is used in Blakers’ 1948 work [Bla48] and was known

to be an essential part of proofs of the absolute and relative Hurewicz theorems. However a proof

appeared only in [Hu53] in 1955. The proof in G.W. Whitehead’s text [Whi78] uses an induction

proving at the same time the Hurewicz theorems. It is clear that the algebra of crossed complexes

is an essential part of the expression of this lemma. The algebraic derivation given here comes from

[BS07].

The notion of monoidal and monoidal closed category can be seen as central to many parts

of mathematics, and for the general theory we refer the reader to [ML71]. A full exposition on

monoidal categories requires the notion of coherence; we avoid dealing with this here because all

of the conditions such as associativity on the tensor products with which we deal in the end reduce

to associativity of a cartesian product, through the notion of bimorphisms, and so the coherence

properties needed follow from the universal properties of categorical products.



Chapter 10

The classifying space of a crossed

complex

Introduction

This chapter is one of the most important in this book, since homotopy classification results are

among the most difficult in homotopy theory. We define for a crossed complex C, and in a functorial

way, a topological space BC, called the classifying space of C. The most important property is the foll-

owing homotopy classification theorem which generalises classical theorems of Eilenberg-Mac Lane:

[X,BC] ∼= [ΠX∗,C] (10.0.1)

for a CW-complex X with skeletal filtration X∗, and where ΠX∗ is the fundamental crossed complex

of the filtered space X∗. Here the left hand side gives continuous homotopy classes of maps of spaces

and the right hand side gives algebraic homotopy classes of morphisms of crossed complexes. The

proof uses a considerable part of the technology of crossed complexes developed in the rest of this

book, and the result is a special case of a description of the weak homotopy type of the space of

maps X→ BC.

Because the crossed complex ΠX∗ is free, the right hand side of equation (10.0.1) can be quite

explicit, particularly if C is finite. A morphism ΠX∗ → C is determined by a list of elements of

C in various dimensions, subject to boundary conditions. The homotopy classification of these is

then an explicit equivalence relation. Of course, because of the nonabelian nature of some of the

information in a crossed complex, there are computability questions, and there are also questions of

how to analyse this information. We shall find the notion of fibration of crossed complexes, and some

associated exact sequences, useful in this respect.

Because of the central nature of cubical methods for some of our major results on crossed com-

plexes, it is convenient to define the classifying space BC cubically. So the first sections of this

chapter are devoted to an account of cubical sets and related results.

10.1 The cubical site

This Section contains an introductory account of the category Cub of cubical sets and its relationship

with the category Top of topological spaces. These basic facts may be found in many places, two

267
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quite recent accounts may be found for example in [Cis06, Jar06].

10.1.1 The box category.

The usual definition of cubical set is as a functor from a small category which we call the site for

cubical sets. We begin by defining the category that we are going to use.

Definition 10.1.1 The box category � is the subcategory of Top having as objects the standard

n-cubes In = [0, 1]n for n > 0 and the morphisms �(In, Im) are the maps that can be got by

composition of the face inclusions and of projections

δαi : In → In+1 and of projections σi : In+1 → In

defined respectively by

δαi (x1, · · · , xi−1, xi, · · · , xn) = (x1, · · · , xi−1, l(α), xi, · · · , xn)

for i = 1, 2, . . . ,n; α = +, − where l(+) = 1, l(−) = 0, and

σi(x1, · · · , xi−1, xi, · · · , xn+1) = (x1, · · · , xi−1, xi+1, · · · , xn+1)

for i = 1, 2, . . . ,n + 1. 2

Proposition 10.1.2 The morphisms in the category � are given by all possible composition of inclusions

of faces and of projections subject to the relations

δ
β
j δ
α
i = δαi δ

β
j−1 (i < j), (A.1)(i)

σjσi = σiσj+1 (i 6 j), (A.1)(ii)

σjδ
α
i =






δαi σj−1 (i < j)

δαi−1σj (i > j)

id (i = j)

(A.1)(iii)

Remark 10.1.3 Using these relations we can easily check that any morphism in � has a unique

expression as δα1

i1
· · · δαk

ik
σj1 · · ·σjl with i1 6 . . . 6 ik and j1 < . . . < jl. 2

10.1.2 The category Cub of cubical sets.

Now cubical sets are just functors from the � category to the category of sets.

Definition 10.1.4 The category Cub of cubical sets is the functor category FUN(� op, Sets). Thus a

cubical set is a functor

K : � op → Sets,

and a map of cubical sets is a natural transformation of functors. 2

Remark 10.1.5 A cubical set K is defined by the family of sets {Kn = K(In)}n>0, the face maps

∂αi = K(δαn) : Kn → Kn−1 (i = 1, 2, . . . ,n; α = +, −) and the degeneracy maps ǫi = K(σi) : Kn−1 →

Kn (i = 1, 2, . . . ,n) satisfying the usual cubical relations:
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∂αi ∂
β
j = ∂

β
j−1∂

α
i (i < j), (B.1)(i)

ǫiǫj = ǫj+1ǫi (i 6 j), (B.1)(ii)

∂αi ǫj =






ǫj−1∂
α
i (i < j)

ǫj∂
α
i−1 (i > j)

id (i = j)

(B.1)(iii)

A very important example is the ‘free cubical set on one generator in dimension n’ which we

denote In:

Definition 10.1.6 For n > 0 we define In as the cubical set whose m-cells are �(In, Im) for all

m > 0 and whose morphisms are defined by composition. 2

Proposition 10.1.7 Any cubical morphism x̂ ∈ Cub(In,K) corresponds to an element of Kn (x =

x̂(1In)) giving a natural bijection Cub(In,K)→ Kn. 2

Remark 10.1.8 Thus there is an embedding � → Cub which sends In 7→ In. This is an example of

the Yoneda embedding Υ : C → FUN(Cop, Sets) for any small category C. One of the properties of

this embedding is that any object of FUN(Cop, Sets) is a colimit of images under Υ of the objects of

the category C. 2

Another very important example is the singular cubical set of a topological space:

Definition 10.1.9 For any topological space X, its singular cubical set S�X is given by all singular

cubes, i.e.

(S�X)n = {σ : In → X | σ a continuous map}

with faces and degeneracies given by composition with the maps δαi : In−1 → In and σi : In+1 → In

defined above. This gives a functor

S� : Top→ Cub. 2

This definition is a preliminary to the construction of cubical singular homology of a space which

we outline in section 14.7 (see also, for example, [Mas80]).

10.1.3 Geometric realisation of a cubical set

There is a left adjoint to this singular cubical set functor:

Definition 10.1.10 For any cubical set K : � op → C, its geometric realisation |K| is the quotient

space

|K| =

⊔
n Kn × I

n

≡

where Kn is given the discrete topology, In its standard topology, and the equivalence relation is

generated by (∂αi x,u) ≡ (x, δαi u) and (εiy,u) ≡ (y,σiu) where x ∈ Kn+1,y ∈ Kn−1 and u ∈ In. 2

This definition comes under the general scheme of a coend (see The Appendix). The formal

properties of coends and ends are useful for deriving the properties we need for the geometric

realisation.
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Remark 10.1.11 The realisation of a cubical set |K| can also be interpreted as a coend:

|K| =

∫�,n

Kn × I
n. 2

Proposition 10.1.12 The realisation of a cubical set is a CW-complex having one n-cell for each non-

degenerate n-cell.

Remark 10.1.13 Thus each point of the realisation of a cubical set |K| is an equivalence class |x,u|

with x ∈ Kn and u ∈ In and it has a unique representative |x,u| with x a non-degenerate cube. 2

Using this representation it is not difficult to prove that the realisation functor | | is left adjoint

to the singular cubical functor S�.

Theorem 10.1.14 The realisation functor | | is left adjoint to the singular cubical functor S�. That is

for each cubical set K and topological space X, there is a natural bijection

Ψ : Top(|K|,X)→ Cub(K, S�X).

Proof For any continuous map g : |K|→ X, the cubical map

Ψ(g) : K→ S�X

is given in dimension n by

Ψn(g)(x)(u) = g(|x,u|),

for any n-cube x ∈ Kn and point u ∈ In. The maps Ψ defines a natural transformation, whose

inverse is given by sending a cubical map f to the continuous map defined by mapping any class

|xn,u| to fn(xn)(u). 2

Our aim is to define homotopy theory for cubical sets and to relate this to homotopy theory for

topological spaces. This is essential for our main result on homotopy classification.

10.2 Monoidal closed structure on Cub

A monoidal closed structure on the category of cubical sets gives for cubical sets M,L,M natural

constructions of a tensor product K ⊗ L and an internal hom or morphism object CUB(L,M) which

satisfy an exponential law in the form of a natural isomorphism

Cub(K⊗ L,M) ∼= Cub(K, CUB(L,M)). (expcub)

Since there is also a ‘unit interval object’ I as a cubical set, this enables homotopies between cubical

sets L and M to be studied, as in any monoidal closed category with a unit interval object, using

either maps from the product I⊗ L to M or maps from I to the internal morphism object CUB(L,M)

from L to M. However a special condition on the cubical set M (the Kan extension condition) is

need to ensure homotopy between maps L→M is an equivalence relation.

These results will be used in Chapter 15.
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10.2.1 Tensor product of cubical sets

We first give the tensor product, which gives the monoidal structure and is an intermediate step in

the construction of the internal morphisms functor. The tensor product is defined by a universal

property with respect to bicubical maps (rather like the usual tensor product of modules has with

respect to bilinear maps).

The tensor product is associative (Proposition 10.2.6), but not symmetric; the failure of symmetry

can be controlled by a ‘transposition’ functor which will be given in Proposition 10.2.20 and Remark

10.2.22.

An n-cube in the tensor product K⊗L is going to be the ‘product’ of a p-cube k ∈ K and a q-cube

l ∈ L for p+ q = n. We just take care that the last degeneracy in the first factor agrees with the first

in the second factor (the reason becomes clear in the geometric example).

Definition 10.2.1 If K,L are cubical sets, their tensor product K⊗ L is defined by

(K⊗ L)n =

(⊔
p+q=n Kp × Lq

)

∼

where ∼ is the equivalence relation generated by (εr+1x,y) ∼ (x, ε1y) for x ∈ Kr,y ∈ Ls (r+ s = n−

1). We write x⊗y for the equivalence class of (x,y). The maps ∂αi , εi are defined for x ∈ Kp,y ∈ Lq
by

∂αi (x⊗ y) =

{
(∂αi x)⊗ y if 1 6 i 6 p,

x⊗ (∂αi−py) if p + 1 6 i 6 p+ q,

εi(x⊗ y) =

{
(εix)⊗ y if 1 6 i 6 p + 1,

x⊗ (εi−py) if p + 1 6 i 6 p+ q+ 1

and make K⊗ L a cubical set. 2

Remark 10.2.2 We note that in K⊗ L, we have

(εp+1x)⊗ y = x⊗ (ε1y)

when x ∈ Kp. 2

The realisation functor has a strong and simple relation to the tensor product. This is one of the

reasons for the utility of cubical methods in contrast to simplicial methods.

Proposition 10.2.3 Let K,L be cubical sets. Then there is a cellular isomorphism

χ : |K|⊗ |L|→ |K⊗ L|.

Proof The bracketing homeomorphism In ∼= Ir× Is whenever r+ s = n yields a homeomorphism

Kr × Ls × I
n ∼= Kr × I

r × Ls × I
s

whenever r + s = n. One now checks that the identifications to give the realisations are on both

sides obtained from ⊔

r+s=n

Kr × Ls × I
n

by the same identifications. 2
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To give Cub the structure of a monoidal closed category, we have to construct not only a tensor

product, but also an internal hom functor CUB(L,M) for cubical sets L,M and a natural equivalence

of the form (expcub).

First, we are going to interpret the left part of this equivalence in terms of bicubical maps. This

procedure resembles the use of bilinear maps as an intermediate step between the tensor product of

R-modules and the R-module of homomorphisms.

Definition 10.2.4 A family of maps

fpq : Kp × Lq →Mp+q

is called a bicubical map f : (K,L)→M if it satisfies for all p,q and α = ±:

∂αi fpq(x,y) =

{
fp−1,q(∂

α
i x,y) if 1 6 i 6 p

fp,q−1(x,∂
α
i−py) if p + 1 6 i 6 p+ q,

(i)

εifpq(x,y) =

{
fp+1,q(εix,y) if 1 6 i 6 p+ 1

fp,q+1(x, εi−py) if p + 1 6 i 6 p+ q+ 1.
(ii)

(Notice that this last part gives further vindication of the rule (εp+1x)⊗ y = x⊗ (ε1y)). 2

We now check that the tensor product is the universal construction with respect to bicubical

maps. This fact is used as an intermediate step in our route to the internal hom functor CUB.

Proposition 10.2.5 The projections

χpq : Kp × Lq → (K⊗ L)p+q

defined by χpq(x,y) = x⊗ y form a bicubical map which is universal with respect to all bicubical maps

from (K,L).

Proof Any cubical map f : K⊗ L→M defines a family of functions f̂pq : Kp × Lq →Mp+q (given

by f̂pq(x,y) = fp+q(x⊗ y)) that clearly form a bicubical map.

Conversely, given a bicubical map f : (K,L) → M, there is a unique cubical map f̂ : K ⊗ L → M

defined by f̂p+q(x⊗ y) = fpq(x,y). The uniqueness is clear. The map f is well defined because the

defining equations (ii) for a bicubical map imply that, for x ∈ Kp and y ∈ Lq

fp+1,q(εp+1x,y) = εp+1fpq(x,y) = fp,q+1(x, ε1y).

It is an easy exercise to prove that the resulting map K⊗ L→M is cubical. 2

Proposition 10.2.6 For cubical sets K,L,M there is a natural isomorphism

(K⊗ L)⊗M ∼= K⊗ (L⊗M).

Proof Both sides of the above equation may be defined as universal with respect to tricubical maps

from (K,L,M). We leave details to the reader. 2
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10.2.2 Homotopies of cubical maps

Let us move on to the construction of the internal hom CUB. Recall From Proposition 10.1.7 that,

for any cubical set K, we have Kn ∼= Cub(In,K) where In is the cubical set freely generated by one

element cn in dimension n.

Thus the internal morphism construction CUB(K,L) has to be a cubical set satisfying

CUBn(K,L) ∼= Cub(In, CUB(K,L)) ∼= Cub(In ⊗ K,L)

i.e. the n-dimensional elements of CUB(K,L) are ‘n-fold left homotopies’.

Using Proposition 10.2.5 any element h ∈ CUBn(K,L) may be considered also as a bicubical map

ĥ : (In,K)→ L.

Let us begin with the case n = 1: then I1 = I is the cubical set generated by c1 in dimension 1.

We denote its vertices by 0 = ∂+c1 and 1 = ∂−c1. The cubical set I plays the role of the unit interval

in homotopy theory. It is clear that a homotopy

h : I⊗ K→ L

would be given by the images of all h(c1, x) ∈ Ln+1 for all x ∈ Kn. Essentially it should be a ‘degree

one’ cubical morphism that forgets about the ∂±1 (which are used to give the images of 0 and 1). Let

us make this precise.

Definition 10.2.7 For any cubical set K we define the left path complex PK to be the cubical set with

(PK)r = Kr+1

and cubical operations

∂α2 ,∂α3 , . . . ,∂αr+1 : (PK)r → (PK)r+1, and

ε2, ε3, . . . , εr+1 : (PK)r−1 → (PK)r

(that is, we ignore the first operations ∂−
1 ,∂+

1 , ε1 in each dimension r.)

This construction gives a functor

P : Cub→ Cub.

2

Proposition 10.2.8 The functor P is right adjoint to I ⊗ −, i.e. there is a natural one-one correspon-

dence between

1. Cubical maps f̃ : K→ PL and

2. Cubical maps f : I ⊗ K→ L.

Proof The proposition follows because both are clearly equivalent to bicubical maps (I,K) → L.

2
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Remark 10.2.9 Here corresponding maps f, f̃ are related by f̃(x) = f(c1 ⊗ x) and either of them is

termed a left homotopy from f0 to f1, where fα : K→ L is given by

fαx = f(α⊗ x) = ∂α1 f̃x (α = 0, 1). 2

The iteration of the left path complex gives a cubical set that is right adjoint to the tensor product

with respect to In, and thus classifies n-fold left homotopies.

Definition 10.2.10 We define the n-fold left path complex PnM inductively by PnM = P(Pn−1M),

so that

(PnM)r =Mn+r

with cubical operations

∂αn+1,∂
α
n+2, . . . ,∂

α
n+r : (PnM)r → (PnM)r−1

εn+1, εn+2, . . . , εn+r : (PnM)r−1 → (PnM)r

(that is, we ignore the first n operations ∂αi , εi for i = 1, · · ·n in each dimension.) 2

As before, this functor is a special case of the right adjoint to the tensor product.

Proposition 10.2.11 The functor Pn is right adjoint to In ⊗ −, i.e. there is a natural one-one corre-

spondence between

1. Cubical maps f̃ : L→ PnM and

2. Cubical maps f : In ⊗ L→M.

Proof As before, we can check that both are equivalent to bicubical maps (In,L)→M. 2

Remark 10.2.12 Here corresponding maps f, f̃ are related by f̃(x) = f(cn⊗ x) and either of them is

termed a n-fold left homotopy. 2

That gives the following relation between free cubical sets.

Corollary 10.2.13 There are natural (and coherent) isomorphisms of cubical sets

Im ⊗ In ∼= Im+n.

Proof This follows from Proposition 10.2.11 since Pm ◦ Pn = Pm+n. 2

10.2.3 The internal hom functor on Cub

Using homotopies, we have constructed the sets CUBn(L,M) for cubical sets L and M and any

n > 0. To define the cubical set CUB(L,M) it remains to define faces and degeneracies.

Notice that the omitted operations

∂α1 , . . . ,∂αn and ε1, ε2, . . . , εn

in each dimension induce morphisms of cubical sets

∂α1 , . . . ,∂αn : PnM −→ Pn−1M, and ε1, ε2, . . . , εn : Pn−1M −→ PnM.

These morphisms satisfy the cubical laws.
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Definition 10.2.14 We now define the cubical internal hom

CUBn(L,M) = Cub(L,PnM)

and observe that the family CUB(L,M) of sets CUBn(L,M) for n > 0 gets a cubical structure. Its

cubical operations

∂α1 ,∂α2 , . . . ,∂αn : CUBn(L,M)→ CUBn−1(L,M);

ε1, ε2, . . . , εn : CUBn−1(L,M)→ CUBn(L,M)

are induced by those of M. 2

Remark 10.2.15 Thus a typical f ∈ CUBn(L,M) is a family of maps fr : Lr →Mn+r satisfying

fr−1∂
α
i = ∂αn+ifr, frεj = εn+jfr−1 (i, j = 1, 2, . . . , r)

and its faces and degeneracies are given by

(∂αi f)r = ∂αi fr (εαj f)r = εαj fr (i, j = 1, 2, . . . ,n,α = 0, 1).

In geometric terms, the elements of CUB0(L,M) are the cubical maps L → M, the elements of

CUB1(L,M) are the (left) homotopies between such maps, the elements of CUB2(L,M) are homo-

topies between homotopies, etc. 2

Proposition 10.2.16 The functor CUB(L, −) : Cub → Cub is right adjoint to − ⊗ L. Moreover, the

bijections

Cub(K ⊗ L,M) ∼= Cub(K, CUB(L,M))

giving the adjointness are natural with respect to K,L,M.

Proof As before the bijections can be obtained via bicubical maps (K,L)→M. 2

As a special case:

Corollary 10.2.17 The functor −⊗ In is left adjoint to CUB(In, −) : Cub→ Cub.

Corollary 10.2.18 For cubical sets K,L,M there is a natural isomorphism of cubical sets

CUB(K⊗ L,M) ∼= CUB(K, CUB(L,M)).

Proof It is easy to use associativity of the tensor product and the exponential law repeatedly to

give for any cubical set E a natural bijection

Cub(E, CUB(K⊗ L,M)) ∼= Cub(E, CUB(K, CUB(L,M)).

The result follows. 2

The tensor product is not symmetric because (x,y) 7→ y⊗ x is not a bicubical map. We have also

seen that the functors −⊗ In and In ⊗− have different left adjoints. Nevertheless, we can get some

symmetry via a ‘transposition’ functor.

Definition 10.2.19 We define a ‘transposition’ functor

T : Cub→ Cub,

where TK has the same elements as K in each dimension but has its face and degeneracy operations

numbered in reverse order, that is, the cubical operations

dαi : (TK)n → (TK)n−1 and ei : (TK)n−1 → (TK)n

are defined by dαi = ∂αn+1−i, ei = εn+1−i.
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There are some immediate consequences

Proposition 10.2.20 The functor T satisfies

1.- T is an involution, i.e. T2K is naturally isomorphic to K;

2.- T(K ⊗ L) is naturally isomorphic to T(L) ⊗ T(K); and

3.- there is an obvious cubical isomorphism TIn ∼= In. 2

Instead of an isomorphism of CUB(In,L) with PnL, we have:

Corollary 10.2.21 There is a natural isomorphism of cubical sets

CUB(In,L) ∼= TP
nTL.

Proof By Corollary 10.2.11, Pn is right adjoint to In⊗−, so PnT is right adjoint to T(In⊗−). Hence

TPnT is right adjoint to T(In⊗T−) ∼= (−⊗TIn) that is naturally isomorphic to (−⊗TIn) ∼= (−⊗In).

Hence TPnT is naturally isomorphic to the right adjoint Cub(In, −) of −⊗ In. 2

Remark 10.2.22 A simpler argument shows that for any cubical complex K the functor K ⊗ − :

Cub → Cub has right adjoint T(CUB(TK, T−)) and hence that the monoidal closed category Cub is

biclosed, in the sense of Kelly [Kel36], even though it is not symmetric. 2

Corollary 10.2.23 For cubical sets K,L the functors Cub → Cub given by K ⊗ − and − ⊗ L preserve

colimits. 2

10.3 Homotopy theory of cubical sets

In this Section we sketch how to develop a homotopy theory of cubical sets directly from the cubical

structure.

10.3.1 Kan cubical sets

In arguing with the extension condition which is known as the Kan condition on cubical sets, it is

often easier to work with geometric models. These are easier to see as real cubes made from the

geometric In, where I = [0, 1] is the unit interval, and subcomplexes of In, but the same arguments

can be given for the models In of these complexes in the category Cub, which we call ‘formal cubes’

and their subcomplexes ‘formal subcomplexes’. By a ‘cell’ in In we mean a non degenerate element.

We have to be careful in this section because we are thinking in terms of geometric cubes and their

union, but for cubical sets we have elements of various dimensions. Thus in C ∪ a as given below

where C is a subcomplex and a is a cell, the ∪ means union in the sense of subcomplexes generated

by C,a. We will use the results of this section in Part III.

Definition 10.3.1 Let B,C be subcomplexes of In such that C ⊆ B. We say that C is an elementary

collapse of B, written Bցe C, if for some s > 1 there is an s-cell a of B and (s− 1)-face b of a such

that

B = C ∪ a, C ∩ a = ∂a \ b

(where ∂a \ b denotes the set of the proper faces of a except b). The face b is called the free face of

the collapse.
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If there is a sequence

B1 ց
e B2 ց

e · · · ցe Br

of elementary collapses, then we write B1 ց Br and say B1 collapses to Br. 2

Example 10.3.2 If a is a cell then a⊗I collapses to a⊗ {0}∪∂a⊗I. Here the free face of the collapse

is a⊗ {1}.

We will next define the notion of a ‘partial box’. The following picture gives three examples

B,B1,B2 as part of a choice of a sequence of collapsings Bց 0 through B1,B2.
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B B1 B2
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e
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e ·

The formal definition of ‘partial box’ allows us to give a more widely applicable formulation of

the usual Kan extension condition on a cubical set.

Definition 10.3.3 Let C be an r-cell in the n-cube In. Two (r−1)-faces of C are called opposite if they

do not meet (except possibly in degenerate elements). A partial (r− 1)–box in C is a subcomplex B

of C generated by one (r − 1)-face b of C (called a base of B) and a number, possibly zero, of other

(r− 1)-faces of C none of which is opposite to b. The partial box is a box if its (r− 1)-cells consist of

all but one of the (r − 1)-faces of C. 2

Proposition 10.3.4 If B is a partial box in Im then (i) B⊗ In, and (ii) B⊗ In ∪ Im ⊗ ∂In, are partial

boxes in Im ⊗ In ∼= Im+n.

Proof Let b be a base for B. Then b⊗cn is a base for B⊗In. This proves (i). Further, ∂(Im⊗In) =

(∂Im)⊗ In ∪ Im ⊗ ∂In, and so (ii) follows. 2

We now come to a key theorem on the existence of chains of partial boxes; this applies to give

many examples of collapsing, even as a kind of algorithm, and is also essential in the work of Chapter

14.

Theorem 10.3.5 (Chains of partial boxes) Let B, B′ be partial boxes in an r-cell C of In such that

B′ ⊆ B. Then there is a chain

B = Bs ց Bs−1 ց · · · ց B1 = B′

such that

(i) each Bi is a partial box in C;

(ii) Bi+1 = Bi ∪ ai where ai is an (r− 1)-cell of C not in Bi;

(iii) ai ∩ Bi is a partial box in ai.

Proof We first show that there is a chain

B′ = B1 ⊂ · · · ⊂ Bs−1 ⊂ B = Bs

of partial boxes and a set of (r− 1)-cells a1, a2, · · · ,as−1 such that Bi+1 = Bi ∪ ai, ai * Bi.
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If B and B′ have a common base this is clear, since we may adjoin to B′ the (r− 1)-cells of B \B′

one at a time in any order. If B and B′ have no common base, choose a base b for B and let b ′ be

its opposite face in C. Then neither b nor b ′ is in B′. Hence B2 = B′ ∪ b is a partial box with base b

and we are reduced to the first case.

Now consider the partial box Bi+1 = Bi ∪ ai, a * Bi. We claim that ai ∩ Bi is a partial box in

ai. To see this, choose a base b for Bi+1 with b 6= ai; this is possible because if ai were the only

base for Bi+1, then Bi would consist of a number of pairs of opposite faces of C and would not be a

partial box. We now have ai 6= b, ai 6= b ′, so ai ∩ b is an (r− 2)-face of ai. Its opposite face in ai is

ai ∩b ′ and this is not in Bi because the only (r− 1)-faces of C which contain it are ai and b ′. Hence

ai ∩ Bi is a partial box with base ai ∩ b.

The proof is now completed by induction on the dimension r of C. If r = 1, the theorem is trivial.

If r > 1, choose Bi, ai as above. Since ai ∩ Bi is a partial box in ai, there is a box J in ai containing

it. The elementary collapse ai ցe J gives Bi+1 ցe Bi ∪ J. But by the induction hypothesis, J can be

collapsed to the partial box ai ∩ Bi in ai, and this implies Bi+1 ց Bi. 2

Corollary 10.3.6 If C is a partial (n − 1)–box in In then In collapses to C.

Proof We extend C to a box B. By definition, In collapses to B. By the previous theorem, B

collapses to C. 2

Corollary 10.3.7 In, and any box in In, collapses to any of its vertices.

Proof It is sufficient to prove collapsing to the vertex 0. We know In collapses to the partial box

{0}⊗ In−1. Similarly, any partial box in In collapses to any of its faces. Now proceed by induction. 2

Definition 10.3.8 Let K be a cubical set. We say K satisfies the Kan extension condition, or is Kan, if

for every r > 1 and any partial (r − 1)–box in Ir, any map B→ K extends over Ir. 2

Proposition 10.3.9 A cubical set is Kan if and only if for every n > 1 and any (n − 1)–box in In, any

map B→ K extends over In.

Proof The implication one way is trivial. Suppose then the extension over boxes condition is

fulfilled, and C is a partial (n − 1)–box in In.Then C is contained in a box B. By assumption and

theorem 10.3.5, In ց B ց C. By repeated application of the Kan condition, any map C → K

extends over In. 2

Example 10.3.10 For any space X the singular cubical set S�X is a Kan complex. Thus there exists

a retraction from In to the box I × In−1 → {0} × In−1 ∪ I × ∂In and indeed to any other box in a

similar manner.

Theorem 10.3.11 If L,M are cubical sets such that M is Kan, then CUB(L,M) is also Kan.

Proof Let B be an (m− 1)–box in Im. We have to prove that any map f : B→ CUB(L,M) extends

over Im. But f is equivalent to a map f̂ : B⊗ L→M. So it is equivalent to extend f̂ over Im ⊗ L.

Let L[n] be the subcubical set of L generated by Li for i 6 n. We construct the extension by

induction over Im ⊗ L[n]. The case n = 0 is easy.

The inductive hypothesis implies we have an extension of the restriction of f̂ over Im ⊗ L[n−1].

Let k ∈ Ln, and let k̂ : In → L be the corresponding map. Let h be the composite

B⊗ In
1⊗k̂
−→ B⊗ L

f̂
−→M.
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Then we have a map

B⊗ In ∪ Im ⊗ ∂In →M.

But B⊗ In ∪ Im⊗ ∂In is a partial box in Im⊗ In ∼= Im+n. Since M is Kan, this extends over Im⊗ In.

The image of the top dimensional cell gives the required value of the extension on k. 2

10.3.2 Kan fibrations of cubical sets

The applications of the classifying space of a crossed complex require the notion of Kan fibration of

cubical set, so we give the theory here. This is also useful in developing the homotopy theory, as we

shall see.

Definition 10.3.12 Let p : L→M be a cubical map. We say p is a Kan fibration if for all n > 0 and

inclusion i : B→ In of a partial (n − 1)-box B in In, any diagram such as the following

B

i

��

f // L

p

��
In g

//

F}
}

}

>>}
}

}

M

(10.3.1)

has a regular completion F; that is given f,g such that pf = gi, there is a cubical map F such that

Fi = f and pF = g. 2

Example 10.3.13 A cubical set L is a Kan cubical set if and only if the constant map L → ∗, where

∗ is a point, is a Kan fibration.

Exercise 10.3.14 If p : L → M is a Kan fibration, then for each v ∈ M0, p−1(v) is a Kan complex.

More generally, the pullback of a Kan fibration by any map is also a Kan fibration. 2

Exercise 10.3.15 If p : L→M is a Kan fibration, then so also is

CUB(K,p) : CUB(K,L)→ CUB(K,M)

for any cubical set K. 2

Example 10.3.16 If X∗ is a filtered space then there is defined a ‘filtered’ cubical singular complex

RX∗ and a quotient morphism p : RX∗ → ρX∗ by taking homotopy classes through filtered maps and

relative to the vertices. A key result of Chapter 15, whose proof uses theorem 10.3.5, is that p is a

Kan fibration of cubical sets. 2

Proposition 10.3.17 If j : A → K is the inclusion of a subcubical set, and M is Kan, then the induced

map

CUB(i,M) : CUB(K,M)→ CUB(A,M)

is a Kan fibration.

Proof Let n > 0 and let B be a partial (n− 1)-box in In. We have to prove that any diagram

B

i

��

f // CUB(K,M)

p

��
In g

//

Fvvvv

;;v
v

v

CUB(A,M)
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has a completion F. By the exponential law for cubical sets, this is equivalent to any map

In ⊗A ∪ B⊗ K→M

extends over In ⊗K. The proof of this is by induction on the cells of K \A, analogously to the proof

of theorem 10.3.11. 2

In applying the homotopy classification theorem of later sections, we will need to use the reali-

sation of Kan fibrations. The following result will be sufficient for these applications.

Theorem 10.3.18 Let p : L →M be a Kan fibration of cubical sets such that M, and hence also L, is

Kan. Then |p| : |L|→ |M| is homotopy equivalent over |M| to a fibration of spaces.

Proof Let f = |p| and choose a factorisation of f

|L|
e
−→ Ef

ψ
−→ |M|

through a homotopy equivalence e and a fibration ψ. Since p is a Kan fibration it has a long

homotopy exact sequence for each base point m ∈ M0 and for the corresponding fibre. Because of

the equivalence of homotopy categories given below (theorem 10.3.34), this long exact sequence is

mapped isomorphically to the long exact sequence of the fibration ψ. 2

10.3.3 Homotopy

In this Section we introduce the basic concepts in homotopy for cubical sets giving a definition of

weak equivalence between cubical sets. We also introduce the homotopy groups for Kan cubical

sets.

Definition 10.3.19 Let M be a cubical set. For x,y ∈ M0, we say x ∼ y if there is an a ∈ M1 such

that ∂−
1 a = x, ∂+

1 a = y.

Proposition 10.3.20 If M is a Kan cubical set, then the relation ∼ on M0 is an equivalence relation.

Proof Reflexivity x ∼ x is easy by taking a = ǫ1x. For the other conditions we need the Kan

condition. In the following two diagrams:

x

a

��

//____ z

y
b

// z

ǫ1z

OO x

a

��

ǫ1x // x

ǫ1x

��
y //____ x

the first shows the box to fill to obtain transitivity, and the second shows the box to fill to obtain

symmetry. 2

Definition 10.3.21 Two cubical maps f,g : L →M are said to be homotopic if f ∼ g as elements of

CUB(L,M)0.

Remark 10.3.22 It is quite clear that two maps are homotopic if and only if there exists a homotopy

H : I⊗ L→M

from one to the other.
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Proposition 10.3.23 If M is a Kan complex, then homotopy is an equivalence relation on maps L →

M.

Definition 10.3.24 If L,M are cubical sets and M is Kan, we define the set of homotopy classes of

cubical maps as the quotient

[L,M] = Cub(L,M)/ ∼ .

Let i : A→ L be the inclusion of a subcubical set of the cubical set L. Then the fibre of the map

CUB(i,M) : CUB(L,M)→ CUB(A,M)

over a map u : A → M, which is just a vertex of CUB(A,M), is written CUB(L,M;u). By previous

and later results, if M is Kan, so also is CUB(L,M;u).

Definition 10.3.25 If M is Kan, the set π0CUB(L,M;u) is also written [L,M;u] and called the set

of homotopy classes of maps L → M rel u. The disjoint union of these sets is the set of homotopy

classes L→M rel A and is written [L,M; −]. 2

We need this notion to define the fundamental groupoid π1M of a Kan complex M.

Let M be a Kan complex. We write π1M for the set of homotopy classes I → M rel {0, 1}. We

know this is well defined. We now introduce a composition on these classes in the usual way, using

the ideas of the proof of Proposition 10.3.20. This leads to:

Proposition 10.3.26 If M is a Kan complex, then π1M may be given the structure of groupoid.

10.3.4 Relation with simplicial sets

The equivalence of the homotopy categories of simplicial sets and and topological spaces was proved

a long time ago, see for example [May67], or [GJ99] for a more recent account. There was a general

feeling that the same result was true for cubical sets and that the proof should follow the same lines

once the proper definitions were given. This has proved very elusive and has been proven recently

but going through the simplicial case. We define in this subsection the functors that relate the cubical

and simplicial sets.

Definition 10.3.27 For any simplicial set Y we define S�(Y) its cubical singular set as the cubical set

given by

S�(Y)n = Simp((∆1)n, Y)

with faces and degeneracies coming from the simplicial set structure of (∆1)n. 2

Definition 10.3.28 For any cubical set K : � op → C, its triangulation |K|S is the coend

|K|S =

∫S�(I
n,X)

(∆1)n.

2

Proposition 10.3.29 There is an adjoint relation

Cub(K, S�(Y)) ∼= Simp(|K|S, Y)

for any cubical set K and simplicial set Y.

Proposition 10.3.30 This needs making explicit. When composed with the simplicial singular set and

the simplicial realisation they give the cubical singular set and the cubical realisation.
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10.3.5 The equivalence of homotopy categories

The equivalence of the homotopy categories of Kan simplicial sets and the homotopy category of

CW-complexes was proved a long time ago, see for example [May67], but the corresponding cubical

theory has waited a long time for a detailed, published exposition. We sketch some results that we

are going to use. References for this are [Ant02, Jar06, Cis06].

Recall that the homotopy category of Kan simplicial set is equivalent to the category Ho(Simp)

got from the category Simp by adding formal inverses to all weak equivalences. Jardine in [Jar06,

Theorem 8.8] proves the following result:

Theorem 10.3.31 There is an adjoint equivalence of homotopy categories

Ho(Cub) ∼ Ho(Simp)

given by the “triangulation” functor | | : Cub→ Simp in one direction and by the “singular cubical set”

S : Simp→ Cub in the other one.

In particular, both the unit and the counit are weak equivalences.

Remark 10.3.32 Actually, Jardine proves that both functors preserve weak equivalences. His main

technical point consists in defining three different Quillen model structures on the category Cub of

cubical sets and using the results of Cisinski in [Cis06] to get that in these three the weak equiva-

lences are actually the same. 2

Composing with the classical adjoint equivalence of homotopy categories Ho(Simp) ∼ Ho(Top)

we get:

Theorem 10.3.33 There is an adjoint equivalence of the homotopy categories

Ho(Cub) ∼ Ho(Top)

given by the “realisation” functor | | : Cub → Top in one direction and by the “singular cubical set”

S� : Top→ Cub in the other one.

Both the unit and the counit ε : |S�X|→ X given in Theorem 10.1.14 are weak equivalences.

As in the simplicial case we can get around the technicalities of adding formal inverses to weak

equivalences by restricting ourselves to Kan cubical complexes and CW-complexes getting:

Theorem 10.3.34 There is an equivalence between the homotopy categories of Kan cubical sets and

that of CW-complexes.

Corollary 10.3.35 There is a natural bijection

[M,N] ∼= [| M|, | N|]

for Kan cubical sets M, N.

Now we proceed to a first step for our homotopy classification theorem.

Theorem 10.3.36 If L,M are cubical sets such that M is Kan, then there is a weak homotopy equiva-

lence

φ : |CUB(L,M)|→ Top(|L|, |M|).
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Proof There is a map

|CUB(L,M)|⊗ |L|→ |CUB(L,M)⊗ L|

|eval|
−→ |M|.

The topological adjoint of this is the map φ.

To prove that φ is a weak homotopy equivalence we look at the effect of this map on homotopy

classes from |K| for an arbitrary cubical set K. We have natural bijections of homotopy classes

[ |K|, |CUB(L,M)| ] ∼= [K, CUB(L,M)] by Corollary 10.3.35

∼= [K⊗ L,M] by the exponential law in Cub

∼= [ |K⊗ L|, |M| ] by Corollary 10.3.35

∼= [ |K|× |L|, |M| ] by Proposition 10.2.3

∼= [ |K|, Top(|L|, |M|)] by the exponential law in Top.

Since these maps are natural, the composite is induced by φ. These bijections imply that φ is a weak

equivalence of spaces. 2

We need to move from this to an equivalence of relative, and indeed filtered, theories. Thus

in the standard homotopy theory of spaces the relative homotopy group πn(X,A,a) is defined as

homotopy classes of maps In,∂−
1 I
n, Jn−1

(−,1)
→ (X,A,a) where In is the standard n-cube, ∂−

1 I
n is the

(−, 1)-face and Jn−1
(−,1)

is the union of the other faces of In. It is then proved that this set has for

n > 2 a group structure induced by composition of cubes in direction 2, and that this structure is

abelian for n > 3. For a filtered space X∗ various relative homotopy groups may be combined to give

a crossed complex ΠX∗ where (ΠX∗)n is the family of groups πn(Xn,Xn−1, x) for x ∈ X0, for n > 2,

(ΠX∗)1 is the fundamental groupoid π1(X1,X0), and (ΠX∗)0 is X0.

Such a theory can also be formulated for the relative and indeed filtered homotopy theory of

Kan cubical sets. The use of the Kan extension condition for this kind of purpose has been analysed

by Kamps and is explained in [KP97]. One of the facts we will use is also that in the cubical set

situation we can identify the n-th relative homotopy group of a Kan pair (K,L) as given by elements

k of Kn such that ∂−
1 k ∈ Ln−1 and ∂αi k ∈ Im ǫn−1

1 for (α, i) 6= (−, 1). This is the way we wish to

define the fundamental crossed complex ΠK∗ of a filtered Kan cubical set. In these terms we have

the corollary of the equivalence of homotopy categories:

Corollary 10.3.37 If K∗ is a filtration of Kan cubical sets, then the realisation functor gives an isomor-

phism

ΠK∗ → Π|K∗|. 2

10.4 Cubical sets and crossed complexes

We proceed now a step further and relate the category Cub of cubical sets (or the equivalent of

topological spaces) to that of crossed complexes. We assume the monoidal closed structure on the

category Crs discussed in Chapter 9.

10.4.1 The fundamental crossed complex of a cubical set

The fundamental crossed complex ΠK of a cubical set K is basic to our work on the classifying space

of a crossed complex. First we define ΠI1 as the groupoid I, with generator ι : 0 → 1. Then we



284 [10.4] Nonabelian Algebraic Topology

define ΠIr = I⊗r, the r-fold tensor product of I with itself. We obtain the following:

Theorem 10.4.1 (Homotopy Addition Lemma) In ΠIn we have a free generator cn = ι⊗n in di-

mension n with boundary given by:

δ(c) =





∑n
i=1(−1)i{(∂+

i c) − (∂−
i c)

(uic)} (n > 4),

−(∂+
3 c) − (∂−

2 c)
(u2c) − (∂+

1 c) + (∂−
3 c)

(u3c) + (∂+
2 c) + (∂−

1 c)
(u1c) (n = 3),

−(∂+
1 c) − (∂−

2 c) + (∂−
1 c) + (∂+

2 c) (n = 2),

(HAL)

where ui = ∂+
1 ∂

+
2 · · · ı̂ · · ·∂

+
n+1 and for n = 1, δαc = ∂α1 c, α = −, +.

Proof The proof is by induction using the explicit description of the tensor product, analogously to

that for the HAL for the simplex ∆n. 2

Remark 10.4.2 The HAL shows that if a is a face of cn then a can be expressed uniquely in terms

of δcn and the other faces of cn. We use this fact later. �

Definition 10.4.3 The fundamental crossed complex ΠK of a cubical set K is defined as the coend

in Crs:

ΠK =

∫�,n

Kn × ΠIn.

Thus ΠK is freely generated by the non degenerate cubes of K with boundaries given by the HAL.

Theorem 10.4.4 For any cubical sets K,L there is a natural isomorphism

ΠK⊗ ΠL ∼= Π(K⊗ L).

Proof It is immediate from the definition that there is an isomorphism

ΠIn ⊗ ΠIm ∼= ΠIn+m.

Now the coend definition of ΠK yields the result, analogously to the proof of Proposition 10.2.3,

using the isomorphism of crossed complexes for p + q = n

(Kp × Lq)⊗ In ∼= (Kp × Ip)⊗ (Lq × Iq)

where Kp,Lq are discrete crossed complexes. 2

Remark 10.4.5 Another view of this result is given in Chapter 15 where the tensor product is set

up using the properties of cubical ω-groupoids and the monoidal closed structure on those objects.

2

Remark 10.4.6 An application of the Higher Homotopy van Kampen Theorem 8.1.5 gives an iso-

morphism ΠK ∼= Π|K|∗ for a cubical set K where |K|∗ is the skeletal filtration of the realisation. 2
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10.4.2 The cubical nerve of a crossed complex

Let us construct an adjoint to the fundamental crossed complex of cubical sets just studied.

Definition 10.4.7 We define the cubical nerve NC of a crossed complex C to be in dimension n the

set

(NC)n = Crs(ΠIn,C).

Remark 10.4.8 In Chapter 14, Remark 14.6.5, this definition is related to the fundamental algebraic

equivalence between the category Crs of crossed complexes and that of cubical ω-groupoids with

connections. 2

Proposition 10.4.9 For a cubical set K and crossed complex C there is a natural isomorphism

Cub(K,NC) ∼= Crs(ΠK,C)

making Π : Cub→ Crs left adjoint to N : Crs→ Cub.

Proof It is based in the fact that one side may be described as a colimit and the other one as a limit:

Cub(K,NC) ∼=

∫

�,n

Set(Kn, (NC)n)

∼=

∫

�,n

Set(Kn, Crs(ΠIn,C))

∼=

∫

�,n

Crs(Kn × ΠIn,C)

∼= Crs(

(∫�,n

Kn × ΠIn
)

,C)

∼= Crs(ΠK,C) 2

Proposition 10.4.10 The cubical nerve NC of a crossed complex C is a Kan cubical set.

Proof Let n > 0 and let B be a box in In. We us the last proved adjointness relation. So a map

B → NC corresponds to a morphism f : ΠB → C. Let cn be the top cell in In. We extend f to

g : ΠIn → C by mapping cn to 0, with the value of g on the omitted (n− 1)-cell of B being given by

the HAL. 2

Remark 10.4.11 Actually the result may be strengthened to say thatNC is a T -complex, and indeed

N gives an equivalence between the category Crs and that of cubical T -complexes.

Proposition 10.4.12 Let C,D be crossed complexes. There is a natural transformation of cubical sets

η : N(C) ⊗N(D)→ N(C⊗D).

Proof It is easy to verify that the function

b : N(C),N(D)→ N(C⊗D)

f,g 7→ f⊗ g

is bicubical. 2
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Corollary 10.4.13 The nerve functor N : Crs→ Cub preserves homotopy.

Proof A homotopy F : I⊗D→ E in Crs determines a cubical homotopy as the composition

I1 ⊗ND
η
−→ N(I⊗D)

N(F)
−→ NE. 2

Now we come to our key theorem which is the basis of the homotopy classification theorem.

Theorem 10.4.14 For a cubical set K and a crossed complex C there is a natural isomorphism of

cubical sets

CUB(K,NC) ∼= N(CRS(ΠK,C)).

Proof Let L be a cubical set. Then we have natural bijections

Cub(L, CUB(K,NC)) ∼= Cub(L⊗ K,NC)

∼= Crs(Π(L ⊗ K),C)

∼= Crs(ΠL ⊗ ΠK,C)

∼= Crs(ΠL, CRS(ΠK,C))

∼= Cub(L,N(CRS(ΠK,C)).

Since this natural bijection holds for all cubical sets L, the theorem follows. 2

Remark 10.4.15 Notice the power of the combination of various adjunctions in the proof of the last

theorem.

10.4.3 The homotopy classification theorem

Definition 10.4.16 The (cubical) classifying space BC of a crossed complex C is defined to be the

realisation |NC| of the nerve of C. 2

Our aim is the following theorem:

Theorem 10.4.17 (Homotopy Classification Theorem) Let X be a CW-complex and C a crossed

complex. Then there is a weak equivalence

χ : B(CRS(ΠX∗,C))→ TOP(X,BC).

Hence there is a bijection

[ΠX∗,C] ∼= [X,BC],

where the left hand side is homotopy classes of crossed complex maps, and the right hand side is homo-

topy classes of maps of spaces.

Proof We first assume X is |K| where K is a cubical set. Then the theorem with X = |K| follows

from Theorems 10.3.36, 10.4.14. In particular this applies to the case K = S�X. Now by Theorem

10.3.33 X has the homotopy type of |S�X|. 2



[10.5] 287

Remark 10.4.18 This theorem generalises many classical results. It is important that it includes

information on fundamental groups and their actions. 2

10.5 Fibrations of crossed complexes

The notion of fibration of crossed complexes has an important role in analysing the set [F,C] of

homotopy classes of morphisms from a free crossed complex F to a crossed complex C. The notion

also allows for relating the homotopy theory of crossed complexes to homotopy theories in other

structures, for example that of cubical sets, and as indicated in the Notes at the end of his Chapter.

Definition 10.5.1 A morphism p : E→ D of crossed complexes is a fibration if

(i) the morphism p1 : E1 → D1 is a fibration of groupoids;

(ii) for each n > 2 and x ∈ E0, the morphism of groups pn : En(x)→ Dn(px) is surjective.

The morphism p is a trivial fibration if it is a fibration, and also a weak equivalence, by which

is meant that p induces a bijection on π0 and isomorphisms π1(E, x) → π1(D,px), Hn(E, x) →

Hn(D,px) for all x ∈ E0 and n > 2. 2

Remark 10.5.2 It is known that a fibration of groupoids gives rise to a family of exact sequences,

[Bro70, Bro06]. There are longer exact sequences for a fibration of crossed complexes which will be

stated in Theorem 12.4.1 and applied to the homotopy classification of maps to BC. 2

We now analyse cofibrations.

Definition 10.5.3 Consider the following diagram.

A //

i

��

E

p

��
C //

>>

D.

If given i the dotted completion exists for all morphisms p in a class F, then we say that i has the

left lifting property (LLP) with respect to F. We say a morphism i : A → C is a cofibration if it has

the LLP with respect to all trivial fibrations. We say a crossed complex C is cofibrant if the inclusion

∅ → C is a cofibration.

We shall also need the definition that p has the right lifting property (RLP) with respect to a class

F if in the above diagram, given p, then the dotted completion exists for all i in the class F. 2

Here is an important example of a cofibration. The proof is analogous to standard methods in

the usual homological algebra, and to results for CW-complexes.

Proposition 10.5.4 Let i : A→ F be a relatively free crossed complex. Then i is a cofibration.

Proof We consider the following diagram

A

i
��

a // E

p
��

F
f

//

g

??

B
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in which p is supposed a trivial fibration, and the morphisms f,a satisfy fi = pa. We construct the

regular completion g on a relatively free basis X of F by induction, the cases n = 0, 1 being easy.

Suppose n > 2 and g is defined on Xn−1. Consider an element x of the free basis in dimension

n. Then gδx is defined and pgδx = fδx.

By the fibration condition, we can choose y ∈ En such that py = fx. Let w = gδx − δy ∈ En−1.

Then pw = 0, δw = 0. By the triviality condition, w is a boundary, i.e. w = δz for some z ∈ En.

Then δ(z + y) = gδx. So we can extend g by defining it on x to be z+ y. 2

Now we can characterise fibrations of crossed complexes in terms of the RLP. First we define

F(n) to be the free crossed complex on one generator cn of dimension n. Thus F(0) is a singleton,

F(1) is essentially the groupoid I and for n > 2 F(n) consists the integers in dimensions n,n − 1

with boundary the identity map. We define S(n− 1) to be the subcomplex of F(n) generated by the

part in dimension n − 1.

Proposition 10.5.5 Let p : E→ D be a morphism of crossed complexes. Then the following conditions

are equivalent:

(i) p is a fibration;

(ii) (covering homotopy property) p has the RLP with respect to the inclusion C ⊗ 1→ C⊗ F(m) for

all cofibrant crossed complexes C and m > 1; and

(iii) the covering homotopy property (ii) holds for m = 1.

Proof (i)⇒(ii) We verify the covering property by constructing a lifting in the left hand of the

following diagrams, where 1→ F(m) is the inclusion. Let p ′ in the right hand

C⊗ 1 //

��

E

p

��
C⊗ F(m) // D

∅ //

��

CRS(F(m),E)

p′

��
C // CRS(1,E)×D CRS(F(m),D)

diagram be induced by p and the inclusion 1 → F(m). Then a lifting in the left hand diagram is

equivalent to a lifting in the right hand diagram. Since C is cofibrant, such a lifting exists if p ′ is a

trivial fibration. But by the exponential law, for this it is sufficient to show that p has the RLP with

respect to the inclusion

S(n)⊗ F(m) ∪ F(n+ 1)⊗ 1→ F(n+ 1)⊗ F(m).

For n = −1, this corresponds precisely to the fibration property of p. In general, a lifting of the

image of the top basis element of F(n + 1) ⊗ F(m) is chosen, and the value of the lifting on the

remaining basis element of F(n + 1) ⊗ F(m), namely cn+1 ⊗ δcm if m > 2, cn ⊗ 0 if m = 1, is

determined by the boundary formula for cn⊗ cm and the values on δcn+1⊗ cm if n > 1 and 0⊗ cm
and 1⊗ cm if n = 0.

(ii)⇒(iii) is immediate

(iii)⇒(i) This is easily proved on taking C to be the crossed complex of free type on one generator

of dimension n. 2

This gives a similar characterisation using free crossed complexes.

Proposition 10.5.6 Let p : E → D be a morphism of crossed complexes. Then p is a fibration if and

only if for any cofibrant crossed complex C, the induced morphism p : CRS(C,E) → CRS(C,D) is a

fibration.
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Proof It is clear that if p is a fibration and C is cofibrant, the induced morphism p : CRS(C,E) →

CRS(C,D) is a fibration.

To prove it in the other direction, one takes again C to be the crossed complex of free type on

one generator of dimension n. 2

In a similar manner we have:

Proposition 10.5.7 The following are equivalent for a morphism f : E→ B in Crs:

(i) f is a trivial fibration:

(ii) f0 is surjective; if p,q ∈ E0 and b ∈ B1(f0p, f0q), then there is e ∈ El such that f1e = b; if n > 1

and d ∈ En satisfies δ0d = δ1d for n = 1, δd = 0 for n > 2, and b ∈ Bn+l satisfies δb = fnd,

then there is

e ∈ En+1 such that fn+1e = b and δe = d;

(iii) f has the RLP with respect to S(n − 1)→ C(n) for all n > 0;

(iv) if C is a crossed complex of free type then f has the RLP with respect to S(n− 1)⊗C→ C(n)⊗C

for all n > 0;

(v) if C is a crossed complex of free type then the induced morphism f∗ : CRS(C,E)→ CRS(C,B) is a

trivial fibration.

Corollary 10.5.8 Let F be a reduced free crossed complex with base point p and let C be an aspherical

reduced crossed complex, i.e. C is connected and πn(C,q) = 0 for all n > 2, q ∈ C0. Then there is a

bijection

[F,C] ∼= [π1(F,p),π1(C,q)]

where the right hand side is conjugacy classes in the category of groups.

Proof Let G = π1(C,q) and let K(G, 1) be the crossed complex which is G in dimension 1 and

trivial elsewhere. Then the natural morphism p : C→ K(G, 1) is a trivial fibration. Hence so also is

p∗ : CRS(F,C)→ CRS(F, K(G, 1). But it is easy to check that π0(CRS(F, K(G, 1)) ∼= [π1(F,p),G]. The

result follows. 2

Remark 10.5.9 This type of argument replaces an inductive argument of lifting morphisms and

homotopies which is traditional in homological algebra. Of course the inductive procedure is hidden

in the proof we have given.

Finally, there is a relation between a map of crossed complexes being a fibration and its nerve

being a Kan fibration.

Proposition 10.5.10 Let p : E → D be a morphism of crossed complexes. Then p is a fibration if and

only if the induced map of nerves Np : NE→ ND is a Kan fibration.

Proof Let B be an (n− 1)-box in In. To say that Np : NE→ ND is a Kan fibration is equivalent to

saying that any diagram in Cub:

B //

��

NE

Np
��

In //

==

ND
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has a regular completion given by the dotted arrow. By adjointness, this is equivalent to the existence

of a regular completion in Crs of the following diagram:

ΠB
k //

j
��

E

p
��

Π(In)
k ′

//

g

<<

D

(*)

The argument depends on the fact that ΠIn has a free generator cn in dimension n and the

boundary δcn is determined by the Homotopy Addition Lemma, in terms of all the faces of cn. But

B misses one of the faces of cn, the so called free face. The value of g on this free face is therefore

determined by g(cn) and the HAL, see remark 10.4.2.

If n = 0, this existence is equivalent to E1 → D1 being a fibration of groupoids.

If n > 2, let us see that this existence is equivalent to each En(x) → Dn(px) being surjective.

To see this, note that if these maps are surjective, and v is the usual base point of In, then we can

choose a ∈ En(pv) such that pa = k ′cn . If we now define g(cn) = a and g(x) = k(x) for each non-

degenerate element x of B, then there is a unique value for g on the free face of B, determined by the

homotopy addition lemma, and this with the other values on B defines a morphism g : Π(In) → E.

This g is a regular completion of (*).

On the other hand, suppose each diagram (*) has a regular completion. Let b ∈ Dn(px). Define

k : ΠB → E to be the trivial morphism with value 0x. Define k ′ : Π(In) → D by k ′(cn) = b,

k ′(B) = 0px and k ′ on the free face of B is δb . Then pk = k ′j. Let g be a regular completion. Then

pg(cn) = b. 2

Corollary 10.5.11 Let p : E→ D be a fibration of crossed complexes and let x ∈ D0. Let F = p−1(x).

Then the sequence of classifying spaces BF→ BE→ BD is homotopy equivalent to a fibration sequence.

Proof This follows from theorem 10.3.18. 2

10.6 The pointed case

We are going to consider briefly the modifications needed get a pointed, or base point, based version

of Theorem 10.4.17.

First, recall that we have defined Crs∗ the category of pointed crossed complexes, that has objects

the crossed complexes C having a distinguished element ∗ ∈ C0 and only morphisms preserving this

basepoint are included.

Next, we need the notions of tensor product and homotopy in Crs∗. They are the same notions

that in crossed complex but adding the good behaviour with respect to the base point. let us make

the conditions explicit.

For any pointed crossed complexes C and D, we define an m-fold pointed left homotopy from C

to D to be an m-fold left homotopy (H, f) satisfying f(∗) = ∗ and H(∗) = 0∗ ∈ Dm. The collection

of all these is a sub-crossed complex CRS∗(C,D) ⊆ CRS(C,D) with basepoint the zero morphism

c 7→ 0∗. This defines the pointed internal hom for crossed complexes.

A pointed bimorphism θ : (C,D)→ E is a bimorphism satisfying
{
θ(c, ∗) = 0∗ for c ∈ C,

θ(∗,d) = 0∗ for d ∈ D.
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The pointed tensor product C ⊗∗ D is the pointed crossed complex generated by all c ⊗∗ d with

defining relations those for the tensor product and

{
c⊗∗ ∗ = 0∗ for c ∈ C,

∗ ⊗∗ d = 0∗ for d ∈ D.

It is quite clear that the associativity and the symmetry of the tensor product preserves the

relations in the definition of the pointed tensor product, giving as a consequence the following

theorem.

Theorem 10.6.1 The pointed tensor products and internal hom functors described above define a sym-

metric monoidal closed structure on the pointed category Crs∗. 2

We denote by [X, Y]∗ the set of pointed homotopy classes of pointed maps X → Y of pointed

spaces X, Y. Similarly, for pointed crossed complexes D, C, we denote by [C,D]∗ the set of pointed

homotopy classes of pointed morphisms C→ D.

Also, notice that if C is a pointed crossed complex, then BC is naturally a pointed space.

We have all the ingredients to state the pointed version of theorem 10.4.17.

Theorem 10.6.2 If X is a pointed CW-complex and C is a pointed crossed complex, there is a commu-

tative diagram

[X,BC]∗
α //

))RRRRRRRRRRRRR
[ΠX∗,C]∗

uukkkkkkkkkkkkkk

Hom(π1(X, ∗),π1(C, ∗)),

in which α is a bijection of sets of pointed homotopy classes, natural with respect to pointed morphisms

of C and pointed, cellular maps of X, and in which we have identified π1(BC, ∗) with π1(C, ∗), π1(X, ∗)

with π1(X∗, ∗).

Proof The proof of the existence of the horizontal bijection α of sets of pointed homotopy classes

follows the same pattern as the proof of Theorem 10.4.17, but using the pointed constructions ⊗∗

and CRS∗ described before. We leave the details as an exercise.

The slanting map on the left is induced by the functor π1(−, ∗) and the first identification indi-

cated in the statement.

The slanting map on the right comes from the second identification indicated in the statement.

To prove commutativity, it is sufficient to assume that X = |L| for some Kan simplicial set L.

Then we have to check that maps transformed by the following arrows induce the same map of

fundamental groups:

Top(|L|,BC)←− Cub(L,NC)→ Crs(ΠL,C).

But this is clear on checking the values of these maps on 1-dimensional elements. 2

Proposition 10.6.3 LetF be a pointed free crossed complex and let p : E → B be a pointed map and

trivial fibration of pointed crossed complexes. Then p∗ : CRS∗(F,E) → CRS∗(F,B) is also a trivial

fibration.
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Proof Let i : A → C be a relatively free morphism of pointed crossed complexes. Then a regular

completion of the diagram

A

i
��

// CRS∗(F,E)

p∗
��

C // CRS∗(F,B)

is equivalent to a regular completion of the diagram

A⊗∗ F

i⊗∗ 1F
��

// E

p
��

C⊗∗ F // B

Since F is free, the morphism i⊗∗ 1F is relatively free, and the result follows. 2

Corollary 10.6.4 Let F,C be reduced crossed complexes such that F is free and C is aspherical. Let

G = π1(C, ∗). Then there is a bijection

[F,C]∗ ∼= Hom(π1(F),G),

and for n > 2, and any f : F→ C, πn(CRS∗(F,C), f) = 0.

Proof These results are clear when C = K(G, 1). We then use the trivial fibration p : C→ K(G, 1)

and apply CRS∗(F, −) to p. 2

10.7 Applications

In this Section we give some of the many consequences that can be drawn from the bijection

[ΠX∗,C] ∼= [X,BC]

proved in Theorem 10.4.17.

We first get some results on reduced CW-complexes whose n-type can be realised by a classifying

space of a crossed complex.

Then we obtain a key homotopy classification result, Corollary 10.7.6, expressing the topological

homotopy set [X, Y] as an algebraic homotopy set [ΠX∗,ΠY∗] when Y is n-aspherical and X is of

dimension 6 n.

We end by looking at the algebraic part [ΠX∗,C] of Theorem 10.4.17 in some particular cases.

Our first applications of Theorem 10.4.17 gives sufficient conditions on a homotopy n-type to be

realisabe as BC for some crossed complex C.

Theorem 10.7.1 Let n > 1, and let X be a reduced CW-complex with πiX = 0, 1 < i < n. (Notice

that this condition is vacuous if n = 1, 2.) Then there is a crossed complex C with Ci = 0, for all i > n

together with a map

f : X→ BC

inducing an isomorphism of homotopy groups f∗ : πiX→ πiBC for 1 6 i 6 n.
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Proof Let X∗ be the skeletal filtration of X, let X0 = {x}, and let D = ΠX∗. We define C be the

crossed complex such that

Ci =






Di 0 6 i < n

Cok∂n+1 i = n

0 i > n

Then there is a unique morphism g : D→ C which is the identity in dimensions < n and is the quo-

tient morphism in dimension n. Clearly, this morphism g induces an isomorphism of fundamental

groupoids, and of homology groups Hi(D, x)→ Hi(C, x) for 2 6 i 6 n.

By Theorem 10.6.2 there is a pointed morphism

f : X→ BC

whose homotopy class corresponds to g : ΠX∗ → C. Without loss of generality we may assume f is

cellular. Then for all i > 1, the following diagram is commutative, where Si = e0∪ei is the i-sphere:

[Si,X]∗
f∗ //

��

[Si,BC]∗

∼=

��

∼=

''NNNNNNNNNNN

[ΠSi∗,ΠX∗]∗
(Πf)∗ //

∼=

��

[ΠSi∗,ΠBC∗]∗ ∼=

// [ΠSi∗,C]∗

∼=

��
Hi(ΠX∗, x)

∼=

Hig
// Hi(C, x)

The assumptions on X imply that the map [Si,X]∗ → [ΠSi∗,ΠX∗]∗ is bijective for 1 6 i 6 n. So

the result on Πi follows. 2

Remark 10.7.2 This Theorem shows that if πiX = 0, 1 < i < n, then the n-type of X is described

completely by a crossed complex. For n = 1, this is well known (the Eilenberg-Mac Lane spaces do

this), and for n = 2 it is essentially due to Mac Lane and Whitehead [MLW50]. Indeed, they prove

that the 2-type (for which they use the term 3-type) of a reduced CW-complex X is described by the

crossed module π2(X,X1)→ π1X
1, which is the same crossed module as arises for n = 2 in the proof

of Theorem 10.7.1.

2

In the crossed module case, there is an additional result that is sometimes useful for giving an

explicit presentation of a crossed module representing the 2-type of a space. It was first proved by

Loday [Lod82].

Proposition 10.7.3 Let X be a reduced CW-complex and let P be a group such that there is a map

f : BP → X which is surjective on fundamental groups. Let F(f) be the homotopy fibre of f and let

M = π1F(f), so that we have a crossed module M→ P. Then there is a map X→ B(M→ P) inducing

an isomorphism of π1 and π2.

Proof Let f : BP → X be a cellular map which is surjective on fundamental groups. Let Y be the

reduced mapping cylinder M(f) of f, and let j : BP → Y be the inclusion. Then the crossed module

π2(Y,BP)→ π1BP is isomorphic to µ : M→ P.

Also j is surjective on fundamental groups, and it follows that the inclusion X1 → Y is deformable

by a homotopy to a map g ′, say, with image in BP. This homotopy extends to a homotopy of the

inclusion X→ Y to a map g : X→ Y extending g ′.



294 [10.7] Nonabelian Algebraic Topology

Let Y∗ be the filtered space in which Y0 is the base point of Y, Y1 = BP, Yi = Y for i > 2. Then

C = ΠY∗ is the trivial extension by zeros of the crossed module M→ P. The map g : X→ Y induces

a morphism g∗ : ΠX∗ → ΠY∗ which is realised by a map X → B(M → P) inducing an isomorphism

of π1 and π2. 2

Example 10.7.4 We now give an application of the last Proposition which uses the HHvKT for

crossed modules. Let X be a CW-complex which is the union of connected subcomplexes Y and Z

such that A = Y ∩ Z is a K(P, 1), i.e. is a space BP. Suppose that the inclusions of A into Y and Z

induce isomorphisms of fundamental groups. Then, as in Proposition 10.7.3, the 2-types of Y and Z

may be described by crossed modules M→ P and N→ P respectively, say.

By results of Part I, the crossed module describing the 2-type of X is the coproductM ◦N→ P of

the crossed P-modules M and N. 2

We now give another application to the homotopy classification of maps. It also concerns n-

aspherical spaces and says that the homotopy classes of maps from a CW-complex of dimension 6 n

to an n-aspherical space are classified by the homotopy classes of morphisms of their fundamental

crossed complexes.

Proposition 10.7.5 For any CW-complex Y with skeletal filtration Y∗, there is a homotopy fibration

F→ Y → BΠY∗.

Thus if πi(Y,y) = 0 for 1 < i < n, then the fibre F is n-connected.

Proof Results of Chapter 14, particularly Theorem 14.2.7, give a Kan fibration

RY∗ → NΠY∗.

Also for a CW-complex Y∗ the inclusion of RY∗ into the singular complex of Y is a homotopy

equivalence. So when realising, we have a homotopy fibration sequence

F→ Y → BΠY∗.

The results on n-connectedness come from the homotopy exact sequence of this fibration.

2

Corollary 10.7.6 If Y is a connected CW-complex such that πiY = 0 for 1 < i < n, and X is a

CW-complex with dim X 6 n, then there is a natural bijection of homotopy classes

[X, Y] ∼= [ΠX∗,ΠY∗].

Proof The assumptions imply that the fibration

Y → BΠY∗

induces a bijection [X, Y]→ [X,BΠY∗].

The fact that the map [X,BΠY∗]→ [ΠX∗,ΠY∗] is a bijection follows from Theorem 10.4.17. 2
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This Corollary may also be obtained as a concatenation of results proved by J.H.C.Whitehead in

[Whi49b]. It is also proved in general circumstances by Baues in his book [Bau89].

By Theorem 10.4.17, we get that the homotopy classes of maps are bijective with the set [ΠX∗,C].

We are going to consider some cases where this algebraic set is computable.

The first case applies to the crossed complex E1(G) associated to a groupoid G. Recall that E1(G)

is the crossed complex which is G in dimension 1 and trivial elsewhere. Then

Crs(C, E1(G)) ∼= Gpds(π1C,G),

with a bijection that carries over to homotopy classes, with crossed complexes on the left and

groupoids on the right:

[C, E1(G)] ∼= [π1C,G].

Proposition 10.7.7 If C is a crossed complex andG is a groupoid, then there is a homotopy equivalence

of crossed complexes

CRS(C, E1(G)) ≃ E1(GPDS(π1C,G)).

Proof Let D be a crossed complex. Then there are natural bijections

[D, CRS(C, E1(G))] ∼= [D⊗ C, E1(G)] because Crs is a closed category

∼= [π1(D⊗ C),G] as indicated above

∼= [π1D× π1C,G] because π1 preserves products

∼= [π1D, GPDS(π1C,G)] because Gpds is a closed category

∼= [D, E1(GPDS(π1C,G))] as before.

The result follows directly. 2

If G is connected, x ∈ G0, and f : G→ H is a morphism, then the vertex group GPDS(G,H)(f) is

isomorphic to the centraliser of f(G(x)) in H(fx). So the previous result with Theorem 10.4.17 yields

a result of Gottlieb [Got69] on the fundamental group of spaces of maps into an Eilenberg-Mac Lane

space K(H, 1).

In the pointed case the Proposition gives an even simpler result.

Proposition 10.7.8 If C is a pointed, connected crossed complex and G is a pointed groupoid, then the

crossed complex CRS∗(C, E1(G)) has its set of components bijective with Gpds(π1(C, ∗),G(∗)) the set of

morphisms of groups π1(C, ∗) → G(∗), and all components of CRS∗(C, E1(G)) have trivial π1 and Hi
for i > 2.

Proof An argument similar to that in the proof of the previous proposition yields

[∗, CRS∗(C, E1(G))] ∼= [∗, GPDS∗(π1C,G)],

which gives the first result. The second result follows since for any pointed crossed complex Z and

morphism f : C→ E1(G) that we shall take as base point, we have

[(Z, ∗), (CRS∗(C, E1(G), f)] ∼= [Z⊗ C, E1(G)]#

∼= [π1Z× π1C,G]#

∼= [π1C,G|f] ∼= ∗.

where the sets of homotopy classes marked # are of maps satisfying that restricted to some space are

the appropriate ones, i.e. the conditions that come from duality, |1⊗ f : ∗ ⊗ C→ E1(G), ∗ : Z⊗ ∗ →

E1(G) in the first case and |1× f : ∗ × π1C→ G, ∗ : π1Z× ∗ → G in the second one. 2



296 [10.7] Nonabelian Algebraic Topology

There is another interesting special case of the homotopy classification. Let n > 2, M an abelian

group and AutM the group of automorphisms of M. Then we define

χ(M,n) = · · · // 0 //M // 0 // · · · · · · // 0 // AutM,

the pointed crossed complex which is: AutM in dimension 1; M in dimension n; has the given

action of AutM on M; and has trivial boundaries.

Let C be a crossed complex; in useful cases, C will be of free type. We suppose C reduced

and pointed. Let α : π1(C, ∗) → AutM be a morphism. The set of pointed homotopy classes of

morphisms C → χ(M,n) which induce α on fundamental groups is written [C,χ(M,n)]α∗ . This set

is easily seen to have an Abelian group structure, induced by the addition on operator morphisms

Cn →M over α. So we obtain the homotopy classification:

Proposition 10.7.9 If X is a pointed reduced CW-complex, and α : π1(X, ∗)→ AutM, then there is a

natural bijection

[X,Bχ(M,n)]α∗
∼= [ΠX∗,χ(M,n)]α∗

where the former set of homotopy classes denotes the set of pointed homotopy classes of maps inducing

α on fundamental groups.

Proof The proof is immediate from Theorem 10.6.2. 2

This result can be related to the case of local coefficients (see Section ??).

Notes

The cubical classifying space of a crossed module is used in [FRS95].

The main applications of the cubical classifying space of a crossed complex follow as for the

simplicial version in [BH91].

There are generalisations of this work to the equivariant case in [BGPT97, BGPT01], but using

the simplicial classifying space, which fits better with published studies on homotopy coherence,

[CP97].



Chapter 11

Resolutions.

The notion of ‘resolution’ of an algebraic object is one way of trying to describe an infinite object and

its properties in finitary terms, or in some way other than attempting to list its elements, which might

be a foolhardy endeavour. The same methods are used to describe very large objects in manageable

ways.

In Chapter 3 we showed how the notions of ‘syzygy’ and ‘resolution’ by free modules arose from

invariant theory, in trying to deal with algebras of polynomials. There we also showed how the

analogous notion of ‘identity among relations’ for a presentation of a group led to the notion of free

crossed module.

In this chapter, we extend the latter ideas to all dimensions using crossed complexes, and so have

the notion of free crossed resolution of a group, or groupoid. Surprisingly, the extension to groupoids

rather than just groups turns out also to be useful for the purposes of calculation, as we shall see in

Section 11.2. The reason is that our method is to construct what we call ‘a home for a contracting

homotopy’ and to this end we need to pass to the universal covering groupoid of a group.

11.1 Free crossed resolutions of groups and groupoids

In this Section we first introduce the concept of free crossed resolution of a groupoid G, prove that

any two resolutions of the same groupoid are homotopy equivalent and give some direct examples.

Then, we study some more complex examples requiring extra theoretical background.

11.1.1 Existence, examples and uniqueness

Definition 11.1.1 A crossed complex C is called aspherical if for all n > 2 and x ∈ C0, we have

Hn(C, x) = 0. It is acyclic if it is aspherical, connected and in addition π1(C, x) = 0 for all x ∈ C0.

Given a groupoid G, a crossed resolution of G is an aspherical crossed complex C such that C0 =

G0 together with a groupoid morphism φ : C1 → G over C0 such that φ induces an isomorphism of

groupoids φ : π1C → G. A free crossed resolution of G is a crossed resolution C where each Cn is

free in the sense that

• C1 is a free groupoid;

• δ2 : C2 → C1 is a free crossed module; and

297
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• for n > 3, Cn is a free G-module.

2

Theorem 11.1.2 Any group(oid) G admits a free crossed resolution.

Proof We first choose a presentation P = 〈X | R〉 of G and so we get a free crossed module over a

free groupoid

C(R)
δ2−→ F(X)

together with φ : G → 1 inducing an isomorphism Cok (δ2) → G. Now A = Ker δ2 is a G-module

and we proceed as in classical homological algebra as outlined in Chapter 3. 2

This follows a traditional method of constructing complexes, either CW-complexes or forms of

resolutions, by ‘killing kernels’; at stage 1 this requires a free crossed module to map onto the normal

subgroupoid of a free groupoid normally generated by the relations; at stage n > 2 the kernel of δn
is a G-module and we choose a graph Xn of generators for this and map the free G-module on Xn
onto this kernel.

Of course what this outline construction does not show is how to get hold of a convenient graph

of generators Xn for the kernel; some such graph exists, for instance we could take Xn = Ker δn−1,

but this is not at all constructive or convenient. This problem of construction is addressed in Section

11.2, in the case G is a group, using the idea of constructing inductively a free crossed resolution

with a contracting homotopy not of G, but of the universal covering groupoid G̃ of G.

If G is itself free, we need go no further.

Example 11.1.3 If G is a free groupoid F(X1), then G has a free crossed resolution which is F(X1)

in dimension 1 and is trivial in higher dimensions. 2

We can also state a small free crossed resolution of finite cyclic groups, which is a modification

of a classical chain complex resolution of these groups.

Example 11.1.4 (A small crossed resolution of finite cyclic groups) A cyclic group Cq of order q

with generator c has a free crossed resolution F = F(Cq) as follows:

F(Cq) = · · · → Z[Cq]
δ4−→ Z[Cq]

δ3−→ Z[Cq]
δ2−→ C∞

φ
−→ Cq

where C∞ is the infinite cyclic group with free generator x1; Z[Cq] is the free Cq-module with free

generator xn for n > 2; and the maps are defined by φ(x1) = c, the generator of Cq; δ2(x2) = x
q
1

and

δn(xn) =

{
xn−1 (1 − c) if n is odd;

xn−1 (1 + c+ c2 + · · ·+ cq−1) if n is even

for n > 2. 2

Exercise 11.1.5 Prove directly that the preceding example gives a free crossed resolution of Cq. 2

Now we give a free crossed resolution for any group, called the standard crossed resolution.

Example 11.1.6 There is a standard free crossed Fst∗ (G) resolution of a groupoid G given by:

Fst(G) = · · · // Fstn (G)
δn // Fstn−1(G)

δn−1 // · · · · · ·
δ3 // Fst2 (G)

δ2 // Fst1 (G)
φ // G



[11.1] 299

which is G0 in dimension 0 and in which for n > 1, Fstn (G) is free on the set (N∆G)n of composable

sequences [g1,g2, . . . ,gn],gi ∈ G of elements of G, with boundary

δn : Fstn (G)→ Fstn−1(G)

given by

δ2[g,h] = [gh]−1[g][h],

δ3[g,h, k] = [g,h]k[h, k]−1[g,hk]−1[gh, k],

and for n > 4

δn[g1,g2, . . . ,gn]

=[g1, . . . ,gn−1]
gn + (−1)n[g2, . . . ,gn] +

n−1∑

i=1

(−1)n−i[g1,g2, . . . ,gi−1,gigi+1,gi+2, . . . ,gn].

The base point β[g1,g2, . . . ,gn] is the final point tgn of gn. In fact Fst∗ (G) is just ΠN∆(G) where

N∆(G), the simplicial nerve of G, is in dimension n just Crs(Π∆n,G). See also the pictures in

Example 9.9.7.

In order to see that the standard resolution is aspherical, we restrict to the case G is connected

and even further by Proposition 7.1.21 to the case G is a group, considered as a groupoid with

object x0. Consider, as described in the later Section 11.2.2, the universal cover of Fst∗ (G) based

at x0. This has vertices the elements g ∈ G and its elements in dimension n are given by pairs

([g1,g2, . . . ,gn],g) where gi,g ∈ G. A contracting homotopy on this universal cover h : id ≃ x0,

where x0 denotes the constant map to x0, is then given by

([g1,g2, . . . ,gn],g) 7→ ([g1,g2, . . . ,gn,g], 1x0
). 2

Remark 11.1.7 One finds in the literature on extensions of a group M by a group G, i.e. an ex-

tension 1 → M → E → G → 1 the notion of factor set of G in M. This consists of a pair of

functions

k1 : G→ Aut(M), k2 : G×G→M

satisfying a number of conditions. We will see later that these conditions can be interpreted as

saying that a factor set is equivalent to a morphism of crossed complexes from Fst∗ (G) to the crossed

complex extension of the crossed module χ : M → Aut(M). An equivalence of factor sets is just

homotopy of morphisms. Thus all the complications necessary to describe a factor set are embedded

in the standard free crossed resolution of G. 2

Example 11.1.8 Let 〈X | R〉 be a one relator presentation of a group G, that is R consists of a single

element r ∈ F(X), and suppose r is not a proper power. It is a theorem that the kernel of C(r)→ F(X)

is trivial, so that this crossed module itself is in essence a free crossed resolution of G. However, the

proof of this triviality is by no means easy. A proof of a generalisation of this fact to the case r is a

proper power may be found in [DV73]. 2

The following two theorems imply that free crossed resolutions of a groupoid are determined up

to homotopy; this motivates the desire to find those free crossed resolutions useful for various aims.

Theorem 11.1.9 Let C,D be crossed complexes such that C is free and D is aspherical. Let α : π1C→

π1D be a morphism of groupoids. Then there is a morphism f : C → D of crossed complexes such that

π1(f) = α.
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Such a morphism f is said to be a lift of α.

Proof We consider the diagram

· · · Cn
δn // Cn−1

// · · · // C2

δ2 // C1

φ //

f1

���
�
� π1C

α

��
· · · Dn

δn

// Dn−1
// · · · // D2

δ2

// D1
ψ

// π1D

in which φ,ψ are the quotient morphisms.

Let the free basis of C be denoted by X∗, where X0 = C0, and we assume Xn is a subgraph of Cn.

For x ∈ X1 we choose f1(x) ∈ D1 such that ψf1(x) = αφ(x). This is possible because ψ is

surjective. Since X1 is a free basis of C1, this choice extends uniquely to a morphism

f1 : C1 → D1.

Since ψf1 = αφ on the generating set X1, it follows that

ψf1 = αφ

on C1. Note also that

ψf1δ2 = αφδ2 = 0.

Since Kerψ = Im δ2, it follows that Im f1δ2 ⊆ Im δ2. For all x ∈ X2, we choose f2(x) ∈ D2 so that

δ2f2(x) = f1δ2(x).

Now we proceed inductively. Suppose that

fn−1 : Cn−1 → Dn−1

has been defined so that

δn−1fn−1 = fn−2δn−1.

Then

δn−1fn−1δn = fn−2δn−1δn = 0.

By asphericity of D, Im(fn−1δn) ⊆ Im δn. So for all x in the free basis Xn, there is an fn(x) ∈ Dn
such that δnfn(x) = fn−1δn(x). This defines a morphism

fn : Cn → Dn

such that δnfn = fn−1δn. 2

Exercise 11.1.10 Let Cq and Cqr be cyclic groups of order q and qr with generators c and c1
respectively. Consider their free crossed complex resolutions F(Cq) and F(Cqr) studied in Example

11.1.4. Given the morphism α : Cq → Cqr which sends c to cr1, find a morphism F(Cq) → F(Cqr)

which lifts α. 2

Theorem 11.1.11 Let C,D be crossed complexes such that C is free and D is aspherical. Let α :

π1C→ π1D be a morphism of groupoids and f−, f+ : C→ D morphisms of crossed complexes such that

π1(f
−) = π1(f

+) = α. Then there is a homotopy h : f− ≃ f+.
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Proof We proceed as before to define the homotopy (see Definition 9.3.6) starting for

h0 : C0 → D1.

Since π1(f
−) = π1(f

+) = α, we have ψf−1 = αφ = ψf+1 . We set h0(c) = 1αc ∈ D1, for c ∈ C0.

We have to define a map

h1 : C1 → D2.

such that for every c ∈ C1 satisfies

f−1 (c) = (h0s(c))(f
+
1 c)(δ2h1c)(h0t(c))

−1

which because of our definition of h0 reduces to

f−1 (c) = f+1 (c)(δ2h1c)

or

δ2h1c = f+1 (c)−1f−1 (c).

But

ψ(f+1 (c)−1f−1 (c)) = 1.

Hence for each x ∈ X1 we can choose an h1(x) such that δ2h1x = f+1 (x)−1f−1 (x). This extends to an

f+1 derivation h1 : C1 → D2, as explained in Remark 9.3.4.

At the next level, for c ∈ C2, we note that f+1 δ2 = δ2f
+
2 , f−1 δ2 = δ2f

−
2 and we require h2 such

that

f−2 (c) = f+2 (c)h1δ2(c)δ3h2(c). (∗)

But

δ2(h1δ2(c)
−1f+2 (c)−1f−2 (c)) = (f+1 (δ2c)

−1f−1 (δ2c)
−1δ2f

+
2 (c)−1δ2f

−
2 (c) = 1.

So again, we can choose h2(x) for x ∈ X2 so that (*) holds for c = x. This extends to an f+1 -morphism

h2 : C2 → D3 as required.

We now look at the situation around dimension n.

// Cn+1

δn+1 //

f−n+1 f+n+1

��

Cn
δn //

f−n f+n

��

hn
r r r r

yyr
r

r

Cn−1

δn−1 //

f−n−1 f+n−1

��

hn−1

rrr
rrr

yyrrrrrr

Cn−2
//

f−n−2 f+n−2

��

hn−2

qqqqqq

xxqqqqqq

// Dn+1
δn+1

// Dn
δn

// Dn−1
δn−1

// Dn−2
//

We suppose given the morphisms f−, f+ and also the hn−2,hn−1 such that

f−n−1 = f+n−1 + hn−2δn−1 + δnhn−1.

But for c ∈ Cn

δn(f−nc− f+nc− hn−1δnc) = f−n−1δnc− f+n−1δnc− δnhn−1δnc

= f−n−1δnc− f+n−1δnc− (f−n−1δnc− f+n−1δnc− hn−2δn−1δnc)

= 0 since δn−1δn = 0.

By asphericity of D, for each x in the basis Xn we can find an hnx in Dn+1 such that

hnx = f−nx− f+nx− hn−1δnx.

This extends to an operator morphism hn : Cn → Dn+1 with the required properties for the next

stage of the induction. 2
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This proof is typical of the method of constructing homotopies, and is going to be useful again in

later sections.

Corollary 11.1.12 Any two free crossed resolutions of a group G are homotopy equivalent.

Remark 11.1.13 A refinement of Theorem 11.1.11 is to assume that we have two morphisms

α−,α+ : G → H, that the morphisms f−, f+ lift α−,α+ respectively and that η is a homotopy (or

natural transformation) α− ≃ α+. Then we assert that under the same conditions of freeness and

asphericity, η lifts to a homotopy h : f− ≃ f+. Let us assume φ,ψ are the identity on objects. Here

η0 assigns to each p in C0 an element η(p) ∈ H(α−p,α+p) such that the usual naturality condition

holds: if g ∈ G(p,q) then α−(g)η(q) = η(p)α+(g). For each p ∈ C0 choose an h0(p) ∈ D1(p,q)

such that ψ(h0(p)) = η(p). Now we repeat the arguments of the proof of Theorem 11.1.11 but

using the more complicated formulae for homotopies which involve h0. We leave the details as an

exercise for the reader. 2

However we still want a method of constructing in a more or less algorithmic way, or at least in

terms of data specifying a group or groupoid, some construction of a free crossed resolution. This

is given in Section 11.2 for a group defined by a presentation by generators and relations. The next

section describes some other ways of constructing resolutions according to other constructions of

groups.

11.1.2 Some more complex examples: Free products with amalgamation and

HNN-extensions

We will prove the following theorem in Corollary 15.8.1, using cubical methods, covering crossed

complexes, and the notion of dense subcategory. This result, combined with the fact that the tensor

product of free crossed complexes is free, gives one method of making new free crossed resolutions

from old ones.10

Theorem 11.1.14 If C, D are aspherical free crossed complexes, then their tensor product C ⊗ D is

also aspherical.

Example 11.1.15 Let PG = 〈XG | RG〉, PH = 〈XH | RH〉 be presentations of groupsG,H respectively,

and let F(PG), F(PH) be the corresponding free crossed modules, regarded as 2-truncated crossed

complexes. The tensor product T = F(PG) ⊗ F(PH) is 4-truncated and is given as follows (where

we now use additive notation in dimensions 3, 4 and multiplicative notation in dimensions 1, 2):

• T1 is the free group on generating set XG ⊔ XH;

• T2 is the free crossed T1-module on RG ⊔ (XG ⊗ XH) ⊔ RH with the boundaries on RG,RH as

given before and

δ2(g⊗ h) = h−1g−1hg for all g ∈ XG, h ∈ XH ;

• T3 is the free (G×H)-module on generators r⊗ h, g⊗ s, r ∈ RG, s ∈ RH with boundaries

δ3(r⊗ h) = r−1rh(δ2r⊗ h), δ3(g⊗ s) = (g⊗ δ2s)
−1s−1sg ;

• T4 is the free (G×H)-module on generators r⊗ s, with boundaries

δ4(r⊗ s) = (δ2r⊗ s) + (r⊗ δ2s) .
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The important point is that we can if necessary calculate with these formulae, because elements

such as δ2r ⊗ h may be expanded using the rules for the tensor product. Alternatively, the forms

δ2r⊗ h,g⊗ δ2s may be left as they are since they naturally represent subdivided cylinders. 2

We next illustrate the use of crossed complexes of groupoids, rather than just of groups, by the

construction of a free crossed resolution of a free product with amalgamation, and a similar result

for HNN-extensions, given free crossed resolutions of the individual groups. 11

Suppose the group G is given as a free product with amalgamation

G = A ∗C B,

which we can alternatively describe as a pushout of groups

C
j //

i

��

B

i′

��
A

j′
// G .

We are assuming the morphisms i, j are injective so that, by standard results, i ′, j ′ are injective.

Suppose we are given free crossed resolutions A = F(A), B = E(B), C = F(C). The morphisms i, j

may then be lifted (non uniquely) to morphisms i′′ : C→ A, j′′ : C→ B. However we cannot expect

that the pushout of these morphisms in the category Crs gives a free crossed resolution of G.

To see this, suppose that these crossed resolutions are realised by CW-filtrations K(Q) for Q ∈

{A,B,C}, and that i′′, j′′ are realised by cellular maps K(i) : K(C) → K(A), K(j) : K(C) → K(B).

However, the pushout in topological spaces of cellular maps does not in general yield a CW-complex

— for this it is required that one of the maps is an inclusion of a subcomplex, and there is no reason

why this should be true in this case. The standard way of dealing with this problem is to form the

double mapping cylinder M(i, j) given by the homotopy pushout

K(C)

K(i)

��

K(j)
//

≃

K(B)

��
K(A) //M(i, j)

whereM(i, j) is obtained from K(A)⊔(I×K(C))⊔K(B) by identifying (0, x) ∼ K(i)(x), (1, x) ∼ K(j)(x)

for x ∈ K(C). This ensures that M(i, j) is a CW-complex containing K(A),K(B) and { 1
2
} × K(C) as

subcomplexes and that the composite maps K(C)→M(i, j) given by the two ways round the square

are homotopic cellular maps.

It is therefore reasonable to assume that for crossed complexes the appropriate algebraic con-

struction is also a homotopy pushout, this time in Crs, obtained by applying Π to this homotopy

pushout: this yields a diagram:

C

i′′

��

j′′ //

≃

B

��
A // F(i, j) .

Since M(i, j) is aspherical we know that F(i, j) is aspherical and so is a free crossed resolution. Of

course F(i, j) has two vertices 0, 1. Thus it is not a free crossed resolution of G but is a free crossed
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resolution of the homotopy pushout in the category Gpds

C

i

��

j //

≃

B

��
A // G(i, j)

which is obtained from the disjoint union of the groupoids A, B, I × C by adding the relations

(0, c) ∼ i(c), (1, c) ∼ j(c) for c ∈ C. The groupoid G(i, j) has two objects 0, 1 and each of its object

groups is isomorphic to the amalgamated product group G, but we need to keep its two object

groups distinct. 12

The two crossed complexes of groups F(i, j)(0), F(i, j)(1), which are the parts of F(i, j) lying over

0, 1 respectively, are free crossed resolutions of the groups G(i, j)(0), G(i, j)(1). From the formulae

for the tensor product of crossed complexes we can identify free generators for F(i, j) : in dimension

n we get

• free generators an at 0 where an runs through the free generators of An ;

• free generators bn at 1 where bn runs through the free generators of Bn ;

• free generators ι⊗ cn−1 at 1 where cn−1 runs through the free generators of Cn−1 .

Example 11.1.16 Let A,B,C be infinite cyclic groups, written multiplicatively. The trefoil group T

can be presented as a free product with amalgamation A ∗C B where the morphisms C→ A, C→ B

have cokernels of orders 3 and 2 respectively. The resulting homotopy pushout we call the trefoil

groupoid. We immediately get a free crossed resolution of length 2 for the trefoil groupoid, whence

we can by a retraction argument deduce the free crossed resolution F(T) of the trefoil group T

with presentation PT = 〈a,b | a3b−2〉. By the construction in Section 11.2, there is a free crossed

resolution of T of the form

F(T) : · · · // 1 // C(r)
φ2 // F{a,b}

φ1 //___ T where φ2 r = a3b−2 .

Hence a 2-cocycle on T with values in K can also be specified totally by elements s(c,d) ∈ K, c,d ∈

Aut(K) such that ∂s(c,d) = c3d−2; this is a finite description. It is also easy to specify equivalence

of cocycles. 13 2

Now we consider HNN-extensions. Let A,B be subgroups of a group G and let k : A → B be an

isomorphism. Then we can form a pushout of groupoids

{0, 1}×A

i

��

(k0, k1) // G

j

��
I×A

f
// ∗k G

where

k0(0,a) = ka, k1(1,a) = a, and i is the inclusion.

In this case of course ∗k G is a group, known as the HNN-extension. It can also be described as the

factor group

(Z ∗G) / {z−1a−1z (ka) | a ∈ A}
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of the free product, where Z is the infinite cyclic group generated by z.

Now suppose we have chosen free crossed resolutions A, B, G of A,B,G respectively. Then we

may lift k to a crossed complex morphism k′′ : A→ B and k0, k1 to

k′′0 , k′′1 : {0, 1}×A→ G .

Next we form the pushout in the category of crossed complexes:

{0, 1}⊗A

i′′

��

(k′′0 , k′′1)
// G

j′′

��
I⊗A

f′′
// ⊗k′′ G

Theorem 11.1.17 The crossed complex ⊗k′′ G is a free crossed resolution of the group ∗kG .

The proof is given in [BMPW02] as a special case of a theorem on the free crossed resolutions

of the fundamental groupoid of a graph of groups . Here we show that Theorem 11.1.17 gives a

means of calculation. Part of the reason for this success is that we do not need to know in detail the

definition of free crossed resolution and of tensor products, we just need free generators, boundary

maps, values of morphisms on free generators, and how to calculate in the tensor product with I

using the rules given previously.

Example 11.1.18 The Klein Bottle group K has a presentation 〈 c, z | z−1c−1z c−1 〉. Thus K = ∗k C

where C is infinite cyclic generated by c and kc = c−1. This yields a free crossed resolution

F(K) · · · // 1 // C(r)
φ2 // F{c, z}

φ1 //___ K

where φ2 r = z−1c−1z c−1. Of course this was already known since K is a surface group, and so is

aspherical, and also because it is a one relator group whose relator is not a proper power. 2

Example 11.1.19 Developing the previous example, let 〈 c, z | cq, z−1c−1z c−1 〉 be a presentation of

the group L. Then L = ∗k Cq where Cq is the cyclic group of order q generated by c and k : Cq → Cq
is the isomorphism c 7→ c−1. A small free crossed resolution of Cq is given in Subsection 11.1.1 as

F(Cq) : · · · // Z[Cq]
χn // Z[Cq] // · · · // Z[Cq]

χ2 // A
χ1 //___ Cq

with a free generator a of A in dimension 1 ; free generators cn in dimension n > 2 ; with χ1 a = c ;

χ2(c2) = aq and

χn cn =

{
cn−1 (1 − c) if n is odd,

cn−1 (1 + c+ c2 + · · ·+ cq−1) otherwise.

The isomorphism k lifts to a morphism k′′ : F(Cq)→ F(Cq) which is also inversion in each dimension.

Hence L has a free crossed resolution ⊗k′′ Cq given by

· · ·
λn+1 // Ln

λn // · · · · · ·
λ3 // L2

λ2 // L1

φ // G

having free generators a, z in dimension 1; generators c2, z ⊗ a in dimension 2; and generators

cn, z⊗ cn−1 in dimension n > 3 . The extra boundary rules are

λ2(z⊗ a) = z−1a−1z a−1 ,

λ3(z⊗ c2) = (z⊗ aq)−1 c−1
2 (c−1

2 )z ,

λn+1(z⊗ cn) = −(z⊗ χncn) − cn − cn
z for n > 3 .
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In particular, the identities among relations for this presentation of L are generated by

c2 and λ3(z⊗ c2) = (z⊗ χ2c2)
−1 c2

−1 (c2
−1)z .

Similarly, relations for the module of identities are generated by

c3 and λ4(z⊗ c3) = − (z⊗ c2(1 − c)) − c3 − c3
z .

Of course we can expand expressions such as (z ⊗ χncn) using the rules for the cylinder given in

Example 9.3.19. 14 2

11.2 Construction of free crossed resolutions of groups from a

presentation

In this section we are going to address the problem of getting a resolution for a group G defined

by a presentation 〈X | R〉. As we have seen Theorem 11.1.2 gives a theoretical solution. First we

construct the free crossed module

C(R)
δ2−→ F(X)

φ
−→ G→ 1.

Now we take a free resolution of the G-module A = Ker∂ in the ‘usual way’ of constructing ‘chains

of syzygies’.

That means that at each step we have to get a free G-module mapping surjectively to a G-module

F(Xn)→ An−1

and get a set of generators Xn of the kernel.

How can we proceed? Theoretically the answer is easy. If in trouble, just take Xn = An.

Obviously this has no practical application (as An could be infinite), so we would like to have a way

of constructing smaller resolutions.

11.2.1 Home for a contracting homotopy: chain complexes

In order to introduce our method of ‘constructing a home for a contracting homotopy’, we consider

first the case of chain complexes of R-modules. For these we show there is an easily described way

of constructing inductively at the same time the resolution and the contracting homotopy (in chain

complexes resolutions are contractible). The method uses homotopy information in dimensions 6 n

to construct Cn+1, δn+1 and hn from free generators of Cn

Assume that we have constructed both the resolution and the contracting homotopy up to di-

mension n. Thus, we have the diagram

Cn
∂n //

fn

��

Cn−1

∂n−1 //

fn−1

��

hn−1

rrr
rrr

yyrrrrrr

· · · // C3

∂3 // C2

∂2 //

f2

��

h2
tttttt

zztttttt

C1

f1

��

h1
tttttt

zztttttt

Cn
∂n

// Cn−1
∂n−1

// · · · // C3
∂3

// C2
∂2

// C1

where the squares commute and

∂i+1hi + hi−1∂i = 1
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for i 6 n− 1 and Ci is free on say Xi.

We want a freeG-module Cn+1 and a morphism hn : Cn → Cn+1 satisfying ∂n+1hn+hn−1∂n−1 =

1. We construct the Cn+1 with just enough room to define the hn as follows. If Xn is a free gen-

erating set of Cn, we consider a set X′
n+1 in one-to-one correspondence with Xn by x ′ 7→ x and

define Cn+1 to be the free R-module on the set X′
n+1. We define ∂n+1 : Cn+1 → Cn as the unique

morphism extending

∂n+1(x
′) = x− hn−1∂n(x)

for all x ′ ∈ X′
n+1 and

hn : Cn → Cn+1

to be the unique morphism extending the bijection Xn → X′
n+1.

Clearly this produces an homotopy and one checks that

∂n∂n+1x = ∂n(x− hn−1∂nx)

= ∂nx− (1 − hn−2∂n−1)∂nx by the inductive assumption

= 0.

In practice one can usually find a subset Xn+1 of X′
n+1 such that ∂n+1Xn+1 also generates ∂n+1Cn+1;

indeed, for many x ′ ∈ X′
n+1 we may have ∂n+1x

′ = 0, so such x ′ may be eliminated immediately.

This enables one to find a smaller candidate for the next step. We shall see this in practice in

Subsection 11.2.4.

By iterating we get a free chain complex and a contracting homotopy, so the resulting chain

complex is a free resolution. This method we call ‘constructing a home for a contracting homotopy’,

in contrast to the traditional method of ‘killing kernels’.

The immediate problem with repeating this process for crossed resolutions of a group G is that

such resolutions are not contractible, since the fundamental group is isomorphic to G. We resolve

this by passing to the ‘universal covering groupoid’ p : G̃→ G which we set up in the next sections,

and construct a free crossed resolution of G̃, by essentially the above process, taking care of the

extra complications of homotopies for crossed complexes as against chain complexes. It is then easy

to pass from the free crossed resolution of G̃ to one for G.

We will see that there are many choices involved in this process. The process deals with Cayley

graphs, a standard tool in combinatorial group theory, and we start by choosing a maximal tree in

the Cayley graph. The theory well reflects the geometry of covering spaces and extends the notion

of Cayley graph to include higher dimensional information.

First we develop the machinery of coverings of crossed complexes in order to prove that a cover

of a free crossed complex is free. Only then can we properly give the computational procedure. This

is used at the end of the Section to get some free crossed resolutions of groups that we have already

stated.

11.2.2 Covering morphisms of crossed complexes

In this subsection we assume as known the notions of covering morphisms of groupoids dealt with in

[Bro06, Hig71]; some details and the notation and conventions as used here are given in Subsection

A.10.1 of the Appendix.

Definition 11.2.1 A morphism p : C̃→ C of crossed complexes is a covering morphism if

(i) the morphism p1 : C̃1 → C1 is a covering morphism of groupoids;
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(ii) for each n > 2 and x̃ ∈ C̃0, the morphism of groups pn : C̃n(x̃)→ Cn(px̃) is an isomorphism.

In such case we call C̃ a covering crossed complex of C. 2

This definition may also be expressed in terms of the unique covering homotopy property similar

to the one given for fibrations in Section 10.5. Actually, coverings are fibrations with discrete fibre.

So we can use the long exact sequence of a fibration Theorem 12.4.1, given in the next Chapter.

Proposition 11.2.2 Let p : C̃ → C be a covering morphism of crossed complexes and let ã ∈ Ob(C̃).

Let a = pã, and let K = p−1
0 (a) ⊆ Ob(C̃). Then p induces isomorphisms πn(C̃, ã) → πn(C,a) for

n > 2 and a sequence

1→ π1(C̃, ã)→ π1(C,a)→ K→ π0(C̃)→ π0(C)

which is exact in the sense of the exact sequence of a fibration of groupoids.

The comment about exactness has to do with operations on the pointed sets, see Theorem 12.4.1.

The following result gives a basic homotopical example of a covering morphism of crossed com-

plexes.

Theorem 11.2.3 Let X∗ and Y∗ be filtered spaces and let

f : X→ Y

be a covering map of spaces such that for each n > 0, fn : Xn → Yn is also a covering map with

Xn = f−1(Yn). Then

Πf : ΠX∗ → ΠY∗

is a covering morphism of crossed complexes.

Proof By [Bro06, 10.2.1],

π1f1 : π1(X1,X0)→ π1(Y1, Y0)

is a covering morphism of groupoids.

Now for each n > 2 and for each x0 ∈ X0, it is a standard result in homotopy theory that

f∗ : πn(Xn,Xn−1, x0)→ πn(Yn, Yn−1,p(x0))

is an isomorphism (see for example, [Hu59]). 2

Proposition 11.2.4 Let p : C̃ → C be a covering morphism of crossed complexes. Then the induced

morphism π1(p) : π1C̃→ π1C is a covering morphism of groupoids.

Proof Let x̃ ∈ C̃0. We will show that p ′
x̃ : St

π1C̃
x̃ → Stπ1C px̃ is bijective. Let [a] ∈ Stπ1C px̃,

where a ∈ StCpx̃. Since p is a covering morphism, there exists a unique ã of St
C̃
x̃ such that pã = a.

So p ′
x̃[ã] = [a] and thus p ′

x̃ is surjective.

Now suppose that p ′
x̃[ã] = p ′

x̃[b̃]. Then (pb̃)−1pã ∈ δC2(px̃) which implies that (pb̃)−1(pã) =

δpc̃ for a unique c̃ ∈ C̃2(x̃). Because p is a covering morphism, we need only show that (b̃)−1ã = δc̃.

This follows by star injectivity. Therefore p ′
x̃ is injective and so is bijective. Hence π1(p) is a covering

morphism of groupoids. 2
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Here is an important method of constructing new covering morphisms. Let C be a crossed

complex. We write CrsCov/C for the full subcategory of the slice category Crs/C whose objects are

the covering morphisms of C.

Proposition 11.2.5 Suppose given a pullback diagram of crossed complexes

C̃
f //

q

��

Ẽ

q

��
C

f
// E

in which q is a covering morphism. Then q is a covering morphism.

Proof The groupoid case is [Bro06, 9.7.6]. We leave the rest of the proof to the reader. 2

Our next result is the analogue for covering morphisms of crossed complexes of a classical result

for covering maps of spaces (see, for example, [Bro06, 9.6.1]). It gives a complete classification of

covering morphisms of crossed complexes.

Theorem 11.2.6 If C is a crossed complex, then the functor π1 : Crs→ Gpds induces an equivalence of

categories

π ′
1 : CrsCov/C→ GpdsCov/(π1C).

Proof If p : C̃ → C is a covering morphism of crossed complexes, then π1p : π1C̃ → π1C is a

covering morphism of groupoids, by Proposition 11.2.4. Since π1 is a functor, we also obtain the

functor π ′
1. To prove π ′

1 is an equivalence of categories, we construct a functor

ρ : GpdsCov/(π1C)→ CrsCov/C

and prove that there are equivalences of functors 1 ≃ ρπ ′
1 and 1 ≃ π ′

1ρ.

Let C be a crossed complex, and let q : D → π1C be a covering morphism of groupoids. We

consider the crossed complex sk1(G) associated to a groupoid G defined in 7.3.10. Let C̃ be given

by the pullback diagram in the category of crossed complexes:

C̃
φ̄ //

q̄

��

sk1(D)

q

��
C

φ
// sk1(π1C)

By Proposition 11.2.5, q̄ : C̃→ C is a covering morphism of crossed complexes.

We define the functor ρ by ρ(q) = q̄, and extend ρ in the obvious way to morphisms.

The natural transformation π ′
1ρ ≃ 1 is defined on a covering morphism q : D → π1C to be the

composite morphism

λ : π1(C̃)
π1(φ̄)
−→ π1(sk

1(D)) ∼= D

where φ̄ : C̃→ sk1(D) is given in the pullback diagram. The proof that λ is an isomorphism is simple

and is left to the reader.
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To prove that 1 ≃ ρπ ′
1, we show that the following diagram is a pullback:

C̃
φ̃ //

q

��

sk1(π1C̃)

π1(q)

��
C

φ
// sk1(π1C)

This is clear in dimension 0 and in dimensions > 2. For the case of dimension 1, let c : x → y

in C, and [c̃] ∈ (π1C̃)(x̃, ỹ) be such that q[c̃] = φ(c). Then there exists a unique c̃′ : x̃ → ỹ such

that φ̃(c̃′) = [c̃] and q̄(c̃′) = c. Now, q̄(c̃δC̃2(x̃)) = φ(c) = cδC2(x). This implies that (q̄c̃)δC2(x) =

cδC2(x). So q̄(c̃) = c(δc2) for some c2 ∈ C2(x). Therefore there exists a unique c̃2 ∈ C̃2(x̃) covering

c2, and q̄(c̃(δc̃2)
−1) = c. So the above diagram is a pullback and thus we have proved that 1 ≃ ρπ ′

1.

This proves the equivalence of the two categories. 2

11.2.3 Coverings of free crossed complexes

Recall that the utility of a free crossed complex is that if C is a free crossed complex on X∗, then a

morphism f : C→ D can be constructed inductively provided one is given the values fnx ∈ Dn, x ∈

Xn,n > 0 and provided the following geometric conditions are satisfied: (i) δαf1x = f0δ
αx, x ∈

X1,α = 0, 1; (ii) βfn(x) = f0(βx), x ∈ Xn,n > 2; (iii) δnfn(x) = fn−1δn(x), x ∈ Xn,n > 2.

Notice that in (iii), fn−1 has to be defined on all of Cn−1 before this condition can be verified.

We now show that freeness can be lifted to covering crossed complexes, using the following

result of Howie ([How79, Theorem 5.1]).

Theorem 11.2.7 Let p : A → B be a morphism of crossed complexes. Then p is a fibration if and only

if the pullback functor p∗ : Crs/B→ Crs/A has a right adjoint.

As a consequence we get the following: 15.

Corollary 11.2.8 If p : A→ B is a covering morphism of crossed complexes, then p∗ : Crs/B→ Crs/A

preserves all colimits.

We shall use this last result to prove that coverings of free crossed complexes are free.

Theorem 11.2.9 Suppose given a pullback square of crossed complexes

Ã
j //

p′

��

C̃

p

��
A

j
// C

in which p is a covering morphism and j : A→ C is relatively free. Then j : Ã→ C̃ is relatively free.

Proof We suppose given the sequence of pushout diagrams

∐
λ∈Λn

S(n − 1)

��

// Cn−1

��∐
λ∈Λn

F(n) // Cn.
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defining C as relatively free. Let Ĉn = p−1(Cn). By Corollary 11.2.8, the following diagram is also

a pushout:

p∗
(∐

λ∈Λn
S(n − 1)

)

��

//
Ĉn−1

��
p∗
(∐

λ∈Λn
F(n)

)
//
Ĉn.

Since p is a covering morphism, we can write p∗
(∐

λ∈Λn
F(n)

)
as

∐

λ∈Λ̃n
F(n) for a suitable Λ̃n.

This completes the proof. 2

Corollary 11.2.10 Let p : C̃→ C be a covering morphism of crossed complexes. If C is free on X∗, then

C̃ is free on p−1(X∗).

A similar result to Corollary 11.2.10 applies in the m-truncated case.

The significance of these results is as follows. We start with an m-truncated free crossed reso-

lution C of a group G, so that we are given φ : C1 → G, and C is free on X∗, where Xn is defined

only for n 6 m. Our extension process of Subsection 11.2.4 will start by constructing the universal

cover p : C̃ → C of C; this is the covering crossed complex corresponding to the universal covering

groupoid p0 : G̃→ G. By the results above, C̃ is the free crossed complex on p−1(X∗). It also follows

from Proposition 11.2.2 that the induced morphism φ̃ : C̃ → G̃ makes C̃ a free crossed resolution

of the contractible groupoid G̃. Hence C̃ is an acyclic and hence, since it is free, also a contractible

crossed complex.

11.2.4 Computing a free crossed resolution

The initial motivation for the work of this subsection was to determine in an algorithmic mode

generators and relations for the G-module π(P) of identities among relations for a presentation

P = 〈X | ω〉 of a group G. Here ω : R → F(X) is a function and we regard R as a set disjoint from

F(X). The advantages of this procedure and of using the functionω are (i) to allow for the possibility

of repeated relations, and (ii) to distinguish between an element r ∈ R and the corresponding

element ω(r) ∈ F(X).

Associated to this presentation of G, we shall be constructing by induction on dimension a free

crossed resolution of the universal covering G̃ with a contracting homotopy and projecting to a free

resolution of G. If G is finite, and the presentation is finite, then this free crossed resolution will

have a finite number of free generators in each dimension.

Let us start in low dimensions.

2a. Resolution of G up to dimension 2

In Chapter 3 we proved that a presentation P = 〈ω : R → F(X) | X〉 gives the beginning of a

crossed resolution

C(R)
δ2−→ F(X)

φ
−→ G (11.2.1)

where δ2 is the free crossed module associated to ω. Then π(P) is defined to be Ker δ2.

The elements of C(R) are ‘formal consequences’

c =

n∏

i=1

(rεi

i )ui

where n > 0, ri ∈ R, εi = ±1,ui ∈ F(X), δ2(r
ε)u = u−1(ωr)εu, subject to the crossed module rule

ab = baδ2b,a,b ∈ C(R).
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Remark 11.2.11 It follows from the Higher Homotopy van Kampen Theorem for crossed modules

(as in the proof of Theorem 5.4.8) that π(P) is given geometrically as the second homotopy group

π2(K(P)) of the cell complex of the presentation. This result is not necessary for the work of this

chapter, but it does emphasise the topological importance of our methods. 16 2

Actually equation (11.2.1) is equivalent to the more general situation

F2 → F1 → G

where F1 is a free groupoid, F2 is a free crossed module over F1, G is a groupoid and φ induces an

isomorphism Cok δ2 ∼= G; this is because the free generators of F1 have to map to a set of generators

X of G so F1 = F(X) and F2 has to be free on some map ω : R→ F1 = F(X).

Thus, we want to extend (11.2.1) to a crossed resolution of G. To do this we require algebraic

analogues developed in the preceding Sections of methods of covering spaces. We are following

the method outlined in the introduction to Section 11.2 (p. 306) for the case of chain complexes.

The crucial point is that the algorithmic nature of the argument derives from the construction of

homotopies; the fact that these are strong deformation retractions also simplifies the conditions on

the homotopies, as shown in Proposition ??. 17

2b.- Resolution of the covering G̃ up to dimension 2.

First we construct a covering of part of diagram (11.2.1) getting

F(X̂)

p1

��

φ̃ //
G̃

p0

��
C(R)

δ2
// F(X)

φ
// G

(11.2.2)

where

1. The morphism p0 : G̃→ G is the universal covering groupoid of the group G. The objects of G̃

are the elements of G, and an arrow of G̃ is a pair (g,g ′) ∈ G⋉G with source gg ′ = δ−(g,g ′)

and target g ′ = δ+(g,g ′). The projection morphism p0 is given by (g,g ′) 7→ g. For more

details on this and the following, see Example A.10.3.

2. Here X̂ is the Cayley graph of the pair (G,X). Its objects are the elements of G and its arrows

are pairs (x,g) ∈ X×G with source δ−(x,g) = (φx)g and target δ+(x,g) = g. Notice that X̂ is

in general not the universal covering of X.

3. The groupoid F(X̂) is the free groupoid on X̂. Its objects are the elements of G and its arrows

can be identified with pairs (u,g) ∈ F(X) × G with source (φu)g and target g. We also write

β(u,g) = g. The multiplication in F(X̂) is given by (v, (φu)g)((u,g) = (vu,g), v,u ∈ F(X),g ∈

G. The inverse of (u,g) is (u−1, (φu)g).

4. The morphism φ̂ is given by (u,g) 7→ ((φu)g,g). The morphism p1 is given by (u,g) 7→ u. It

maps the object group F(X̂)(1) isomorphically to N = Kerφ.

As we will see in Subsection A.10.1, G̃→ G is the covering morphism corresponding to the trivial

subgroup of G, and F(X̂) → F(X) is the covering morphism corresponding to the normal subgroup

N = Kerφ of F(X).
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The next step is to take diagram (11.2.2) one dimension higher, getting

C(R̂)

p2

��

δ̂2 // F(X̂)

p1

��

φ̂ //
Ĝ

p0

��
C(R)

δ2
// F(X)

φ
// G

(11.2.3)

where R̂ = R ×G and δ̂2 : C(R̂)→ F(X̂) is the free crossed F(X̂)-module on ω̂ : R̂ → F(X̂), (r,g) 7→

(ω(r),g). This is the free crossed module of the covering presentation {X̂ | R̂} of the universal cover

G̃ of G.

Thus C(R̂) is the disjoint union of groups C(R̂)(g),g ∈ G, all mapped by p2 isomorphically to

C(R). Elements of C(R̂)(g) are pairs (c,g) ∈ C(R) × {g}, with multiplication (c,g)(c′,g) = (cc′,g).

The action of F(X̂) is given by (c, (φu)g)(u,g) = (cu,g). The boundary δ̂2 is given by (c,g) 7→ (δ2c,g).

The morphism p2 : C(R̂)→ C(R) is given by (c,g) 7→ c.

The elements of C(R̂)(g) are also all ‘formal consequences’

(c,g) =

n∏

i=1

((ri, (φui)gi)
εi)(ui,gi) = (

n∏

i=1

(rεi

i )ui ,g)

where n > 0, ri ∈ R, εi = ±1, ui ∈ F(X), gi ∈ G, (φui)gi = g, subject to the crossed module rule

ab = baδ̂2b,a,b ∈ C(R̂).

It is useful to think of these formulae topologically in terms of CW-complexes. The generating

set X should be thought of as a set of loops giving the 1-cells of a reduced CW-complex Y, so that we

identify F(X) with π1(Y
1, ∗). The elements r ∈ R can be thought of as defining the 2-cells of Y, each

attached according to the formula for ωr, so that G = π1(Y, ∗). The element (r,g) for r ∈ R,g ∈ G

then corresponds to the covering cell of the cell r at the point g, considered as a vertex of Ỹ, and

(r,g) is also a relator for the ‘covering presentation’ of G̃. Let Ŷn be the n-skeleton of Ỹ; then

π1(Ŷ
1, Ŷ0) may be identified with the groupoid F(X̂). If (u,g) : (φu)g → g is a path in F(X̂), and

(r, (φu)g) is a free generator corresponding to a 2-cell of the universal cover, then this generator

also contributes to the group C(R̂)(g) with the element (c, (φu)g)(u,g) = (cu,g).

In effect, we are giving:

1) a presentation 〈X̂ | ω̂〉 of the groupoid G̃, and

2) the free crossed module corresponding to this presentation. That this construction gives a free

crossed module is thanks to Theorem 11.2.9.

2c. Contractibility of the covering up to dimension 2.

So we have started the construction of a crossed complex that we want to be acyclic. To prove

this acyclicity we construct a contracting homotopy at the same time as we are constructing the

crossed complex. So we need to construct h0,h1 in the following diagram:

C(R̂)
δ̂2 //

1
��

F(X̂)
φ̂ //

h1
uuu

u

zzuuu
u 1

��

G

h0

wwww

{{www
1
��

C(R̂)
δ̂2

// F(X̂)
φ̂

// G

(11.2.4)



314 [11.2] Nonabelian Algebraic Topology

Remark 11.2.12 We note for the record that by Proposition ?? on the conditions for a contracting

homotopy, h1 is to be a morphism. Later we will use that for n > 2, hn is to be a morphism killing

the operation of the groupoid F(X̂). 2

For h0, choose a section σ : G→ F(X) of φ such that σ(1) = 1. Then σ determines

h0 : G→ F(X̂), g 7→ (σg, 1). (11.2.5)

Thus for g ∈ G, h0(g) is a path g → 1 in the Cayley graph X̂, p1h0(g) = σ(g), and h0(1) = (1, 1).

Remark A.10.7 is relevant here, for an expansion of h0(g) in terms of the generating set X, and also

in the argument which follows.

Remark 11.2.13 Such a choice σg writing g as a word in the generators is called a ‘normal form’

for the element g of G; even for a finite presentation, σ cannot always be found over all of G by a

finite algorithm. The usual way of finding it is by a ‘rewriting’ process, which may not complete in

finite time. 18

The choice of h0 is often, but not always, made by choosing a maximal tree in the graph X̂ –

such a choice is equivalent to a choice of what is called in group theory a Schreier transversal for

the subgroup N = Kerφ of the free group F(X). 2

In the following picture, (x,g) : (φx)g → g is an arrow in F(X̂); h0((φx)g) represents a path in

X̂ from (φx)g to 1, thought of as an element of F(X̂); and h0(g) represents an path in X̂ from g to 1,

again thought of as an element of F(X̂):

(φx)g

XXXX






A
A
A








�
�

�

�
�
�

h0((φx)g) h0(g)

(x,g)

Z
Z

Z

g

h1(x,g)

1

We now construct an element h1(x,g) ∈ C(R̂) which fills the middle, as follows.

For each arrow (x,g) of X̂ the element ℓ = (h0(φx)g)
−1(x,g)h0(g) is a loop at 1 in F(X̂); so ℓ

maps to 1 in the singleton G̃(1, 1). Hence ℓ is in the image of δ̂2. For each arrow (x,g) of X̂ choose

an element h1(x,g) ∈ C(R̂)(1) such that

δ̂2(h1(x,g)) = ℓ = (h0(φx)g)
−1(x,g)h0(g). (11.2.6)

Then, recalling Remark 11.2.12, and because F(X̂) is free on these generators, h1 extends uniquely

to a morphism

h1 : F(X̂)→ C(R̂)(1) (11.2.7)

which, because it is a morphism, see again Remark A.10.7, satisfies

δ̂2(h1(u,g)) = h0((φu)g)−1(u,g)h0(g) (11.2.8)

for all arrows (u,g) of F(X̂). In particular for r ∈ R

δ̂2(h1(ωr,g)) = h0(g)
−1(ωr,g)h0(g). (11.2.9)
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It follows also that δ̂2h1(h0(g)) = (1, 1) for all g ∈ G. Further, if h0 is determined by a choice of

maximal tree T in the Cayley graph, then for each (x,g) in T we may choose h1(x,g) = (1, 1).

Remark 11.2.14 The specification of h1 is equivalent to choosing for each element of n ∈ N, given

as a word in the elements of X, a representation of n as a consequence of the relations R. There is

no algorithm for such a choice. 19 2

Here are pictures of what we have so far. For each g ∈ G, r ∈ R we have a 2-cell (r,g) in the

Cayley graph with relations, where the boundary of (r,g) in F(X̂), illustrated in the following picture,

is (ωr,g).

(φx)g

g ′ g ′′

(z,g ′′)

aaaa����

D
D
D

(x,g)

(y,g ′) (r,g)

�
�
�

g

In this situation we have of course g = (φz)g ′′ and (φx)g = (φy)g ′.

The h1(e) for all edges e of (r,g) together form a kind of cone h1(ωr,g) on the boundary of

(r,g), see equation (11.2.9); gluing this cone to (r,g) along the common boundary forms what is

known as a ‘separation element’, giving a polygonally subdivided 2-sphere as partially shown in the

following picture:

g ′

XXXX
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�
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e
e

�
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QQQQQQ
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�

�

��
�

h0(g
′)

aaaaaa
�

�
�

�
�

�
�

�
�

h0(g)

(x,g)

(r,g)

(z,g ′′)

h1(z,g
′′)

h0(g
′′)

Z
Z

Z

g

g ′′

h1(x,g)

1

(y,g ′)

h1(y,g
′)

This ‘separation element’ defines geometrically an element of π2 = π(P), the module of identities

among relations. We now show that these separation elements form a set of generators of π(P) as a

G-module; they are determined by h0 and h1, but the proof that they generate uses h2.

This gives all the maps shown in diagram (11.2.3) necessary to give a contracting homotopy

up to dimension 2. We now extend these to dimension 3, by constructing elements which ‘fill’ our

separation elements.

3a. Resolution of the covering up to dimension 3.

Let I be a set in one-to-one correspondence with R×G with elements written [r,g], r ∈ R,g ∈ G.

Let C3(I) be the free G-module on I. For any [r,g] ∈ I we define

δ3[r,g] = p2

(
(h1(ωr,g))

−1
)
rσg.

This definition on the free generators extends uniquely to an operator morphism

δ3 : C3(I)→ C(R).
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It follows from equation (11.2.7) that δ2δ3[r,g] = 1, and so the given values δ3[r,g] lie in π(P) =

Ker δ2, the G-module of identities among relations. Hence we have a truncated crossed complex:

C3(I)
δ3 // C(R)

δ2 // F(X)
φ // G (11.2.10)

and we now extend our previous covering truncated crossed complex by including C3 (̂I), defined to

be the free G̃-module on the projection Î = I×G→ G. This implies that C3 (̂I) is the disjoint union

of abelian groups C(̂I)(g),g ∈ G, all mapped by p3 isomorphically to C3(I). Elements of C3 (̂I)(g)

are pairs (i,g) ∈ C3(I) × {g} with addition (i,g) + (i ′,g) = (i + i ′,g). The action of G̃ on C3(̂I) is

given by (i,gg ′)(g,g′) = (i,g ′); note that this makes sense since in G̃ (g,g ′) : gg ′ → g ′.

Let δ̂3 : C3 (̂I)→ C(R̂) be the G̃-morphism given by δ̂3(c,g) = (δ3c,g), c ∈ C3(I),g ∈ G.

These definitions give the morphism of truncated crossed complexes:

C3 (̂I)

p3

��

δ̂3 // C(R̂)

p2

��

δ̂2 // F(X̂)

p1

��

φ̂ //
G̃

p0

��
C3(I)

δ3
// C(R)

δ2
// F(X)

φ
// G

(11.2.11)

where the upper row is acyclic up to dimension 1.

3b. Contractibility of the covering up to dimension 2.

To construct the next part of the homotopy, and again recalling Remark 11.2.12, we define

h2 : C(R̂)→ C3(̂I)(1) to be the groupoid morphism given on generators by (r,g) 7→ ([r,g], 1), (r,g) ∈

R × G, and killing the operation of F(X̂), i.e. it satisfies h2((c,g)
(u,g)) = h2(c,g) for all (c,g) ∈

C(R̂),u ∈ F(X).

Then from the definition of δ̂3 we deduce that

δ̂3h2(c,g) = (h1(δ2c,g))
−1 (cσg, 1)

for all g ∈ G, c ∈ C(R) and we have got a contracting homotopy up to dimension 2:

C3 (̂I)
δ̂3 //

1
��

C(R̂)
δ̂2 //

1
��

h2
ttt

t

zzttt
t

F(X̂)
φ̂ //

h1
uuu

u

zzuuu 1
��

G

h0

wwww

{{www
1
��

C3 (̂I)
δ̂3

// C(R̂)
δ̂2

// F(X̂)
φ̂

// G

(11.2.12)

We use h2 to prove that we have from the presentation and the choices determining h0,h1 con-

structed all identities among relations.

Theorem 11.2.15 The module π(P) of identities among relations is generated as G-module by the

elements

δ3[r,g] = (p2h1(ωr,g))
−1 rσg

for all g ∈ G, r ∈ R.

Proof Since h2 and h1 give a contracting homotopy, we have δ̂2δ̂3 = 0, and so the elements

p2(δ̂3h2(c,g)) do give identities. On the other hand, if c ∈ C(R) and δ2c = 1, then (c, 1) = δ̂3h2(c, 1),

and so c = δ3(d) for some d. 2
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Our algebraic setup is rich enough to be able to write this element in terms of the formula in Theorem

11.2.15.

4. Dimension 4 and higher.

However some of the elements of δ3(I) may be trivial, and others may depend ZG-linearly on

a smaller subset. That is, there may be a proper subset J of I such that δ3(J) also generates the

module π(P). Then for each element i ∈ I \ J there is a formula expressing δ3i as a ZG-linear

combination of the elements of δ3(J). These formulae determine a ZG-retraction ρ : C3(I) → C3(J)

such that for all d ∈ C3(I), δ3(ρd) = δ3(d). So we replace I in the above diagram by J, replacing

the boundaries by their restrictions. Further, and this is the crucial step, we replace h2 by h ′
2 = ρ′h2

where ρ′ : C3 (̂I)(1)→ C3(̂J)(1) is mapped by p3 to ρ.

This h ′
2 : C(R̂)→ C3(̂J)(1) is now used to continue the above construction. We define C4(J) to be

the free G-module on elements written [d,g] ∈ J = G× J, with

δ4[d,g] = −p3(h
′
2(δ3d,g)) + d.g−1.

These boundary elements give generators for the relations among the generators δ3(J) of π(P).

Theorem 11.2.16 AG-module generating set of relations among these generators δ3(J) of π(P) is given

by

δ4[γ,g] = −k2(δ3γ,g) + γ.g−1

for all g ∈ G,γ ∈ J, where k2 : C(R̂) → C3(J) is a morphism from the free crossed F(X̂)-module on

δ̂2 : G × R→ F(X̂) such that k2 kills the operation of F(X̂) and is determined by a choice of writing the

generators δ3[r,g] ∈ δ3(I) for π(P) in terms of the elements of δ3(J).

Proof This is a similar argument to the proof of Theorem 11.2.15, using the definition of δ4 and

setting k2 = p3h
′
2. 2

From here onwards we proceed as indicated for the chain complex case in the introductory

paragraphs of this Section (p. 306).

Remark 11.2.17 In the above we have defined morphisms and homotopies by their values on cer-

tain generators, and so it is important for this that the structures be free. For example, h ′
2 is defined

by its values on the elements (r,g) ∈ R×G. So, noting that h2 kills the operation of F(X̂), we calcu-

late for example h ′
2(r
usv,g) = h ′

2(r,g(φu)−1) +h ′
2(s,g(φv)

−1). In this way the formulae reflect the

choices made at different parts of the Cayley graph in order to obtain a contracting homotopy. 2

Remark 11.2.18 The determination of minimal subsets J of I such that δ3J also generates π(P) is

again not straightforward. Some dependencies are easy to find, and others are not. A basic result

given in Corollary 7.5.24 is that the abelianisation map C(R) → (ZG)R maps π(P) isomorphically

to the kernel of the Whitehead-Fox derivative (∂r/∂x) : (ZG)R → (ZG)X. Hence we can test for

dependency among identities by passing to the free ZG-module (ZG)R, and we use this in the next

section. For bigger examples, this testing can be a formidable task by hand. 20 2

Exercise 11.2.19 Carry out the above procedure for calculating identities among relations for the

presentation 〈a,b | a2,b2,a−1b−1ab〉 of the Klein four group Z2 × Z2. 2

As an example of these techniques, we give the universal cover and contracting homotopy for an

earlier example.
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Example 11.2.20 Here we shall prove that the free crossed resolution of a finite cyclic group given

in Example 11.1.4 is a resolution by describing its universal cover and a contracting homotopy.

We write C∞ for the (multiplicative) infinite cyclic group with generator x, and Cq for the finite

cyclic group of order q with generator c. Let φ : C∞ → Cq be the morphism sending x to c. We show

how the inductive procedure given earlier recovers the small free crossed resolution of Cq together

with a contracting homotopy of the universal cover.

Let p0 : C̃q → Cq be the universal covering morphism, and let p1 : Ĉ∞ → C∞ be the induced

cover of C∞. Then Ĉ∞ is the free groupoid on the Cayley graph X̂ pictured as follows:

1 c
(x, 1)

oo
c2

(x, c)
oo

(x, c2)
oo

cq−2oo
cq−1

(x, cq−2)
oo

(xq−1, 1)

ss

A section

σ : Cq → C

of φ is given by ci 7→ xi, i = 0, . . . ,q− 1, and this defines

h0 : Cq → F̂1

by ci 7→ (xi, 1). It follows that for i = 0, . . . ,q− 1 we have

h0(c
i+1)−1(x, ci)h0(c

i) =

{
(1, 1) if i 6= q− 1,

(xq, 1) if i = q− 1.

So we take a new generator x2 for F2 with δ2x2 = xq and set

h1(x, c
i) =

{
(1, 1) if i 6= q− 1,

(x2, 1) if i = q− 1.

Then for all i = 0, . . . ,q− 1 we have

δ̃2h1(x, c
i) = h0(c

i)−1(x, ci)h0(c
i+1),

and it follows that

h1(x
q, ci) = h1((x, c

i)(x, ci+1) . . . (x, ci+q−1)) = (x2, 1).

Hence

−h1δ̃2(x2, c
i) + (x2, c

i).x−i = (1, −x2) + (1, x2 · c
−i) = (1, x2 · (c

q−i − 1))

This gives 0 for i = 0, and (1, x2 · (c − 1)) for i = q − 1. Let N(i) = 1 + c + · · · + ci−1, so that

cq−i − 1 = (c − 1)N(q − i) for i = 1, . . . ,q − 1. Hence we can take a new generator x3 for F3 with

δ3x3 = x2 · (c− 1) and define

h2(x2, c
i) =

{
(1, 0) if i = 0,

(1, x3 ·N(q− i)) if 0 < i 6 q− 1.

Now we find that if we evaluate

−h2δ̃2(c
i, x3) + (1, x3 · c

−i) = −h2((c
i−1, x2) · c+ (ci, x2)) + (1, x3 · c

−i)
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we obtain for i = 0

−h2(c
q−1, x2) + (1, x3) = (1, 0),

for i = 1

0 + h2(c, x2) + (1, x3 · c
q−1) = (1, x3 · (N(q − 1) + cq−1)) = (1, x3 ·N(q))

and otherwise

(1, x3(−N(q− i + 1) +N(q− i) + cq−i)) = (1, 0).

Thus we take a new generator x4 for F4 with δ4x4 = x3 ·N(q) and

h3(c
i, x3) =

{
(1, x4) if i = 1,

(1, 0) otherwise.

Then

−h3δ̃4(c
i, x4) + (1, x4 · c

−i) = −h3(c
i, x3 ·N(q)) + (1, x4 · c

−i)

= −h3(1, x3 ·N(q) · c−i) + (1, x4 · c
−i)

= (1, x4 · (c
q−i − 1)).

Thus we are now in a periodic situation and we have the theorem:

Theorem 11.2.21 A free crossed resolution F∗ of Cq may be taken to have single free generators xn in

dimension n > 1 with φ(x1) = c, δ2(x2) = x
q
1 and when n > 3

δn(xn) =

{
xn−1 · (c− 1) if n is odd,

xn−1 · (1 + c+ · · · + cq−1) if n is even.

Remark 11.2.22 These methods may also be used to derive the standard free crossed resolution of

a group or groupoid which we have given in Example 11.1.6. 2

Remark 11.2.23 The above methods are used in [BRS99] to construct levels 1, 2 and 3 of a free

crossed resolution for the symmetric group S3. It would take us to long to give more details. 2

11.3 Acyclic models

The theory of acyclic models in the traditional methods of homology, i.e. using chain complexes, is

a powerful tool for comparing different representations of homology by chain complexes. It has also

been useful for comparing cohomology theories of algebraic structures. The same sort of technique

works for crossed complexes, but with some technical differences. The methods of proof are closely

related to those of Theorem 11.1.9. . The main theorem has a proof entirely analogous to that of

the traditional theorem, see for example [Dol95], but the special features of crossed complexes in

dimensions 6 2 have to be taken into account.

11.3.1 The Acyclic Model Theorem

First we recall for the reader the notion of projective module, and its relation to free modules, as the

method will be essential in what follows.
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Definition 11.3.1 A module P is called projective if for any epimorphism of modules E
∂
−→ A and

any module morphism f : P → A then there is a morphism g : P → E such that ∂g = f. The

morphism g is called a lift of f.

Remark 11.3.2 Note that this is not a universal property since no uniqueness of the lift is required.

The situation is often shown in a diagram

E

∂
����

P
f

//

g
??�

�
�

�
A

Proposition 11.3.3 A module is projective if and only if it is a retract of a free module.

Proof Suppose first P is a retract of a free module F, so that there are morphisms η : P → F,µ :

F→ P such that µη = 1. Consider the following diagram:

F
k //___

µ
��

E

∂
����

P

η

OO

f
// A

Since F is free and ∂ is surjective, there is a morphism k : F → E such that ∂k = fµ. Then g = kη

satisfies ∂g = ∂kη = fµη = f1 = f.

Conversely, if P is any module, we can find a free module F with a surjection µ : F → P. If P is

projective, the identity 1 : P → P lifts to a morphism η : P → F such that µη = 1. 2

Definition 11.3.4 Let C be a category and let F : C → Crs be a functor. A base for F is a family

Bj,n > 0, j ∈ Jn of objects of C together with sets of elements bj ∈ F(Bj) such that for all objects X

of C and n > 0 we have F(X)n is “free” on the elements F(σ)(bj) for j ∈ Jn and σ : Bj → X in C. This

means that for each n > 0 the elements F(σ)(bj):

(i) if n = 0, are distinct and give all elements of F(X)0;

(ii) if n = 1, freely generate the groupoid F(X)1;

(iii) if n = 2, freely generate the crossed module F(X)2 = (δ2 : C2 → C1) as C1-module;

(iv) if n > 3, freely generate the π1F(X)-module F(X)n.

If B ⊆ Ob(C) is a class of objects containing all Bj, j ∈ J
n,n > 0 then we also say F has a base in B.

2

Example 11.3.5 If C = Top, then F = Π ◦ S∆ : Top → Crs is in dimension n freely generated by

{σ(ιn)}, where ιn is the identity map on ∆n. If C = Top×Top, then F given on (X, Y) by ΠS∆(X× Y)

is free with base in dimension n with base (ιn, ιn). If F(X, Y) = ΠS∆X⊗ ΠS∆Y, then F has a base in

dimension n in the (∆p,∆q) with p + q = n, namely {ιp ⊗ ιq}. 2

Definition 11.3.6 Let C be a category. A functor P : C → Crs is said to be projective if there is a

functor F : C→ Crs which has a base and such that for each n > 1:

(i) tr2P2 is a natural retract of tr2F2 considered as functors to XMod;
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(ii) if n > 3 then Pn is a natural retract of Fn, considered as functors to Mod, and over the natural

retraction π1P of π1F induced by that given by (i). 2

Remark 11.3.7 It is because the operations in a crossed complex are so to speak intrinsic that we

have to make this careful definition of projective, which is satisfied in useful circumstances as we

shall see. 2

Definition 11.3.8 Let Q : C → Crs be a functor. We say Q is acyclic on the base B if Q(B) is an

acyclic crossed complex for all elements B of the base. 2

Theorem 11.3.9 (Acyclic Model Theorem) Let P,Q : C→ Crs be functors such thatQ is acyclic and

suppose there is a base B and functor F : C → Crs free on B, and for which P is projective. Then any

natural transformation τ : P0 → Q0 is realised by a natural transformation T : P → Q and any two

such realisations are naturally homotopic.

Proof Let ηn : Pn → Fn,µn : Fn → Pn be the family of natural transformations supplied by the

definition of projective, so that µnηn = 1. We will often drop the suffix n when it can be understood

from the context.

We consider first the right hand part of the first diagram in the following:

F2

S2���
�
�
�
�
�
�

µ
~~}}

}}
}}

}}

δ2 // F1

S1���
�
�
�
�
�
�

δ−
//

µ
~~}}

}}
}}

}} δ+
// F0

µ~~}}
}}

}}
}}

S0���
�
�
�
�
�
�

φ // π0F

µ||yy
yy

yy
yy

P2

δ2 //

T2   A
A

A
A

η
>>}}}}}}}}

P1

T1   A
A

A
A

η
>>}}}}}}}} δ−

//

δ+
// P0

η
>>}}}}}}}}

T0   A
A

A
A

φ // π0P

η
<<yyyyyyyy

τ

""E
EE

EE
EE

E

Q2

δ2 // Q1

δ−
//

δ+
// Q0

φ
// π0Q

b

���
�
�
�
�
�
�

����
��

��
��
@@�������� //

��9
99

99
99

99

qb
choose

//

Notice that by our assumptions, η,µ give natural morphisms of the crossed module parts P →

F, F → P respectively. Our method is to construct Sn : Fn → Qn and then, following the pattern of

Proposition 11.3.3, define Tn = Snη, and find this is the appropriate extension.

We are trying to find a natural crossed complex morphism T : P → Q which induces τ. We first

define T in dimension 0.

The points of F(X)0 are of the form F(σ)(b) for b ∈ F(B)0, B ∈ B and all morphisms σ : B → X.

Choose a point qb ∈ Q(B)0 such that φqb = τφµb, and define SX0 (F(σ)(b)) = Q(σ)(qb). This

defines SX0 and we set TX0 = SX0 η. Then

φTX0 = φSX0 η = τφµη = τφ.

We next verify naturality of S0, and so of T0. Let f : X → Y be a morphism in C. Then we check

the naturality condition on the basis elements F(σ)(b) of F0(X). Then

Q0(f)S0(X)(F(σ)(b)) = Q0(f)(Q0(σ)S0(B)(b))

= Q0(fσ)(S0(B)(b))

= S0(Y)F0(f)(S0(B)(b)).

Thus naturality is automatic from the construction, and we will not repeat this proof in higher

dimensions.

We next define a morphism of groupoids S1 : F(X)1 → Q(X)1.
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Let X ∈ C. We know the groupoid F1(X) has a free basis of elements F(σ)(b) for b ∈ F1(B), B ∈ B

and all morphisms σ : B→ X. Consider q−
b = T0δ

−µb,q+
b = T0δ

+µb ∈ Q(B)0. By acyclicity ofQ(B)1

there is an element qb : q−
b → q+

b ∈ Q(B)1. We therefore define SX1 : F1(X) → Q1(X) to have value

Q(σ)(qb) on the basis element F(σ)(b). We then set T1 = S1η. By naturality, δ±S1 = S0δ
± = T0δ

±µ.

Hence T0δ
± = δ±T1.

At the next stage we consider the above diagram and a basis element F(σ)(b) for b ∈ F(B)2. Then

from the commutativity of the diagram of solid arrows, T1δ2µb is a loop in Q2(B). By acyclicity of

Q(B) we can find qb ∈ Q2(B) such that δ2qb = T1δ2µb, and we set SX2 (F(σ)(b)) = Q2(σ)(qb). This

defines S2 and we set T2 = S2η. Since η,µ in dimensions 1 and 2 give crossed module morphisms,

because µη = 1, and by the above argument on naturality, T2 gives gives the required extension of

T1.

Continuing this argument, gives the natural transformation T as required.

We now have to show that any two such natural transformations, say T ,U are naturally homo-

topic. For this, we replace F by F′ = I ⊗ F and use analogous arguments to extend the natural

transformation defined by T ,U on {0, 1} ⊗ F to I ⊗ F on the extra basis elements ι ⊗ (F(σ)(b)). We

omit further details. 2

Corollary 11.3.10 Let P,Q : C → Crs be functors such that P is projective with respect to a free

functor with base B on which Q is acyclic, and Q is projective with respect to a free functor with base

B′ on which P is acyclic. Then any natural equivalence π0P → π0Q extends to a natural homotopy

equivalence P → Q.

Exercise 11.3.11 Develop a version of the acyclic model theorem in which the notion of free is

replaced by relatively free. 2

11.3.2 Simplicial sets and normalisation

A simplicial set is a family K = {Kn}n>0 of sets together with face operations ∂i : Kn → Kn−1 for

n > 1 and degeneracy operations ǫi : Kn → Kn+1 for i = 0, . . .n and n > 0, satisfying the usual

simplicial relations. It is standard to consider K also as a functor K : ∆op → Sets, where ∆ is the

category called the simplicial site.

We shall also need the notion of simplicial set without degeneracies: this is given by a functor

Υop → Sets where Υ is the appropriate subcategory of ∆. Clearly any simplicial set determines a

simplicial set without degeneracies (often called a ∆-set) by means of the inclusion Υ→ ∆.

As explained in a previous paper, [BS07], there is for each n > 0 a crossed complex a∆n which is

a crossed complex model of the n-dimensional simplex; thus the boundary is given by the homotopy

addition lemma. This family of crossed complexes a∆n can be regarded as a cosimplicial set a∆ :

∆→ Crs so that we obtain the fundamental crossed complex of a simplicial set K as a coend

ΠK =

∫
∆,n

Kn × a∆
n. (11.3.1)

Also we have the unnormalised crossed complex

ΠΥK =

∫Υ,n

Kn × a∆
n. (11.3.2)

These crossed complexes are homotopy equivalent; this is the normalisation theorem of [BS07] for

which we will give an acyclic model proof here [At the moment we do not have this written down
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since we do not have a direct proof of acyclicity of the unnormalised simplex! However we can get

by without it for the EZ theorem, for which it is a good thing to give a proof. ]: also both crossed

complexes are needed for the purposes of acyclic models.

Theorem 11.3.12 For all q > 0 the functors (ΠK)q, (ΠΥK)q on simplicial sets K have the property

that the first is a natural retract of the second.

Proof We first construct an intermediate functor ΠredK.

A simplicial set K contains its subsimplicial set generated by the elements of K0: we write this

as K̄0. It is the disjoint union of the simplicial sets generated by the elements of K0. We form the

crossed complex ΠredK by the pushout in the category Crs

ΠΥK̄0

��

ξ // K0

��
ΠΥK

ξ̄

// ΠredK

(11.3.3)

where K0 denotes here also the trivial crossed complex on the set K0. Because as a crossed complex

K0 is a natural retract of ΠΥK̄0 it follows that ΠredK is also a natural retract of ΠΥK. In fact ξ is a

homotopy equivalence of crossed complexes and so it follows from the gluing theorem for homotopy

equivalences in the category Crs (see [BG89b]), that ξ̄ is also a homotopy equivalence of crossed

complexes.

We have to consider the dimensions 1, 2 and q > 3.

The groupoid C1 = (ΠredK)1 is the free groupoid on the elements of K1, but with the elements

ǫ0v equated to identities for each v ∈ K0. Thus (ΠredK)1 = (ΠK)1.

In dimension 2, we note that if x ∈ K1, then in (ΠredK)2, δ2(ǫix) = 1tx for i = 0, 1: this is a

reason for constructing (ΠredK). For i = 0, 1, let Φi : (ΠredK)2 → (ΠredK)2 be given on the basis

elements by Φik = k(ǫi∂i+1k)
−1. Then

Φiǫix = 1,Φ1ǫ0x = (ǫ0x)(ǫ
2
0tx)

−1 = ǫ0x

in (ΠredK)2, so that Φ = Φ0Φ1 vanishes on degenerate elements of K2. Further, δ2Φ = δ2. So Φ

defines a morphism (ΠredK)2 → (ΠredK)2 of crossed (ΠK)1-modules which vanishes on degenerate

elements and hence defines in dimension 2 a section of the projection ΠredK→ ΠK.

In dimensions q > 3 and for 0 6 j < q we define Φj : (ΠredK)q → (ΠredK)q on the free basis

of elements of Kq not degeneracies of the vertices by Φjk = k − ǫj∂j+1k, and set Φ = Φ0 . . .Φq−1.

ThenΦjǫjx = 0 and for i < jwe haveΦjǫix = ǫix−ǫiǫj−1∂j+1x. HenceΦ is trivial on degeneracies

and so determines a section of (ΠredK)q → (ΠK)q which is also natural for maps of K. 2

11.3.3 Cubical sets and normalisation

A cubical set is a family K = {Kn}n>0 of sets together with face operations ∂±i : Kn → Kn−1 and

degeneracy operations ǫi : Kn−1 → Kn for i = 1, . . .n and n > 1, satisfying the usual cubical

relations. It is standard to consider K also as a functor K : 2op → Sets, where 2 is the category

called the cubical site.

We shall also need the notion of cubical set without degeneracies: this is given by a functor

Ξop → Sets where Ξ is the appropriate subcategory of 2. Clearly any cubical set determines a

cubical set without degeneracies by means of the inclusion Ξ→ 2.
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The family of crossed complexes In can be regarded as a cocubical set I• : 2 → Crs so that we

obtain the fundamental crossed complex of a cubical set K as a coend

ΠK =

∫
2,n

Kn × In. (11.3.4)

Also we have the unnormalised crossed complex

ΠΞK =

∫Ξ,n

Kn × In. (11.3.5)

These crossed complexes are not homotopy equivalent, but we need both for the purposes of acyclic

models.

Theorem 11.3.13 For all q > 0 the functors (ΠK)q, (ΠΥK)q on cubical sets K have the property that

the first is a natural retract of the second.

Proof Again we work through an intermediate step. A cubical set K contains its subcubical set

generated by the elements of K0: we write this as K̄0. It is the disjoint union of the cubical sets

generated by the elements of K0. We form the crossed complex ΠredK by the pushout in the category

Crs

ΠΞK̄0

��

// K0

��
ΠΞK // ΠredK

(11.3.6)

where K0 denotes here also the trivial crossed complex on the set K0. Because as a crossed complex

K0 is a natural retract of ΠΞK̄0 it follows that ΠredK is also a natural retract of ΠΞK.

We have to consider the dimensions 1, 2 and q > 3.

The groupoid C1 = (ΠredK)1 is the free groupoid on the elements of K1, but with the elements

ǫ1v equated to identities for each v ∈ KO. Thus (ΠredK)1 = (ΠK)1.

In dimension 2, we note that if x ∈ K1, then in (ΠredK)2, δ2(ǫix) = 1tx for i = 1, 2: this is a

reason for constructing (ΠredK). Let Φi : (ΠredK)2 → (ΠredK)2 be given on the basis elements by

Φik = k(ǫik∂
+
i k)

−1. Then

Φiǫix = 1,Φ2ǫ1x = (ǫ1x)(ǫ
2
1tx)

−1 = ǫ1x

in (ΠredK)2, so that Φ = Φ2Φ1 vanishes on degenerate elements of K2. Further, δ2Φ = δ2. So Φ

defines a morphism of crossed (ΠK)1-modules (ΠredK)2 → (ΠredK)2 which vanishes on degenerate

elements and hence defines in dimension 2 a section of the projection ΠredK→ ΠK.

In dimensions q > 3 we define Φi : (ΠredK)q → (ΠredK)q on the free basis of elements of Kq
which are not degeneracies of the vertices by Φik = k − ǫi∂

+
i k, and set Φ = Φ1 . . .Φq. Then Φ is

trivial on degeneracies and so determines a section of (ΠredK)q → (ΠK)q which is also natural for

maps of K. 2

11.3.4 Relating simplicial and cubical by acyclic models

Consider the functors P,Q : Top→ Crs given by

P(X) = Π|S∆(X)|∗, Q(X) = Π|S2(X)|∗

where the filtrations are the skeletal filtrations of the geometric realisations.
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Proposition 11.3.14 Each of the functors P,Q are natural retracts of free functors and are acyclic on

a base.

Proof In the case of P, the free functor is Π||S∆(X)||∗ with base consisting of the geometric n-

simplices |∆n| for n > 0. 2

11.3.5 The crossed complex simplicial Eilenberg-Zilber theorem

11.3.6 Excision

The work for this section is a modified version of [Sch76]. His cubical methods are also relevant to

the general area.

We write TopCov for the category of pairs (X, U) where X is a topological space and U is a

covering of X having an open refinement. A morphism f : (X, U) → (Y, V) is a map f : X → Y such

that for every U ∈ U there is a V ∈ V such that f(U) ⊆ V . Two maps f,g : (X, U)→ (Y, V) are called

homotopic, f ≃ g, if there exists a homotopy H : I × X → Y from f to g such that for every U ∈ U

there is V ∈ V such that H(I × U) ⊆ V . The definitions of a homotopy equivalence and of strong

deformation retract are the obvious ones. The trivial pair (X, T) has T consisting solely of X.

Definition 11.3.15 We write S∆(X, U) for the subsimplicial set of S∆(X) of simplices σ : ∆n → X

such that σ(∆n) ⊆ U for some U ∈ U.

Lemma 11.3.16 Every object (In, U) in TopCov is contractible.

Proof We construct a finite sequence (Xi, U i) : i = 0, . . . ,k of objects in TopCov such that

(X0, U 0) = (In, U) and (Xk, U k) = (∗, T) with * one point, and (Xi, U i) a strong deformation

retract of (Xi−1, U i−1).

By the Lebesgue covering lemma, the cube In may be subdivided by hyperplanes parallel to

its faces into a finite number say k of subcubes each of which is contained in some U ∈ U. Now

beginning in one corner we collapse one subcube after another into that part of its boundary which

is in common with the remaining ones, shown in the diagram by double lines. The last cube is

retracted onto the corner •. (An analogous argument is used in the proof of Proposition 14.2.8.)

1 2 3 4

5 6 ···

k

•

So we define Xi as Xi−1 with the ith cube retracted off and U i as U i−1 ∩ Xi. Obviously (Xi, U i) is

a strong deformation retract of (Xi−1, U i−1). 2

Theorem 11.3.17 The inclusion

i : S∆(X, U)→ S∆(X) (*)

is a homotopy equivalence.
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Proof We actually prove that the induced morphism

i ′ : ΠS∆(X, U)→ ΠS∆(X) (**)

is a homotopy equivalence of crossed complexes.

We consider both sides of (**) as functors from TopCov to the category of crossed complexes:

P(X, U) = ΠS∆(X, U),Q(X, U) = ΠS∆(X). As models in TopCov we choose all pairs (∆n, V) : n > 0

with ∆n a standard simplex and V a covering of ∆n having an open refinement. Both functors are

acyclic on models, by Lemma 11.3.16 and the homeomorphism ∆n ∼= In.

Let F : TopCov → Crs be given by ΠS̄∆(X, U) where this singular complex has n-simplices the

maps (∆n, V)→ (X, U) in TopCov. Then F has a base the identities (∆n, V)→ (∆n, V). The inclusion

i : Q(X, U) → F(X, U) is given by considering σ : ∆n → X as σ : (∆n,σ−1U) → (X, U), and the

forgetful functor TopCov → Top defines r : F → Q such that ri = 1. So Q is a retract of a free

functor, while P is actually free with base in dimension n the identity (∆n, T) → (∆n, T). So the

Acyclic Model Theorem and its Corollary 11.3.10 applies. 2
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Notes

10p.302 Another proof using the simplicial classifying space of a crossed complex is given in Tonks’

thesis, [Ton94].

11p. 303 These are special cases of results on graphs of groups which are given in [Moo01,

BMPW02], but these cases nicely show the advantage of the method and in particular the necessary

use of groupoids.

12p. 304 This idea of forming a fundamental groupoid is due to Higgins in the case of a graph

of groups [Hig76], where it is shown that it leads to convenient normal forms for elements of this

fundamental groupoid. This view is pursued in [Moo01], from which this section is largely taken.

13p. 304 More elaborate examples and discussion are given in [Moo01, BMPW02].

14306 Further examples are developed in [Moo01].

15p.310 For more references on this kind of argument, see [BH87, HK89]

16p. 312 The earlier results of Peiffer, Reidemeister and Whitehead on the relations between

identities among relations and second homotopy groups of 2-complexes were given an exposition in

[BH82], written in memory of Peter Stefan who died in a climbing accident in 1979. The notion of

calculating using pictures explained there was developed by a number of authors, see the survey in

[HAM93]. The paper [BRS99] gave the calculation method explained here, which has the advantage

of being able to calculate higher syzygies (identities among identities, and so on).

17p. 312 This use of homotopies was inspired by work on the Homological Perturbation Lemma,

[BL91], where the construction of homotopies is crucial. Such use also agrees with the general

groupoid philosophy, in which an arrow g : a → b in a groupoid gives a ‘reason why a and b are

equivalent’.

18p. 314 See works on ‘rewriting’, and references in, say, Wikipedia.

19p. 315 It is shown in [HW03] how a ‘logged Knuth-Bendix procedure’ will give such a choice if

the monoid rewrite system determined by R may be completed, and that this allows for an imple-

mentation of the determination of h1.

20p. 317 An implementation of Gröbner basis procedures for finding minimal subsets which still

generate is described in [HR]. Related calculations by hand for the group S3 are given in [BRS99].

General notes

It was only in 1989 that a generalisation of Hopf’s formula to all dimensions was published

in [BE88]. This involved the notion of ‘double’ and ‘n-fold presentation’, which eventually was

reformulated into that of n-fold extension, in work of Janelidze, Everaert, and others. This suggests

that the reason for the limitations of the crossed complex methods is that crossed complexes form a

linear theory, as is shown by the linear form of a crossed complex. For further work, we would seem

to need double and higher crossed complexes. The natural conjecture is that the quadratic theory

needs double crossed complexes, and so on! This is matter for considerable further exploration.

The free crossed resolution of finite cyclic groups was introduced by Brown and Wensley in

[BW95].
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The notion of free crossed resolution was crucial in the work of Huebschmann [Hue80, Hue81a,

Hue81b].

The theory of acyclic models was founded in the classic paper [EM53], and was in the adjacent

paper used to prove what is now called the Eilenberg-Zilber theorem in [EZ53], determining the

chain complex of a product of simplicial sets as a tensor product of chain complexes. Applications

were subsequently developed for example in [GM57]. The work of Barr which is given an expo-

sition in [Bar02] gives an advanced view of the traditional chain complex theory, and it would be

interesting to know if analogues can be usefully developed for crossed complexes.

The notion of resolution by chain complexes has led to an advanced view of homological algebra

using the notion of triangulated category. A substantial reference is [Kün07]. Again, it is not clear

how this can be usefully developed for crossed complexes, to give a nonabelian view of these ideas.

The methods of Section 11.2.4 have been developed by Ellis in [Ell04] and in subsequent GAP

programs, [Ell08]. He works by constructing a universal covering CW-complex rather than the

corresponding crossed complex.



Chapter 12

Nonabelian cohomology of spaces

and of groups

Our intention in this chapter is to sketch an account of the cohomology of groups and of spaces

based on the notion of crossed complex, and the homotopy theory of these. The advantage over the

traditional chain complex approach is that it easily allows for the coefficients to be a crossed module,

and hence it gives a more computational approach to the Schreier theory of nonabelian extensions

of groups. It also, by the use of the theory of fibrations of crossed complexes, allows a broad form

of exact sequence of a fibration of crossed complexes to be applied to extension problems and to

obtain results on the homotopy classification of maps of spaces.

The key point for the homology of groups is that to a group G we can assign the standard free

crossed resolution Fst∗ (G) of G; if M is a G-module, and n > 2, then we can form the crossed

complex K(M,n;G, 1) which is G in dimension 1, M in dimension n, with the given action, and all

boundaries trivial. We have a standard morphism φ : Fst1 (G) → G and we can define Hn(G,M) as

the set

[Fst∗ (G), K(M,n;G, 1);φ] (12.0.1)

of homotopy classes of morphisms of crossed complexes relative to the morphism φ. An examination

of the consequences of this shows that we recover the usual definition of cohomology in terms of

n-cocycles Gn →M.

One immediate advantage of this definition is that up to a bijection of the homotopy classes

we can replace the standard free crossed resolution of G by any free crossed resolution F(G) with

its morphism φ : F1(G) → G. Next we can generalise and replace K(M,n;G, 1) by any crossed

complex, and in particular a crossed module. This gives a form of nonabelian cohomology of G,

which we find is relevant to considering nonabelian extensions of groups and their description in

terms of factor sets.

Then we can consider an analogous concept of cohomology of a space X, by replacing F(G) by

the free crossed complex ΠS(X) where S(X) is the singular complex of X, either cubical or simplicial.

Thus the natural concept is the notion of homotopy classes

[F,A; i] (12.0.2)

where F is a free crossed complex, A is a crossed complex, and i is what we call a local system,

namely a morphism i : F1 → A1 such that i(δ2F2) ⊆ δ2A2.

In this way the nonabelian homological algebra of groups is seen here as a special case of non-

329
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abelian algebraic topology. This reflects the historical process, where the homology of groups arose

out of considerations of algebraic topology in work of Hopf given in our Example 5.5.5 and Propo-

sition 8.3.20, see [ML78].

Exact sequences play an important role in traditional homological algebra. Here they are also

important but somewhat more elaborate than the traditional ones, but give useful results not usually

related to an exact sequence. In Section 12.4 we introduce the family of long exact sequences of

a fibration of crossed complexes, and in subsequent sections apply this to analyse the homotopy

classes of maps from a free crossed complex to what we call n-aspherical crossed complexes. This

has useful applications to the homotopy classification of maps of spaces and to a generalisation of

abstract kernel theory in the cohomology of groups.

In a final section we indicate how to apply the standard free crossed resolution of groupoids to

nonabelian Čech cohomology of a space.

12.1 Cohomology of a group

Recall that if G is a group, M is a G-module, and n > 2, then we write

K(M,n;G, 1) := · · · // 0 //M // 0 // · · · · · · // 0 // G

n 1

for the crossed complex which is G in dimension 1, M in dimension n, is trivial otherwise, and has

zero boundary maps (this is automatic if n > 2).

Using this notation, we define the cohomology groups of a group G in terms of homotopy classes

of maps from the standard free crossed resolution Fst∗ (G) of the group to this particular structure.

The fact that any two free crossed resolutions of G are homotopy equivalent implies that we can at

will replace the standard free crossed resolution by any free crossed resolution convenient for the

purposes at hand.

A crossed resolution F(G) of G also includes a morphism φ : F1(G) → G inducing an isomor-

phism φ′ : π1F(G) → G. So this information should be taken in account in the homotopy classes.

Accordingly, we introduce the notion of homotopy relative to a fixed map.

Definition 12.1.1 Let F,C be crossed complexes, and let f : F→ C be a morphism. Let i : A→ F be

a morphism of crossed complexes. A homotopy h : f ≃ g rel i (or rel A) is a homotopy which satisfies

hi is a constant homotopy, so that this implies fi = gi. The resulting set of homotopy classes we

write

[C,D; fi].

We often employ this when A is a truncation say trn F of F and i is the inclusion, so that we are

dealing with a homotopy relative to levels 6 n.

This set of homotopy classes will also be usefully interpreted using the internal hom: the mor-

phism i induces a morphism of crossed complexes i∗ : CRS(F,C) → CRS(A,C), and [F,C; fi] is

π0(Ff), where Ff is the fibre of i∗ over fi. 2

We will use such homotopy classes to define notions of cohomology of a group G (or also of a

groupoid) with coefficients in a G-module, which will determine the choice of the crossed complex

C. Full information on the group G is encapsulated by the choice of F as a free crossed resolution of

the group G.
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Definition 12.1.2 Let G be a group, and M a G-module. The nth cohomology of G with coefficients

in M is defined to be the set of homotopy classes

Hn(G,A) = [Fst∗ (G), K(M,n;G, 1);φ] (12.1.1)

where Fst∗ (G) is the standard free crossed resolution of the group G, and φ : Fst1 (G) → G is the

standard morphism; recall that Fst1 (G) is the free group on the elements of G. 2

Recall from Example 11.1.6 that the standard free crossed resolution of a groupoid G is:

· · · // Fst∗ (G)3
δ3 // Fst∗ (G)2

δ2 // Fst∗ (G)1
φ // G // 1

in which Fstn (G) is free on the set (N∆G)n of composable sequences [g1,g2, . . . ,gn],gi ∈ G of

elements of G, where the base point t[g1,g2, . . . ,gn] is the final point tgn of gn. For n > 2 the

boundary

δn : Fstn (G)→ Fstn−1(G)

is given by

δ2[g,h] = [gh]−1[g][h],

δ3[g,h, k] = [g,h]k[h, k]−1[g,hk]−1[gh, k],

and for n > 4

δn[g1,g2, . . . ,gn]

=[g1, . . . ,gn−1]
gn + (−1)n[g2, . . . ,gn] +

n−1∑

i=1

(−1)n−i[g1,g2, . . . ,gi−1,gigi+1,gi+2, . . . ,gn].

See also the pictures in Example 9.9.7. 21

Example 12.1.3 Let G,M be groups, M = (χ : M → AutM) be the automorphism crossed module

of M and let κ : Fst∗ (G) → sk2 M be a morphism of crossed complexes. Then κ is determined by

its values on the free generators of Fst∗ (G) in dimensions 1 and 2 and so is equivalent to a pair of

functions

κ1 : G→ AutM, κ2 : G×G→M

satisfying

χκ2(g,h) = κ1(gh)−1κ1(g)κ1(h) (fs1)

1 = κ2(g,h)κ
1(k)κ2(h, k)−1κ2(g,hk)−1κ2(gh, k) (fs2)

for all g,h, k ∈ G. The last two conditions are (possibly with different conventions) the conditions

for what is known in the literature as a factor set, usually with M being the crossed module M →

AutM. Then an extension of M by G may be defined by giving a product structure on E = G ×M

by the rule

(g,m)(h,n) = (gh, κ2(g,h)mκ
1hn), (pr)

and defining i : M→ E,p : E→ G by i(m) = (1,m),p(g,m) = g. The condition (fs2) is then exactly

the condition for the product on E to be associative. This is not surprising because of the relation of

the boundary δ2 in Fst∗ (G) to associativity.
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Conversely, given an extension 1 → M
i
−→ E

p
−→ G → 1 of M by G, then choose a section s :

G→ E of p such that s(1) = 1. This defines a bijection α : E→ G×M by e 7→ (pe, i−1((sp(e))−1e)).

Note that p((sp(e))−1e)) = 1 since ps = 1G. The problem is to define a multiplication on G ×M

so that α is a morphism (and so an isomorphism). This choice of s is also equivalent to choosing

κ ′ : Fst1 (G)→ E such that pκ ′ = φ. But since M is normal in E there is a morphism χE : E→ AutM.

Let κ1 = χEκ
′. The rule (pr) then gives the ‘obstruction’ to the product on E being just the semidirect

product. 2

Exercise 12.1.4 Verify the assertions of the last example, and relate the construction to that in

Proposition 12.3.1. 2

12.2 Cohomology of groups as classes of crossed extensions

Let us start by introducing the idea of crossed n-fold extensions of a group G by a G-module M.

Definition 12.2.1 A crossed n-fold extension of M by G is a crossed resolution E of G such that

En+1 = M as a G-module, and Ei = 0 for all i > n + 1. This may also be written as an exact

sequence

E := 0 −→M
∂n+1
−→ En

∂n−→ · · ·
∂3−→ E2

∂2−→ E1
φ
−→ G→ 1.

This means of course that the above sequence is exact, E1 and the part above is a (truncated)

crossed complex, and φ maps Cok∂2 isomorphically to G. Thus for n = 1 we have exactly an

abelian extension of M by G, since by the crossed module rule CM2), M abelian is equivalent to E1

acts on M via G. For n = 2 this is also called a crossed sequence. 2

Example 12.2.2 Let G be a group and E a crossed resolution of G. Then Coskn E is the crossed

n-fold extension

En+1 := 0 −→ Ker∂n
i
−→ En

∂n−→ · · ·
∂3−→ E2

∂2−→ E1. 2

Definition 12.2.3 A morphism E → E ′ of crossed n-fold extensions of M by G is a morphism of

crossed resolutions which induces the identity on M and on G as shown in the following diagram:

0 //M

=

��

// En

��

// En−1

��

// · · · // E1

��

φ // G

=

��

// 1

0 //M // E ′
n

// E ′
n−1

// · · · // E ′
1

φ′
// G // 1

Two crossed n-fold extensions resolutions E, E ′ of M by G are similar if there is a ziz-zag (see page

A.7) of morphisms E→ E ′. This relation is an equivalence relation, and we denote the quotient set

by OpExtn(G,M). 2

This quotient set may be given an abelian group structure called the “Baer sum” whose definition

may be found for the case n = 1 in [ML63]. Here we merely note that for n > 1 there is a class

which we call 0 namely the class of the crossed n-fold extension

0 //M
= //M

0 // · · · // G
φ // G // 1

n 1
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Further we shall below give a bijection

OpExtn(G,M) ∼= Hn+1(G,M)

so that this also defines an abelian group structure on the set OpExtn(G,M). The class inHn+1(G,M)

of the crossed n-fold extension will be called its Postnikov invariant, or k-invariant.

Example 12.2.4 We recall the dihedral crossed module µ : D̃2n → D2n from Example 5.6.9. Here

D2n has a presentation 〈x,y | xn,y2, xyxy〉, D̃2n has presentation 〈u, v | un, v2,uvuv〉, and µ(u) =

x2,µ(v) = y. We show this represents the trivial cohomology class in H3(Cokµ, Kerµ).

For n odd, we know that µ is an isomorphism, so the result is trivial.

For n even, we have Kerµ ∼= Cokµ ∼= C2 and we simply construct a morphism of crossed 2-fold

extensions as in the following diagram

0 // C2
1 //

=

��

C2

f2

��

0 // C2

f1

��

1 // C2

=

��

// 0

0 // C2
// D2n µ

// D2n
// C2

// 0

where if c denotes the non trivial element of C2 then f1(c) = x, f2(c) = un/2. 2

Example 12.2.5 In this example, we give a crossed 2-fold extension A of A by G which represents

0 in its class, but to prove this we use an intermediate crossed 2-fold extension to give maps 0 ←

B→ A. It is not clear how to construct a direct map between 0 and A.

Let Cn denote the cyclic group of order n (including the case n = ∞), written multiplicatively,

with generator t. Let γn : Cn2 → Cn2 be given by t 7→ tn. This defines a crossed module, with trivial

operations. This crossed module represents the trivial cohomology class in H3(Cn, Cn), in view of

the morphisms of crossed 2-fold extensions

0 // Cn
1 // Cn

0 // Cn
1 // Cn // 0

0 // Cn

1

OO

(1, 0)
//

1
��

Cn × C∞

p1

OO

g
��

h // C∞
λ //

λ

OO

µ
��

Cn //

1
��

1

OO

0

0 // Cn
i

// Cn2
γn

// Cn2
// Cn // 0

where g(t, 1) = tn,g(1, t) = t,h(t, 1) = 1,h(1, t) = tn, i(t) = tn and λ,µ are given by t 7→ t. You

should check that each square of this diagram is commutative, and each row is exact. 2

We now sketch the relation between crossed n-fold extensions and cohomology.

Proposition 12.2.6 For a group G and G-module M, a crossed n-fold extension E of M by G deter-

mines a cohomology class kE ∈ Hn+1(G,M). Conversely, any such class determines a crossed n-fold

extension of M by G.

Proof Suppose given the crossed n-fold extension as in Definition 12.2.1. Let F be a free crossed

resolution of G. Since F is free and E is aspherical, there is a morphism f : F → E over the identity

on G. Then fn+1 determines the required cohomology class.
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Conversely, suppose given a morphism of G-modules fn+1 : Fn+1 →M such that fn+1δn+2 = 0.

Suppose first n > 1. We form a crossed n-fold extension E of M by G on setting

Ei =

{
Fi if i < n

(Fn ×M)/D if i = n

where D is the submodule of the product module generated by the elements (δn+1c, fn+1c) for all

c ∈ Fn+1. The morphism i : M → En is induced by the inclusion m 7→ (0,m) into the product, and

the morphism En → Fn−1 is induced by (x,m) 7→ δnx. To prove that i is injective, suppose that

im = (δn+1c, fn+1c) for come c ∈ Fn+1. Then δn+1c = 0 and so c = δn+2c
′ for some c′ ∈ Fn+2. By

the condition fn+1δn+2 = 0, we have m = 0.

If n = 1, then F1 operates nontrivially on M via φ : F1 → G, and instead of the product in the

above formula we take the semidirect product (F1 ⋉M).

We also want to show that similar crossed n-fold extensions E,E ′ give rise to cohomologous

invariants. For this is enough to assume there is a morphism g : E→ E ′. Let f : F→ E, f ′ : F→ E ′ be

morphisms. Then gf : F → E ′ and so gf, f ′ are homotopic. Hence their corresponding k-invariants

are the same.

We omit further details. 2

Exercise 12.2.7 Complete the details of the above proof. In particular, prove that the construction

does give a crossed n-fold extension, i.e. verify exactness. Also show that homotopic k-invariants

give rise to equivalent crossed n-fold extensions. For some extra points with regard to the case n = 1

we refer forward to Proposition 12.3.1. 2

Now we give examples of crossed modules M → G with non-trivial Postnikov invariants. Our

examples have G finite cyclic and so we use the free crossed resolution of finite cyclic groups given

in Example 11.1.4. Thus the point we want to stress here is that the use of crossed techniques is

amenable to calculation. These examples show that success in computing a Postnikov invariant of a

crossed n-fold extension of A by G is increased by having a convenient small free crossed resolution

of G. Methods for the computation of such from a presentation for a finite group are given in

subsection 11.2.4. 22

Theorem 12.2.8 For n > 2, we consider the following two cyclic groups Cn = 〈t | tn〉, Cn2 = 〈u | un
2

〉

and let ι : Cn → Cn2 denote the injection sending t to un. Let ν : ι∗Cn → Cn2 be the crossed module of

1 : Cn → Cn induced by ι from 1 : Cn → Cn and let An denote the Cn-module which is the kernel of ν.

Then H3(Cn,An) is cyclic of order n and has as generator the class of this induced crossed module.

Proof Let us describe An as Cn-module

By Corollary 5.6.11 the abelian group ι∗Cn is the product V = (Cn)n. As a Cn-module it is cyclic,

with generator v, say. Write vi = vt
i

, i = 0, 1, . . . ,n − 1. Then each vi is a generator of a Cn factor

of V .

The kernel An of µ̂ : ι∗Cn → Cn2 is a cyclic Cn-module on the generator a = v0v
−1
1 . Write

ai = at
i

= viv
−1
i+1. As an abelian group, An has generators a0,a1, . . . ,an−1 with relations ani =

1, a0a1 . . .an−1 = 1.

We use the free crossed resolution of Cn described in Example 11.1.4:

F∗ = · · · → (C∞)n
N
→ (C∞)n

M
→ (C∞)n

φ
→ C∞

where φ(wi) = wn.
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We define a morphism

(C∞)n

0

��

N // (C∞)n

f3

��

M // (C∞)n

f2

��

φ // C∞

f1

��
0 // An // (Cn)n

ν
// Cn2

as follows:

1. f1 maps w to u, inducing the identity on sCn

2. f2 maps the module generator w0 of F2 to v = v0.

3. f3 maps the module generator w0 of F3 to a0.

The morphisms f1 and the operator morphism f2 over f1 are defined completely by these conditions.

The abelian group of operator morphisms g : (C∞)n → An over f1 may be identified with An
under g 7→ g(w0). Under this identification, the boundaries δ4, δ3 are transformed respectively to 0

and to ai 7→ ai(a
t
i)

−1. So the 3-dimensional cohomology group is the group An with ai identified

with ai+1, i = 0, . . . ,n − 1. This cohomology group is therefore isomorphic to Cn, and a generator

is the class of the above cocycle f3. 2

The following is another example of a determination of a non trivial cohomology class by a

crossed module. The method of proof is similar to that of Theorem 12.2.8, and is left to the reader.

Example 12.2.9 Let n be even. Let C ′
n denote the Cn-module which is Cn as an abelian group but

in which the generator t of the group Cn acts on the generator t ′ of C ′
n by sending it to its inverse.

For n = 2, this gives the trivial module. Then H3(Cn, C ′
n) ∼= C2 and a generator of this group is

represented by the crossed module νn : Cn × Cn → Cn2 , with generators t0, t1,u say, and where

νnt0 = νnt1 = un. Here u ∈ Cn2 operates by switching t0, t1. However, it is not clear if this crossed

module can be an induced crossed module for n > 2. 2

Remark 12.2.10 The reason for the success of the previous determinations is that we have a con-

venient small free crossed resolution of the cyclic group Cn. 2

Let us extract some more applications of this crossed resolution. We study the induced crossed

module through the inclusion of a normal subgroup ι : P �Q when the crossed module µ : M → P

is also the inclusion M � P of a normal subgroup such that M is also normal in Q. Then Theorem

5.8.12 shows that the induced crossed module may be described as

ζ : M× (Mab ⊗ I(Q/P))→ Q

where form,n ∈M, x ∈ I(Q/P), and I(Q/P) denotes the augmentation ideal of the quotient group

Q/P. The map ζ is defined by ζ(m, [n]⊗ x) = m ∈ Q and the action of q ∈ Q is given by

(m, [n]⊗ x)q = (mq, [mq]⊗ (q̄− 1) + [nq]⊗ xq)

where q̄ denotes the image of q in Q/P.

Remark 12.2.11 It might be imagined from this that the Postnikov invariant of this crossed module

is trivial, since one could argue that the projection

pr2 : P × Pab ⊗ I(Q/P)→ Pab ⊗ I(Q/P)
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should give a morphism from ι∗P to the crossed module 0 : Pab⊗I(Q/P)→ Q/P, which represents 0

in the cohomology group H3(Q/P,Pab ⊗ I(Q/P)). However, the projection pr2 is a P-morphism, but

is not in general a Q-morphism, as the above results show. In fact, in the next Theorem we give a

precise description of the Postnikov invariant of ι∗P when Q/P is cyclic of order n. This generalises

the result for the case P = Cn, Q = Cn2 in 12.2.8. 2

Theorem 12.2.12 Let P be a normal subgroup of Q such that P/Q is isomorphic to Cn, the cyclic

group of order n. Let t be an element of Q which maps to the generator t̄ of Cn under the quotient map.

Then the first Postnikov invariant k3 of the induced crossed module of the inclusion BP → BQ lies in a

third cohomology group

H3(Cn,Pab ⊗ I(Cn)).

This group is isomorphic to

Pab ⊗ Cn,

and under this isomorphism the element k3 is taken to the element

[tn]⊗ t̄.

Proof We have to determine the cohomology class represented by the crossed module

ξ : P × Pab ⊗ I(Cn)→ Q.

Let A = Pab ⊗ I(Cn). As in 12.2.8 for the case Q = Cn2 , P = Cn, we consider the diagram

ZCn

0

��

N // ZCn

f3

��

M // ZCn

f2

��

φ // C∞

f1

��
0 // A

i
// P ×A νn

// Q.

Here the top row is the beginning of a free crossed resolution of Cn. The free Cn-modules Z[Cn]

have generators y4,y3,y2 respectively, C∞ has generator y1 and φ(y2) = yn1 , M(y3) = y2.(t̄ − 1)

(here C∞ operates on each ZCn via the morphism to Cn); N(y4) = y3.(1 + t̄ + t̄2 + · · · + t̄n−1).

Further, we define f1(y1) = t, f2(y2) = (tn, 0), f3(y3) = [tn] ⊗ (t̄ − 1), and i(a) = (1,a), a ∈ A.

Thus the diagram gives a morphism of crossed complexes, and the cohomology class of the cocycle

f3 is the Postnikov invariant of the crossed module.

As in 12.2.8 since Z[Cn] is a free Cn-module on one generator, the cohomology group H3(Cn,A)

is isomorphic to the homology group of the sequence

A A
Moo A

Noo

where N is multiplication by 1 + t̄+ t̄2 + · · ·+ t̄n−1 and M is multiplication by t̄− 1. It follows that

N = 0, and it is easy to check that I(Cn)/I(Cn)(t̄− 1) is a cyclic group of order n generated by t̄− 1.

The cocycle f3 determines the element f3(y3) = [tn]⊗ (t̄− 1) of A, and the result follows. 2

12.3 Dimension 2 cohomology with coefficients in a

crossed module and extension theory

This section gives an account of the theory of nonabelian extensions of a groupM by a group G, that

is the aim is to classify extensions 1→M→ E→ G→ 1. An immediate difference between this and
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the abelian case is that we do not get an action of G on M from such an extension. We have already

mentioned in Example 12.1.3 the ‘factor sets’ which arise. It turns out that it is convenient to be

more specific about how the actions arise by using extensions of the type of a crossed module.23

We first give a formulation as a kind of pushout of the construction of nonabelian extensions of

groups. This formulation is convenient for the development of the theory and the proof of theorems.

Our

Proposition 12.3.1 Suppose given a crossed sequence

0→ π
i
−→ F2

δ
−→ F1

φ
−→ G→ 1

and a morphism of groups k2 : F2 →M, together with an action of F1 on M such that

AP1) if m ∈M, r ∈ F2 then (k2r)−1m(k2r) = mδr;

AP2) if r ∈ F2, x ∈ F1 then k2(rx) = (k2r)x.

Then there is a commutative square

F2
δ //

k2

��

F1

k1

��
M

ik

// Ek

such that

CP1) ik : M→ Ek is a crossed module;

CP2) if m ∈M, x ∈ F1 then mx =mk
1x;

CP3) the square is universal for properties CP1), CP2);

CP4) there is an exact sequence

M
ik−→ Ek

ψ
−→ G→ 1;

CP5) the morphism ik is injective if and only if k2(iπ) = 1.

Proof Let Ck be the semidirect product group F1 ⋉M formed with the given action of F1 on M.

Let Ck act on F2 via the projection to F1 and the action of F1 on F2.

We first prove that the function ξ : F2 → Ck, r 7→ (δr, (k2r)−1) is a morphism. Let r, s ∈ F2. Then

by the semidirect product rule

ξ(r)ξ(s) = (δr δs, k2((r−1)δs s−1)

= (δr δs, k2(s−1r−1))

= ξ(rs).

Next we prove ξ preserves the action. Let r ∈ F2, (x,m) ∈ Ck. Then

(x,m)−1ξ(r)(x,m) = (x−1, (m−1)x
−1

)(δr, (k2r)−1)(x,m)

= (x−1(δr)x, (m−1)x
−1(δr)x(k2r−1)xm)

= (x−1(δr)x, (k2rx)−1m−1(k2rx)(k2(r−1))xm)

= ξ(rx).
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Finally we prove easily the second crossed module rule:

r−1sr = sδr by the crossed module rule for δ

= s(δr,k
2r−1) by definition of the action of Ck

= sξr as required.

Let Ek = Cokξ, and let [x,m] denote the image in Ek of (x,m) ∈ Ck. Let ik : M → Ek be given

by m 7→ [1,m]. Then the formula m[x,n] = n−1mxn gives, by AP1), a well defined action of Ek on

M which is easily shown to make ik a crossed module.

Let ψ : Ek → G be given by [x,m] 7→ φ(x). Then ψ is well defined and is the cokernel of ik.

Suppose given a morphism of crossed modules

F2
δ //

k2

��

F1

l

��
M α

// Q

such that mx = mlx, x ∈ F1,m ∈ M. Suppose ω : Ek → Q determines a morphism of crossed

modules such that ωl = k1, ωik = α. Since [x,m] = [x, 1][1,m], we easily check that ω[x,m] =

(lx)(αm). So such an ω is unique. On the other hand, we easily check this does define a morphism

as required.

The morphism ψ of CP4) is defined by ψ[x,m] = φx. This gives the exact sequence.

Finally ikm = 1 for all m ∈ M is equivalent to (1,m) = (δr, k2r−1) for some r ∈ F2; this easily

proves CP5). 2

Definition 12.3.2 Let M denote the crossed module µ : M→ P. An extension (i,p,σ) of type M of

the group M by the group G is:

(i) an exact sequence of groups

1 //M
i // E

p // G // 1

so that E operates on M by conjugation, and i : M→ E is hence a crossed module; and

(ii) a morphism of crossed modules

1 //M
i // E

σ
��

M
µ // P

i.e. σi = µ and me = mσe, for all m ∈M, e ∈ E. Thus the action of E on M is also via σ.

We shall write such an extension as

1 //M
i // E

p // G // 1, E
σ // P.

Two such extensions of type M

1 //M
i // E

p // G // 1, E
σ // P.
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1 //M
i′ // E ′

p′

// G // 1, E ′ σ′

// P.

are said to be equivalent if there is a morphism of exact sequences

1 //M // E //

φ

��

G // 1, E
σ //

φ

��

P

1 //M // E ′ // G // 1, E ′ σ′

// P.

such that the right hand square also commutes. Of course in this case φ is an isomorphism, by the

5-lemma, and hence equivalence of extensions is an equivalence relation.

We denote by

OpExtM(G,M)

the set of equivalence classes of all extensions of type M of M by G. 2

The usual theory of extensions of a group M by a group G considers extensions of the type of

the crossed module χM : M→ AutM. The advantages of replacing this by a general crossed module

are first that the group AutM is not a functor ofM, so that the relevant cohomology theory in terms

of χM appears to have no morphisms of coefficients, and second, that the more general case occurs

geometrically. 24

The heart of the proof of the following theorem is in Proposition 12.3.1.

Theorem 12.3.3 Suppose given a crossed sequence

0→ π
i
−→ F2

δ
−→ F1

φ
−→ G→ 1

and a crossed module M = (µ : M → P). Let F denote the crossed module δ : F2 → F1. Let [F, M]0

denote the set of homotopy classes of morphisms k = (k2, k1) : F → M of crossed modules, such that

k2(iπ) = 1. Then there is a natural injection

E : [F, M]0 → OpExtM(G,M)

sending the class of a morphism k to the extension

1→M→ E(k)→ G→ 1

where E(k) is the quotient of the semidirect product group F1 ⋉M, in which F1 acts on M via P. The

function E is surjective if F1 is a free group.

Exercise 12.3.4 Prove the last theorem, including the analysis of the equivalence of extensions.

Example 12.3.5 In the applications of Theorem 12.3.3 we would take a free crossed resolution F(G)

of a group G and let δ : F2 → F1 be the crossed module δ2 : F2(G)→ F1(G) with φ : F1(G)→ G given

by the resolution. Then π is the module of identities among relations for the presentation 〈X | R〉 of

G determined by the free bases X,R of F1(G), F2(G) respectively. 2

Example 12.3.6 Extensions by a cyclic group Let Cn denote the cyclic group of order n, written

multiplicatively, and generated by an element t, so that the infinite cyclic group is C∞. The presenta-

tion 〈t : tn〉 for Cn gives rise to the free crossed module δ : (C∞)n → C∞ where (C∞)n is generated

as a group by t0, t1, . . . , tn−1 and as a crossed C∞-module by t0; here t ∈ C∞ operates on (C∞)n by
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(ti)
t = ti+1, i = 0, . . . ,n− 1 (mod n); and for all i, δ(ti) = tn. This description of this free crossed

module is given in [?]. A morphism

(C∞)n
δ //

k2

��

C∞

k1

��
A α

// Q

of crossed modules is thus specified by elements q = k1(t) ∈ Q, a = k2(t0) ∈ A such that αa = qn.

Further, Ker δ, the module of identities for the presentation, is the submodule generated by the

element t0t
−1
1 . Hence the condition k2(Ker δ) = 0 is equivalent to k2(t0t

−1
1 ) = a(aq)−1 = 1, that is

a = aq. An equivalence (a ′ : q′) ≃ (a : q) of such data is given by a derivation h : C∞ → A, and so

by an element b = h(t) ∈ A, such that q′ = q(αb) and

a ′ = ah(tn) = abq
n−1

bq
n−2

. . .b2b.

This result is given in [?] ChIII, section 7. The extension group E determined by the data (a : q) is

the quotient of C∞ ⋉A by the element (tn,a−1). 2

Example 12.3.7 The trefoil group Let G be the trefoil group with presentation 〈x,y : x2 = y3〉.

This is a 1-relator presentation whose relator is not a proper power, and so there are no identities

among the relations, as proved by Lyndon in [?] (see [?] for more information). Therefore the

extension data of A by G of type α : A → Q is given by elements qx,qy ∈ Q,ar ∈ A, such that

αar = (qx)
2(qy)

−3. An equivalence (a ′
r : q′

x,q
′
y) ≃ (ar : qx,qy) of such data is given by elements

b, c ∈ A such that q′
x = qx(αb),q

′
y = (qy)(αc) and a ′

r = arh(x2y−3) where h is the derivation

F{x,y}→ A given by hx = b,hy = c. Thus

h(x2y−3) = h(x2)q
−3
y h(y−3)

= (bqxb)q
−3
y (c−1)q

−3
y (c−1)q

−2
y (c−1)q

−1
y .

The group E determined by the extension data (ar : qy,qy) is the quotient of the semidirect

product F{x,y} ⋉ A by the element (x2y−3,a−1
r ). Here F{x,y} acts on A by ax = aqx ,ay = aqy ,a ∈

A. 2

Example 12.3.8 Extensions by a product The tensor product of crossed complexes as defined in

[?] may be used to describe extensions by a product G × H of groups. Let F∗(G), F∗(H) be free

crossed resolutions of groups G,H respectively. The tensor product F∗(G) ⊗ F∗(H) is then a free

crossed resolution of G × H. A proof of asphericity will be given in Corollary 15.8.1. It is proved

in Theorem 9.6.3 that the tensor product of free crossed complexes is free on the tensor product

of the free generators, so that in particular F∗(G) ⊗ F∗(H) is freely generated as a crossed complex

by ai ⊗ bj, where the ai,bj run over sets of free generators of F∗(G), F∗(H) respectively. Thus it

is easy to specify morphisms from F∗(G) ⊗ F∗(H) to a crossed module or crossed complex. Further,

generators for the module of identities for a presentation of the product G × H are the images

under δ3 of free generators of (F∗(G)⊗ F∗(H))3, by asphericity. Such free generators are of the form

a3 ⊗ ∗, ∗ ⊗ b3,a2 ⊗ b1,a1 ⊗ b2 where ai,bj run over free generators of Fi(G), Fj(H) respectively.

This implies the following. Let 〈X;R〉, 〈Y, S〉 be presentations of G,H respectively, and let I, J be

generating sets for the modules of identities for these presentations. Then a free crossed resolution

F∗(G) corresponding to X,R, I is in dimensions 6 3 of the form

C3(I)
δ3−→ FC(R)

δ2−→ F(X)
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where C3(I) is the free G-module on I, and similarly for F∗(H). Thus in dimensions 6 3, F∗(G) ⊗

F∗(H) has generators as follows, where for Z any set, Z̄ denotes a set of formal generators z̄, z ∈ Z:

• dimension 1: X, Y,

• dimension 2: R̄, S̄, {x⊗ y : x ∈ X,y ∈ Y},

• dimension 3: Ī, J̄, {x⊗ s̄, r̄⊗ y : x ∈ X,y ∈ Y, r ∈ R, s ∈ S}.

The boundaries are given by:

δ2r̄ = r, δ2s̄ = s, δ2(x⊗ y) = y−1x−1yx,

δ3ī = i, δ3j̄ = j, δ3(x⊗ s̄) = s̄−1s̄x(x⊗ s)−1,

δ3(r̄⊗ y) = (r⊗ y)r̄−1r̄y.

Now the elements x⊗ s, r⊗ y have to be expressed in terms of the free generators in dimension

2. This is done by using the biderivation rules

x⊗ uv = (x⊗ u)v (x⊗ v),

ωz⊗ y = (z⊗ y)(ω⊗ y)z,

which are part of the crossed complex structure of the tensor product.

Note that in this example, we obtain nice generators of the module of identities for the product,

by applying the boundary to free generators in dimension 3 of a crossed resolution. 25 2

12.4 The exact sequences of a fibration of crossed complexes

A fibration p : E → D of crossed complexes yields a family of exact sequences involving the Hn, π1

and π0, as follows. Let x ∈ E0 and let Fx = p−1(px) be the sub crossed complex of E of all elements

of E0 which map by p to x and otherwise all elements of some En which map down by p to the

identity at px.

Theorem 12.4.1 There is an exact sequence

· · · → Hn(Fx, x)
in−→ Hn(E, x)

pn−→ Hn(B,px)
∂n−→· · ·

· · · → π1(Fx, x)
i1−→ π1(E, x)

p1−→ π1(B,px)
∂1−→π0(Fx)

i∗−→ π0(E)
p∗−→ π0(B).

Here the terms of the sequence are all groups, except the last three which are sets with base points the

classes xF, xE, xB of x, x, px respectively.

(i) There is an operation of the group π1(E, x) on the group π1(Fx, x) making the morphism

i1 : π1(Fx, x)→ π1(E, x)

into a crossed module.

(ii) There is an operation of the group π1(B,px) on the set π0(Fx) such that the boundary

π1(B,px)
∂1−→ π0(Fx)

is given by ∂1(α) = α · xF.
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Further we have additional exactness at the bottom end as follows:

(a) ∂1α = ∂1β if and only if there is a γ ∈ E(x) such that p1γ = −β+ α;

(b) if ū denotes the component in Fx of an object u of Fx, then i∗ū = i∗v̄ if and only if there is an

α ∈ B(y) such that α#ū = v̄;

(c) if ŷ denotes the component of y in B then

i∗(π0Fx) = p−1
∗ (ŷ).

Proof The proof of this theorem is a development of the part of the theorem which deals with

fibrations of groupoids and which is given for example in [Bro06, 7.2.9]. See also [Bro70]. We

leave the details as an exercise. 2

Corollary 12.4.2 Under the conditions of the theorem, the set π0(E) is the disjoint union of the sets

p−1
∗ (ŷ) for each component ..... (to be completed).

Remark 12.4.3 The power of this result comes when we apply it in the next section to fibrations of

internal homs CRS(F,E)→ CRS(F,B) using Proposition 10.5.6. 26

12.5 Homotopy classification of morphisms

In this section we analyse the set [F,C]∗ of pointed homotopy classes of morphisms from a reduced

crossed complex F to a reduced crossed complex C for particular examples of C. Usually F will be

free. We stick to the reduced and pointed case as in this case it is easier to relate the results to

classical theorems, but the other case can be treated by the same methods.

The cases we are thinking of are:

• F = ΠX∗ for X∗ the skeletal filtration of a CW-complex Z; and

• F = Fst(G), the standard free crossed resolution of a group or groupoid G.

In the first case we think of [F,C]∗ as a kind of ‘nonabelian cohomology set of the space X with

coefficients in the crossed complex C’. In the second case it is a kind of nonabelian cohomology

of the group or groupoid G. In either case, our analysis of this set works by using fibrations of

the ‘coefficients’, i.e. fibrations of crossed complexes. It turns out that this leads to some nice

formulations of or generalisations of classical results.

We shall write K(Q, 1) for the crossed complex which is the group or groupoid Q in dimension

1 and is otherwise trivial. Later we will write K(M,n;Q, 1) for the crossed complex which is Q in

dimension 1, the Q-module M (with the given action of Q) in dimension n > 2, and is otherwise

trivial; in particular, if n = 2 then the boundary M→ Q is assumed trivial.

We start with the simplest case.

Proposition 12.5.1 For any n > 2, reduced crossed complex F with fundamental group Φ, and any

group Q, there is a natural bijection

[F, K(Q, 1)]∗ ∼= Hom(Φ,Q).

Proof This follows easily from the definitions. 2
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Now we take a more complicated case. First a definition.

Definition 12.5.2 Let F,C be crossed complexes, let A be a subcomplex of F, with inclusion i : A→

F and let f : A → C be a morphism. We write [F,C; f] for the set of homotopy classes rel A of

morphisms F → C which extend f. We write similarly [F,C; f]∗ for the pointed homotopy classes in

the case A, F,C, i are pointed.

Theorem 12.5.3 Let F be a reduced free crossed complex and let Φ = π1F. Then [F, K(M,n;Q, 1)]∗

is the disjoint union of sets [F, K(M,n;Q, 1) : θφ]∗ one for each morphism θ : Φ → Q, namely those

homotopy classes inducing θ. Further, the morphisms F → K(M,n;Q, 1) inducing θ : Φ → Q may be

given the structure of abelian group which is inherited by homotopy classes.

Proof The morphism q : K(M,n;Q, 1) → K(Q, 1) which is the identity in dimension 1 and 0

elsewhere is a fibration inducing a fibration q∗ : CRS∗(F, K(M,n;Q, 1)) → CRS∗(F, K(Q, 1)). The

induced map on π0 is surjective since every morphism f : F → K(Q, 1) may be lifted by 0 to a

morphism F → K(M,n;Q, 1). By Proposition ??, π0CRS∗(F, K(Q, 1)) ∼= Hom(Φ,Q). So we can

write, using the exact sequence of Theorem 12.4.1,

π0CRS∗(F, K(M,n;Q, 1)) ∼=
⊔

θ:Φ→Q

[F, K(M,n;Q, 1); θφ]∗.

The abelian group structure induced by addition of values in dimension n on the set of morphisms

F→ K(M,n;Q, 1) which extend θφ is clear from the diagram

· · · Fn+1
//

��

Fn //

��

Fn−1
//

��

· · · // F2 //

��

F1
φ //

��

Φ

��
θ

��
�

����
�

· · · 0 //M // 0 // · · · // 0 // Q Q

(12.5.1)

as is also the fact that this addition passes to homotopy classes rel θφ. 2

Remark 12.5.4 Thus the situation for crossed complexes is not quite like that for chain complexes

with a group or groupoid of operators. In that category, two morphisms C → D over the same

operator morphism Q→ H do indeed have a sum by addition of values. 2

Definition 12.5.5 We write Hnθφ(F,M) for [F, K(M,n;Q, 1); θφ], and call this abelian group the nth

cohomology over θφ of F with coefficients in M. Thus [F, K(M,n;Q, 1)]∗ is the disjoint union of the

abelian groups Hnθφ(F,M) for all morphisms θ : Φ→ Q. When convenient and clear, we abbreviate

θφ to θ. 2

Remark 12.5.6 In the case F = ΠX∗ for a CW-filtration X∗, then we recover the cellular cohomology

o X, while in the case F = Fst(G) for a group or groupoid G, then we recover the usual notions of

cohomology of G. 2

A generalisation of the previous result is as follows.

Example 12.5.7 Let C be a reduced crossed complex such that C1 = Q, and δ2 = 0 : C2 → C1.

Let F be a free crossed complex. Then Crs∗(F,C) and [F,C]θφ may be given the structure of abelian

group by addition of values. 2
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12.6 Generalisation of abstract kernel theory

We now use the previous results to analyse [F,C]∗ in another interesting case, namely when C has

no homology between 1 and n, and is trivial above n.

Theorem 12.6.1 Let n > 2 and let F,C be reduced crossed complexes such that F is free, C is n-

aspherical, and Ci = 0 for i > n. Let Φ = π1(F),Q = π1C,M = Ker δn : Cn → Cn−1. Let θ : Φ→ Q

be a morphism of groups. Then there is defined an element kθ ∈ H
n+1
θφ (F,M), called the obstruction

class of θ, such that the vanishing of kθ is necessary and sufficient for θ to be realised by a morphism

F→ C.

If kθ = 0, then the set [F,C; θφ] of homotopy classes of morphisms F → C realising θφ is bijective

with Hnθφ(F,M).

Proof Consider the morphisms of crossed complexes C
j
−→ ξC

p
−→ ζC as shown in the following

diagram:

· · · // 0 //

��

Cn
δn //

��

Cn−1
//

��

· · · // C2

��

// C1

��

C

j
��

· · · //M //

��

Cn
δn //

��

Cn−1

��

// · · · // C2
//

��

C1

��

ξC

p
��

· · · //M // 0 // 0 // · · · // 0 // Q ζC

Then ξC is aspherical, ζC = K(M,n+ 1;Q, 1), and p : ξC→ ζC is a fibration of crossed complexes.

Since F is a free reduced crossed complex, we have an induced fibration of crossed complexes

p∗ : CRS∗(F, ξC)→ CRS∗(F, ζC). (12.6.1)

On applying π0 to this we get, considering previous identifications, a map of sets

p∗ : Hom(Φ,Q)→
⊔

θ∈Hom(Φ,Q)

Hn+1
θφ (F,M). (12.6.2)

Lemma 12.6.2 A morphism θ : Φ → Q maps to 0 in Hn+1
θφ (F,M) if and only if θ is induced by a

morphism F→ C.

Proof Suppose θ is induced by a morphism f : F → C. Then f factors through pj and is therefore

0 in Hn+1
θφ (F,M).

Suppose conversely that θ determines 0 inHn+1
θφ (F,M). We know that θ is induced by a morphism

f ′ : F → ξC. Then pf is homotopic to 0 and so by the fibration condition f ′ is homotopic to f ′′ such

that pf ′′ = 0. Hence f ′′ determines f : F → C such that jf = f ′′. Then f also induces θ. This proves

the lemma. 2

Let F(f) denote the fibre of p∗ over pf. Then we have an exact sequence

→ π1(CRS∗(F, ξC), f)→ π1(CRS∗(F, ζC),pf)→ π0F(f)→ π0CRS∗(F, ξC)→ π0CRS∗(F, ζC).

By Proposition ??, π1(CRS∗(F, ξC), f) = 0, so the above sequence translates to

0→ Hnθφ(F,M)→ [F,C; θφ]→ Hom(Φ,Q).

Further we have a free action of the abelian group Hnθφ(F,A) on the set [F,C]θφ. This completes the

proof of the theorem. 2
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This result generalises the classical theory of extensions of groups and Q-kernels. To apply the

theory to that case, the crossed complex F is taken to be a free crossed resolution of the group G.

If F is the standard free crossed resolution of G, then the relation with factor systems is shown in

[BP96]. The advantage of this approach is that it is clear that the standard free crossed resolution

may be replaced by any free crossed resolution of G, and in many cases it is possible to construct

small such resolutions. The we may get a finite description of the classes of extensions.

12.7 Homotopy classification of maps of spaces

In order to apply these results we need to know useful circumstances when a given space Y is of the

homotopy type of, or can be replaced by, BC , for some crossed complex C. An important result for

this is the following:

Theorem 12.7.1 Let Y be a CW-complex with skeletal filtration Y∗. Then there is a map q : Y → BΠY∗

with 2-connected homotopy fibre. Further the fibre is n-connected if Y is connected and πiY = 0 for

1 < i < n.

Corollary 12.7.2 Let X be a connected CW-complex of dimension 6 n, and let Y be a connected CW-

complex such that πiY = 0 for 1 < i < n. Then the map q : Y → BΠY∗ induces a bijection

[X, Y]∗ ∼= [X,BΠY∗]∗.

Corollary 12.7.3 (Hopf classification theorem) Let X be a connected CW-complex of dimension 6

n. Then there is a bijection

[X, Sn]∗ ∼= Hn(X, Z).

We can also interpret the more general homotopy classification theorem involving an obstruction.

Theorem 12.7.4 Let X be a connected CW-complex of dimension 6 n, and let Y be a connected CW-

complex such that πiY = 0 for 1 < i < n. Let Φ = π1X, G = π1Y, and let M = πnY considered as a

G-module. Then a morphism θ : Φ → G determines an element kθ ∈ Hnθφ(X,M) whose vanishing is

necessary and sufficient for θ to be realised by a map f : X → Y. If θ is realisable, then the homotopy

classes of maps realising θ are bijective with Hn−1
θφ (X,M).

12.8 The cohomology of a cover of a topological space

In this section a way of assigning a free crossed complex to a cover U of a topological space X, and

so leading to a notion of non abelian cohomology of the cover.

Let U = {Uλ}λ∈Λ be family of subsets of the topological space X. We define the projection

p : EU =
⊔

λ

Uλ → X (12.8.1)

to send (x, λ) 7→ x, x ∈ Uλ. This projection defines an equivalence relation EquU on EU, which is of

course a special kind of groupoid. The objects of EquU are pairs (x, λ) such that x ∈ Uλ. There is a

unique arrow (x, λ)→ (x,µ) if and only if x ∈ Uλ ∩Uµ. Hence we can form

F∗(U) = Fst∗ (EquU), (12.8.2)
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which we call the standard crossed resolution of the cover U. If C is a crossed complex, then we can

form

H0(U,C) = [F∗(U),C]. (12.8.3)

Example 12.8.1 A free basis element [g1, . . . ,gn] of Fn(U) is equivalent to a sequence [x, λ0, λ1, . . . , λn]

such that x ∈ Uλ0
∩ · · · ∩Uλn

. Then we have the boundary formulae27 in F∗(U):

δ2[x, λ,µ,ν] = [x, λ,ν]−1[x, λ,µ][x,µ,ν]

δ3[x, λ,µ,ν, ξ] = [x, λ,µ,ν, ξ][x,ν,ξ] [x,µ,ν, ξ]−1[x, λ,µ, ξ]−1[x, λ,ν, ξ].

So we can analyse this definition in the particular case when C is a crossed module of groups

∂ : M → P, and say that a cocycle f = (f1, f2) of U with values in this crossed module consists of

functions with values f1[x, λ,µ, ] ∈ P, f2[x, λ,µ,ν] ∈M and satisfying

∂f2[x, λ,µ,ν] = f1([x, λ,ν]
−1[x, λ,µ][x,µ,ν])

f2δ3[x, λ,µ,ν, ξ] = 1.

Now let the cover V = {Vµ}α∈A of X be a refinement of the cover U. This means there is function

φ : A → Λ such that for each α ∈ A we have Vα ⊆ Uφ(α). Such a refinement map defines a

groupoid morphism φ∗ : Equ(V)→ Equ(U) by (x,α,β) 7→ (x,φ(α),φ(β)). One easily checks that if

ψ : A→ Λ is another refinement map, then the two groupoid morphisms φ∗,ψ∗ : Equ(V)→ Equ(U)

are homotopic by the homotopy h which assigns to (x,α) the arrow (x,φα)→ (x,ψα) of Equ(U).

The importance of this is that φ,ψ then induce homotopic morphisms φ∗,ψ∗ : F(V) → F(U) of

free crossed resolutions; hence φ∗,ψ∗ are homotopic and so induce the same function

[F(U),C] → [F(V),C].

This is the start of defining the Čech cohomology of the space X with coefficients in the crossed

complex C using refinements of open covers and taking inverse limits of the corresponding sets of

homotopy classes. 2
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Notes

21p. 331 The formulae for the differential given on this page are different in detail from those

given in [Hue80, BH82, Ton94]. This reflects the different conventions we have used. The formulae

are forced on us by choices made in Chapter 13 for the equivalence of categories which is central to

the work of this book, and which determine the tensor product formulae.

22p. 334These methods have been implemented in GAP4, see [HW03]. Related methods, using

universal covering cell complexes, also implemented in GAP4, but without the crossed information,

are in [Ell04].

23p. 337 This idea was introduced by Dedecker in [Ded64]; see also Taylor [Tay53].

24p. 339 Such examples are in [Tay54, BM94], the first to do with bundles and the second to do

with covering maps of non-connected topological groups.

25p. 341 The above description explains the determination of extensions by a product of cyclic

groups given in [?]. Different conventions for the tensor product have been adopted by Baues in [?].

26p. 342 We refer to Exercises 1-4 in [Bro06, Section 10.7] for applications of the lower part of the

exact sequence to problems in group theory. Notice also that there should be a useful Mayer-Vietoris

type sequence for a pullback of a fibration of crossed complexes generalising that of [Bro06, 10.7.6].

We also refer to the Exercises 1-5 in that section for applications and extensions of those ideas.

27p. 346 Formulae of this type go back to Dedecker, [Ded60]. Compare also (2.6.5) of [Bre94].
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Part III

ω-groupoids

349





Introduction to Part III

In Part II we have explored the techniques of crossed complexes, and hope we have convinced the

reader they are a powerful tool in algebraic topology. In this part, we have to give the proofs of the

main theorems on which those tools depend.

To this end, we introduce the algebra of ω-groupoids, or in full, cubical ω-groupoids with con-

nections. It was the way in which this algebra could be developed to model the geometry of cubes

which suggested the possibility of the theory and calculations described in this book.

As intimated in Chapter 6 of Part I, the crucial advantages of cubical methods are the capacity to

encode conveniently:

A) subdivision;

B) multiple composition as an algebraic inverse to subdivision;

C) commutative cubes, and their composition.

These properties allows us to verify a universal property by using the first two properties to give a

candidate for a morphism, and using the third to verify that this morphism is well defined.

The techniques which enable an analogous argument in all dimensions are more elaborate. The

main achievements are as follows:

• In order to define the notion of commutative cube, we have to relate the cubical theory of

ω-groupoids to that of crossed complexes. This purely algebraic equivalence is established in

Chapter 13.

• The proof that the natural definition of the fundamental ω-groupoid ρX∗ of a filtered space

actually is an ω-groupoid requires the techniques, of collapsing for subcomplexes of a cube

which were given in Chapter 14. These techniques are also used to prove the equivalence of

the two functors ρ and Π under the equivalence of algebraic categories proved in Chapter 13.

• The proof of the HHvKT for the functor ρ is also given in Chapter 14.

• The final Chapter 15 constructs the monoidal closed structure on the category of ω-groupoids,

and deduces the precise formulae for the equivalent structure on crossed complexes used

in Part II. Also proved is the Eilenberg-Zilber type natural transformation ρ(X∗) ⊗ ρ(Y∗) →

ρ(X∗ ⊗ Y∗), for filtered spaces X∗, Y∗.
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Chapter 13

The category ω-Gpds of ω-groupoids

As stated in the Introduction to Part III, this chapter contains the generalisation to all dimensions

of the algebraic part of Chapter 6. There we proved the equivalence between the category XMod of

crossed modules over groupoids and the category DGpds of double groupoids with connections. To

obtain this equivalence we defined in Section 6.2 a functor

γ : DCatG→ XMod

and in Section 6.6 another functor

λ : XMod→ DGpds.

We proved also in Section 6.6 that these functors give an equivalence of categories. The composition

γλ is clearly naturally isomorphic to the identity. Nevertheless, we had to work hard to prove that

λγ is also isomorphic to the identity. We shall come back to this point later.

In this Chapter we are going to follow analogous steps. Thus the first point is to get the appro-

priate generalisation of both categories.

The generalisation of XMod has already been studied: it is the central algebraic category for most

of Part II, namely the category Crs of crossed complexes. In the reduced case, this category had been

studied in the literature, because of its connections with relative homotopy groups, and with group

cohomology.

It was not so hard to write down a definition of ω-Gpds the category of multiple groupoids with

connections or ω-groupoids as a reasonable generalisation to all dimensions of DGpds, the category

of double groupoids with connections. The Definition and general properties of this category are

given in Section 13.2 but earlier, in Section 13.1, we extend the notion of cubical sets given in

Section 10.1 to include the structures of connections and compositions.

Once these two categories of ω-groupoids and of crossed complexes are fixed, it is easy to define

the functor

γ : ω-Gpds→ Crs.

As in Section 6.2, to associate a crossed complex to an ω-groupoid we take the elements of γGn to

be cubes with all faces but one (∂−
1 in our convention) concentrated at a point and the boundary

maps are given by the restriction to the non trivial face. All this is developed in Section 13.3.

As in the 2-dimensional case it is considerably more difficult to define a functor back

λ : Crs→ ω-Gpds.
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The still harder part is to give the natural equivalence λγ ≃ 1, by showing that an ω-groupoid G

may be rebuilt from the crossed complex γG it contains.

This equivalence, which is completed in Section 13.6, is a purely algebraic equivalence between

two algebraically defined categories. So we have to use only the algebraic definition, however much

we rely on geometry for the structure of the proof. Each axiom for the two categories is used at least

once, proving that all of them are needed.

Let us recall that in Chapter 6 to define the functor λ on a crossed module M = (µ : MatoP) we

used as 2-dimensional elements of λM the ‘squares of arrows in P commuting up to an element of

M’ as explained at the beginning of Section 6.6.

The clear generalisation of squares are the ‘n-shells’. They are families of n-cubes that fit together

as do the faces of an (n + 1)-cube, that is they satisfy the appropriate face relations. These n-shells

are studied in Section 13.5 where they are used to give the construction of right and left adjoints for

the truncation functor.

It is more difficult to define a ‘commutative n-shell’. But even in dimension 2 we found the

‘commutative cube’ rather an inconvenient idea and in Section 6.6 we worked instead with the

‘folding map’. We explore this avenue in Section 13.4 We define first the ‘folding’ Φi in direction i

and then the ‘folding map’

Φ = Φ1Φ2 · · ·Φn−1 : Gn → γGn

as the composite of the foldings in decreasing order. The effect ofΦ is to ‘fold’ all faces of a cube into

one face, which in our convention is taken to be the (−, 1) face. This folding map allows us to say that

an n-shell is commutative if and only if it folds to the trivial n-shell. We define the foldings in Section

13.4 and explore their behaviour with respect to all operators: faces, degeneracies, connections,

compositions.

A main result is that every element x ∈ Gn is determined by its total boundary ∂x and the

folding Φx; this is a consequence of Proposition 13.5.11. In essence, this says that the folding

process can be inverted and suggests how to construct λCn inductively using pairs (x, ξ) where x is

a ‘shell’ (generalisation of the total boundary) and ξ ∈ Cn ‘fills’ the folding of the shell (δξ = δΦx).

We work inductively using the coskeleton functor of Section 13.5; the construction of λ is done in

Section 13.6.

In Chapter 6 we saw that connections and the folding map give a characterisation of commutative

cubes. In the general case this may be taken as the definition of commutative n-cube, i.e. of the

thin cubes. The basic thin n-cubes are images of degeneracies and connections: the general thin

n-cubes are formed from the basic ones using negatives and compositions (see Definition 13.4.17).

In Proposition 13.4.18 we prove that the thin n-cubes are exactly the elements that fold to the trivial

one: i.e. they represent the ‘commutative n-cubes’, or, more precisely, the cubes with commutative

boundary, or shell. Hence we obtain that any composite of commutative cubes is commutative. This is

a key result for the proof of the Higher Homotopy van Kampen Theorem in Chapter 14.

The last Section (13.7) contains the algebraic Homotopy Addition Lemma (HAL) 13.7.1 and

some of its consequences, which will be used in Chapter 14. The HAL gives an expression for the

only non-trivial face of the folding of an n-shell (Σx = δΦx). Thus a commutative shell is one

having Σx = 0 and by Proposition 13.5.11 any commutative n-shell has a unique thin filler. The

main consequence is that the thin cubes satisfy Dakin’s axioms for T -complexes ([Dak83]):

• degenerate cubes are thin;

• any box has a unique thin filler (so ω-groupoids are Kan cubical sets in a strong way);

• if a thin cube has all faces but one thin, then this last face is also thin.
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This chapter involves a substantial amount of work, and checking of detail. The advantage of this

is that we can often apply the main result, the equivalence of categories, without using the details,

and even if the application seems simple, this may be deceptive, since powering it is a well crafted

machine. Sufficient detail is given that all proofs should be checkable by a graduate student.

13.1 Connections and compositions in cubical complexes

To generalise the category of double groupoids, it is important to notice that every double groupoid

has an underlying 2-truncated cubical set. Moreover they have some extra ‘degeneracies’ that we

have called connections. In this Section we explore some definitions generalising these concepts to

every dimension. We are adding extra structure to the cubical sets studied in Section 10.1.

A key example of a cubical set is the singular cubical set of a space KX (see Definition ??). But we

are interested in the filtered spaces whose definition and main properties were studied in Subsection

7.1.1, partly as these are a tool for studying spaces. There is a natural generalisation of the singular

cubical set of a space to the filtered case, which we call the filtered singular cubical set.

Definition 13.1.1 For any filtered space we denote by RnX∗ the set of filtered maps In∗ → X∗ where

In represents the standard n-cube with its standard cell structure as a product of n copies of I =

[0, 1].

The sets RnX∗ for n > 0, together with the face and degeneracy maps defined for the singular

cubical set of a space, form a cubical set called the filtered singular cubical complex of the filtered

space X∗, which we write RX∗. 2

There is every reason to have a pictorial image for n-cubes very similar to the one we used for

squares in Chapter 6 since it also useful here to state the laws of connections and compositions and

to prove some results.

Remark 13.1.2 There is just a small difference with the conventions we used in Chapter 6. Since

now we cannot picture all n dimensions, we have got to state which directions we are representing

in any 2-dimensional picture, e.g. sometimes it is useful to show just one direction condensing all

the orthogonal directions, as in:

∂−
i u u ∂+

i u 6=i

i

��
//

.

The degeneracies can be represented

εi(a) = a a = =
6=i

i

��
//

.

2

Singular cubical sets have a lot of extra structure arising from geometric maps on cubes, and

which we used in Part I for squares. We are going to give generalisations to all dimensions of

connections and compositions.

Let us first generalise the connections studied in Section 6.5; these connections should be thought

of as giving more forms in which an n-cube can be ‘degenerate’.
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Definition 13.1.3 We say that a cubical set K has connections if it has additional structure maps

Γi : Kn−1 → Kn (i = 1, 2, . . . ,n − 1)

(called connections) satisfying the relations:

∂αi Γj =

{
Γj−1∂

α
i (i < j)

Γj∂
α
i−1 (i > j+ 1),

(1)

∂−
j Γj = ∂−

j+1Γj = id,

∂+
j Γj = ∂+

j+1Γj = εj∂
+
j .

Γiεj =

{
εj−1Γi (i < j)

εjΓi−1 (i > j)
(2)

Γjεj = ε2j = εj+1εj,

ΓiΓj = Γj+1Γi (i 6 j) (3)

2

Remark 13.1.4 This definition generalises axioms CON1-2 of Definition 6.5.1 2

Example 13.1.5 1.- The singular cubical set KX of a space X is a cubical set with connections. The

connection Γi : Kn−1 → Kn is induced by the map γi : In → In−1 defined by

γi(t1, t2, . . . , tn) = (t1, t2, . . . , ti−1, max(ti, ti+1), ti+2, . . . , tn).

2.- The connections of the previous example also give a structure of cubical set with connections to

the filtered singular cubical set RX∗ of a filtered space X∗. 2

Remark 13.1.6 The connections are to be thought of as extra ‘degeneracies’. (A degenerate cube of

type εjx has a pair of opposite faces equal and all other faces degenerate. A cube of type Γix has a

pair of adjacent faces equal and all other faces of type Γjy or εjy).

We can get a 2-dimensional picture of the connection Γi representing only the two dimensions i

and i + 1

Γi(x) =

x

x i

i+1

��
//

.

2

The singular cubical set KX of a space has another extra piece of structure which we will exploit

in a substantial way: the possibility of “adding together” cubes in a direction if the appropriate faces

in this direction coincide. The multiple forms of this composition give a method of ‘algebraic inverse

to subdivision’. The precise definition of the basic compositions is as follows.

Definition 13.1.7 A cubical set with connections and compositions is a cubical set K with connections

in which each Kn has n partial compositions +i and n unary operations −i i = 1, 2, . . . ,n) satisfying

the following axioms.

If a,b ∈ Kn, then a+i b is defined if and only if ∂+
i a = ∂−

i b, and then for α = ±:

{
∂−
i (a +i b) = ∂−

i a

∂+
i (a +i b) = ∂+

i b
∂αi (a+j b) =

{
∂αi a+j−1 ∂

α
i b (i < j)

∂αi a+j ∂
α
i b (i > j),

(1.i)
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If a ∈ Kn, then −ia is defined and

{
∂−
i (−ia) = ∂+

i a

∂+
i (−ia) = ∂−

i a
∂αi (−ja) =

{
−j−1∂

α
i a (i < j)

−j∂
α
i a (i > j)

(1.ii)

εi(a+j b) =

{
εia+j+1 εib (i 6 j)

εia+j εib (i > j)
(2.i)

εi(−jb) =

{
−j+1εia (i 6 j)

−jεia (i > j)
(2.ii)

Γi(a+j b) =

{
Γia+j+1 Γib (i < j)

Γia+j Γib (i > j)
(3.i)

Γj(a+j b) = (Γja+j+1 εjb) +j (εj+1b+j+1 Γjb)

(This last equation is called the transport law.)

Γi(−ja) =

{
−j+1Γia (i < j)

−jΓia (i > j)
(3.ii)

We have for i 6= j and whenever both sides are defined:

(a+i b) +j (c+i d) = (a +j c) +i (b +j d) (4.i)

These relations are called the interchange laws. Further:

−i(a+j b) = (−ia) +j (−ib) and −i (−ja) = −j(−ia) if i 6= j (4.ii)

−j(a+j b) = (−jb) +j (−ja) and −j (−ja) = a.

2

Example 13.1.8 1.- It is easily verified that the singular cubical set KX of a space X satisfies these

axioms if +j, −j are defined by

(a +j b)(t1, t2, . . . , tn) =

{
a(t1, . . . , tj−1, 2tj, tj+1, . . . , tn) (tj 6 1

2
)

b(t1, . . . , tj−1, 2tj − 1, tj+1, . . . , tn) (tj > 1
2
)

whenever ∂+
j a = ∂−

j b; and

(−ja)(t1, t2, . . . , tn) = a(t1, . . . , tj−1, 1 − tj, tj+1, . . . , tn).

2.- The faces and degeneracies of the previous example also give a structure of cubical set with

connections and compositions to the filtered singular cubical set RX∗ of a filtered space X∗. 2

Remark 13.1.9 We have a 2-dimensional pictorial image of the composition +i given by

a b
6=i

i

��
//

.
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Also the interchange law can be stated in a matrix form. The diagram

[
a c

b d

]

i

j

��
//

will be used to indicate that both sides of the equation are defined and also to denote the unique

composite of the four elements. With this notation, the transport law can be stated

Γj(a+j b) =

[
Γja εjb

εj+1b Γjb

]

j

j+1

��
//

.

2

Remark 13.1.10 The interchange laws in Definition 13.1.7 and the associativity laws (when they

hold) have as consequence that we can define the composition of some complicated arrays of ele-

ments in any cubical set G with associative compositions.

A rectangular array of n-cubes is a family of n-cubes xpq ∈ Gn (1 6 p 6 P, 1 6 q 6 Q)

satisfying for some i 6= j the relations

∂+
i xpq = ∂−

i xp+1,q (1 6 p < P, 1 6 q 6 Q)

∂+
j xpq = ∂−

j xp,q+1 (1 6 p 6 P, 1 6 q < Q)

It is written (xpq){16p6P,16q6Q} or

(xpq) =




x11 x12 · · · x1Q

x21 x22 · · · x2Q

· · · · · · · · · · · ·

xP1 xP2 · · · xPQ


 i

j

��
//

An array (xpq) has a unique composite x = [xpq] ∈ Gn obtained by applying the operations +i, +j

in any well-formed fashion; for example

x = (x11 +i x21 +i · · · +i xP1) +j · · ·+j (x1Q +i x2Q +i · · · +i xPQ).

We write

[xpq] =




x11 x12 · · · x1Q

x21 x22 · · · x2Q

· · · · · · · · · · · ·

xP1 xP2 · · · xPQ


 i

j

��
//

The same is true for multi-dimensional arrays, and the most general situation can be described

as follows. Let (m) = (m1,m2, . . . ,mn) be a sequence of positive integers. A composable array in

Gn of type (m) is a family of cubes x(p) ∈ Gn, where (p) = (p1,p2, . . . ,pn), 1 6 pi 6mi, satisfying

the relations

∂+
i x(p) = ∂−

i x(p)′

i
for all i

where (p)′i = (p1,p2, . . . ,pi−1,pi + 1,pi+1, . . . ,pn). We denote the unique composite in Gn of such

an array by [x(p)]. The previous case is obtained by taking mk = 1 for k 6= i, j. We shall also

sometimes write [x1, x2, . . . , xr]j for the linear composite x1 +j x2 +j · · ·+j xr, and an unlabeled −x

in such a composite will always mean −jx. 2

We introduce some notation for multiple compositions in the singular cubical sets KX and RnX∗.
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Remark 13.1.11 Let (m) = (m1, . . . ,mn) be an n-tuple of positive integers and

φ(m) : In → [0,m1]× · · · × [0,mn]

be the map (x1, . . . , xn) 7→ (m1x1, . . . ,mnxn). Then a subdivision of type (m) of a map α : In → X

is a factorisation α = α ′ ◦ φ(m); its parts are the cubes α(r) where (r) = (r1, . . . , rn) is an n-tuple of

integers with 1 6 ri 6 mi, i = 1, . . . ,n, and where α(r) : In → X is given by

(x1, . . . , xn) 7→ α ′(x1 + r1 − 1, . . . , xn + rn − 1).

We then say that α is the composite of the cubes α(r) and write α = [α(r)]. The domain of α(r) is

then the set {(x1, . . . , xn) ∈ In : ri − 1 6 xi 6 ri, 1 6 i 6 n}.

The composite is in direction j if mj is the only mi > 1, and we then write α = [α1, . . . ,αmj]j;

the composite is in the directions j, k (j 6= k) if mj, mk are the only mi > 1, and we then write

α = [αrs]j,k

for r = 1, · · · ,mj and s = 1, · · · ,mk.

These definitions and notations are one of the keys to our use of cubical methods in the proof of

the Higher Homotopy van Kampen Theorem, since they allow for

‘algebraic inverses to subdivision’.

13.2 ω-groupoids

In this section we restrict to cubical sets with connections and compositions such that each compo-

sition gives a structure of groupoid. These objects give the category ω-Gpds of ω-groupoids which

generalises the category DGpds of double groupoids studied in Chapter 6.

Definition 13.2.1 An ω-groupoid G = {Gn}n>0 is a cubical set with connections and compositions

in which each +j gives a groupoid structure on Gn such that for x ∈ Gn the identity elements are

ηαj x = εj∂
α
j x

(the left identity when α = − and the right one when α = +) and the inverse is −jx.

A morphism of ω-groupoids is a morphism of cubical sets preserving all the connections and all

the groupoid operations. We denote the resulting category of ω-groupoids by ω-Gpds. 2

[This category is complete and cocomplete, as follows from general theorems of Freyd [Fre72],

Bastiani-Ehresmann [BE72] and Coates [Coa74]. Is it worth saying this? This remark is relevant

once one begins to look at limits and colimits, and consider free objects, and presentations. we

should put it there. ]

Remark 13.2.2 Of course the compositions of the cubical singular set KX of a space X are not

groupoid compositions, for the same reason as the usual composition of paths in a space do not form

a category. In dimension 1 it is easy to define the fundamental groupoid π1X by taking homotopy

classes rel end points.

For higher dimensions, there is a solution in the filtered case. A major result in Chapter 14 is

the definition of the fundamental ω-groupoid ρX∗ of the filtered space X∗. The applications of this

construction are a major theme of this book.
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Let us point out that in definingω-groupoids some of the laws in Definition 13.1.7 are redundant.

Proposition 13.2.3 If one assumes that each +j is a groupoid structure on Gn with identities ηαj x for

all x ∈ Gn and inverse −j, then one may omit parts (1.ii), (2.ii), (3.ii) and (4.ii) of all the laws in

Definition 13.1.7 since they follow from the first parts and the groupoid laws. One may also rewrite the

transport law (3.i) of the same definition in the form

Γj(a+j b) = (Γja+j+1 εjb) +j Γjb = (Γja+j εj+1b) +j+1 Γjb (3.i*)

and deduce that

Γj(−ja) = (−jΓja) −j+1 εja = (−j+1Γja) −j εj+1a. (3.ii*)

Definition 13.2.4 An ω-subgroupoid of G is a sub cubical set closed under all the connections and

all the operations +j, −j. Any set S of elements of G generates an ω-subgroupoid, namely, the

intersection of allω-subgroupoids containing S. Thisω-subgroupoid can be built from S by repeated

applications of all the structure maps and operations: first, it can be verified that the elements of

the form ε . . . εΓ . . . Γ∂ . . .∂x (x ∈ S) make up the subcomplex-with-connections K generated by S;

(here ∂ stands for various ∂αi , etc.) theω-subgroupoid generated by S then consists, as again can be

verified, of all composites of arrays of cubes of the form −i −j . . . −l y (y ∈ K).

We also use finite-dimensional versions of the above structures and categories.

Definition 13.2.5 An n-tuple groupoid is an n-truncated cubical set G = (Gn,Gn−1, . . . ,G0) with

connections, having m groupoid structures in dimension m (m 6 n), and satisfying all the laws

for an ω-groupoid in so far as they make sense. We denote by ω-Gpdsn the category of n-tuple

groupoids. (The categoryω-Gpds2 is another name for the category DGpds of double groupoids, the

prototype for ω-Gpds, which was introduced in [BS76a] and has been studied in Chapter 6). 2

13.3 The crossed complex associated to an ω-groupoid.

Analogously to Chapter 6, we consider for anω-groupoid G the elements of G having all faces trivial

but one. A main result is that these elements may be given the structure studied extensively in Part

II, namely that of crossed complex:

γG : · · · // γGn
δn // γGn−1

δn−1 // · · · · · ·
δ3 // γG2

δ2 // G1 ,

where δn = ∂−
1 . We shall prove in the next few Sections that crossed complexes are equivalent to

ω-groupoids. Moreover, this associated crossed complex is obtained in such a way that the crossed

complex γρX∗ associated to the fundamental ω-groupoid ρX∗ of the filtered space X∗ is naturally

isomorphic to ΠX∗, the fundamental crossed complex of a filtered space described in Subsection

7.1.3. The proof of this result is again delayed to the next Chapter (see Theorem 14.4.1).

Let us start by defining γGn as a set. The definition is motivated by the standard definition of

relative homotopy groups.

Definition 13.3.1 For any ω-groupoid G and for n > 2 and p ∈ G0, we define the set of n-cubes x

all of whose faces except ∂−
1 x are concentrated at p to be

γGn(p) = {x ∈ Gn : ∂αi x = (ε1)
n−1p for all (α, i) 6= (−, 1)}.
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We observe that for any p ∈ G0, such a concentrated r-cube (ε1)
rp is an identity for all composi-

tions +k of G since (ε1)
rp = εk(ε1)

r−1p for 1 6 k 6 r; accordingly, we will write 0 (sometimes 0p)

for such a cube (ε1)
rp (p ∈ G0). With this convention, we have the rules ∂αi 0 = 0, εi0 = 0, Γi0 = 0. 2

Remark 13.3.2 An element of γGn can be represented as

0 u 0

0

1

6=1

��
//

.

2

Now we define the operations on γGn(p) which them a family of groups (abelian for n > 3).

Proposition 13.3.3 Let n > 2 and p ∈ G0. Then each composition +j of Gn, for 2 6 j 6 n, induces a

group structure on γGn(p). For n > 3 this group structure is independent of j and is Abelian.

Proof The first part is easy to verify, while the last part is proved by applying the interchange law

to the composites [
x 0p

0p y

] [
0p x

y 0p

]

j

k

��
//

for x,y ∈ γGn(p) and 2 6 j < k 6 n. 2

Definition 13.3.4 We write x + y for x +j y if x,y ∈ γGn(p) and 2 6 j 6 n, and the zero element

for this addition is 0p. If n = 1 we also write + for the groupoid operation +1 on γG1 = G1.

The face map ∂−
1 : Gn → Gn−1 restricts to

δn : γGn(p)→ γGn−1(p).

Let n > 2,p,q ∈ G0. We define the action of a ∈ G1(p,q) on x ∈ γGn(p) by

xa = [−εn−1
1 a, x, εn−1

1 a]n =

−a ∂−
1 x

x

a

−a 0 a

6=n

n

��
//

.

Also, if x ∈ G1(p), we define xa = −1 + x+ a. 2

We now check that these definitions imply γG is a crossed complex. We have seen that γGn(p)

is a group (abelian for n > 3) where G1(p) = G1(p,p). It is also immediate that:

Proposition 13.3.5 The maps δn are group homomorphisms and satisfy δ2 = 0.

We now verify the main properties of the action.

Proposition 13.3.6 Let n > 2,p,q ∈ G0. For any x ∈ γGn(p) and a ∈ G1(p,q) the element xa

defined above lies in γGn(q), and the rule (x,a) 7→ xa defines an action of the groupoid G1 on the

groupoid γGn. This action is preserved by the map δ : γGn(p)→ γGn−1(p) for n > 2.
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Proof We follow in essence the proof of Proposition 6.2.3, but use arrays rather than pictures.

First, note that, for 1 6 i < n, ∂αi (xa) = [−εn−2
1 a, ∂αi x, ε

n−2
1 a]n−1, while ∂αn(xa) = εn−1∂+

1 a =

0q. From this it follows that xa ∈ γGn(q) and δ(xa) = (δx)a.

That xa+b = (xa)b follows from the equation

εn−1
1 (a + b) = [εn−1

1 a, εn−1
1 b]n.

2

We next show that the action by elements of δ2(γG2) satisfies the crossed complex conditions.

Proposition 13.3.7 Let y ∈ γG2(p) and a = δy. If x ∈ γGn(p), then xa = x for n > 3 and

xa = −y+ x+ y for n = 2.

Proof If a = δy and n > 2, the two ways of composing

[
−nε

n−1
1 a x εn−1

1 a

−nε
n−2
1 y 0p εn−2

1 y

]

n−1

n

��
//

give xa = [−nε
n−2
1 y, x, εn−2

1 y]n, which is the result we require when n = 2. For n > 3 we may also

compose [
−n −n−1 ε

n−2
1 y 0p −n−1ε

n−2
1 y

−nε
n−2
1 y x εn−2

1 y

]

n−1

n

��
//

in two ways to obtain, by what we have just proved, xa = x. 2

Putting together the above properties we obtain:

Theorem 13.3.8 If G is an ω–groupoid then γG is a crossed complex, and this defines a functor

γ : ω-Gpds→ Crs.

By restriction, we also have a functor γ : ω-Gpdsm → Crsm.

We shall show in Section 13.6 that the ω-groupoid G can be reconstructed from its associated

crossed complex γG and hence that γ : ω-Gpds→ Crs is an equivalence of categories.

On our way to prove this result we are going to use another description of the action of G1

on γGn, as in the next Proposition. The proof gives the first time in this section that we use the

connections.

Proposition 13.3.9 The action of G1 on γGn defined in Lemma 13.3.6 is also given by

xa = [−ε
j−1
1 ε

n−j
2 a, x, ε

j−1
1 ε

n−j
2 a]j

for x ∈ γGn(p), a ∈ G1(p,q) and any j with 2 6 j 6 n.

Proof Let 2 6 j 6 n, and write bj = ε
j−1
1 ε

n−j
2 a = εnεn−1 . . . ̂ . . . ε1a ∈ Gn. Then bj is an identity

for all the compositions of Gn except +j. Also ∂+
j (−jbj) = ∂−

j (bj) = 0 and

∂αj+1(bj) = ∂αj (bj+1) = εn−1εn−2 . . . ̂ . . . ε1a = c,

say. Thus, if j > 2, we may form the composite

y =




−j −j+1 Γjc −jbj −jΓjc

−j+1bj+1 x bj+1

−j+1Γjc bj Γjc



j

j+1

��
//
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Since bj+1 is an identity for +j, the composite of the last column is εj∂
+
j Γjc = 0p, and similarly the

composites of the first column and of the first and last rows are 0p. Hence, computing y by rows

and by columns, we have

[−bj+1, x, bj+1]j+1 = [−bj, x, bj]j (j > 2).

It follows that, for j > 2, [−bj, x, bj]j = [−bn, x, bn]n, which is the definition of xa. 2

13.4 Folding operations

As explained in the Introduction to this Chapter we have to take a detour to define the notion of a

‘commutative n-cube’. Instead of trying to make sense of all possible compositions of the (n − 1)-

faces, we just fold all faces into one.

First we introduce a ‘folding in the i-th direction’ which is analogous to the 2-dimensional case

with i = 2. The composition of the foldings in all directions gives an operation Φ on cubes in an

ω-groupoid G (or in an n-tuple groupoid) which has the effect of folding all faces of x ∈ Gn onto

the face ∂−
1 Φx. The resulting face can be seen as the ‘ordered sum of the faces of x’. This operation

Φ transforms x into an element of the associated crossed complex γG.

Later in this Section we study the behaviour of the foldings with respect to the operators of an

ω-groupoid, namely faces, degeneracies, connections and composition.

We end the Section by proving that the thin elements (i.e. the composites of an array of de-

generacies and connections) are just those folding to the trivial cube, i.e. those having ‘commuting

boundary’.

We emphasise again that these results and techniques, though with a geometric motivation, are

purely algebraic, that is we use only the operations and laws that we have given. This is essential

for the theory and the geometric applications.

Definition 13.4.1 In any n-tuple groupoid G, we define operations

Φj : Gm → Gm,

for any 1 6 j < m 6 n, by the formula

Φjx = [εj∂
+
j x, −Γj∂

−
j+1x, x, Γj∂

+
j+1x]j+1.

The map Φj is called the folding in the j-th direction. 2

It is easy to check that the composite Φjx is defined. Writing a,b, c,d for the relevant faces of x,

x

c

b d

a

j

j+1

��
//

the effect of Φj can be seen from the diagram

Φjx =

−ja −jb

xb

c

d

d

−ja a

j

j+1

��
//
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in which unlabeled faces are appropriate degenerate cubes.

Next we study the various relations for the compositions of operations Φj with the operators of

an n-tuple groupoid (i.e. faces, degeneracies, connections, compositions and inverses). Recall that

to simplify the notation we have written ηαj x for εj∂
α
j x, the left (α = 0) or right (α = 1) identity for

x with respect to +j.

We begin by the compositions of foldings and faces.

Proposition 13.4.2 The faces of the folding in the j-th direction are given by:

∂αi Φj =

{
Φj−1∂

α
i (i < j),

Φj∂
α
i (i > j+ 1),

(i)

∂−
j Φjx = [−∂+

j x, −∂−
j+1x, ∂

−
j x, ∂

+
j+1x]j. (ii)

∂αj+1Φj = ∂+
j Φj = η+

j ∂
+
j = η+

j ∂
+
j+1. (iii)

Proof These are proved by using the laws for faces of degeneracies, connections and compositions

contained in the Remark 10.1.5 and Definitions 13.1.3 and 13.1.7. We shall prove them using the

array form.

(i) If i < j then

∂αi Φjx = [−∂αi η
+
j x, −∂αi Γj∂

−
j+1x, ∂

α
i x, ∂

α
i Γj∂

+
j+1x]j

= [−η+
j−1∂

α
i x, −Γj−1∂

−
j ∂
α
i x, ∂

α
i x, Γj−1∂

+
j ∂
α
i x]j

= Φj−1∂
α
i x.

The case i > j+ 1 is similar.

(ii) This is proved by a routine argument of the same kind and we will omit all such routine proofs

from now on.

(iii) As before,

∂+
j Φjx = [−∂+

j η
+
j x, −∂+

j Γj∂
−
j+1x, ∂

+
j x, ∂

+
j Γj∂

+
j+1x]j

= [−∂+
j x, η

+
j ∂

−
j+1x, ∂

+
j x, η

+
j ∂

+
j+1x]j.

But η+
j ∂

−
j+1x and η+

j ∂
+
j+1x are identities for +j, so

∂+
j Φjx = [−∂+

j x, ∂
+
j x]j = η+

j ∂
+
j x.

The other cases are easily verified. 2

From this proposition we deduce immediately a formula which we are going to use later in this

Section.

Corollary 13.4.3 With the notation of the above proposition

∂αj+1ΦjΦj+1 · · ·Φn−1 = ∂+
j ΦjΦj+1 · · ·Φn−1 = η+

j η
+
j+1 · · ·η

+
n−1∂

+
n

Proof This follows from (iii). 2

Now we give the relation with degeneracies.
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Proposition 13.4.4 The foldings in the j-th direction behave on degeneracy operators as follows:

{
Φjεi = εiΦj−1, Φjη

α
i = ηαi Φj if i < j;

Φjεi = εiΦj, Φjη
α
i = ηαi Φj if i > j+ 1.

(i)

Φjεj = η+
j+1εj = η+

j εj+1, Φjη
α
j = η+

j+1η
α
j . (ii)

Φjεj+1 = η+
j+1εj = η+

j εj+1, Φjη
α
j+1 = η+

j η
α
j+1. (iii)

Proof (i) and (ii) are routine; the parts about Φjη
α
j involve also the use of the previous Proposi-

tion.

(iii)

Φjεj+1x = [−η+
j εj+1x, −Γjx, εj+1x, Γjx]j+1

= [−η+
j εj+1x]j+1 = [−η+

j+1εjx]j+1

= η+
j+1εjx.

The other equations follow easily. 2

From this proposition we deduce immediately another formula that we use later in this Section.

Corollary 13.4.5 With the notation of the above proposition

Φ1Φ2 · · ·Φj−2η
+
j−1 = η+

1 η
+
2 · · ·η

+
j−1, Φ1Φ2 · · ·Φj−1εj = η+

1 η
+
2 · · ·η

+
j−1εj.

Proof This follows from (iii) in the preceding proposition. 2

Now we give the relations with connections

Proposition 13.4.6 The foldings in the j-th direction behave on connection operators as follows:

ΦjΓi =

{
ΓiΦj−1 (i < j),

ΓiΦj (i > j + 1).
(i)

ΦjΓj = εjη
+
j = εj+1η

+
j . (ii)

ΦjΓj+1x = [−Γj+1η
+
j x, −Γjx, Γj+1x, Γjη

+
j+1x]j+1. (iii)

Proof (i) and (iii) are routine. For (ii),

ΦjΓjx = [−η+
j Γjx, −Γj∂

−
j+1Γjx, Γjx, vΓj∂

+
j+1Γjx]j+1

= [−εjη
+
j x, −Γjx, Γjx, Γjη

+
j x]j+1 by 13.1.3

= [−εj+1η
+
j x, εj+1η

+
j x]j+1 by 10.1.5 and 13.1.3

= εj+1η
+
j x = εjη

+
j x.

2

We now define for n > 2 the folding operation

Φ : Gn → γGn

by folding in each direction in decreasing order.

Definition 13.4.7 On G0 and G1 we define Φ as the identity map. We now define for n > 2

Φx = Φ1Φ2 · · ·Φn−1x

for any x ∈ Gn.
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Let us see that the folding has the image we want, i.e. that Φx has all faces but one trivial. To

do this, we introduce some notation.

Definition 13.4.8 For x ∈ Gn, we call (∂+
1 )nx the base-point of x and denote it by βx.

Proposition 13.4.9 If (α, j) 6= (0, 1) then ∂αj Φ = εn−1
1 β. Hence, for any x ∈ G,Φx lies in the associ-

ated crossed complex γGn.

Proof If 2 6 j 6 n then

∂αj Φ = Φ1Φ2 · · ·Φj−2∂
α
j Φj−1 · · ·Φn−1 by 13.4.2 (i)

= Φ1Φ2 · · ·Φj−2η
+
j−1 · · ·η

+
n−1∂

+
n by 13.4.3

= η+
1 η

+
2 · · ·η

+
n−1∂

+
n by 13.4.5

= εn−1
1 (∂+

1 )n by 10.1.5.

If j = 1 and n > 2, then α = 1 and the equation follows from Proposition 13.4.2 (iv) and Remark

10.1.5. The case n = 1 is trivial. Thus, for x ∈ Gn, we have ∂αj Φx = 0p for (α, j) 6= (0, 1), where

p = βx. This shows that Φx ∈ γGn(p). 2

This gives the following important characterisation of the elements in γG as those invariant

under the folding.

Corollary 13.4.10 If x ∈ G, then x is in γG if and only if Φx = x. In particular Φ2y = Φy for all y

in G.

Proof It is clear that if x ∈ Cn(p) = (γGn)(p), then Definition 13.4.1 implies Φjx = x. This

implies Φx = x. 2

To end the study of the behaviour of the folding map with respect to the operators of a cubical

set with connections, let us record the effect the folding map has on degeneracies and connections.

Proposition 13.4.11 If n > 2, then on Gn−1,

Φεj = εn1 β and ΦΓj = εn1 β.

Proof Making computations

Φ1Φ2 · · ·Φn−1εj = Φ1Φ2 · · ·ΦjεjΦjΦj+1 · · ·Φn−2 by 13.4.4(i)

= Φ1Φ2 · · ·Φj−1η
+
j+1εjΦj · · ·Φn−2 by 13.4.4(ii)

= Φ1Φ2 · · ·Φj−1εjεj∂
+
j Φj · · ·Φn−2 by 10.1.5

= η+
1 η

+
2 · · ·η

+
j−1εjεjη

+
j · · ·η

+
n−2∂

+
n−1 by 13.4.3 and 13.4.5

= εn1 β by 10.1.5.

and

Φ1Φ2 · · ·Φn−1Γj = Φ1Φ2 · · ·ΦjΓjΦjΦj+1 · · ·Φn−2 by 13.4.6(i)

= Φ1Φ2 · · ·Φj−1εjη
+
j Φj · · ·Φn−2 by 13.4.6(ii)

= εn1 β as above.

2
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We now study the behaviour of the folding map Φ with respect to composition and inverses. The

rules are easy to state (see Proposition 13.4.14) but their proof involves more complicated rules for

the partial foldings Φj.

Proposition 13.4.12 We have the following relations of Φj with the compositions and inverses:

Φj(x+i y) = Φjx+i Φjy

Φj(−ix) = −iΦjx

}

if i 6= j, j+ 1. (i)

Φj(x+j y) = [Φjy, −εj∂
+
j+1y,Φjx, εj∂

+
j+1y]j+1. (ii)

Φj(x+j+1 y) = [−η+
j y,Φjx,η

+
j y,Φjy]j+1. (iii)

Proof (i) This is routine, using the interchange law for the directions i and j+ 1.

(ii) Let the relevant faces of x and y be given by

x

u

a b

v

y

v

c d

w

j

j+1

��
//

Then

Φj(x +j y) = [−εjw, −Γj(a+j c), (x +j y), Γj(b+j d)]j+1.

Using the transport law, this can be written as the composite

A =

[
−εjw −εjc −Γja x Γjb εjd

−εjw −Γjc −εj+1c y εj+1d Γjd

]

j

j+1

��
//

where − stands for −j+1. Consider the composite

B =

[
−εjw −εjc εjν εjd −εjd −εjv −Γja x Γjb εjd

−εjw −Γjc y Γjd −εjd −εjv −εjη
+
j a εjv εjη

+
j b εjd

]

j

j+1

��
//

By composing the columns first, we see that B is equal to the right hand side of (ii). However, the

composites of the rows of B are the same as the composites of the rows of A, since εjη
+
j b = εj+1η

+
j b

is an identity of the horizontal composition as well as the vertical one. Hence A = B.

(iii) This is routine. 2

To state the behaviour of the folding map Φ with respect to compositions and inverses, we need

some extra notation.

Definition 13.4.13 For x ∈ Gn, the edges of x terminating at the base point βx = (∂+
1 )nx will have

special importance and we denote them by

uix = ∂+
1 ∂

+
2 · · · ı̂ · · ·∂

+
nx

for all 1 6 i 6 n.

Proposition 13.4.14 Let n > 2 and x,y, z ∈ Gn with ∂+
i x = ∂−

i y. Then, in γGn :

Φ(x +i y) =

{
Φy+ (Φx)u1y if n = 2 and i = 1,

(Φx)uiy +Φy otherwise;
(i)

Φ(−iz) = −(Φz)−uiz. (ii)
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Proof (i) First consider the case i = n > 2. We have, by Proposition 13.4.12,

Φ(x +n y) = Φ1Φ2 · · ·Φn−2[−η
+
n−1y, Φn−1x, η

+
n−1y, Φn−1y]n

= [−u, Φx, u, Φy]n

where

u = Φ1Φ2 · · ·Φn−2η
+
n−1y

= η+
1 η

+
2 · · ·η

+
n−1y by 13.4.5

= εn−1
1 uny by 10.1.5.

Hence Φ(x +n y) = (Φx)uny +Φy in this case.

In the remaining cases we have 1 6 i < n, so we may put

X = Φi+1Φi+2 · · ·Φn−1x,

Y = Φi+1Φi+2 · · ·Φn−1y,

and then

Φ(x+i y) = Φ1Φ2 · · ·Φi(X+i Y) by 13.4.12 (i)

= Φ1 · · ·Φi−1[ΦiY, −εi∂
+
i+1Y, ΦiX, εi∂

+
i+1Y]i+1 by 13.4.12 (ii)

= [Φy, −V , Φx, V ]i+1 by 13.4.12 (i) ,

where

V = Φ1 · · ·Φi−1εi∂
+
i+1Φi+1 · · ·Φn−1y

= η+
1 η

+
2 · · ·η

+
i−1εiη

+
i+1 · · ·η

+
n−1∂

+
ny by 13.4.3 and 13.4.5

= (ε1)
i(ε2)

n−i−1uiy by 10.1.5.

Hence, by Lemma 13.3.9, Φ(x +i y) = Φy+ (Φx)uiy in this case. (Note that i + 1 > 2, so addition

in direction i + 1 is addition in γGn). If n = 2 and i = 1, this is the required formula. Otherwise,

we have n > 3, so γGn is commutative and the formula can be rewritten in the required form.

(ii) Put x = −ix,y = z in (i) and note that, by 13.4.11, Φ((−iz) +i z) = Φεi∂
+
i z = εn1 βz = 0 in

γGn. 2

The folding map is an involution. More precisely

Proposition 13.4.15 For any 1 6 j 6 n − 1, we have

ΦΦj = Φ : Gn → Gn.

Proof By definition, for x ∈ Gn,

Φjx = [−εj∂
+
j x, −Γj∂

−
j+1x, x, Γj∂

+
j+1x]j+1

= [a, b, x, c]j+1, say.

By Proposition 13.4.11 and 13.4.14(ii), Φa, Φb and Φc are all zero in γGn, so Proposition 13.4.14

gives

ΦΦjx = (Φx)u,
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where

u = uj+1c

= ∂+
1 · · ·∂

+
j ∂

+
j+2 · · ·∂

+
nΓj∂

+
j+1x by definition of uj+1

= ε1∂
+
1 ∂

+
2 · · ·∂

+
nx by 10.1.5 and 13.1.3.

Thus ΦΦjx = (Φx)ε1βx = Φx. 2

Corollary 13.4.16 The folding operation Φ is idempotent, i.e. for any n, we have

ΦΦ = Φ : Gn → Gn.

We end this Section with the definition of the thin n-cubes and their characterisation as those

n-cubes that fold to the trivial cube; thus, in particular, a thin cube has commutative boundary.

Definition 13.4.17 An element x ∈ Gn, for n > 1, is thin if it can be written as a composite of an

array x = [x(r)], where each entry is either of the form εiy or of the form −i −j · · · −l Γmy. 2

The collection of all thin elements of G is clearly closed under all the ω-groupoid operations

except possibly the face operations. It is useful to think of the thin elements as the most general

kind of ‘degenerate’ cubes. They are important in the topological applications and we establish their

main properties in Section 13.7. For the present we prove only the following characterisation.

Proposition 13.4.18 An element x ∈ Gn, for n > 1, is thin if and only if Φx = 0.

Proof We have shown that Φεjy = 0,ΦΓjy = 0 for all y ∈ Gn−1 (see Proposition 13.4.11). It

follows from Proposition 13.4.14 that Φx = 0 whenever x is thin. To see the converse, we recall the

definition

Φjx = [−εj∂
+
j x, −Γj∂

−
j+1x, x, Γj∂

+
j+1x]j+1

which can be rewritten as

x = [Γj∂
−
j+1x, εj∂

+
j x, Φjx, −Γj∂

+
j+1x]j+1.

These two equations show that Φjx is thin if and only if x is thin. Hence Φx is thin and only if x is

thin. In particular, if Φx = 0 (i.e. Φx = εn1 βx ) then Φx is thin, so x is also thin. 2

13.5 n-shells: coskeleton and skeleton

To work inductively on anω-groupoid, we have at each step n to restrict our attention to dimensions

6 n and the minimal part accompanying it. To this end, it is useful to introduce the n-skeleton of

an ω-groupoid as the ω-subgroupoid generated by the part of dimensions 6 n. Let us make the

construction a bit more categorically.

Definition 13.5.1 If we ignore the elements of dimension higher than n in anω-groupoid we obtain

an n-tuple groupoid. This gives the n-truncation functor

trn : ω-Gpds→ ω-Gpdsn.

2
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We shall show that trn has both a right adjoint coskn : ω-Gpdsn → ω-Gpds, the n-coskeleton

functor (Definition 13.5.6) and a left adjoint skn : ω-Gpdsn → ω-Gpds, the n-skeleton functor

(Definition 13.5.15).

We will see that both can be described in terms of ‘shells’, i.e. families of r-cubes that fit together

as the faces of an (r + 1)-cube do. A trivial example is the total boundary of an n-cube.

For any n-tuple groupoid G = (Gn,Gn−1, · · · ,G0) we will construct an ω-groupoid cosknG

adding ‘shells’ in all dimensions > n. To check that cosknG is an ω-groupoid we need to explain

how to apply faces, degeneracies and connections to these shells. As consequence, we describe the

result of applying the folding operations Φi and Φ to these shells. In particular, we prove that Φ

commutes with the total boundary.

All these results may be used to prove the existence and uniqueness of fillers for n-shells. Asso-

ciated to any n-cube x ∈ Gn we have its total boundary ∂x and its folding Φx satisfying ∂Φx = Φx.

Conversely, for any x ∈ �Gn−1 and ξ ∈ γGn(βx) and n > 2 such that δξ = δΦx exists x ∈ Gn with

∂x = x and Φx = ξ is. This x is unique and it is denoted x = 〈x, ξ〉. This property and notation

allows the reconstruction of G from γG.

We finish the Section by constructing skn the n-skeleton functor as an ω-subgroupoid of coskn,

and proving that it is the left adjoint of trn.

Definition 13.5.2 In any cubical set K, an n-shell is a family x = (xαi ) of n-cubes (i = 1, 2, · · · ,n +

1;α = ±) satisfying

∂
β
j x
α
i = ∂αi−1x

β
j for 1 6 j < i 6 n + 1 and α,β = ±.

We denote by �Kn the set of all n-shells of K. 2

Example 13.5.3 Notice that the faces {∂αj y} for any (n + 1)-cube y form an n-shell ∂y that we call

its total boundary. It could be said that an n-shell is just a collection of n-cubes that is a candidate to

be the total boundary of an (n+ 1)-cube. If this (n+ 1)-cube exists it is a called ‘filler’ of the n-shell.

2

Remark 13.5.4 We shall usually write shells in boldface.

Now, to any n-truncated cubical set we associate an (n + 1)-truncated cubical set by adding the

n-shells.

Definition 13.5.5 Let K = (Kn,Kn−1, . . . ,K0) be an n-truncated cubical set.

To give to K ′ = (�Kn,Kn,Kn−1, . . . ,K0) the structure of (n + 1)-truncated cubical set we need

only to define faces and degeneracies involving the top dimension.

Thus the faces

∂αi : �Kn → Kn

are given by ∂αi x = xαi for any x ∈ �Kn, and, the degeneracies

εj : Kn → �Kn

are given by εjy = z, for any y ∈ Kn, where

zαi =






εj−1∂
α
i y (i < j),

εj∂
α
i−1y (i > j),

y (i = j).

(i)
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Clearly the cubical rules of 10.1.5 are satisfied.

If K has also connections, we can define connections on K ′ by:

Γj : Kn → �Kn

given by Γjy = w, where

wαi =

{
Γj−1∂

α
i y (i < j), w−

j = w−
j+1 = y,

Γj∂
α
i−1y (i > j+ 1); w+

j = w+
j+1 = η+

j y.
(ii)

Again this is the Definition needed for the connections to satisfy the relations in Definition 13.1.3.

In this way K ′ becomes an (n+ 1)-truncated cubical set with connections.

If K has compositions, we can also define compositions in �Kn as follows. Let x, y ∈ �Kn with

y−
j = x+

j . Define x +j y = t and −jx = s, where (cf. 13.1.7)

{
t−j = x−

j ,

t+j = y+
j ,

tαi =

{
xαi +j−1 y

α
i (i < j),

xαi +j y
α
i (i > j),

(iii)
{
s−j = x+

j ,

s+j = x−
j ,

sαi =

{
−j−1x

α
i (i < j),

−jx
α
i (i > j).

Then K ′ becomes an (n + 1)-truncated cubical set with connections and compositions.

Moreover, if K is an n-tuple groupoid, then K ′ is an (n + 1)-tuple groupoid. The verification of

these facts is a tedious but entirely routine computation. 2

The coskeleton functor can now be obtained by iteration of this construction.

Definition 13.5.6 For any n-tuple groupoid G = (Gn,Gn−1, · · · ,G0) we define its n-coskeleton by

(cosknG)m =

{
Gm for m 6 n,

�m−nGn for m > n

with operations defined as above. 2

Proposition 13.5.7 IfG = (Gn,Gn−1, · · · ,G0) is an n-tuple groupoid, then cosknG is anω-groupoid.

This construction gives a functor

coskn : ω-Gpdsn → ω-Gpds

which is right adjoint to trn.

Proof By definition, it is clear that cosknG is an ω-groupoid.

If H is any ω-groupoid and θk : Hk → Gk are defined for k 6 n so as to form a morphism of

n-tuple groupoids from trnH to G, then there is a unique extension to a morphism of ω-groupoids

θ : H→ cosknG defined inductively by

θmy = z, where zαi = θm−1∂
α
i y (m > n).

This shows that coskn is right adjoint to trn. 2
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Proposition 13.5.8 If G = (Gn,Gn−1, · · · ,G0) is an n-tuple groupoid, then all elements of cosknG

in dimension n+ 2 and higher are thin.

Proof To prove the result it is enough to show that, for any ω-groupoid G, elements of �2Gr are

always thin, or equivalently, by Proposition 13.4.18, that their foldings are trivial.

Let z ∈ � 2Gr and w = Φz. Then w ∈ � 2Gr and all its (r + 1)-dimensional faces ∂αi w are 0p,

where p = βz, except possibly ∂−
1 w. Let us check that this one is also 0p.

The condition that all (r + 1)-faces but one are 0p implies that all the r-dimensional faces of w

are 0p. Hence ∂−
1 w is an r-shell all of whose faces are 0p. By definition, therefore ∂−

1 w = 0p.

Hence w itself is an (r + 1)-shell all of whose faces are 0p and therefore w = 0p. By Proposition

13.4.18, z is thin. 2

We next see that the total boundary commutes with the folding.

Proposition 13.5.9 For any element x of dimension at least two in any m-tuple groupoid

Φ∂x = ∂Φx

Proof Given an n-shell y = (yαi ) ∈ �Gn, we obtain n-shells Φiy and

Φy = Φ1Φ2 . . .Φn−1y.

By Proposition 13.4.9, all faces of Φy except ∂−
1 Φy are 0p, where p = βy = (∂+

1 )ny+
1 .

If H is a given ω-groupoid, then adjointness gives a canonical morphism θ : H → CosknH =

coskn(trnH), with θn+1x = ∂x for x ∈ Hn+1. Since θ preserves the folding operations we have the

result. 2

Remark 13.5.10 Note that by Proposition 13.4.2 the faces of Φjx depend only on the faces of x,

and this gives a recipe for Φj∂x.

We can now prove that an n-shell x ∈ �Gn−1 has a unique filler x ∈ Gn for each element ξ ∈

γGn(p) having the same boundary as the folding Φx. This is the key to the inductive reconstruction

of an ω-groupoid G from its associated crossed complex γG. It essentially arises from the fact that

the folding operations are invertible, given complete information on the needed boundary.

Proposition 13.5.11 Let G be an ω-groupoid, and let γG be its associated crossed complex. Let x ∈

�Gn−1 and ξ ∈ γGn(p), where p = βx and n > 2. Then a necessary and sufficient condition for the

existence of x ∈ Gn such that ∂x = x and Φx = ξ is that δξ = δΦx. Furthermore, if x exists, it is

unique and it is denoted x = 〈x, ξ〉.

Proof Clearly the condition is necessary, since if ∂x = x and Φx = ξ, then ∂Φx = Φ∂x = Φx, by

the previous Proposition, so δΦx = (Φx)−
1 = ∂−

1 Φx = δξ.

Suppose, conversely, that we are given x and ξ with δξ = δΦx, i.e. ∂−
1 ξ = (Φx)−

1 . Since all other

faces of ξ and Φx are concentrated at p, this condition is equivalent to ∂ξ = Φx, an equation in

�Gn−1. We have to show that there is a unique x ∈ Gn such that ∂x = x and Φx = ξ.

Since Φx = Φ1Φ2 . . .Φn−1x, by induction, it is enough to show that if y ∈ Gn and ∂y = Φiz for

some 1 6 i 6 n − 1 and z ∈ �Gn−1, then there is a unique z ∈ Gn with ∂z = z and Φiz = y. But

this is clear since the equation

[−εi∂
+
i z, −Γi∂

−
i+1z, z, Γi∂

+
i+1z]i+1 = y
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becomes

[−εiz
+
i , −Γiz

−
i+1, z, Γiz

+
i+1]i+1 = y

under the stated conditions, and therefore has a unique solution for z in terms of y and z. It is easy

to check that this z has boundary z. 2

An easy consequence of this and Proposition 13.4.18 is a characterisation of when an n-shell has

a thin filler, plus the fact that this filler is unique.

Corollary 13.5.12 A thin element of an ω-groupoid is determined by its faces. Given a shell x, there is

a thin element t with ∂t = x if and only if δΦx = 0.

Proof Put ξ = 0 in Proposition 13.5.11 and use that t is thin if and only if Φt = 0 (Proposition

13.4.18). 2

Definition 13.5.13 A shell x will be called a commuting shell if its folding is trivial, i.e. if δΦx = 0.

This can be interpreted as ‘the sum of its folded faces is 0’. By the previous corollary, a commuting

shell has a thin filler and that filler is unique.

Another consequence of Corollary 13.5.12 is that any ω-groupoid G can be recovered from its

associated crossed complex γG.

Proposition 13.5.14 Let G be an ω-groupoid. Then γG generates G as ω-groupoid.

Proof Let H be any ω-subgroupoid of G containing γG. Then γH = γG by definition. We show

inductively that Hn = Gn.

This is true for n = 0, 1 since γG0 = G0,γG1 = G1.

Suppose x ∈ Gn(n > 2). Then Φx ∈ γGn and, by induction hypothesis, ∂x ∈ �Hn−1. By

Proposition 13.5.11, there is a unique y ∈ Hn with ∂y = ∂x and Φy = Φx. But x is the unique

element of Gn with this property, so Hn = Gn. 2

We shall finish the section by constructing skn the n-skeleton functor as a substructure of coskn

and proving that it is the left adjoint of trn.

Definition 13.5.15 Given an n-tuple groupoid G = (Gn,Gn−1, . . . ,G0), the n-skeleton sknG of G

is the ω-subgroupoid of cosknG generated by G. 2

There is a characterisation of skn in terms of commuting shells.

Proposition 13.5.16 Given an n-tuple groupoid G = (Gn,Gn−1, . . . ,G0), the n-skeleton

sknG = S

where S is defined by

Sm =

{
Gm if m 6 n,

{x ∈ �Sm−1 | δΦx = 0} if m > n.

i.e. for m > n, sknGm consists entirely of thin elements, namely, the commuting shells. Moreover, for

m > n+ 2, cosknGm = sknGm, i.e. all shells in �Sm−1 are commuting shells.

Proof It is clear that S ⊆ cosknG. By Proposition 13.5.8 all elements of Sm are thin for m > n.

Clearly, S is closed under face maps, degeneracy maps and connections (since εjy and Γjy are

always thin).
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Also, by induction on m, Sm is closed under +i, −i(1 6 i 6 m); for if x, y ∈ Sm(m > n) and

x+iy is defined, then x+iy has faces in Sm−1 (by induction hypothesis) and δΦ(x+iy) = 0 because

composites of thin elements in cosknG are thin. Thus x +i y ∈ Sm, and similarly −ix ∈ Sm. Hence

S is an ω-subgroupoid of cosknG.

By Corollary 13.5.12, any ω-subgroupoid of cosknG containing Sm−1 (form > n) must contain

Sm, so S is generated by G and S = sknG.

To prove the last statement, if m > n+ 2, all shells in cosknGm = �m−nGk are thin by Proposi-

tion 13.5.8 and therefore satisfy δΦx = 0 by Corollary 13.5.12 2

Proposition 13.5.17 The functor skn : ω-Gpdsn → ω-Gpds is left adjoint to trn.

Proof If H is any ω-groupoid and ψ : G → trnH is a morphism of n-tuple groupoids, then ψ

extends uniquely to a morphism of ω-groupoids ψ : sknG→ H inductively.

For m > n, consider a commuting shell x ∈ � sknGm−1. Since the elements ψm−1x
α
i form

a commuting shell in H, by Corollary 13.5.12 exists t ∈ Hm thin such that ∂αi t = ψm−1x
α
i for

1 6 i 6 m and α = 0, 1. Then, we define ψmx = t. 2

Given anω-groupoid G, we define SknG = skn(trnG) and call this, by abuse of language, the n-

Skeleton of G. There is a unique morphism σ : SknG→ G of ω-groupoids (the adjunction) which is

the identity in dimensions 0, 1, 2, . . . ,n. Let us prove that the image is what we would call intuitively

the n-skeleton of G, i.e. the ω-groupoid of G generated by Gn.

Proposition 13.5.18 The adjunction σ : SknG → G is an injection and identifies SknG with the

ω-subgroupoid of G generated by Gn.

Proof For m = 0, 1, 2, . . . ,n, σm : Gm → Gm is the identity map.

Then, for m > n, (SknG)m is the set of commuting shells in �m−1(Sk
nG), by Proposition

13.5.16. Suppose that, for some m > n, σm−1 : (SknG)m−1 → Gm−1 is an injection. For any

x ∈ (SknG)m, the elements σm−1x
α
i form a commuting shell y in �Gm−1 and σmx is the unique

thin element t of Gm with ∂t = y. Thus xαi = σ−1
m−1y

α
i = σ−1

m−1∂
α
i t is uniquely determined by t for

all (i,α) and therefore σm is an injection. This shows, inductively, that σ is an injection.

Now Gn generates trnG as n-tuple groupoid (even as n-truncated cubical set) and therefore

generates SknG as ω-groupoid, by Proposition 13.5.16. It follows that Gn generates the image of

SknG in G. 2

13.6 The equivalence of ω-Gpds and Crs

In this Section we construct a functor

λ : Crs→ ω-Gpds

which together with γ gives an equivalence of categories.

The key idea for constructing λ in such a way that there is an equivalence λγ ≃ 1ω-Gpds comes

from Proposition 13.5.11, which show that an elements of Gn is determined by its total boundary

and its folding.

We have proved that given x ∈ �Gn−1, ξ ∈ γGn with δξ = δΦx there is a unique element

x ∈ Gn such that ∂x = x and Φx = ξ. We write 〈x, ξ〉 = x.
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To define λG we use these elements 〈x, ξ〉. It is clear how to express its faces, degeneracies

and connections of G following Definition 13.5.5. Our next proposition shows how to define the

compositions.

Proposition 13.6.1 If x = 〈x, ξ〉,y = 〈y,η〉 in Gn, and x+
i = y−

i , then

x+i y =

{
〈x +1 y,η+ ξu1y〉 if n = 2 and i = 1,

〈x +i y, ξu1y + η〉 otherwise,

and

−ix = 〈−ix, −ξ−uix〉.

Proof This follows immediately from Proposition 13.4.14 and the rule ∂(x+i y) = ∂x +i ∂y. 2

These results show how to construct from any crossed complex C an ω-groupoid G = λC with

γG ∼= C.

Theorem 13.6.2 There is a functor λ from the category Crs of crossed complexes to the category

ω-Gpds of ω-groupoids such that λ : Crs→ ω-Gpds and γ : ω-Gpds→ Crs are inverse equivalences.

Proof Let C be any crossed complex. We construct anω-groupoid G = λC and an isomorphism of

crossed complexes σ : C→ γG by induction on dimension.

We start with G0 = C0, G1 = C1, so that (G1,G0) is a groupoid. We write γGn (in any cubical

complex) for the set of n-cubes x with all faces except ∂−
1 x concentrated at a point. Then γG0 =

C0,γG1 = C1, and we take σ0 : C0 → γG0 and σ1 : C1 → γC1 to be the identity maps.

Suppose, inductively, that we have defined Gr and σr : Cr → γGr for 0 6 r < n (where n > 2) so

that (Gn−1,Gn−2, · · · ,G0) is an (n− 1)-tuple groupoid and (σn−1,σn−2, · · · ,σ0) is an isomorphism

of (n − 1)-truncated crossed complexes. Then (�Gn−1,Gn−1, . . . ,G0) is an n-tuple groupoid and

we define

Gn = {(x, ξ) | x ∈ �Gn−1, ξ ∈ Cn, δΦx = σn−1δξ}.

For y ∈ Gn−1, let εjy = (εjy, 0), where εj is defined in Definition 13.5.5(i). Then εjy ∈ Gn, since

Φεjy = 0 by Proposition 13.4.11. The maps εj : Gn−1 → Gn, together with the obvious face maps

∂αi : Gn → Gn−1 defined by ∂αi (x, ξ) = xαi , give (Gn,Gn−1, · · · ,G0) the structure of an n-truncated

cubical set.

Similarly one can define connections Γj : Gn−1 → Gn by Γjy = (Γjy, 0), where Γj is defined in

Definition 13.5.5(ii), and the laws in Definition 13.1.3 are clearly satisfied, since they are satisfied

by Γj.

Recalling Proposition 13.6.1, we define operations +i, −i. For (x, ξ), (y,η) ∈ Gn with x+
i = y−

i ,

let

(x, ξ) +i (y,η) =

{
(x +1 y,η+ ξu1y) if n = 2 and i = 1,

(x +i y, ξu1y + η) otherwise,

and

−i(x, ξ) = (−ix, −ξuix).
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By Proposition 13.4.14, for all (n, i) 6= (2, 1),

δΦ(x +i y) = δ((Φx)uiy +Φy)

= (σn−1δξ)
uiy + σn−1δη

= σn−1δ(ξ
uiy + η),

so Gn is closed under +i. The case n = 2, i = 1 is similar. Also δΦ(−ix) = δ(−Φx)−uix =

σn−1δ(−ξ
uix), and therefore −ix ∈ Gn.

We claim that (Gn,Gn−1, . . . ,G0) is now an n-tuple groupoid. Firstly, it is clear that, for t ∈

Gn−1, εit acts as an identity for +i, and that −i is an inverse operation for +i. The associative law

is verified as for semi-direct products of groups. Secondly, the laws (1),(2) and (3) of Definition

13.1.7 are true for �Gn−1. It remains, therefore, to prove the interchange law (4i) (from which

(4ii) follows, using the groupoid laws).

Let 1 6 i < j 6 n and let x = (x, ξ),y = (y,η), z = (z, ζ), t = (t, τ) be elements of Gn such that

the composite shell

w =

[
x y

z t

]

i

j

��
//

is defined. Let g = ∂+
1 ∂

+
2 · · · ı̂ · · · ̂

+ · · ·∂+
nt ∈ G2 have boundary

g

c

b d

a

1

2

��
//

Then

(x+i z) +j (y+i t) = (w,ω), (x+j y) +i (z +j t) = (w,ω ′),

say, and we have to show that ω = ω ′ in Cn.

If n = 2 then i = 1 and j = 2 and we find that

ω = (ζ+ ξb)a + (τ + ηd), ω ′ = (ζa + τ) + (ξc + η)d.

To show that these are equal, it is enough to show that ξb+a + τ = τ + ξc+d. But this follows from

the crossed module laws since

δτ = σ1δτ = δΦt = δΦg = −a− b + c+ d

and therefore

−τ+ ξb+a + τ = (ξb+a)δτ = ξc+d.

If n > 2, we find that

ω = (ξb + ζ)a + ηd + τ, ω ′ = (ξc + ηd) + ζa + τ,

and since addition is now commutative, the equation ω = ω ′ reduces to ξa+b = ξc+d, that is,

ξδΦg = ξ. But, by induction hypothesis, we have an isomorphism σ2 : C2 → γG2 preserving the

crossed module structure, and if θ ∈ C2 is the element with σ2(θ) = Φg, then ξδΦg = ξδθ = ξ by

the crossed complex laws. This completes the proof of the interchange law.

We now have an n-tuple groupoid (Gn,Gn−1, . . . ,G0), and we must identify γGn. For any

ξ ∈ Cn(p), let dξ denote the shell x ∈ �Gn−1 with x−
1 = σn−1δξ and all other xαi concentrated at

p. Define

σnξ = (dξ, ξ).
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Clearly σnξ ∈ γGn and every element of γGn is of this form. The bijection σn : Cn → γGn is

compatible with the boundary maps since δσnξ = ∂−
1 σnξ = σn−1δξ. It preserves addition because,

for ξ,η ∈ Cn(p),

(dξ, ξ) + (dη,η) = (dξ +n dη, ξundη + η)

= (d(ξ + η), ξ+ η).

Furthermore, if ξ ∈ Cn(p) and a ∈ C1(p,q) = G1(p,q), then

(σnξ)
a = −nε

n−1
1 a+n σnξ+n ε

n−1
1 a

= (−nε1ε
n−2
1 a, 0) +n (dξ, ξ) +n (ε1ε

n−2
1 a, 0)

= (y, ξa),

in all cases. Since (σnξ)
a ∈ γGn, it follows that y = d(ξa), making σn an isomorphism of crossed

complexes up to dimension n.

This completes the inductive step in our construction, and we therefore obtain an ω-groupoid

G = λC and an isomorphism σ : C → γG of crossed complexes. This ω-groupoid has the following

universal property: If G ′ is any ω-groupoid and σ ′ : C → γG ′ any morphism of crossed complexes

then there is a unique morphism θ : G→ G ′ of ω-groupoids making the diagram

C
σ //

σ′

!!B
BB

BB
BB

B γG

γθ

��

�

� / G = λC

θ

��
γG ′ �

� / G ′

commute.

We define θ inductively, starting with θ0 = σ ′
0, θ1 = σ ′

1. For n > 2, each x ′ ∈ G ′
n is uniquely

of the form 〈x ′, ξ ′〉 where x ′ ∈ �G ′
n−1, ξ

′ ∈ γGn and δΦx ′ = δξ ′. We define θn : Gn → G ′
n by

(x, ξ) 7→ 〈x ′, ξ ′〉, where (x ′)αi = θn−1x
α
i and ξ ′ = σ ′

nξ. This definition is forced, and it clearly gives

a morphism of ω-groupoids.

From this universal property, it follows that the functor λ : Crs → ω-Gpds is left adjoint to

γ : ω-Gpds→ Crs.

The adjunction σc : C → γλC is an isomorphism for all C, so 1Crs ≃ γλ. Also, the adjunction

λγG ′ → G ′ is obtained by putting G = γG ′,σ ′ = identity, in which case θ is an isomorphism

λγG ′ → G ′, as is clear from its definition. Hence λγ ≃ 1ω-Gpds and we have inverse equivalences λ

and γ between Crs and ω-Gpds. 2

13.7 The HAL and properties of thin elements

Another very important property of ω-groupoids is that they are Kan cubical sets (see subsection

10.3.1), i.e. that any n-box has a filler.

Moreover the n-boxes have a set of canonical fillers, i.e. the thin elements giving them the

structure of T -complexes in the sense of Dakin [Dak83].

The proof of both these facts may be deduced from Proposition 13.5.11 via an algebraic Homo-

topy Addition Lemma that expresses the only non-trivial face of the folding of a shell in term of the

elements of the shell.



378 [13.7] Nonabelian Algebraic Topology

Lemma 13.7.1 (Homotopy Addition Lemma) LetG be anω-groupoid (or anm-tuple groupoid with

m > n). Let x ∈ �Gn and define Σx ∈ Cn = (γG)n by

Σx =






−x+
1 − x−

2 + x−
1 + x+

2 = −Φx+
1 −Φx−

2 +Φx−
1 +Φx+

2 if n = 1,

−Φx+
3 − (Φx−

2 )u2x −Φx+
1 + (Φx−

3 )u3x +Φx+
2 + (Φx−

1 )u1x if n = 2,
∑n+1
i=1 (−1)i{Φx+

i − (Φx−
i )uix} if n > 3

where ui = ∂+
1 ∂

+
2 · · · ı̂ · · ·∂

+
n+1 as in Definition 13.4.13. Then δΦx = Σx in all cases. Hence, if t is a

thin element of G, then Σ∂t = 0.

Proof The case n = 1 is trivial, so we assume n > 2. First, notice

δΦx = ΦδΦx (because δΦx ∈ Cn)

= (Φ∂−
1 Φx)u1Φx(because u1Φx = ε1βx)

= ΣΦx.

So, we have to prove ΣΦx = Σx. It is enough to show that ΣΦjx = Σx for j = 1, 2, · · · ,n.

To prove that ΣΦjx = Σx, put y = Φjx (for fixed j). By Proposition 13.4.2, we have

yαi =

{
Φj−1x

α
i (i < j),

Φjx
α
i (i > j+ 1);

yαj+1 = y+
j = η+

j x
+
j ;

y−
j = [−x+

j , −x−
j+1, x

−
j , x+

j+1]j.

Hence, by Proposition 13.4.15 and Proposition 13.4.18,

Φyαi = Φxαi (i 6= j, j+ 1),

Φyαj+1 = Φy+
j = 0, (*)

Φy−
j = Φ[−x+

j , −x−
j+1, x

−
j , x+

j+1]j.

We write aj = [−x+
j , −x−

j+1, x
−
j , x+

j+1]j and use Proposition 13.4.14 to compute Φaj.

First we study the case (n, j) 6= (2, 1). Then

Φaj = −(Φx+
j )pj − (Φx−

j+1)
qj + (Φx−

j )rj +Φx+
j+1,

where pj = ujaj,qj = uj[x
+
j ,aj]j, rj = ujx

+
j+1. By the relations in Definition 13.1.7, uj is a morphism

of groupoids from (Gn, +j) to (G1, +) so pj = −ujx
+
j − ujx

−
j+1 + ujx

−
j + ujx

+
j+1 in G1, and qj =

ujx
+
j + pj. The four terms of pj are the edges of the square sj = ∂+

1 ∂
+
2 · · · ĵĵ+ 1 · · ·∂+

nx; hence

pj = Σ∂sj = δΦsj. Also ujx
+
j = uj+1x and ujx

+
j+1 = ujx, so

Φy−
j = Φaj = −(Φx+

j )δΦsj − (Φx−
j+1)

uj+1x+δΦsj + (Φx−
j )ujx +Φx+

j+1. (**)

We have to differentiate two subcases.

If n > 3 then δΦsj acts trivially on Cn, since C = γG is a crossed complex, and addition is

commutative. Hence by (*),

Σy =

n∑

i=1

(−1)i{Φy+
i − (Φy−

i )uiy}

=
∑

i6=j,j+1

(−1)i{Φx+
i − (Φx−

i )uiΦjx} + (−1)j+1(Φy−
j )ujΦjx.
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But uiΦjx = uix if i 6= j, i 6= j+ 1; and ujΦjx = 0; so substituting from (**) we find Σy = Σx.

If n = 2 and j = 2 then s2 = ∂+
1 x = x+

1 , and δΦs2 = δΦx+
1 acts on C2 by aδΦs2 = −Φx+

1 + a +

Φx+
1 . Hence (**) becomes

Φy−
2 = −Φx+

1 −Φx+
2 − (Φx−

3 )u3x +Φx+
1 + (Φx−

2 )u2x +Φx+
3

which, together with (*), gives

Σy = −Φy+
3 − (Φy−

2 )u2Φ2x −Φy+
1 + (Φy−

3 )u3Φ2x +Φy+
2 + (Φy−

1 )u1Φ2x

= 0 −Φy−
2 −Φx+

1 + 0 + 0 + (Φx−
1 )u1x

= Σx.

Finally, in the case n = 2, j = 1, we have

Φy−
1 = Φ[−x+

1 , −x−
2 , x−

1 , x+
2 ]1

= Φx+
2 + (Φx−

1 )r1 − (Φx−
2 )q1 − (Φx+

1 )p1

by Proposition 13.4.14, where p1,q1, r1 are as defined above. As in the previous cases, this gives

Φy−
1 = Φx+

2 + (Φx−
1 )u1x −Φx+

3 − (Φx−
2 )u2x −Φx+

1 +Φx+
3

and hence

Σy = −Φx+
3 + (Φx−

3 )u3x +Φx+
2 + (Φx−

1 )u1x −Φx+
3 −Φ(x−

2 )u2x −Φx+
1 +Φx+

3 .

Writing b = (Φx−
3 )u3x +Φx+

2 + (Φx−
1 )u1x −Φx+

3 and c = −(Φx−
2 )u2x −Φx+

1 , it can be verified that

δb = −δc, and hence, by the crossed module laws, b + c = c + bδc = c + b−δb = c + b. It follows

easily that Σy = Σx, as required.

To prove the last statement, if t is thin, then Σ∂t = δΦ∂t = ∂−
1 Φt = 0 by Lemma 13.5.9 and

Proposition 13.4.18. 2

Remark 13.7.2 The element Σx in the case n = 2 is in the centre of C2(βx), because conjugation by

Σx = δΦx is the same as action by δδΦx = 0. Hence Σx can be rewritten, for example, by permuting

its terms cyclically. 2

Proposition 13.7.3 Let G be anω-groupoid. Then each box in G has a unique thin filler. In particular,

G is a Kan cubical set.

Proof Let y be an n-box with missing (γ, k)-face. The result is trivial if n = 0, so we assume n > 1.

By Corollary 13.5.12, it is enough to prove that there is a unique n-cube yγk which closes the box y

to form an n-shell y with δΦy = Σy = 0.

If n > 2, the edges of the given box y form the complete 1-skeleton of an (n + 1)-cube; in

particular, y determines the n + 1 edges wi = uiy terminating at βy. We write F(sαi ) for the

word in the indeterminates sαi (i = 1, 2, · · · ,n + 1;α = 0, 1) obtained from the formula for Σx in

Lemma 13.7.1 by substituting sαi for Φxαi and the given edges wi = uiy for uix. If n = 1, then

F(sαi ) = −s+1 − s−2 − s−1 + s+2 does not involve the wi.

If we put zαi = ∂yαi for (α, i) 6= (γ, k), then the zαi form a box of (n − 1)-shells, and there is

a unique (n − 1)-shell z
γ
k which closes this box to form an n-shell z ∈ 22Gn−1. Since δ preserves

addition and the action of the edges wi, we find

F(δΦzαi ) = δF(Φzαi ) = δΣz = δ2Φz = 0. (*)



380 [13.7] Nonabelian Algebraic Topology

Next, put ζαi = Φyαi for (α, i) 6= (γ, k) and let ζ
γ
k ∈ Cn be the unique element determined by the

equation F(ζαi ) = 0. Then

δζαi = δΦyαi = δΦzαi for (α, i) 6= (γ, k),

while

F(δζαi ) = 0.

From these equations and (*) we deduce that δζ
γ
k = δΦz

γ
k also. Hence, by Proposition 13.5.11,

there is a unique yγk ∈ Gn such that ∂y
γ
k = z

γ
k and Φyγk = ζ

γ
k; this yγk completes the box y to form a

shell y with Σy = F(ζαi ) = 0, as required. 2

Proposition 13.7.4 Let t be a thin element in an ω-groupoid. If all faces except one of t are thin, then

the remaining face is also thin.

Proof Let the faces of t be tαi (i = 1, 2, . . . ,n;α = 0, 1). By Proposition 13.4.18, Φtαi = 0 for

(α, i) 6= (γ, k) say, so Σ∂t = ±(Φt
γ
k)w for some edge w of t. But t is thin so, by the Homotopy

Addition Lemma 13.7.1, Σ∂t = 0. Hence Φt
γ
k = 0 and t

γ
k is thin. 2

The thin elements of anω-groupoid have another property which is crucial in the proof of the HHvKT

in the next chapter; it is used in proving Lemma 14.3.5 in page 396 to show that a constructed

element of an ω-groupoid is independent of the choices in the construction. It is also used to

relate the fundamental ω-groupoid ρX∗ and fundamental crossed complex ΠX∗ of a filtered space

(Proposition 14.5.1).

Proposition 13.7.5 Let G be an ω-groupoid and x a thin element of Gn+1. Suppose that for m =

1, · · · ,n and each face operator d : Gn+1 → Gm not involving1 ∂−
n+1 or ∂+

n+1, the element dx is thin.

Then x = εn+1∂
−
n+1x and hence

∂−
n+1x = ∂+

n+1x.

Proof The proof is by induction on n, the case n = 0 being trivial since a thin element in G1 is

degenerate.

The inductive assumption thus implies that every face ∂τi x with i 6= n+1 is of the form εn∂
−
n∂
τ
i x.

So the box consisting of all faces of x except ∂+
n+1x is filled not only by x but also by εn+1∂

−
n+1x.

Since a box in G has a unique thin filler (Proposition 13.7.3), it follows that x = εn+1∂
−
n+1x. 2

Remark 13.7.6 The properties of thin elements in Propositions 13.7.3 and 13.7.4, together with

the fact that degenerate cubes are thin, can be taken as axioms for ‘cubical T -complexes’ or ‘cubical

sets with thin elements’. (The definition was first given by Dakin [Dak83] in the simplicial case.)

Precisely, a (cubical) T-complex is a cubical set with a distinguished set of elements called ‘thin’,

satisfying:

(i) all degenerate cubes are thin;

(ii) every box has a unique thin filler;

(iii) if a thin cube has all faces except one thin then the last face is also thin.

We have shown that every ω-groupoid is a T -complex, and it is a remarkable fact (see [BH81c,

BH81b]) that the converse is also true: all the ω-groupoid structure can be recovered from the

set of thin elements using these three assumptions. Thus the category of cubical T -complexes is

equivalent (in fact isomorphic) to the category of ω-groupoids; it is therefore, by 13.6.2, equivalent

to the category of crossed complexes. Ashley has shown [Ash88] that the category of simplicial

1A cubical face operator d is simply a product of various ∂τj s. This product may be empty, so that we allow d = 1. We say

d does not involve ∂τn+1
if d cannot be written as d ′∂τn+1

.
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T -complexes is also equivalent to the category of crossed complexes. He has also shown that this

result generalises the theorem of Dold and Kan [Dol58, Kan58, May67] which gives an equivalence

between the category of simplicial abelian groups and the category of chain complexes; the T -

complex structure on a simplicial abelian group is obtained by defining the thin elements to be sums

of degenerate elements. For more information on the cubical case, see also [BH03]. 2

Remark 13.7.7 If G is any ω-groupoid, we may define the fundamental groupoid π1G and the

homotopy groups πn(G,p)(p ∈ G0,n > 2) as follows. For a,b ∈ G1(p,q), define a ∼ b if there

exists c ∈ G2 such that ∂−
1 c = a, ∂+

1 c = b, ∂−
2 c = ε1p, ∂

+
2 c = ε1q. Then ∼ is a congruence relation

on G1 and we define π1G = G1/ ∼. For n > 2 and p ∈ G0, let Zn(G,p) = {x ∈ Gn;∂α1 x = εn−1
1 p

for all (α, i)}. Then the +i(i = 1, 2, · · · ,n) induce on Zn(G,p) the same Abelian group structure.

Two elements x,y of Zn(G,p) are homotopic, x ∼ y, if there exists h ∈ Gn+1 such that ∂−
n+1h =

x,∂+
n+1h = y and ∂αi h = εn1 p for i 6= n+ 1. This is a congruence relation on Zn(G,p) and we define

πn(G,p) to be the quotient group Zn(G,p)/ ∼.

Now G is a Kan cubical set, by Proposition 13.7.3, so, there is a standard procedure suggested

in Proposition 10.3.26 and in that subsection 10.3.3, for defining π1G and πn(G,p), without using

the compositions +i. As sets they coincide with the definitions above, but their groupoid and group

structures are defined by a procedure using only the properties of Kan fillers. 2

It is not hard to see that the special properties of thin fillers in G ensure that the groupoid and

group structures obtained in this way coincide with those induced by the compositions +i.

It is also clear that the groupoid π1G and the groups πn(G,p) coincide with the fundamental

groupoid π1γG and the homology groups Hn(γG,p) of the crossed complex γG (see the definitions

in Subsection 7.1.4.

We will later need the following result.

Proposition 13.7.8 Let G,H be ω-groupoids and let f : G → H be a morphism of the underlying

cubical sets with connections which also preserves the thin structures. Then f is a morphism of ω-

groupoids.

Proof This involves the fact that the compositions can be recovered from the thin structures, which

is the main result of [BH81c], showing the equivalence of cubical T -complexes and ω-groupoids. In

our terms, this can be shown as follows.

In Proposition 10.3.26 we showed how the fundamental groupoid of a Kan cubical set can be de-

fined. In the case of a cubical T -complex K, with unique Kan fillers, this method actually determines

a groupoid structure +1 on K1.

By using the functor PnK we can similarly get a composition, and in fact a groupoid structure,

+n derived from the T -structure.

However we showed in Chapter 6, that double groupoids with connection admit rotations, which

exchange the two groupoid structures in dimension 2 (Proposition 6.4.4. In higher dimensions,

this argument gives an operation of the symmetry group Sn in dimension n of an ω-groupoid G,

interchanging the operations +i. Hence any addition +i is determined by the thin structure.

The same argument applies to H and hence f preserves the compositions +i. 2

Remark 13.7.9 It will be shown in Remark 14.6.3 that the crossed complex ΠIn∗ has one generator

for each cell of In, with defining relations given by the Homotopy Addition Lemma 9.9.4. The cor-

responding statement for the ω-groupoid ρIn∗ is that it is the free ω-groupoid on a single generator

in dimension n; this is the subject of Section ??, as part of the description of the free ω-groupoid on



382 [13.8] Nonabelian Algebraic Topology

a cubical set (Proposition 14.6.2). [This remark will need to be examined later after revision of the

colim chapter.] 2

13.8 Notes

Cubical sets with this, and other, structures have also been considered by Évrard [É]. See also M.

Grandis and L.Mauri, [GM03]. This paper deals with normal forms for cubical sets with connections.



Chapter 14

The cubical homotopy ω-groupoid of

a filtered space

This chapter contains the construction and applications of the cubical higher homotopy groupoid

ρX∗ of a filtered space X∗. Without the idea for this construction, the major results of this book

would not have been conjectured, let alone proved.

The definition of ρX∗ as a cubical set with connections is easy: it is a quotient of RX∗, the filtered

cubical singular complex of X∗, by the relation of filter homotopy rel vertices. The difficult part is to

prove that the compositions on RX∗ are inherited by ρX∗, so that it becomes an ω-groupoid: the

proof is a generalisation of that in dimension 2, but needs an organisation of the collapsing of cubes

necessary to fill some holes starting in low dimensions. It is remarkable that there is exactly enough

room to fill these holes as required. This gives one confidence in the correctness of the definitions.

These collapsings were already introduced in subsection 10.3.1 they also enable a proof of a key

result, the fibration Theorem 14.2.7 stating that the projection p : RX∗ → ρX∗ is a Kan fibration of

cubical sets. Some more precise properties of this fibration are a key to later results. For example,

since ρX∗ is an ω-groupoid, it has a notion of thin element: these we call algebraically thin. There

is also a notion of a geometrically thin, or deficient, element of (ρX∗)n, namely those that have a

representative f : In∗ → X∗ such that f(In) ⊆ Xn−1. The precise fibration theorem implies these two

notions coincide (see Theorem 14.2.9 ).

The main part of this chapter gives proofs of a Higher Homotopy van Kampen Theorems (HHvKT)

both for ω-groupoids (Section 14.3) and for crossed complexes (Section 14.4). In Section 14.3.1

we prove the result forω-groupoids. It shows, in succinct terms, that the functor ρ preserves certain

colimits of connected filtered spaces.

The proof of the Higher Homotopy van Kampen Theorem (HHvKT) for ω-groupoids (Section

14.3) follows the same structure as the proof of the van Kampen theorem in dimension 1 and 2,

given in Parts I and II. It goes as follows.

Let U = {Uλ}λ∈Λ be an open cover of a space X that is filtered X∗ and assume that for any finite

intersection of elements of U, the induced filtration is connected. The theorem say us that in the

induced diagram

⊔
ν∈Λ2 ρUν∗

i1 //
i2

//
⊔
λ∈Λ ρU

λ
∗

i // ρX∗

i is the coequaliser of i1 and i2 in the category of ω-groupoids.

383
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To prove the universality condition of the coequaliser, we show that for any ω-groupoid G and

morphism of ω-groupoids

f :
⊔

λ∈Λ

ρUλ∗ → G

which is compatible with the double intersections (i.e. fi1 = fi2), there is a unique morphism

f ′ : ρX∗ → G

such that f ′i = f. This morphism f ′ is constructed by using choices to construct a map

F : RX∗ → G

following the same pattern as in the proof of Theorem 6.8.2.

For any element α ∈ Rn(X∗) we choose a subdivision α = [α(r)] such that each α(r) lies in some

element Uλ(r) ∈ U. The connectivity conditions imply, as in the 2-dimensional case, that there is are

elements θλ ∈ Rn(X∗) and a filtered homotopy h : α ≡ θ such that in the subdivision given by α we

have h(r) : α(r) ≡ θ(r), θ(r) ∈ RnX∗ and h(r) lies in Uλ(r). We define

F(α) = [fλ(r)θ(r)]

the composite of the array.

The central part of the proof is to show that F is well defined up to homotopy. Here we diverge

from the proof of the theorem in dimension 2. There, the Homotopy Addition Lemma was used in

dimension 2 to see that any composition of commuting 3-cubes is also a commuting 3-cubes. In

higher dimensions, the “commuting n-cubes” are replaced by the thin elements defined in 13.4.17.

The geometric characterisation of thin elements already stated is crucial in the proof.

The Higher Homotopy van Kampen Theorem (HHvKT) for crossed complexes (Section 14.3)

follows from the HHvKT for ω-groupoids using the equivalence of categories

γ : ω-Gpds→ Crs

from the category ofω-groupoids to the category of crossed complexes in Section 13.6. In the case of

theω-groupoid ρX∗, we prove that γρX∗ is naturally isomorphic to the fundamental crossed complex

ΠX∗ of the filtered space X∗ (Theorem 14.4.1). This isomorphism gives the Higher Homotopy van

Kampen Theorem (HHvKT) for fundamental crossed complexes (8.1.5) whose applications have

been described in Chapter 8, assuming the Higher Homotopy van Kampen Theorem for the ω-

groupoid ρX∗.

Section 14.5 shows that everyω-groupoid and every crossed complex arise (up to isomorphism)

from our functors from filtered spaces. This shows our axioms for these structures to be optimal.

These results are (surprisingly) used in section 14.6 to show that the functor ρ from cubical sets to

ω-groupoids is left adjoint to the forgetful functor, and so gives the free ω-groupoid on a cubical

set. This result is very useful for our next chapter on monoidal closed structures.

Section 14.7 gives a final link with classical results by showing how these methods help in proving

the classical Absolute Hurewicz Theorem, and also relate to an exact sequence of J.H.C. Whitehead

which includes the Hurewicz morphism from homotopy to homology. This exact sequence is neces-

sary for applications of our fundamental homotopy classification of maps to the classifying space of

a crossed complex, since it gives useful conditions for a space Y to be of the homotopy type of BC

for some crossed complex C.
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14.1 Construction of the homotopyω-groupoid of a filtered space

Recall that it is natural to associate to a filtered space X∗ its filtered singular cubical set RX∗ which

in dimension n is the set of filtered maps In∗ → X∗. The aim is to define a homotopy relation on

RX∗ which gives an ω-groupoid ρX∗ whose associated crossed complex is exactly ΠX∗ as used in

Part II. The fact that the 0-dimensional part of ΠX∗ is just X0 suggests that the homotopy relation

we require is filter homotopy rel vertices. It turns out that this works: the ‘rel vertices’ condition is

enough to start the inductive constructions required to prove the compositions on RX∗ are inherited

by ρX∗ .

Definition 14.1.1 Two elements α,β ∈ RnX∗ are filter homotopic rel vertices if there is a filter

homotopy f : X × I → Y from α to β rel vertices, i.e. a homotopy such that f(Xs × I) ⊆ Ys, s =

0, 1, 2, · · · , and which is constant on every vertex of In.

The set of equivalence classes of elements of RnX∗ under filter-homotopy rel vertices is written

ρnX∗, and the class of α ∈ RnX is written 〈〈α〉〉. So we have a quotient map p : RX∗ → ρnX∗. 2

It is easy to check that the connections and the face and degeneracy maps of RX∗ are inherited by

ρX∗, giving it the structure of cubical complex with connections. Let us consider the compositions.

Definition 14.1.2 A composition +i on ρnX∗ is defined as follows.

Let 〈〈α〉〉, 〈〈β〉〉 ∈ ρnX∗ satisfy ∂+
i 〈〈α〉〉 = ∂−

i 〈〈β〉〉. Then ∂+
i α ≡ ∂

−
i β, so we may choose h : In → X,

a filter-homotopy in the ith direction, so that γ = [α,h,β]i is defined in RnX∗. We let

〈〈α〉〉+i 〈〈β〉〉 = 〈〈[α,h,β]i〉〉

and prove this composition well-defined. 2

To see that the compositions also are well defined in ρX∗ we need to check that they are inde-

pendent of the choices of representatives. The proof requires ‘filling a hole’ to get a filter homotopy.

This is done inductively. In dimension 0, we can fill a map İ2∗ → X∗ because the homotopy we are

using is rel vertices so the map is in fact constant; we then proceed by induction using a retraction

procedure based on the collapsings introduced in subsection 10.3.1.

Definition 14.1.3 [should the× here be ⊗?] Let B be a subcomplex of In, letm > 2, and let B× Im

be given the product cell structure, so that the skeletal filtration gives a filtered space B∗ × Im∗ . Let

h : B× Im → X

be a map. Fixing the ith coordinate of Im at the value t, where 0 6 t 6 1, we obtain a map

∂tih : B× Im−1 → X.

If X∗ is a filtered space, and ∂tih : B∗ × Im−1
∗ → X∗ is a filtered map for each 0 6 t 6 1,

we say h is a filter-homotopy in the ith direction of Im. In such case we write h : α ≡i β where

α = ∂−
i h,β = ∂+

i h. It is easy to see that the relation ≡i defined on filtered maps B × Im−1 → X by

the existence of such an h is an equivalence relation independent of i, 1 6 i 6 m. 2

Definition 14.1.4 A map h : B∗× I2∗ → X∗ is called a filter-double-homotopy if it is a filter-homotopy

in each of the two directions of I2; this is equivalent to h(Bs × I2) ⊆ Xs+1,h(Bs × ∂I2) ⊆ Xs, s =

0, 1, 2, · · · . (If K is a proper subcomplex of I2, and k : B × K → X satisfies k(Bs × K) ⊆ Xs, s =

0, 1, 2, · · · , then by an abuse of language we call k also a filter-double-homotopy). 2
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Consider now a filtered space X∗.

Proposition 14.1.5 Let B,C be subcomplexes of In such that Bց C. Let

f : B× ∂I2 → X, g : C× I2 → X

be two filter-double homotopies which agree on C × ∂I2. Then their union f ∪ g extends to a filter-

double-homotopy h : B× I2 → X.

Proof It is sufficient to consider the case of an elementary collapse B ցe C. Suppose then

B = C ∪ a, C ∩ a = ∂a \ b, where a is an s-cell and b is an (s − 1)-face of a.

Let r : a×I2 → (a×∂I2)∪((∂a\b)×I2) be a retraction. Then r defines an extension h : B×I2 → X

of f ∪ g. Since f is a filter-double-homotopy,

h(a× ∂I2) = f(a × ∂I2) ⊆ Xs,

and since g is a filter-double-homotopy

h((∂a \ b)× I2) = g((∂a \ b)× I2) ⊆ Xs.

Hence h(a × I2) ⊆ Xs, and in particular h(b × I2) ⊆ Xs. These conditions, with those on f and g,

imply that h is a filter-double-homotopy. 2

Corollary 14.1.6 Let X∗ be a filtered space and let B be a subcomplex of In such that B collapses

to one of its vertices. Then any filter-double-homotopy rel vertices f : B∗ × ∂I2∗ → X∗ extends to a

filter-double-homotopy rel vertices h : B∗ × I2∗ → X∗.

Proof Let v be a vertex of B such that B ց {v}. Now f({v} × ∂I2) ⊆ X0. Since the homotopies are

rel vertices, f|{v}×∂I2 extends to a constant map g : {v}× I2 → X with image in X0. Thus g is a filter-

double-homotopy. By Proposition 14.1.5, f∪g extends to a filter-double-homotopy h : B× I2 → X. 2

We now show that the compositions in RX∗ are inherited by the quotient to give ρX∗ the structure

of ω-groupoid. This gives us the definition of the fundamental homotopy groupoid of a filtered

space.

Theorem 14.1.7 If X∗ is a filtered space, then the compositions on RX∗ induce compositions on ρX∗

which, together with the induced face and degeneracy maps and connections, give ρX∗ the structure of

ω-groupoid.

Proof We have to prove that the definition of the composition +i given in Definition 14.1.2 is

independent of the representatives. For this it is sufficient, by symmetry, to suppose i = n.

To prove independence of choices, let α ′ ∈ 〈〈α〉〉 and β ′ ∈ 〈〈β〉〉 be alternative choices. As before

let h ′ : ∂+
i α

′ ≡ ∂−
i β

′. If we define

γ ′ = [α ′,h ′,β ′]n,

we have got to prove that

〈〈γ〉〉 = 〈〈γ ′〉〉.

By construction there exist filter-homotopies

k : α ≡ α ′ l : β ≡ β ′

in the (n + 1)st direction.
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We view In+1 as a product In−1 × I2 and define a filter-double-homotopy rel vertices

f : In−1 × ∂I2 → X

by f(x, t, 0) = h(x, t), f(x, t, 1) = h ′(x, t), f(x, 0, t) = k(x, 1, t), f(x, 1, t) = l(x, 0, t), where x ∈ In−1

and t ∈ I. The following picture illustrates the situation. [Can the constant edges be emphasised?]

1, · · · ,n − 1

n

n + 1

α

k

α ′

h

h ′

β

β ′

l

By Corollary 14.1.6 with B = In−1, f extends to a filter-double-homotopy

H : In−1 × I2 → X.

Then [k,H, l]n is well defined and is a filter-homotopy γ ≡ γ ′. This completes the proof that +n,

and by symmetry +i, is well defined.

Suppose now that α+iβ is defined in RnX∗. Let h : ∂+
i α ≡i ∂

−
i β be the constant filter-homotopy

in the ith direction. Then α +i β is a filter-homotopic to [α,h,β]i and so 〈〈α +i β〉〉 = 〈〈α〉〉 +i 〈〈β〉〉.

Thus the operations +i on ρnX∗ are induced by those on RnX∗ in the usual algebraic sense.

Further, if 〈〈α〉〉 +i 〈〈β〉〉 is defined in ρnX∗, then we may choose representatives α ′ , β ′ of 〈〈α〉〉,

〈〈β〉〉 such that α ′ +i β
′ is defined and represents 〈〈α〉〉 +i 〈〈β〉〉 (for example we may take α ′ = α,

β ′ = h+i β
′ where h : ∂+

i α ≡i ∂
−
i β).

Defining −i〈〈α〉〉 = 〈〈−iα〉〉, one easily checks that +i and −i make ρnX∗ a groupoid with initial,

final and identity maps ∂−
i , ∂+

i and εi.

The laws for εj, ∂
τ
j , Γj of a composite 〈〈α〉〉 +i 〈〈β〉〉 follow from the laws in RnX∗ by choosing the

representatives α, β so that α+i β is defined.

Finally, we must verify the interchange law for +i, +j (i 6= j). By symmetry, it is sufficient to

assume i = n − 1, j = n.

Suppose that 〈〈α〉〉+n−1 〈〈β〉〉, 〈〈γ〉〉+n−1 〈〈δ〉〉, 〈〈α〉〉+n 〈〈γ〉〉, 〈〈β〉〉+n 〈〈δ〉〉 are defined in ρnX∗. We

choose the representatives α,β,γ, δ and are going to construct in RnX∗ a composite



α k γ

h H h ′

β k ′ δ




n−1,n

(*)

in which the filter-homotopies h, h ′ in the (n − 1)st direction and the filter-homotopies k, k ′ in the

nth direction already exist, because the appropriate composites are defined and H has to be defined

(we are ‘filling the hole’).
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To construct H, we define a filter-double-homotopy

f : In−2 × ∂I2 → X

by f(x, 0, t) = k(x, 1, t), f(x, 1, t) = k ′(x, 0, t), f(x, t, 0) = h(x, t, 1), f(x, t, 1) = h ′(x, t, 0) where

x ∈ In−2, and t ∈ I. By Corollary 14.1.6, f extends to a filter-double-homotopy

H : In−2 × I2 → X.

Then the composite (*) is defined in RnX and the interchange law

(〈〈α〉〉+n−1 〈〈β〉〉) +n (〈〈γ〉〉 +n−1 〈〈δ〉〉) = (〈〈α〉〉 +n 〈〈γ〉〉) +n−1 (〈〈β〉〉 +n 〈〈δ〉〉)

is readily deduced by evaluating (*) in two ways.

This completes the proof that ρX∗ is an ω-groupoid. 2

Definition 14.1.8 We call ρX∗ the homotopy ω-groupoid (or the fundamental ω-groupoid) of the

filtered space X∗.

A filtered map f : X∗ → Y∗ clearly defines a map Rf : RX∗ → RY∗ of cubical complexes with

connections and compositions, and a map ρf : ρX∗ → ρX∗ of ω-groupoids. So we have a functor

ρ : FTop→ ω-Gpds. 2

The behaviour of ρ with regard to filtered homotopies will be studied in the next chapter. At this

stage we can use standard results in homotopy theory to prove:

Proposition 14.1.9 Let f : X∗ → Y∗ be a filtered map of filtered spaces such that each fn : Xn → Yn is

a homotopy equivalence. Then ρf : ρX∗ → ρY∗ is an isomorphism of ω-groupoids.

Proof This is immediate from [tDKP70, 10.11]. The background to this is discussed in the Notes.

2

14.2 The fibration and deformation theorems

In this Section we provide all the technical results on extensions of filtered homotopies needed for

the further development of the theory.

The main result is the Deformation Theorem 14.2.5 which explains how to extend a filtered

homotopy from a special kind of subcomplex B ⊆ In to the full In.

To get this Deformation Theorem we use some consequences of Corollary 14.1.6 about construc-

tion of filter-double homotopies. Particularly useful is the filter homotopy extension property of

Proposition 14.2.4. Also important is the method of elementary collapses already seen at work in

Proposition 14.1.5.

We finish the Section with some consequences of the deformation Theorem, the most used [I am

not sure it is the most used, but it is intuitively important. Maybe it is the fibration theorem which is

most important.] being the possibility of lifting arrays of homotopy classes of filtered maps to arrays

of maps.

Let us begin with consequences of Corollary 14.1.6.
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Proposition 14.2.1 Let B ⊆ A be subcomplexes of In such that B collapses to one of its vertices. Let X∗

be a filtered space. Let α,β : A∗ → X∗ be filtered maps and let

ψ : α ≡ β, φ : α|B ≡ β|B

be filter homotopies rel vertices. Then there is a filter-double-homotopy

H : A× I2 → X

such that H is a homotopy rel end maps of ψ to a filter-homotopy

H1 : α ≡ β

extending φ.

Proof Let L = (I× {0}) ∪ (∂I× I). Define

l : (A× L) ∪ (B× I× {1})→ X

by l(x, t, 0) = ψ(x, t), l(x, 0, t) = α(x), l(x, 1, t) = β(x), l(y, t, 1) = φ(y, t), x ∈ A,y ∈ B, t ∈ I. Then

f = l |B×∂I2 and k = l |A×L are filter-double-homotopies.

By Corollary 14.1.6, f extends to a filter-double homotopy h : B× I2 → X.

1

2

A

B

ψ

α

β

φ h

[Can one mark in some way the edges on which the map is constant? ]

We are going to extend the map

k ∪ h : (A× L) ∪ (B× I2)→ X

to a filter-double-homotopy H : A× I2 → X by induction on the dimension of A \ B.

Suppose that Hs is a filter-double-homotopy defined on (A × L) ∪ ((As × B) × I2), extending

H−1 = k ∪ h. For each (s+ 1)-cell a of A \ B, choose a retraction

ra : a× I2 → (a× L) ∪ (∂a× I2).

These retractions extend Hs to Hs+1 defined also on As+1 × I2. Since ra(a × I2) ⊆ Xs+1, it follows

that Hs+1 is also a filter-double-homotopy.

Clearly H = Hn is a filter-double-homotopy as required. 2

Corollary 14.2.2 Let B,A,X∗ be as in Proposition 14.2.1. If α,β : A∗ → X∗ are maps which are filter-

homotopic rel vertices, then any filter-homotopy rel vertices α|B ≡ β|B extends to a filter-homotopy

α ≡ β. 2
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We need to pay attention to the filtered maps which ‘drop filtration’ by at least one; we call these

deficient.

Definition 14.2.3 If f : Y∗ → X∗ is a filtered map, where Y∗ is a CW-complex with its skeletal

filtration, we say that f is deficient on a cell a of Y if dima = s but f(a) ⊆ Xs−1. In particular, a

filtered map In∗ → X∗ is deficient if it is deficient on the top dimensional cell of In. 2

[it is quite good to define ‘dim’ as an operator name ]

Proposition 14.2.4 (filter-homotopy extension property) Let B,A be subcomplexes of In such that

B ⊆ A. Let

f : A× {0} ∪ B× I→ X

be a map such that f|A×{0} is a filtered map and f|B×I is a filter-homotopy rel vertices. Then f extends

to a filter-homotopy

h : A× I→ X.

Further, h can be chosen so that if f is deficient on a cell a × {0} of (A \ B) × {0}, then h is deficient on

a× {1}.

Proof The proof of this proposition is an easy induction on the dimension of the cells of A \ B,

using retractions a× I→ a× {0} ∪ ∂a× I for each cell a of A \ B. 2

Now we can proceed to the proof of the deformation theorem which is needed as a technical tool

for the results of the next Section. The proof uses the results on partial boxes from section 10.3.1.

Theorem 14.2.5 (the deformation theorem) Let X∗ be a filtered space, and let α ∈ RnX∗. Any fil-

tered map

γ : B∗ → X∗

defined in a partial box B ⊆ In such that for each (n − 1)-face a of B, the maps α|a, γ|a are filter-

homotopic rel vertices has an extension to a filtered map

β : In → X

that is filter-homotopic to α.

Further, if α is deficient (i.e. α(In) ⊆ Xn−1), then β may be chosen to be deficient.

Proof Let B1 be any (n− 1)-cell contained in B. We choose a chain B = Bs ց Bs−1 ց · · · ց B1 of

partial boxes and (n − 1)-cells a1,a2, · · · ,as−1 as in Theorem 10.3.5.

We construct filter-homotopies φi : α|Bi
≡ γ|Bi

by induction on i, starting with φ1 any filter-

homotopy α|B1
≡ γ|B1

. Suppose φi has been constructed and extends φi−1. Then φi|(ai∩Bi) is

defined. Since ai ∩ Bi is a partial box, it collapses to any of its vertices. Since α|ai
≡ γ|ai

, the

homotopy φi|(ai∩Bi) extends, by Corollary 14.2.2, to a filter-homotopy α|ai
≡ γ|ai

; this, with φi,

defines φi+1.

Finally, we apply the filter-homotopy extension property (Proposition 14.2.4) to extend φs :

α|B ≡ γ to a filter-homotopy α ≡ β, for some β extending γ. The last part of Proposition 14.2.4

gives the final part of this Theorem. 2
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For some applications of the deformation theorem, it is convenient to work in the category of

cubical sets. Recall that we write In for the free cubical set on one generator cn of dimension n

(See Definition 10.1.6). Then an element γ of dimension n of a cubical set C determines a unique

cubical map γ̂ : In → C such that γ̂(cn) = γ (Proposition 10.1.7). As a useful abuse of notation we

are going to ‘drop the hat’.

In particular, a filtered map γ : In∗ → X∗ determines a unique cubical map γ : In → RX∗ such

that γ(cn) = γ. Also, if B is a subcomplex of the geometric n-cube B then B determines a cubical

subset, also written B, of the cubical set In, and a filtered map γ : B∗ → X∗ determines uniquely a

cubical map γ̂ : B→ RX∗. The same may be said about homotopy classes of maps [γ].

We can now rewrite the deformation theorem in the category of cubical sets as follows:

Corollary 14.2.6 Let B be a box in In and let i : B → In be the inclusion. Let X∗ be a filtered space,

and suppose given a commutative diagram of cubical maps

B
γ //

i

��

RX∗

p

��
In

[α]

// ρX∗

Then there is a cubical map

β : In → RX∗

such that βi = γ, pβ = [α], i.e. extends γ and induces [α].

Further, if [α](cn) has a deficient representative, then β may be chosen so that β(cn) is deficient. 2

The following result is an easy and memorable consequence of the first part of Corollary 14.2.6.

We shall use this in applications to the homotopy classification of maps in section ???.

Theorem 14.2.7 (the fibration theorem) Let X∗ be a filtered space. Then the quotient map

p : RX∗ → ρX∗

is a Kan fibration. 2

Another application of Corollary 14.2.6 is to the lifting of subdivisions from ρnX∗ to RnX∗. For

the proof of this, and of the Higher Homotopy van Kampen Theorem 14.3.1, we require the following

construction.

Let (m) = (m1, · · · ,mn) be an n-tuple of positive integers. The subdivision of In with small n-

cubes c(r), (r) = (r1, · · · , rn), 1 6 ri 6 mi, where c(r) lies between the hyperplanes xi = (ri−1)/mi

and xi = ri/mi for i = 1, · · · ,n, is called the subdivision of In of type (m).

Proposition 14.2.8 (lifting arrays of homotopy classes) Let X∗ be a filtered space and

〈〈α〉〉 = [〈〈αr〉〉]

a subdivision of an element 〈〈α〉〉 ∈ ρnX∗. Then there is an element β ∈ RnX∗ and a subdivision

β = [β(r)]

of β, where all β(r) lie in RnX∗ such that 〈〈β〉〉 = 〈〈α〉〉 and 〈〈β(r)〉〉 = 〈〈α(r)〉〉 for all (r).

Further, if each 〈〈α(r)〉〉 has a deficient representative, then the β(r), and hence also β, may be chosen

to be deficient.
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Proof Let K be the cell complex of the subdivision of In of the same type as the given subdivision

of 〈〈α〉〉. Then K collapses to a vertex, [This is clear intuitively if one draws a subdivided square, but

perhaps more should be made of this?. ] so that there is a chain

K = As ց As−1 ց · · · ց A1 = {v}

of elementary collapses, where Ai+1 = Ai ∪ ai for some cell ai of K, and Ai ∩ ai is a box in ai.

We now work in terms of the corresponding cubical sets K = As, As−1, . . . ,A1, where K has

unique nondegenerate elements c(r) of dimension n. The subdivision of 〈〈α〉〉 determines a unique

cubical map

g : K→ ρX∗

such that g(c(r)) = 〈〈α(r)〉〉. We construct inductively maps

fi : Ai → RX∗,

for i = 1, · · · , s, such that fi extends fi−1, produces g|Ai
, and fi+1(ai) is deficient if g(ai) has a

deficient representative. The induction is started by choosing f1(v) to be any element such that

pf1(v) = g(v). The inductive step is given by Corollary 14.2.6.

Let

f = fs : K→ RX∗,

and let β(r) = f(c(r)) for all (r). Then the β(r) compose in RnX∗ to give an element β = [β(r)] as

required. 2

Recall that in any ω-groupoid G, an element x ∈ Gn is thin if it can be written as a composite

x = [x(r)] with each entry of the form εjy or of the form a repeated negative of Γjy (see Definition

13.4.17). The following characterisation of thin elements of ρnX∗ is essential for later work.

Theorem 14.2.9 (Geometric characterisation of thin elements) Let X∗ be a filtered space and let

n > 2. Then an element of ρnX∗ is thin if and only if it has a deficient representative.

Proof We suppose n > 2 and that α in RnX∗ is deficient. Define Ψiα ∈ RnX∗ by

Ψiα = [−εi∂
+
i α, −Γi∂

−
i+1α,α, Γi∂

+
i+1α]i+1

where − denotes −i+1. Let Ψα = Ψ1 · · ·Ψn−1α; then Ψα also is deficient.

In Section 13.4 we defined for anyω-groupoid, and hence also for ρnX∗, a ‘folding operation’Φ.

The above formula for Ψ is the same as that for Φ. It follows that pΨ = Φp, where p : RX∗ → ρX∗

is the quotient map. So by Proposition 13.4.9, ∂τ1Φp(α) = εn−1
1 [x] for some [x] ∈ ρ0X = π0X0, if

(τ, j) 6= (−, 1).

Thus if B is the box in In with base ∂+
1 I
n, then for each (n − 1)-cell a of B, Ψα |a is filter-

homotopic to the constant map at x. By the Deformation Theorem 14.2.5, Ψα is filter-homotopic to

an element β such that β(B) = {x}, and such that β is deficient. Therefore, the homotopy of β to

the constant map at x, defined by a strong deformation retraction of In onto B, is a filter-homotopy

giving pΨα = pβ = 0. So Φpα = 0. By Proposition 13.4.18, 〈〈α〉〉 = pα is thin.

For the other implication, suppose that 〈〈α〉〉 is thin. Then 〈〈α〉〉 has a subdivision 〈〈α〉〉 = [〈〈α(r)〉〉]

in which each α(r) is deficient. By Proposition 14.2.8, 〈〈α〉〉 has a deficient representative. 2
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14.3 The HHvKT theorem for ω-groupoids

Suppose for the rest of this section that X∗ is a filtered space. We suppose given a cover U = {Uλ}λ∈Λ

of X such that the interiors of the sets of U cover X. For each ν ∈ Λn we set Uν = Uν1 ∩ · · · ∩Uνn ,

Uνi = Uν ∩ Xi. Then Uν0 ⊆ U
ν
1 ⊆ · · · is called the induced filtration Uν∗ of Uν. So the fundamental

ω-groupoids in the following ρ-diagram of the cover are well defined:

⊔
ν∈Λ2 ρUν∗

i1 //
i2

//
⊔
λ∈Λ ρU

λ
∗

i // ρX∗

Here
⊔

denotes disjoint union (which is the same as coproduct in the category of ω-groupoids); i1,

i2 are determined by the inclusions i1ν : Uλ∩Uµ → Uλ, i2ν : Uλ∩Uµ → Uµ for each ν = (λ,µ) ∈ Λ2;

and i is determined by the inclusions iλ : Uλ → X.

Theorem 14.3.1 (HHvKT theorem for ω-groupoids) Suppose that for every finite intersection Uν

of elements of U, the induced filtration Uν∗ is connected. Then

(Con) X∗ is connected;

(Iso) in the above ρ-diagram i is the coequaliser of i1, i2 in the category of ω-groupoids.

Proof The proof of (Con) will be made on the way to verifying the universal property which proves

(Iso).

Suppose we are given a morphism

f ′ :
⊔

λ∈Λ

ρUλ∗ → G (*)

of ω-groupoids such that f ′i1 = f ′i2. We have to show there is a unique morphism f : ρX∗ → G of

ω-groupoids such that fi = f ′. It is clear that if the morphism f satisfying f ′i1 = f ′i2 exists, then it

must be given by the following recipe. The problem is to show that this recipe gives a well defined

morphism.

Let iλ be the inclusion of ρUλ∗ →
⊔
λ∈Λ ρU

λ
∗ . Let pλ : RUλ∗ → ρUλ∗ be the quotient map, and let

Fλ = f ′iλpλ : RUλ∗ → G. We can use these Fλ to construct Fθ for certain kinds of elements θ in RnX∗.

1.- Suppose that θ in RnX∗ is such that θ lies in some set Uλ of U. Then θ determines uniquely an

element θλ of RnU
λ
∗ , and the rule f ′i1 = f ′i2 implies that an element of Gn

Fθ = Fλθ
λ

is determined by θ.

2.- Suppose given a subdivision [θ(r)] of an element θ of RnX∗ such that each θ(r) is in RnX∗ and

also lies in some Uλ(r) of U. Since the composite θ = [θ(r)] is defined, it is easy to check, again using

f ′i1 = f ′i2, that the elements Fθ(r) form a composable array in Gn. We write the composition as Fθ,

Fθ = [Fθ(r)]

although a priori it could depend on the subdivision chosen.

3.- Suppose now that α is an arbitrary element of RnX∗. The construction from α of an element g in

Gn and the proof that g depends only on the class of α in ρnX∗ are based on the following Lemma

which generalises Lemma 6.8.3 of Part I.
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Lemma 14.3.2 Let α : In → X and let α = [α(r)] be a subdivision of α such that each α(r) lies in

some set Uλ(r) of U. Then there is a homotopy h : α ≃ θ with θ ∈ RnX∗ such that in the subdivision

h = [h(r)] determined by that of α, each homotopy h(r) : α(r) ≃ θ(r) satisfies:

(i) h(r) lies in Uλ(r) ;

(ii) θ(r) belongs to RnX∗ ;

(iii) if some m-dimensional face of α(r) lies in Xj, so also do the corresponding faces of h(r) and θ(r);

(iv) if v is a vertex of In and α(v) ∈ X0 then h is the constant homotopy on v.

Proof Let K be the cell-structure on In determined by the subdivision α = [α(r)]. Let Lm =

Km × I ∪ K× {0}. We construct maps

hm : Lm → X

for m = 0, . . . ,n such that hm extends hm−1, starting with h−1 = α. Further we construct hm to

satisfy the following conditions, for each m-cell e of K:

(i)m if e is contained in the domain of α(r), then hm(e× I) ⊆ Uλ(r);

(ii)m hm |e×{1} is an element of Rm(X∗);

(iii)m if α maps e into Xj, then hm(e × I) ⊆ Xj;

(iv)m if α |e: e→ X is a filtered map, then h is constant on e.

For an m-cell e of K, let j be the smallest integer such that α maps e into Xj. Let Ue be the

intersection of all the sets Uλ(s) such that e is contained in the domain of α(s).

Let hm |K×0 be given by α, and for those cells e of K such that α |e is filtered, let hm be the

constant homotopy on e× I.

Let e be a 0-cell of K. If α(e) does not lie in X0, then, since Ue∗ is connected, there is be a path in

Ue joining e to a point of X0. We define h0 on e× I busing this path.

Let m > 1. The construction of hm from hm−1 is as follows on those m-cells e such that α|e

is not filtered. If j 6 m, then hm−1 can be extended to hm on e × I by means of a retraction

α × I → e × {0} ∪ ∂e × I. If j > m the restriction of hm−1 to the pair (e × {0} ∪ ∂e × I,∂e × I)

determines an element of πm(Uej ,U
e
m−1). By φ(X∗,m), hm−1 extends to hm on e × I mapping into

Uej and such that e× {1} is mapped into Uem. 2

Corollary 14.3.3 Let α ∈ RnX∗. Then there is a filter-homotopy rel vertices h : α ≡ θ such that Fθ is

defined in Gn.

Proof Choose a subdivision α = [α(r)] such that α(r) lies in some set Uλ(r) of U. Lemma 14.3.2

gives a filter-homotopy h : α ≡ θ and subdivision θ = [θ(r)] as required. 2

We will show in Lemma 14.3.5 below that this element Fθ depends only on the class of α in

ρnX∗. But first we can now prove that X∗ is connected.

Proof of (Con)

The condition φ(X∗, 0) is clear since each point of Xj belongs to some Uλ and so may be joined

in Uλ to a point of X0.
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Let Jm−1 = I× ∂Im−1 ∪ {1}× Im−1. Let j > m > 0, x ∈ X0 and let [α] ∈ πm(Xj,Xm−1, x), so that

α : (Im, {0} × Im−1, Jm−1) → (Xj,Xm−1, x). By Lemma 14.3.2, α is deformable as a map of triples

into Xm.

This proves X∗ is connected.

Remark 14.3.4 Up to this stage, our proof of the union theorem is very like the proof for the 2-

dimensional case given in 6.8. We now diverge from that proof for two reasons. First, the form

of the homotopy commutativity lemma given in 6.7.6 is not so easily stated in higher dimensions.

So we employ thin elements, since these are elements with ‘commuting boundary’. Second, we can

now arrange that the proof is nearer in structure to the 1-dimensional case, for example the proof

of the classical van Kampen theorem given in 1.6. 2

Two facts about ω-groupoids which made the proof work are that composites of thin elements

are thin (as is obvious from Definition 13.4.17), and Proposition 13.7.5.

Suppose now that h ′ : α ≡ α ′ is a filter-homotopy between elements of RnX∗, and h : α ≡ θ,

h ′′ : α ′ ≡ θ ′ are filter-homotopies constructed as in Corollary 14.3.3, so that Fθ, Fθ ′ are defined.

From the given filter-homotopies we can obtain a filter-homotopy H : θ ≡ θ ′. So to prove Fθ = Fθ ′ it

is sufficient to prove the following key Lemma. In fact, it could be said that the previous machinery

has been developed in order to give expression to this proof.

Lemma 14.3.5 Let θ, θ ′ ∈ RnX∗ and let H : θ ≡ θ ′ be a filter-homotopy. Suppose θ = [θ(r)],

θ ′ = [θ ′
(s)

] are subdivisions into elements of RnX∗ each of which lies in some set of U. Then in Gn

[Fθ(r)] = [Fθ ′
(s)].

Proof Suppose θ(r) lies in Uλ(r) ∈ U, θ ′
(s)

lies in Uλ
′(s) ∈ U, for all (r), (s). Now θ = ∂−

n+1H,

θ ′ = ∂+
n+1H. We choose a subdivision H = [H(t)] such that each H(t) lies in some set V(t) of U and

so that on ∂−
n+1H and ∂+

n+1H it induces refinements of the given subdivisions of θ and θ ′ respectively.

Further, this subdivision can be chosen fine enough so that ∂−
n+1H(t), if it is a part of θ(r), lies in

Uλ(s), and ∂+
n+1H(t), if it is part of θ ′

(s)
, lies in Uλ

′(s). So we can and do choose V(t) = Uλ(r) in

the first instance, V(t) = Uλ
′(s) in the second instance (and avoid both cases holding together by

choosing, if necessary, a finer subdivision).

We now apply Lemma 14.3.2 with the substitution of n+1 for n, H for α, K for θ, and (t) for (r),

to obtain in Rn+2X∗ a filter-homotopy h : H ≡ K such that in the subdivision h = [h(t)] determined

by that of H, each homotopy h(t) : H(t) ≃ K(t) satisfies

(i) h(t) lies in V(t)

(ii) K(t) belongs to Rn+1X∗,

(iii) if some m-dimensional face of H(t) lies in Xj, so also do the corresponding faces of h(t) and

K(t).

Now k = ∂−
n+1h, k ′ = ∂+

n+1h are filter-homotopies k : θ ≡ φ, k ′ : θ ′ ≡ φ′, say. Further,

the previous choices ensure that in the subdivision k = [k(r)] induced by that of θ, k(r) is a filter-

homotopy θ(r) ≡ φ(r) (by (iii)) and lies in Uλ(r) (by (i)). It follows that Fθ(r) = Fφ(r) in Gn and

hence Fθ = Fφ. Similarly Fθ ′ = Fφ′, so it is sufficient to prove Fφ = Fφ′.

We have a filter-homotopy K : φ ≡ φ′ and a subdivision K = [K(t)] such that each K(t) belongs

to Rn+1X∗ and lies in some V(t) of U. Thus FK = [FK(t)] is defined in Gn+1. Further, the induced

subdivisions of ∂−
n+1FK, ∂+

n+1FK refine the subdivisions [Fφ(r)], [Fφ′
(s)] respectively. Hence ∂−

n+1FK =
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Fφ, ∂+
n+1FK = Fφ′, and it is sufficient to prove ∂−

n+1FK = ∂+
n+1FK. For this we apply Proposition

13.7.5.

Let d be a face operator from dimension n+ 1 to dimension m, and not involving ∂−
n+1 or ∂+

n+1.

Let σ = d(H), τ = d(K). Then σ is deficient (since H is a filter homotopy) and so by the choice of

h in accordance with (iii), τ is deficient. In the subdivision τ = [τ(u)] induced by the subdivision

K = [K(t)], τ(u) ∈ RmX∗ and is deficient. By Theorem 14.2.9, the Fτ(u) ∈ Gm are thin, and

hence their composite Fτ ∈ Gm is thin. But FK = [FK(t)] has, by its construction, the property that

dFK = Fτ. So dFK is thin. By Proposition 13.7.5, ∂−
n+1FK = ∂+

n+1FK. 2

Proof of (Iso)

We have completed the proof that there is a well-defined function f : ρnX∗ → Gn given by

f(〈〈α〉〉) = F(θ), where θ is constructed as in Corollary 14.3.3. These maps f : ρnX∗ → Gn, n > 0,

determine a morphism f : ρX∗ → G of ω-groupoids. By its construction, f satisfies fi = f ′ and is the

only such morphism. Thus the proof of Theorem 14.3.1 is complete. 2

14.4 The HHvKT for crossed complexes

In order to interpret the HHvK Theorem 14.3.1, we relate the ω-groupoid ρX∗ to the fundamental

crossed complex ΠX∗ of part II.

In Section 13.3 we have defined a functor

γ : ω-Gpds→ Crs

associating a crossed complex γG to any ω-groupoid G.

Now we prove that for any filtered space the crossed complex γρX∗ is canonically isomorphic to

ΠX∗ the fundamental crossed complex used throughout Part II.

Thus we can translate Theorem 14.3.1 getting the HHvK Theorem for crossed complexes (Theo-

rem 8.1.5) whose consequences we have studied in Part II.

Theorem 14.4.1 If X∗ is a filtered space then γρX∗ is naturally isomorphic to ΠX∗.

Proof It is clear that the dimension 1 groupoids in both structures are the same.

Let n > 2, and x ∈ X0. We construct an isomorphism

θn : πn(Xn,Xn−1, x)→ (γρX∗)n.

The elements of πn(Xn,Xn−1, x) are homotopy classes of maps of triples

α : (In,∂−
1 I
n,B)→ (Xn,Xn−1, x),

where B is the box in In with base ∂+
1 I
n. Such a map α defines a filtered map

θ ′α : In∗ → X∗

with the same values as α, and θ ′α is constant on B.

If α is homotopic to β (as maps of triples), then θ ′α is filter-homotopic to θ ′β, and so θ ′ induces a

map θn : πn(Xn,Xn−1, x)→ (γρX∗)n. But addition in the relative homotopy group πn(Xn,Xn−1, x)

is defined using any +i, i > 2. So θn is a morphism of groups.



[14.4] 397

Suppose α represents in πn(Xn,Xn−1, x) an element mapped to 0 by θn. Then there is a filter

homotopy rel vertices

H : θ ′α ≡ x∗,

where x∗ is the constant map at x. Now we want a map of triples

F : (In × I,∂−
1 I
n × I,B× I)→ (Xn,Xn−1, x)

with F0 = α and F1 = x∗. We know that α|B is constant. By Corollary 14.2.2 and since B collapses

to a vertex (by Corollary 10.3.7), the constant filter-homotopy θ ′α|B ≡ x ∗ |B extends to a filter-

homotopy θ ′α ≡ x ∗ . This filter-homotopy defines a homotopy F : α ≃ x ∗ . So θn is injective.

We now prove θn surjective. Let 〈〈γ〉〉 ∈ (γρX∗)n. Then for each (n − 1)-face a of B, γ|a is filter-

homotopic to x̃|a (where x̃ is the constant map B→ X∗ at x ). By the deformation Theorem 14.2.5,

γ is filter-homotopic to a map γ ′ : In → X∗ extending x̃. Hence θn is surjective.

The isomorphism θ also preserves the boundary maps δ. To complete the proof, we only have to

show that θ preserves the action of C1 on C.

Let α represent an element of πn(Xn,Xn−1, x), and let ξ represent an element of π1X1(x,y).

A standard method of constructing β = αξ representing an element of πn(Xn,Xn−1,y) (as seen in

section 2.1) is to use the homotopy extension property as follows. Let ξ ′ : B×I→ X∗ be (x, t) 7→ ξ(t).

Then ξ ′ is a homotopy of α|B which extends to a homotopy h : α ≃ β, and we set αξ = β. We want

to prove that θn[αξ] = θn[β] = (θn[α])[ξ]. So, if we recall that h is constructed by extending ξ ′

over ∂−
1 I
n × I using a retraction of ∂−

1 I
n × I to its box with base ∂−

1 I
n × {0}, and then extending

again using a retraction of In × I to its box with base In × {0}. Thus h is a filtered map In+1
∗ → X∗

with h and ∂τih (i 6= n + 1) deficient; hence [h] and ∂τi [h] (i 6= n + 1) are thin (Theorem 14.2.9).

Therefore the folding map Φ : ρnX∗ → ρnX∗ defined in Section 13.4 vanishes on these elements by

Proposition 13.4.18 and so the homotopy addition Lemma 13.7.1 reduces to

Φ∂+
n+1[h] = (Φ∂−

n+1[h])un+1[h].

By Corollary 13.4.10, Φ is the identity on Dn, [Where was Dn defined?] to which belong both

∂+
n+1[h] = θn[β] and ∂−

n+1[h] = θn[α]. Further un+1[h] = [ξ]. So

θn[β] = (θn[α])[ξ].

Thus θ preserves the operations.

Finally, the naturality of θ is clear. 2

Proof of Theorem 8.1.5

Since the functor γ is an equivalence of categories, we obtain immediately from the previous

Theorem and the HHvK Theorem 14.3.1 for ω-groupoids, the HHvK Theorem 8.1.5 for crossed

complexes.

Proposition 14.4.2 Let n > 2 and let cn ∈ ρnIn∗ be the class of the identity map In∗ → In∗ . Then

πn(In,∂In, 1) is isomorphic to Z and is generated by θ−1Φcn.

Proof There is an alternative definition of relative homotopy groups, namely π ′
n(X, Y, x) is the set

of homotopy classes of maps (In,∂In, 1)→ (X, Y, x), with addition induced by a map In → In
∨
In.

An isomorphism ξ : πn(X, Y, x) → π ′
n(X, Y, x) is induced by α 7→ α ′ where (in the notation of the

proof of Theorem 14.4.1) α : (In,∂−
1 I
n,B)→ (X, Y, x), and α ′ : (In,∂In, 1)→ (X, Y, x) has the same

values as α. (Here 1 = (1, · · · , 1) is the base point of In.)
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Let ρn(In∗ , 1) be the set of y in ρnI
n
∗ such that (∂+

1 )ny = 1. Then a map

η : ρn(In∗ , 1)→ π ′
n(In,∂In, 1)

is induced by β 7→ β ′ where β : In∗ → In∗ satisfies β(1) = 1, and β ′ has the same values as β. Clearly

ηθ = ξ.

A standard deduction from the results of Section 8 is that π ′
n(In,∂In, 1) is isomorphic to Z and

is generated by an, the class of the identity map. Now clearly ηcn = an. Also, it is easily checked

that for any y ∈ ρn(In∗ , 1) and j = 1, · · · ,n − 1, we have ηΦjy = ηy. Hence ηΦcn = ηcn = an. The

result now follows. 2

From now on, we identify ΠX∗ with θΠX∗ = γρX∗ for any filtered space X∗.

14.5 Realisation properties of ω-groupoids and crossed com-

plexes

In this section, we show that each of the functors ρ and Π from FTop to respectively ω-groupoids

and crossed complexes are representative functors, i.e. all ω-groupoids and all crossed complexes

are, up to isomorphism, values of these functors. An implication of this is that the axioms for these

structures well reflect the properties of these functors.

Let G be anyω-groupoid and define Gm to be theω-subgroupoid of G generated by all elements

of dimension 6 m. Then Gm has only thin elements in dimension greater than m and is the largest

such ω-groupoid. In fact,

Gm ∼= SkmG = skm(trmG)

as described in Section 13.5, and by abuse of language we call it the m-skeleton of G (not to be

confused with them-skeleton of G considered as a cubical set). We define the skeletal filtration of G

to be

G∗ : G0 ⊆ G1 ⊆ · · · .

The elements of Gmn are the same as those of Gn for n 6 m; and for n > m, Gmn can be described

inductively as the set of thin elements of Gn whose faces are in Gmn−1.

Since Gm is an ω-groupoid, it is a Kan complex. Therefore if x ∈ G0, and 0 < l < m, the

rth relative homotopy group πr(G
m,Gl, x) is defined for r > 2. So there is a crossed complex ΠG∗

which in dimension n > 2 is the family of groups πn(Gn,Gn−1, x), x ∈ G0, and in dimension 1 is

the groupoid π1G
1.

Proposition 14.5.1 If G∗ is the skeletal filtration of an ω-groupoid G then the crossed complex ΠG∗

is naturally isomorphic to γG. Further, G∗ is connected.

Proof The elements of πn(Gn,Gn−1,p), p ∈ G0, n > 2, are classes of elements x of Gn such that

∂τi x = εn−1
1 p for (τ, i) 6= (0, 1), two such elements x, y being equivalent if there is an h ∈ Gnn+1 such

that ∂−
n+1h = x, ∂+

n+1h = y, ∂τih = εn1 p for (τ, i) 6= (0, 1) and i 6= n+ 1, and ∂−
1 h ∈ G

n−1
n . Then h is

thin, as is dh for any face operator d not involving ∂−
n+1 or ∂+

n+1. It follows from Proposition 13.7.5

that x = y. Thus πn(Gn,Gn−1,p) can be identified with Cn(p) = (γnG
∗)(p).

The identification of the groupoid π1G
1 with G1 is simple, as is the identification of the boundary

maps. The identification of the operations may be carried out in a similar manner to the proof of

Theorem 14.4.1.

Finally, that G∗ is connected follows from the fact that Grn = Gn for r > n. 2
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We now use the geometric realisation |A | of a cubical set A as described in subsection 10.1.3. If

G is an ω-groupoid, then |G | denotes the geometric realisation of the underlying cubical set of G.

Proposition 14.5.2 Let G be an ω-groupoid, G∗ its skeletal filtration, and let X∗ = |G∗| be the filtra-

tion of X = |G| given by Xn = |Gn|. Then there is a natural isomorphism of ω-groupoids

G ∼= ρ|G
∗|.

Proof By the previous remarks and Proposition 14.5.1 we have natural isomorphisms

γG ∼= ΠG∗ ∼= Π|G∗|.

The result follows since Π|G∗| ∼= γρ|G∗| and γ is an equivalence. 2

Corollary 14.5.3 If C is a crossed complex, there is a filtered space X∗ such that C is isomorphic to

ΠX∗.

Proof Let G be the ω-groupoid λC (cf. 13.6) and let X = |G|. By Proposition 14.5.2, C ∼= ΠX∗. 2

Remark 14.5.4 This result contrasts with Whitehead’s example of a crossed complex C which is of

dimension 5, has π1C = Z2, is free in each dimension but is not isomorphic to ΠX∗ for the skeletal

filtration X∗ of any CW-complex X (see [Whi49b]). 2

Remark 14.5.5 Note also that when X = |λC|, the absolute homotopy groups πn(X, x) are isomor-

phic to π1(C, x) for n = 1, Hn(C, x) for n > 2 by Remark 13.7.7 of 13.7. Thus Corollary 14.5.3

generalises a cubical version of the construction of Eilenberg-Mac Lane spaces. 2

14.6 Free properties

Proposition 14.6.1 For any cubical set K, the natural cubical map iK : K → ρ |K∗| makes ρ |K∗| the

free ω-groupoid on K.

Proof Let G be anω-groupoid, and let f : K→ UG be a cubical map. Then f induces a filtered map

|K∗|→ |U∗G|, which composes with the inclusion |U∗G|→ |UG∗| to give |f| : |K∗|→ BG∗. The natural

isomorphism iG : G→ ρBG∗ and the natural map i ′ : K→ Uρ|K∗| give a commutative diagram

K

��

f // UG

UiG

��
Uρ|K|

Uρ|f|

//
Uf̃

::u
u

u
u

u
UρBG

Thus f̃ = (iG)(ρ|f|) : ρ|K∗| → UG is a morphism of ω-groupoids extending f. Its uniqueness

follows if we can show that ρ|K∗| is generated, as an ω-groupoid, by i ′(K). But ρ|K∗| is generated

by the crossed complex γρ|K∗| = Π|K∗| which it contains (see 13.5.14). Also Π|K∗| is generated, as

crossed complex, by the cells of |K∗|, i.e. by non-degenerate elements of K, by 9.6.4. So uniqueness

is proved. 2
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Corollary 14.6.2 The homotopy ω-groupoid ρIn∗ is the free ω-groupoid on the class cn ∈ ρnIn∗ of the

identity map.

Remark 14.6.3 We now describe the crossed complex ΠIn∗ . The cell complex In has one cell for

each cubical face operator d from dimension n to r, 0 6 r 6 n, and d determines a characteristic

map d̃ : Ir∗ → In∗ for this cell. Then d̃ induces ρ(d̃) : ρIr∗ → ρIn∗ and ρ(d̃)(cr) = dcn. Since ρ(d̃) is a

morphism of ω-groupoids, it follows that ρ(d̃)(Φcr) = Φdcn. Hence ΠIn∗ has generators Φdcn for

each face operator d from dimension n to r, 0 6 r 6 n. The boundary δΦdcn is given by the HAL

13.7.1.

Corollary 14.6.4 If G is an ω-groupoid, then Gn is naturally isomorphic to Crs(ΠIn∗ ,γG).

Proof Gn ∼= Gpds(ρIn∗ ,G) ∼= Crs(ΠIn∗ ,γG). 2

Remark 14.6.5 This corollary gives another description of the functor λ : Crs→ ω-Gpds, the inverse

equivalence of γ, namely that λ is naturally equivalent to C 7→ Crs(ΠIn∗ ,C). In view of the explicit

description of ΠIn∗ given above, a morphism f : ΠIn∗ → C of crossed complexes is describable as a

family {f(d)} where d runs through all the cubical face operators from dimension n to dimension r

(0 6 r 6 n), f(d) ∈ Cr, and the elements f(d) are required to satisfy the relations (cf. 13.7.1)

δf(d) =





∑r
i=1(−1)i{f(∂+

i d) − f(∂−
i d)

f(uid)} (r > 4),

−f(∂+
3 d) − f(∂−

2 d)
f(u2d) − f(∂+

1 d) + f(∂−
3 d)

f(u3d) + f(∂+
2 d) + f(∂−

1 d)
f(u1d) (r = 3),

−f(∂+
1 d) − f(∂−

2 d) + f(∂−
1 d) + f(∂+

2 d) (r = 2),

and δτf(d) = f(∂τ1d) (r = 1). (These relations imply that f(d) ∈ Cr(p) where p = f(βd)). 2

Corollary 14.6.6 For any cubical set K, there is a natural isomorphism γρ(K) ∼= Π|K∗|.

By virtue of this corollary we identify these two crossed complexes and write either as Π(K). So

we have a functor Π : Cub→ Crs.

Corollary 14.6.7 The functor Π : Cub→ Crs is left adjoint to the nerve functor N : Crs→ Cub.

Proof This follows from the fact that ρ : Cub→ ω-Gpd is left adjoint to U : ω− Gpd→ Cub, that

Π = γρ, that N = λU, and that γ and λ give the equivalence of the categories of ω-groupoids and

crossed complexes. 2

Remark 14.6.8 The fact that the functor ρ : Cub → ω-groupoids is a left adjoint implies that it

preserves all colimits. However, the Higher Homotopy van Kampen Theorem (Theorem 14.3.1) is

not an immediate consequence of this fact since that theorem is about the functor ρ : FTop → ω-

groupoids from filtered spaces to ω-groupoids, and one of the conditions for ρ colimU∗
∼= colimρU∗

is that each filtered space U∗ should be connected, in the sense of 14.3. It would be interesting

to know whether this Higher Homotopy van Kampen Theorem can be deduced from the fact that

ρ : Cub→ ω-groupoids preserves all colimits. 2
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14.7 Homology and homotopy

The homology groups of a cubical set K are defined as follows. First we form the chain complex

C′(K) where C′
n(K) is the free abelian group on Kn, and with boundary

∂k =

n∑

i=1

(−1)i(∂−
i k − ∂+

i k). (14.7.1)

It is easily verified that this gives a chain complex, i.e. ∂∂ = 0. However if K is a point, i.e. Kn is a

singleton for all n, then the homology groups of C′(K) are Z in even dimensions, whereas we want

the homology of a point to be zero in dimensions > 0. We therefore normalise, i.e. factor C′(K) by

the subchain complex generated by the degenerate cubes. This gives the chain complex C∗(K) of K,

and the homology groups of this chain complex are defined to be the homology groups of K. A full

exposition of this cubical theory is in [Mas80].

In particular the homology groups of S�X are the (cubical) singular homology groups of the

space X. It is proved in [EM53] using acyclic models that the cubical singular homology groups are

isomorphic to the simplicial singular homology groups.

Let X∗ be a filtered space. Then RX∗ is a Kan complex and ρX∗ is an ω-groupoid, and hence a

Kan complex (by Proposition 13.7.3). (A direct proof that ρX∗ is a Kan complex can be given using

Theorem 14.2.5.)

The following proposition is one step towards the Hurewicz theorem. It should be compared

with a special case discussed in [Mas80, Section III.7]. In the proof, a useful lemma is that if (Y,Z)

is a cofibred pair, and f : (Y,Z) → (X,A) is a map of pairs which is deformable (as a map of pairs)

into A, then f is deformable into A rel Z ([Bro06, 7.4.4]).

Proposition 14.7.1 Let X∗ be a filtered space such that the following conditions ψ(X∗,m) hold for all

m > 0:

ψ(X∗, 0) : The map π0X0 → π0X induced by inclusion is surjective;

ψ(X∗, 1) : Any path in X joining points of X0 is deformable in X rel end points to a path in X1;

ψ(X∗,m)(m > 2) : For all ν ∈ X0 , the map

πm(Xm,Xm−1,ν)→ πm(X,Xm−1,ν)

induced by inclusion is surjective.

Then the inclusion i : RX∗ → KX = S�X is a homotopy equivalence of cubical sets.

Proof There exist maps hm : KmX→ Km+1X, rm : KmX→ KmX for m > 0 such that

(i) ∂−
m+1hm = 1,∂+

m+1hm = rm,

(ii) rm(KX) ⊂ RmX∗ and hm | RmX∗ = εm+1,

(iii) ∂τihm = hm−1∂
τ
i for 1 6 i 6 m and τ = 0, 1,

(iv) hmεj = εjhm−1 for 1 6 j 6m.
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Such rm,hm are easily constructed by induction, starting with h−1 = ∅ , and using ψ(X∗,m) to

define hmα for elements α of KmX which are not degenerate and do not lie in RmX∗. Here is a

picture for h1:

•

h1k

r∂−
1 k

r∂+
1 k

rk

�
�
�
�
�
�
�

h0∂
−
1 k

•∂
−
1 k

∂+
1 k

k

•
h0∂

+
1 k

•

These maps define a retraction r : KX→ RX∗ and a homotopy h ≃ ir rel RX∗. 2

Corollary 14.7.2 If the conditions ψ(X∗,m) of the proposition hold for all m > 0, then the inclusion

i : RX∗ → KX induces a homotopy equivalence of chain complexes and hence an isomorphism of all

homology and homotopy groups.

Proof The result on homotopy is standard, and that on homology follows from the development

in [Mas80]. 2

Corollary 14.7.3 If X∗ is the skeletal filtration of a CW-complex, then the inclusion RX∗ → S�X is a

homotopy equivalence of Kan cubical sets.

Definition 14.7.4 Let C∗(X) denote the chain complex of normalised cubical singular chains of the

space X. We now coin a term: for a subspace A of X, let C∗(X rel0A) denote the chain complex

generated by singular cubes f : In → X which map the vertices of In into A, for n > 1, and in

which C0(X rel0A) = 0, so that all elements of C1(X rel0A) are cycles. We write H∗(X rel0A) for the

homology of this chain complex 2

Theorem 14.7.5 Let A be a subspace of the space X. Then a Hurewicz morphism

ω : π1(X,A)→ H1(X rel0A)

is defined and induces an isomorphism

ω ′ : π1(X,A)ab → H1(X rel0A).

Proof For each path class [f] ∈ π1(X,A) the representative f determines a generator ofC1(X rel0A).

Differing choices of f yield homologous elements of C1(X rel0A), so this defines ω as a function. If

f ◦ g is a composite of paths with vertices in A then the diagram

f ��

//f ◦ g

�� 1

g
//

(14.7.2)

extends to a map of I2 → X with vertices mapped to A whose boundary shows that ω is a morphism

to H1(X rel0A). It hence defines ω ′ : π1(X,A)totab → H1(X rel0A).

Now C1(X rel0A) is free abelian on the non degenerate paths f : I → X with vertices in A. So

a morphism η : C1(X rel0A) → π1(X,A)ab is defined by sending f to its class in π1(X,A)ab. It is

easy to check that η∂2 = 0, so that η defines a morphism H1(X rel0A)→ π1(X,A)totab, and that η is

inverse to ω ′. 2
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Next we relate H∗(X rel0A) to the standard relative homology.

For a subspaceA of X, we define the filtered space XA to beA in dimension 0 and X in dimensions

> 0. Our next result generalises a classical case when X is path connected and A consists of a single

point.

Proposition 14.7.6 If A meets each path component of X, then the inclusion C∗(XA) → C∗(X) is a

chain equivalence.

Proof This is an immediate consequence of Corollary 14.7.2. 2

We say C∗(A) is concentrated in dimension 0 if Ci(A) = 0 for i > 0. This occurs for example if A

is totally path disconnected, and so if A is discrete.

Theorem 14.7.7 (Relative Hurewicz Theorem: dimension 1) If A is totally path disconnected and

meets each path component of X then H1(X,A) ∼= H1(X rel0A).

Proof We define A∗ to be the constant filtered space with value A. So we regard A∗ as a sub-

filtered space of XA.

We consider the morphism of exact sequences of chain complexes

0 // C∗(A) //

=
��

C∗(X) //

i
��

C∗(X,A) //

j
��

0

0 // C∗(A∗) // C∗(XA) // C∗(XA,A∗) // 0

(14.7.3)

where classically the first sequence defines relative homology H∗(X,A), and the second sequence

defines H∗(XA,A∗). Under our assumptions, the morphism i is a homotopy equivalence and hence

so also is j (since all the chain complexes are free in each dimension).

Our assumption that A is totally path disconnected implies that Ci(A) = 0 for i > 0. This implies

that C∗(XA,A∗) ∼= C∗(X rel0A). 2

Remark 14.7.8 We now outline a proof of the Absolute Hurewicz Theorem using Corollary 14.7.2

and the homotopy addition lemma in the following form. Let n > 2, and let β : (In+1, In+1
n−1)→ (X,ν)

be a map. Then each ∂τiβ represents an element βτi of πn(X,ν) , and we have

n+1∑

i=1

(−1)i(β−
i − β+

i ) = 0. (14.7.4)

This follows from the form of the homotopy addition lemma given in (13.7.1) applied to the

ω-groupoid ρX∗ where X∗ is the filtered space with Xi = {ν}, i < n,Xi = X, i > n.

Theorem 14.7.9 (The Absolute Hurewicz Theorem) If n > 2 and X is an (n−1)-connected pointed

space, then HiX = 0 for 0 < i < n and the Hurewicz map ωn : πnX→ HnX is an isomorphism.

Proof Let X∗ be the filtered space defined immediately above. Then X∗ satisfies ψ(X∗,m) for all

m > 0 and so i : RX∗ → KX is a homotopy equivalence. But HiRX∗ = 0 for 0 < i < n; hence

HiX = HiKX = 0 for 0 < i < n,

For m > 0 let CmX∗ denote the group of (normalised) m-chains of RX∗. Then every element of

CnX∗ is a cycle, and the basis elements α ∈ RnX∗ of CnX∗ are maps In → X with α(İn) = {ν}.

So they determine elements α̃ of πn(X,ν), and α 7→ α̃ determines a morphism CnX∗ → πn(X,ν).

But by equation (14.7.4), this morphism annihilates the group of boundaries. So it induces a map

HnX→ πn(X,ν) which is easily seen to be inverse to the Hurewicz map. 2
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We know that if X∗ is a filtered space, then p : RX∗ → ρX∗ is a Kan fibration of cubical sets.

Notice that is nu ∈ X0, then ν also belongs to RX∗ and to the fibre of p over ν.

Theorem 14.7.10 Let X∗ be a filtered space, and let ν ∈ X0. Let Fν be the fibre of p : RX∗ → ρX∗ over

ν. Then:

(i) there is an exact sequence

· · · → πn(Fν,ν)→ πn(RX∗,ν)→ πn(ρX∗,ν)→

· · · → π1(Fν,ν)→ π1(RX∗,ν)→ π1(ρX∗,ν)→

(ii) πn(F,ν) is isomorphic to the image of the morphism

in : πn(Xn−1,ν)→ πn(Xn,ν)

induced by inclusion.

(iii) if X∗ is the skeletal filtration of a CW-complex X, then the above exact sequence is equivalent to

one of the form

· · · → Γn(X,ν)→ πn(X,ν)
ω
−→ Hn(X̃ν)→

where ω is called the Hurewicz morphism.

Proof (i) This is just the exact sequence of a Kan fibration of cubical sets, whose proof is entirely

analogous to that for the topological case.

(ii)We define a map θ : πn(F,ν)→ πn(Xn,ν).

Let α ∈ Fn have all its faces at the base point ν. Then α determined α ′ : (In, In)→ (Xn,ν) with

the same values as α, and α 7→ α ′ induces θ.

If α ∈ Fn , then pα = εn1 ν̄ in ρnX , and so α is filter-homotopic to ν̄, the constant map at

ν. Suppose further that α has all its faces at the base point. Let B be the box in In with base

∂−
nI
n. By Corollary 14.2.2, the constant filter-homotopy ν̄ | B ≡ α | B extends to a filter-homotopy

h : ν̄ ≡ α. Let β = ∂+
nh, k = Γnβ. Then h +n k is a filter-homotopy ν̄ +n β ≃ α +n ν̄, rel İn.

Let β ′ : (In, İn) → (Xn−1,ν) be the map with the same values as β. Then α ′ ≃ iβ ′. This proves

Im θ ⊂ Im in.

Let α ′ : (In, İn) → (Xn−1,ν) represent an element of πn(Xn−1,ν). Let α : In∗ → X∗ have the

same values as α ′. Then Γnα is a filter-homotopy α ≡ ν̄, so that α ∈ Fn. Clearly θᾱ = inα
′, and this

proves Im in ⊂ Im θ.

Finally, we prove θ injective. Suppose θᾱ = 0. Then there is a homotopy h : α ′ ≃ ν̄ of maps

(In, İn) → (Xn,ν). Clearly h ∈ Rn+1X∗. However, Γn+1h is a filter-homotopy h ≡ ν̄. Therefore

h ∈ Fn+1, and so ᾱ = 0.

(iii) We have proved in Proposition ?? that in the case of a CW-filtration, and n > 2,Hn(ΠX∗,ν) ∼=

Hn(X̃ν), and in Corollary 14.7.3, that the inclusion RX∗ → S2X is a homotopy equivalence. 2

Remark 14.7.11 The reason for choosing the notation Γ in the above theorem is that we have

essentially derived a certain exact sequence considered in the paper [Whi50a]. However we have

used the bold symbol Γ so as not to confuse with our connections.

Definition 14.7.12 We say X∗ is a Jn-filtered space if for 0 6 i < n and ν ∈ X0, the map

πi+1(Xi,ν)→ πi+1(Xi+1,ν)

induced by inclusion is trivial. 2
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Corollary 14.7.13 If X∗ is a Jn-filtered space, then each fibre of p : RX∗ → ρX∗ is n-connected, and

the induced maps πiRX∗ → πiρX∗,HiRX∗ → HiρX∗, of homotopy and homology, are isomorphisms

for i 6 n and epimorphisms for i = n+ 1. 2

14.8 Notes

14.8.1 Notes to section 14.7

The history of classical papers on singular homology and the Hurewicz Theorem shows the use of

deformation theorems of the type of Theorem 14.7.1, as for example in Blakers [Bla48]. However

the use of simplicial rather than cubical methods, and of chain complexes, does seem to complicate

the proof. Cubical methods are easier for constructing homotopies, as in [Mas80, Section III.7].

The methods of Whitehead in [Whi50a] for his exact sequence are more direct and he also proves

a remarkable determination of Γ3X as the value of a ‘universal quadratic functor’ on π2(X). This is

related to results in [BL87b].

Further, the condition that X∗ be a Jn-filtered space is in the CW-complex case precisely the

condition that X is a Jn-complex in the sense of [Whi49b], and is also by Theorem 14.7.10 equivalent

to p : RX∗ → ρX∗ being an n-equivalence. Thus these results are related to the results of [Ada56]

which give necessary and sufficient conditions for X to be a Jn-complex.
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Chapter 15

Tensor products and homotopies

We now explain the final piece of algebraic structure which gives power to the machinery of crossed

complexes, particularly the homotopy classification Theorem 10.4.17. A vital part of this machinery

is the monoidal closed structure on crossed complexes, and its properties, which were stated in

Chapter 9. Our justification of these properties is in terms of the category ω-Gpds of ω-groupoids,

where the corresponding monoidal closed structure has a simple and convenient expression. In this

category it is also easy to construct the natural transformation

η : ρX∗ ⊗ ρY∗ → ρ(X∗ ⊗ Y∗)

and so this may be transferred to the category of crossed complexes and the functor Π via the

equivalence of categories γ and Theorem 14.4.1.

The structure of this chapter is as follows. In Section 15.1 we extend toω-groupoids the structure

of monoidal closed category constructed for cubical sets in Chapter 10. The extension is quite

straightforward.

Then, in Section 15.2 we study the transition from ω-groupoids to crossed complexes using the

details of the inverse equivalences

γ : ω−Gpd ⇄ Crs : λ

getting a fairly complicated description of the closed category structure for closed complexes. In

some sense this difficulty is an advantage, since the results of the story are easy to use (see Chapter

9), and when we do use these results, we know we have a powerful machine in the background, so

that the applications have the potential of being highly non trivial, without this machinery.

In Section 15.3, we define a natural transformation of the Eilenberg-Zilber type

θ ′ : ρX∗ ⊗ ρY∗ → ρ(X∗ ⊗ Y∗)

proving that it is an isomorphism when X and Y are CW-complexes. Again this result can be trans-

ferred to crossed complex giving the very important Theorem 9.8.1. In Section 15.4 we establish

the symmetry of the tensor product which, by contrast with the other results, is easier to prove for

crossed complexes than for ω-groupoids. (It is interesting to note that the tensor product of cubical

sets is not symmetric; the extra structure of ω-groupoids is needed to define the symmetry map

G⊗H→ H⊗G). In Section 15.5 we give a brief account of the case ofω-groupoids with base-point.

In the last two sections we give a dense subcategory of the category ofω-groupoids, and use this

to show certain covering crossed complexes of tensor product of crossed complexes is also a tensor

product of coverings. We use this to prove that the tensor product of two free aspherical crossed

407
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complexes is also aspherical. This is a useful result for our earlier chapter on homotopy classification

of maps and cohomology (Chapter 12).

15.1 The monoidal closed structure on omega-groupoids

The category ω-GPDS of ω-groupoids is a convenient algebraic model for certain geometric con-

structions. In particular it is well-suited for the discussion of homotopies and higher homotopies

and their composition.

The precise definition of ω-groupoid is in a previous chapter, Section 13.2; recall that an ω-

groupoid is a cubical set with extra structures of connections and compositions, the latter giving

groupoid structures. The internal hom functor for cubical sets developed in Subsection 10.2.3 gen-

eralises immediately to ω-groupoids as follows.

Definition 15.1.1 Any ω-groupoid G has an underlying cubical set and we have given in Definition

10.2.10 the n-fold left path cubical set PnG. It is

(PnG)r = Gn+r,

with cubical operators

∂αn+1,∂
α
n+2, . . . ,∂

α
n+r : (PnG)r →(PnG)r−1, α = +, − and,

εn+1, εn+2, . . . , εn+r : (PnG)r−1 →(PnG)r.

Now, we can define connections

Γn+1, Γn+2, . . . , Γn+r−1 : (PnG)r−1 →(PnG)r

and compositions

+n+1, +n+2, . . . , +n+r on (PnG)r.

They make PnG an ω-groupoid since the laws to be checked are just a subset of the ω-groupoid

laws of G. We call PnG the n-fold (left) path ω-groupoid of G. 2

The operators of G not used in PmG give maps

∂α1 , . . . ,∂αm : PmG→ Pm−1G,

ε1, . . . , εm : Pm−1G→ PmG,

Γ1, . . . , Γm−1 : Pm−1G→ PmG

which are morphisms of ω-groupoids and obey the cubical laws. The unused additions of G define

partial compositions +1, +2, . . . , +m on PmG which, by the ω-groupoid laws for G, are compatible

with the ω-groupoid structure of PmG.

Definition 15.1.2 The ‘internal hom’ ω-groupoid ω-GPDS(G,H) is defined for any ω-groupoids

G,H by:

ω-GPDSm(G,H) = ω-Gpds(G,PmH),
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with cubical operators

∂α1 , . . . ,∂αm : ω-GPDS(G,H)m → ω-GPDS(G,H)m−1;

ε1, . . . , εm : ω-GPDS(G,H)m−1 → ω-GPDS(G,H)m,

connections

Γ1, . . . , Γm−1 : ω-GPDS(G,H)m−1 → ω-GPDS(G,H)m

and compositions

+1, · · · , +m on ω-GPDS(G,H)m

all induced by the similarly numbered operations on H.

We make ω-GPDS(G,H) a functor in G and H (contravariant in G) in the obvious way: if

g : G→ G ′ and h : H→ H ′ are morphisms, the corresponding morphism

ω-GPDS(g,h) : ω-GPDS(G,H)→ ω-GPDS(G ′,H ′)

is given, in dimension r, by

ω-GPDS(g,h)r(f) = (Prh) ◦ f ◦ g,

for each f : G→ PrH. 2

Remark 15.1.3 Thus in dimension 0, ω-GPDS(G,H) consists of all morphisms G → H, while in

dimension n it consists of n-fold (left) homotopies G→ H.

The definition of tensor products of ω-groupoids is harder. We require that −⊗G be left adjoint

to ω-GPDS(G, −) as a functor from ω-GPDS to ω-GPDS, and this determines ⊗ up to natural

isomorphism.

One way of getting the tensor product is using the power of generalities, because the repre-

sentability of the functor ω-GPDS(F, ω-GPDS(G, −)) can be asserted on general grounds. The point

is that ω-GPDS is an equationally defined category of many sorted algebras in which the domains of

the operations are defined by finite limit diagrams. General theorems on such algebraic categories

(see Notes) imply thatω-GPDS is complete and cocomplete and that it is monadic over the category

Cub of cubical sets.

We are going to follow an alternative path strengthening the bicubical maps of subsection 10.2.1

to bimorphisms. The definition requires for any ω-groupoid H the transposition TH (see definition

10.2.19): here we just say that TH has the same elements as H but has its cubical operations,

connections and compositions numbered in reverse order.

Definition 15.1.4 For any ω-groupoids F,G,H a bimorphism f : (F,G)→ H is a family of maps

fpq : Fp ×Gq → Hp+q (p,q > 0)

such that

(i) for each x ∈ Fp, the map

fx = f(x, −) : G→ PpH

given by y 7→ f(x,y) is a morphism of ω-groupoids;

(ii) for each y ∈ Gq the map

fy = f(−,y) : F→ TPqTH

given by x 7→ f(x,y) is a morphism of ω-groupoids. 2
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These bimorphisms may be reinterpreted in terms of morphisms.

Proposition 15.1.5 There is a natural one-one correspondence between

1.- Bimorphisms (F,G)→ H, and

2.- Morphisms f : F→ ω-GPDS(G,H).

Proof The conditions in the definition of a bimorphism from (F,G) to H, may be interpreted as

saying that condition (i) gives maps Fp → ω-GPDSp(G,H) for each p, and condition (ii) states that

these combine to give a morphism of ω-groupoids F→ ω-GPDS(G,H). 2

Definition 15.1.6 We define the ω-groupoid tensor product F⊗G as given by the bimorphism

χ : (F,G)→ F⊗G

universal with respect to bimorphisms (F,G)→ H. We shall denote χ(x,y) by x⊗ y.

The universality condition says of course that every bimorphism f : (F,G) → H factors uniquely

as (x,y) 7→ f̂(x⊗ y) where f̂ : F⊗G→ H is a morphism of ω-groupoids. 2

Proposition 15.1.7 The tensor product is associative: i.e. for allω-groupoids E, F,G there is a natural

isomorphism

(E⊗ F)⊗ G ∼= E⊗ (F⊗G).

Proof Both sides of the above equation are determined by a universal property with respect to

‘trimorphisms’ from E, F,G. 2

Proposition 15.1.8 (exponential law for ω-groupoids) For any ω-groupoid G, the functor

ω-GPDS(G, −) is right adjoint to the functor −⊗G; so there are bijections

ω-Gpds(F⊗G,H) ∼= ω-Gpds(F,ω-GPDS(G,H))

natural with respect to ω-groupoids F,G,H.

Proof We get the bijection just by putting together the previous definitions and the universality

condition. 2

This proposition can be strengthened in a standard way:

Proposition 15.1.9 For ω-groupoids F,G,H there is a natural equivalence

ω-GPDS(F⊗ G,H) ∼= ω-GPDS(F,ω-GPDS(G,H)).

Proof We can use proposition 15.1.8 repeatedly and the associativity of the tensor product to give

for any ω-groupoid E a natural isomorphism

ω-Gpds(E,ω-GPDS(F⊗G,H)) ∼= ω-Gpds(E,ω-GPDS(F,ω-GPDS(G,H)).

The result follows. 2



[15.1] 411

We will show in Section 15.4 that the tensor product of ω-groupoids is symmetric, although the

isomorphism G⊗H ∼= H⊗G is not an obvious one.

We now show that, as in the tensor product of R-modules, the tensor product for ω-groupoids

may also be given by a presentation.

We may specify an ω-groupoid by a presentation, that is, by giving a set of generators in each

dimension and a set of defining relations of the form u = v, where u, v are well-formed formulae of

the same dimension made from generators and the operators ∂αi , εi, Γi, +i, −i.

Now, givenω-groupoids F,G, we give an alternative, but equivalent, definition of F⊗G by giving

a presentation of it as an ω-groupoid. The universal property of the presentation will then give the

required adjointness.

Definition 15.1.10 Let F,G be ω-groupoids. We define F ⊗ G to be the ω-groupoid generated by

elements in dimension n > 0 of the form x⊗ y where x ∈ Fp, y ∈ Gq and p + q = n, subject to the

following defining relations (plus, of course, the laws for ω-groupoids)

(i) ∂αi (x⊗ y) =

{
(∂αi x)⊗ y if 1 6 i 6 p,

x⊗ (∂αi−py) if p+ 1 6 i 6 n;

(ii) εi(x⊗ y) =

{
(εix)⊗ y if 1 6 i 6 p+ 1,

x⊗ (εi−py) if p+ 1 6 i 6 n + 1;

(iii) Γi(x⊗ y) =

{
(Γix)⊗ y if 1 6 i 6 p,

x⊗ (Γi−py) if p + 1 6 i 6 n;

(iv) (x +i x
′)⊗ y = (x⊗ y) +i (x ′ ⊗ y) if 1 6 i 6 p and x+i x

′ is defined in F;

(v) x⊗ (y+j y
′) = (x⊗ y) +p+j (x⊗ y′) if 1 6 j 6 q and y+j y

′ is defined in G. 2

Remark 15.1.11 There are quite a few relations that can be deduced from this Definition. In par-

ticular

(vi) −i(x⊗ y) =

{
(−ix)⊗ y if 1 6 i 6 p,

x⊗ (−i−py) if p+ 1 6 i 6 n
and

(vii) (εp+1x)⊗ y = x⊗ (ε1y). 2

15.1.1 Relations between the internal homs for cubes and for omega-groupoids.

We now use the free ω-groupoid ρK on a cubical set K, which gives the left adjoint

ρ : Cub→ ω-Gpds

to the forgetful functor

U : ω-Gpds→ Cub,

to relate the monoidal closed structures of Cub and ω-Gpds. This will enable us to tie in the theory

with results in Sections 10.2 10.4 on the nerve of a crossed complex.

It is easy to see that ρ(K) is the ω-groupoid generated by elements [k] for all k ∈ K with defining

relations given by ∂αi [k] = [∂αi k] and ǫi[k] = [ǫik] for all n > 1 and face and degeneracy maps

∂αi : Kn → Kn−1 and εi : Kn−1 → Kn.
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This notation is consistent with our previous use of ρ(K) as the fundamental ω-groupoid of the

filtered space |K∗| because, for any cubical set K, ρ(K) ∼= ρ(|K∗|), by the HHvKT, as a deduction from

Theorem 14.3.1. In particular we will write In for the ω-groupoid ρ(In), which is also the free

ω-groupoid on one generator of dimension n.

Proposition 15.1.12 For a cubical set L and an ω-groupoid G, there is a natural isomorphism of

cubical sets

U(ω-GPDS(ρ(L),G)) ∼= CUB(L,UG).

Proof Let us get first the bijections at every dimension, i.e.

ω-GPDSr(ρ(L),G) ∼= CUBr(L,UG)

for all r > 0.

They follow from the adjointness since the bijections

ω-GPDSr(ρ(L),G) = ω-Gpds(ρ(L),PrG) ∼= Cub(L,UPrG) = CUBr(L,UG).

are compatible with the cubical operators. 2

From this Property we easily deduce that the free ω-groupoid functor preserves the tensor prod-

uct.

Proposition 15.1.13 If K,L are cubical sets, there is a natural isomorphism of ω-groupoids

ρK ⊗ ρL ∼= ρ(K ⊗ L).

Proof From the previous Proposition 15.1.12 and the closed category structures of Cub and

ω-Gpds, we get the bijection of cubical sets

U(ω-GPDS(ρ(K ⊗ L),G)) ∼=

∼= CUB(K⊗ L,UG) by 15.1.12

∼= CUB(K, CUB(L,UG)) since Cub is monoidal closed

∼= CUB(K,U(ω-GPDS(ρ(L),G))) by 15.1.12

∼= U(ω-GPDS(ρ(K),ω-GPDS(ρ(L),G))) by 15.1.12

∼= U(ω-GPDS(ρ(K)⊗ ρ(L),G)) since ω-Gpds is monoidal closed.

The proposition follows from the bijection in dimension 0, namely

ω-Gpds(ρ(K ⊗ L),G) ∼= ω-Gpds(ρ(K) ⊗ ρ(L),G).

2

We get as a consequence the following relation among ρ(In) the ω-groupoid freely generated by

one element in dimension n.

Corollary 15.1.14 There are natural isomorphisms of ω-groupoids

ρ(Im)⊗ ρ(In) ∼= ρ(Im+n).

Proposition 15.1.15 (i) ρ(In)⊗− is left adjoint to Pn : ω-GPDS→ ω-GPDS.

(ii) −⊗ ρ(In) is left adjoint to ω-GPDS(ρ(In), −).
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(iii) ω-GPDS(ρ(In), −) is naturally isomorphic to TPnT .

Proof (i) There are natural bijections

ω-Gpds(ρ(In)⊗H,K) ∼= ω-Gpds(ρ(In),ω-GPDS(H,K))

∼= ω-GPDSn(H,K) = ω-Gpds(H,PnK).

(ii) This is a special case of Proposition 15.1.8.

(iii) It follows from (i) that TPnT : ω-GPDS → ω-GPDS, has left adjoint T(ρ(In) ⊗ T(−)) ∼=

− ⊗ Tρ(In). But the obvious isomorphism TI → I induces an isomorphism Tρ(In) ∼= ρ(In), so

−⊗ Tρ(In) is naturally isomorphic to −⊗ ρ(In). The result now follows from (ii). 2

Remark 15.1.16 It was proved in Section ?? that ρ(In) is the fundamental ω-groupoid ρ(In∗ ) of the

n-cube with its skeletal filtration. We will show, by similar methods, that for any cubical set K, there

is a natural isomorphism ρ(K) ∼= ρ(|K∗|), where |K∗| is the geometric realisation of K, with its skeletal

filtration. Thus Proposition 15.1.13 gives an isomorphism

ρ(|K∗|⊗ |L∗|) ∼= ρ(|K∗|)⊗ ρ(|L∗|)

which can be generalised to an isomorphism

ρ(X⊗ Y) ∼= ρ(X) ⊗ ρ(Y)

for arbitrary CW-complexes X, Y. 2

15.2 The monoidal closed structure on crossed complexes revis-

ited

It is an easy exercise to prove that given a monoidal closed category C and a equivalent category

C ′, we can use the equivalence to transfer the closed category structure from C to C ′. Thus the

monoidal closed structure defined onω-GPDS in Section 15.1 can be transferred to the category Crs

by defining

C⊗D = γ(λC⊗ λD) and Crs(C,D) = γ(ω-GPDS(λC, λD)),

for arbitrary crossed complexes C and D.

Remark 15.2.1 There is one aspect of the notion of monoidal categories which should in principle

be given more coverage than we are giving, namely the various coherence laws which are part of

the standard definition, see [ML71, Chapter VII]. These laws will not be important for our purposes,

and so we leave their investigation in our cases to the reader. Because the tensor product is defined

in the various cases by a universal property of ‘bi’-morphisms of carious types, coherence properties

reduce to those of the usual cartesian product of sets, which, as an example on p.160 of [ML71]

shows, cannot be be taken to give a strict monoidal structure. The coherence laws should be taken

into account when making constructions such as ‘free internal monoids with respect to tensor’, as

discussed for crossed complexes in [BB93]. A discussion of free monoids in the general case is in

[Lac08].
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Our goal in this Section is to derive this monoidal closed structure on the category Crs from that

on ω-groupoids and so arrive at the Definitions already given in Section 9.3.

We begin with the translation of the internal hom functor that is the most direct. Then we

translate the concept of bimorphism since it is essentially a ‘morphism of morphisms’. The least

direct is the tensor product, that can be done in terms of a presentation.

The difficulty in passing from presentations inω-GPDS to presentations in Crs may be illustrated

by the example ρ(In). In ω-GPDS, this is free on one generator in dimension n; however, the

corresponding crossed complex γρ(In) ∼= π(ρ(In∗ )) requires, for each r-dimensional face d of In, a

generator x(d) in dimension r, with defining relations of the form

δ(x(d)) =
∑

(α,i)

{x(∂αi d)},

where the formula for the ‘sum of the faces’ on the right is given by the Homotopy Addition Lemma

13.7.1.

15.2.1 The internal hom on crossed complexes

As we have seen we could define

CRS(C,D) = γ(ω-GPDS(λC, λD))

for any crossed complexes C,D and get a closed category structure on Crs. We want to describe the

structure of CRS(C,D) in terms internal to the crossed complexes C,D and arrive to the definition

of left (or right) m-fold homotopy for crossed complexes given in 9.3.6, i.e. a pair (F, f) where f is a

morphism of crossed complexes and F has degree m over f satisfying some conditions.

So, we have to study γ(ω-GPDS(G,H))m for two ω-groupoids G,H. It is clear that its elements

arem-fold homotopies ofω-groupoids which satisfy an extra degeneracy condition (almost all faces

are degenerate). Thus we want to examine these homotopies.

The main technical tool for changing a cube to another one with extra degeneracies is the folding

map Φ. Thus we are going to use the folding map to relate both kinds of m-fold homotopies.

Proposition 15.2.2 Let G,H be ω-groupoids, let ψ : G → H be an m-fold left homotopy. We may

define

(i) A morphism of crossed complexes

f : γG→ γH

defined by f = ∂+
1 ∂

+
2 · · ·∂

+
mψ.

(ii) An homotopy over f

F : γG→ γH

given by F = Φψ.

This m-fold left homotopy of crossed complexes (F, f) is said to be associated to ψ.

Proof The part (i) is clear since

∂+
1 ∂

+
2 · · ·∂

+
mψ : G→ H

is a morphism of ω-groupoids. Thus it maps γG to γH and restricts to a morphism

f : γG→ γH
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of crossed complexes.

Part (ii) is much longer since we have to check all conditions for a homotopy in Definition 9.3.6.

- Let us begin with the base point. Let us see that F is a map over f. For any c ∈ (γG)n, the base

point is

βF(c) = βΦψ(c) = βψ(c) = ∂+
1 ∂

+
2 · · ·∂

+
m+nψ(c) = ∂+

1 · · ·∂
+
mψ(∂+

1 · · ·∂
+
nc) = f(βc).

Thus F(c) ∈ f0β(c).

The other conditions for (F, f) to be a homotopy follow from the formulae for Φ(x +i y) in

Proposition 13.4.14.

- First the operations. Recall that in previous notation, for a k-dimensional cube x,

uix = ∂+
1 · · ·∂

+
i−1∂

+
i+1 · · ·∂

+
k x.

• If c+ c′ is defined in (γG)1 = G1, then

F(c+ c′) = Φψ(c+1 c
′) = Φ(ψ(c) +m+1 ψ(c′)) = (Φψ(c))u +Φψ(c′) = h(c)u + h(c′),

where u = um+1ψ(c′) = ∂+
1 · · ·∂

+
mψ(c′) = f(c′).

• Similarly, if n > 2 and c+ c′ is defined in (γG)n, then

F(c+ c′) = F(c)u + F(c′),

where u = um+nψ(c′) = ∂+
1 · · ·∂

+
m∂

+
m+1 · · ·∂

+
m+n−1ψ(c′) = ∂+

1 · · ·∂
+
mψ(∂+

1 · · ·∂
+
n−1c

′).

But since c′ ∈ (γG)n, the element ∂+
1 · · ·∂

+
n−1c

′ of (γG)1 is the identity element ε1βc
′; so

u = f(ε1βc
′) is also an identity element and F(c+ c′) = F(c) + F(c′).

- Now the action. If ct is defined, where c ∈ (γG)n, (n > 2) and t ∈ (γG)1, then

F(ct) = Φψ(ct) = Φψ(−nε
n−1
1 t+n c+n ε

n−1
1 t)

= −m+nε
n−1
m+1ψ(t) +m+n ψ(c) +m+n ε

n−1
m+1ψ(t)

= −(Φεn−1
m+1ψ(t))u + (Φψ(c))v +Φεn−1

m+1ψ(t)

for certain edges u, v ∈ (γH)1.

But n > 2, so εn−1
m+1ψ(t) is degenerate and Φεn−1

m+1ψ(t) = 0 for Proposition 13.4.18. Hence

F(ct) = F(c)v,

where v = um+n(εn−1
m+1ψ(t)) = ∂+

1 · · ·∂
+
m+n−1ε

n−1
m+1ψ(t) = ∂+

1 · · ·∂
+
mψ(t) = f(t) giving the result. 2

Remark 15.2.3 Notice that given an m-fold left homotopy ψ : G → H of ω-groupoids, the m-fold

left homotopy of crossed complexes associated to this, (F, f), satisfies an extra condition with respect

to the folding map, namely:

F(Φx) = Φψ(Φx) = Φψ(Φ1 · · ·Φn−1x) = ΦΦm+1 · · ·Φm+n−1ψ(x) = Φψ(x)

using Proposition 13.4.15. We call this extra condition

(FOLD) F(Φx) = Φψ(x). 2

So we have associated to any m-fold left homotopy between ω-groupoids an m-fold left homo-

topy between the associated crossed complexes satisfying the extra condition (FOLD). Now we prove

that the former homotopy betweenω-groupoids may be reconstructed from the homotopy between

the associated crossed complexes.



416 [15.2] Nonabelian Algebraic Topology

Proposition 15.2.4 Let G,H be ω-groupoids, and F be any m-fold left homotopy from γG to γH

beginning at f then there is a unique m-fold left homotopy ψ : G → H such that F is the associated

homotopy and satisfies the extra condition about degeneration of the faces

(DEG) ∂αi ψ(x) = εm−1
1 f̂(x)

for 1 6 i 6 m, α = 0, 1 and (α, i) 6= (0, 1) and all x ∈ G, where f̂ : G → H denotes the unique

morphism of ω-groupoids extending the morphism f : γG→ γH of crossed complexes.

Proof We are looking for the existence and uniqueness of an m-fold left homotopy ψ : G → H

having F as associated homotopy and satisfying the extra conditions

(DEG) ∂αi ψ(x) = εm−1
1 f̂(x) for i 6 m, (α, i) 6= (0, 1), and

(FOLD) Φψ(x) = F(Φx).

Using these conditions we construct ψ inductively.

- When n = 0, all faces but one of ψ(x) are specified by (DEG). The elements zαi = εm−1
1 f̂(x) =

εm−1
1 f(x) of Hm−1 for (α, i) 6= (0, 1) form a box and the Homotopy Addition Lemma (13.7.1) gives

a unique last face z−1 such that δΦz = Σz has the value δF(Φx) ∈ (γH)m−1. Proposition 13.5.11

then gives a unique filler ψ(x) for the box such that Φ(ψ(x)) has the value F(Φx). (Of course, one

must verify that δF(Φx) = δF(x) has the same basepoint as the given box, but this is clear since

βF(x) = βf(x)).

- Now suppose that n > 1 and assume that ψ(x) is already defined for all x of dimension < n and

that it satisfies (DEG) and (FOLD) for all such x. Assume further that ψ satisfies all the conditions

for an m-fold left homotopy in so far as they apply to elements of dimension < n.

Then, for x ∈ Gn we need to find ψ(x) ∈ Hm+n satisfying (amongst others) the conditions






∂αj ψ(x) = εm−1
1 f̂(x) for 1 6 j 6 m, (α, j) 6= (0, 1),

∂αm+jψ(x) = ψ(∂αj x) for 1 6 j 6 n,

Φψ(x) = F(Φx).

(*)

It is direct to verify that the specified faces of ψ(x) form a box whose basepoint is βf̂(x) = f(Φx) =

F(Φx) and therefore, as in the case n = 0, there is a unique ψ(x) satisfying these conditions.

To complete the induction we need only to verify that this ψ(x) has all the defining properties

of an m-fold homotopy.

For example, to prove that

ψ(x+i y) = ψ(x) +m+i ψ(y),

we first note that ∂+
m+iψ(x) = ψ(∂+

i x) = ψ(∂−
i y) = ∂−

m+iψ(y) so that z = ψ(x) +m+i ψ(y) is

defined. We then verify easily, using the induction hypotheses, that the faces of z other than ∂−
1 z are

given by 




∂αj z = εm−1
1 f̂(x +i y) for 1 6 j 6 m,

(α, j) 6= (0, 1),

∂αm+jz = ψ(∂αj (x+i y)) for 1 6 j 6 n.

Also

Φz = Φ(ψ(x) +m+i ψ(y)) = (Φψ(x))u +Φψ(y),

by Proposition 13.4.14, where u = um+iψ(y) = ∂+
1 · · ·∂

+
mψ(uiy) = f̂(uiy) = f(uiy). But it may be

verified that

F(Φ(x +i y)) = F(Φx)f(uiy) + F(Φy)
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using the defining properties of h and formulae of Proposition 13.4.14. (In the case n = 1, i = 1 one

needs to observe that addition in (γH)m+n is commutative). Hence

Φz = F(Φ(x +i y))

in all cases.

It follows, by the uniqueness of ψ(x) satisfying conditions (*), that z = (x +i y). The other

properties of ψ are proved in a similar way. 2

These propositions set up for m > 1 a bijection between m-fold left homotopies γG → γH and

elements of γ(ω-GPDS(G,H))m, namely m-fold left homotopies ψ : G→ H that satisfying the extra

degeneracy condition

(DEG) ∂αi ψ(x) = εm−1
1 ∂+

1 ∂
+
2 · · ·∂

+
mψ(x) for i 6m, (α, i) 6= (0, 1).

(Note that if ∂αi u = εm−1
1 v, then v must be ∂+

1 · · ·∂
+
mu).

We complete this correspondence by defining a 0-fold left (or right) homotopy of crossed com-

plexes C→ D to be a morphism f : C→ D. We then have:

Proposition 15.2.5 The elements of CRS(C,D) in dimensionm > 0 are in natural one-one correspon-

dence with the m-fold left homotopies from C to D.

In view of this result we will, from now on, identify CRS(C,D) with the collection of morphisms

and left homotopies from C to D. The operations which give this collection the structure of a

crossed complex can be deduced from the above correspondence. They will also be described later

in internal terms.

15.2.2 Bimorphisms on crossed complexes

Next, we want to relate the concepts of bimorphism of ω-groupoids given in Definition 15.1.4 with

that of bimorphism of crossed complexes introduced in Definition 9.3.11 of Part II.

We are going to use extensively the previous Subsection since in both cases a bimorphism may

be interpreted by fixing the first variable as a family of m-fold left homotopies one for each element

of dimension m (see Definition 15.1.4 and 9.3.11) and we know from the previous Subsection how

both kinds of m-fold homotopies are related (essentially by the folding map).

Before entering in the proof of this correspondence let us state a result that is going to be used

later.

Lemma 15.2.6 If χ : (F,G)→ H is a bimorphism of ω-groupoids, then χ(x,y) is thin whenever x or y

is thin.

Proof We have just remarked that χy : F→ PnH is a morphism of ω-groupoids. If x is thin in F, it

follows that χ(x,y) is a thin element of PnH. But the thin elements of PnH are a subset of the thin

elements of H. 2

Proposition 15.2.7 Let F,G,H be ω-groupoids with associated crossed complexes γF, γG, γH. If

χ : (F,G)→ H

is any bimorphism of ω-groupoids, then we have an associated bimorphism of crossed complexes

θ : (γF,γG)→ γH
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defined by θ(c,d) = Φχ(c,d) for any c ∈ γF and d ∈ γG.

Proof To check that θ is a bimorphism of crossed modules we have to see the behaviour with

respect to source and target, actions and operations and boundary maps is according to Definition

9.3.11.

- With respect to the base point

βθ(c,d) = βΦχ(c,d) = βχ(c,d) = χ(βc,βd) = θ(βc,βd).

- With respect to actions and operations.

For c ∈ (γF)0, the map χc : G→ H is a morphism of ω-groupoids. Thus

Φχc : γG→ γH

is a morphism of crossed complexes.

Similarly, by Proposition 15.2.2, if c ∈ (γF)m is fixed, then the map χc : G→ H is an m-fold left

homotopy of ω-groupoids. Thus the map

θc = Φχc : γG→ γH

is an m-fold left homotopy γG→ γH over the morphism θβc = Φχβc.

The morphism χβc maps γG into γH, so θ(βc,d) = Φχ(βc,d) = χ(βc,d) and θc is an m-fold

homotopy over θβc.

Now we repeat the same process with respect to the second variable. (Note that in this version

for n-fold right homotopies γF → γH the formula f(d) = ∂+
1 · · ·∂

+
mψ(d) is replaced by f(c) =

∂+
n+1 · · ·∂

+
n+mψ(c). Hence, if d ∈ (γG)n, the right homotopy c 7→ Φχ(c,d) : γF → γH has base

morphism c 7→ ∂+
n+1 · · ·∂

+
n+mχ(c,d) = χ(c,βd).)

- With respect to boundary maps we use the Homotopy Addition Lemma 13.7.1; in order to com-

pute δθ(c,d) = δΦχ(c,d) we need to compute Φ∂αi χ(c,d) for each face of χ(c,d) and sum them

according to the formulae in the Lemma 13.7.1.

To compute δθ(c,d) in the case m > 2,n > 2 we note that the faces of c and d other than

∂−
1 c,∂

−
1 d are all thin, so all but two faces of χ(c,d) are thin by Lemma 15.2.6, and we conclude that

Φ∂αi χ(c,d) = 0 except when α = 0 and i = 1 or m + 1. The appropriate formula of the Homotopy

Addition Lemma 13.7.1 now gives

δθ(c,d) = δΦχ(c,d) = (Φχ(∂−
1 c,d))

v + (−1)m(Φχ(c,∂−
1 d))

w = θ(δc,d)v + (−1)mθ(c, δd)w,

where v = u1χ(c,d) = χ(u1c,βd) and w = um+1χ(c,d) = χ(βc,u1d). Since c ∈ γF, d ∈ γG, both

u1c and u1d are identities, so v,w act trivially and we obtain the formula

δθ(c,d) = θ(δc,d) + (−1)mθ(c, δd).

The other formulae of Definition 9.3.11 are proved in the same way using the different forms of the

Homotopy Addition Lemma 13.7.1 in various cases. Thus θ is a bimorphism of crossed complexes. 2

Proposition 15.2.8 Let F,G,H be ω-groupoids with corresponding crossed complexes γF, γG, γH.

Given any bimorphism

θ : (γF,γG)→ γH

of crossed complexes, there is a unique bimorphism

χ : (F,G)→ H

of ω-groupoids satisfying θ(c,d) = Φχ(c,d) for c ∈ γF and d ∈ γG.
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Proof For each c ∈ (γF)m we have an m-fold left homotopy

(θc, fc) : γG→ γH.

By Proposition 15.2.4, there is a unique m-fold left homotopy

ψc : G→ H

satisfying the conditions
{
Φψc(d) = θc(d) = θ(c,d) for d ∈ D,

ψc ∈ γ(ω-GPDS(G,H)).
(**)

The required bimorphism χ must yield such an n-fold left homotopy y 7→ χ(c,y), so the definition

χ(c,y) = ψc(y) is forced. Furthermore, since γF generates F as ω-groupoid by Corollary 13.5.14

13.5.14 and χ(x,y) must preserve first variable x, for fixed y, the values χ(c,y) for c ∈ γF, y ∈ G

determine χ completely. Thus χ is unique if it exists.

To prove that the required bimorphism χ exists we first note that we have a map c 7→ ψc from

γF to γ(ω-GPDS(G,H)) of degree 0 and we will show that it is a morphism of crossed complexes

where the crossed complex structure of γ(ω-GPDS(G,H)) has been given in Definition 9.3.8

We need to show that ψc+c′ = ψc + ψc′,ψct = ψ
ψt
c ,ψδc = δψc if c ∈ (γF)m(m > 2), and

ψδαc = δαψc if c ∈ (γF)1. Using the characterisation (**) of ψc and the fact that ψc + ψc′,ψ
ψt
c ,

etc. are all elements of γ(ω-GPDS(G,H)), it is enough to prove that, for d ∈ γG,

(i) Φ(ψc(d) +m ψc′(d)) = θ(c + c′,d) if c+ c′ is defined in (γF)m,

(ii) Φ(−mε
m−1
1 ψt(d)+mψc(d)+mε

m−1
1 ψt(d)) = θ(ct,d) if t ∈ A1 and ct is defined in (γF)m(m >

2),

(iii) Φ(∂−
1 ψc(d)) = θ(δc,d) if c ∈ (γF)m,m > 2,

(iv) Φ(∂α1ψc(d)) = θ(δαc,d) if c ∈ (γF)1,α = ±.

The calculations for (i) and (ii) are similar to calculations done in the proof of Proposition 15.2.4.

For example, in (ii), if c ∈ (γF)m,d ∈ (γG)n, then Φ(εm−1
1 ψt(d)) = 0, so

Φ(−mε
m−1
1 ψt(d) +m ψc(d) +m ε

m−1
1 ψt(d)) = (Φψc(d))

v = θ(c,d)v

where

v = umε
m−1
1 ψt(d) = ∂+

1 · · ·∂
+
m−1∂

+
m+1 · · ·∂

+
m+nε

m−1
1 ψt(d)

= ∂+
2 · · ·∂

+
n+1ψt(d) = ψt(∂

+
1 · · ·∂

+
nb)

= ψt(βd) = θ(t,βd) (since Φ = id in dimension 1).

Hence θ(c,d)v = θ(c,d)θ(t,βd) = θ(ct,d) since c 7→ θ(c,d) is an n-fold right homotopy with base

morphism c 7→ θ(c,d).

The calculations for (iii) and (iv) use the Homotopy Addition Lemma 13.7.1 and the behaviour of

θ with respect to the boundary map. For example, to prove (iii) we observe that Φψc(d) = θ(c,d)

and δΦψc(d) = Σ{Φ∂αi ψc(d)}, the sum of the folded faces on the right being calculated by the

appropriate formula of the Homotopy Addition Lemma 13.7.1, depending on the dimensions of c

and d. Now c ∈ γF and d ∈ γG so most terms in this sum are 0. In the case m > 2,n > 2, two terms

survive and one of these, Φ∂−
m+1ψc(d), we can calculate: because ψc is an m-fold left homotopy of
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ω-groupoids, Φ∂−
m+1ψc(d) = Φψc(∂

−
1 d) = θ(c, δd). Hence the Homotopy Addition Lemma 13.7.1

says

δθ(c,d) = Φ∂−
1 ψc(d) + (−1)mθ(c, δd).

Comparing this with the defining property

δθ(c,d) = θ(δc,d) + (−1)mθ(c, δd)

we obtain (iii). The other cases are similar. This proves that c 7→ ψc is a morphism of crossed

complexes from γF to γ(ω-GPDS(G,H)).

It therefore extends uniquely to a morphism ofω-groupoids x 7→ ψx, say, from F toω-GPDS(G,H).

But now the definition χ(x,y) = ψx(y) gives a bimorphism of ω-groupoids χ : (F,G)→ H such that

Φχ(c,d) = Φψc(d) = θ(c,d) for c ∈ γF, d ∈ γG, and this completes the proof. 2

15.2.3 The tensor product of crossed complexes

Last, we want to describe tensor products of crossed complexes. Let C,D be crossed complexes. If

we choose ω-groupoids F,G such that C = γF,D = γG, we should have

C⊗D = γ(F⊗G).

If we consider the universal bimorphism of ω-groupoids

χ : (F,G)→ F⊗G,

it is clear that the bimorphism of crossed complexes

θ : (C,D)→ C⊗D

given by the restriction of the composition Φχ is universal with respect to bimorphisms of crossed

complexes from (C,D).

By the universality of the bimorphism of crossed complexes

θ : (C,D)→ γ(F⊗G),

it is clear that C−⊗D is the left adjoint to Crs(D, −).

A warning about notation. For any c ∈ C = γF and d ∈ D = γG, we have already defined their

tensor product by

c⊗ d = χ(c,d) ∈ F⊗G.

Clearly we have good reason for calling also

c⊗ d = θ(c,d) ∈ C⊗D.

We shall keep c⊗ d for this last definition, while calling c⊗̂d its tensor product in F⊗G.

The Definition 9.3.11 of a bimorphism now gives the presentation ofC⊗D described in Definition

9.3.13.

This completes the derivation of the monoidal closed structure on the category Crs.
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15.2.4 Another description of the internal hom in Crs

We now go back to CRS(C,D) and produce a description of its crossed complex structure in terms

of the crossed complex structures of C and D.

Recall from Definition 7.4.8 that F(m) is the crossed complex freely generated by one generator

a in dimension m. Any element of CRSm(C,D) corresponds to a morphism F(m)→ CRS(C,D), or,

equivalently, to a bimorphism θ : (F(m),C)→ D. If m = 0 the given element is the morphism

ψa : C→ D

defined by ψa(c) = θ(a, c).

Ifm > 1 then ψa(c) = θ(a, c), fa(c) = θ(βa, c) defines them-fold left homotopyψa = (ψa, fa).

Similarly, if two elements of CRS(C,D) are given, we may choose A to be the free crossed

complex on two generators of appropriate dimensions and represent both the given elements as

induced by the same bimorphism θ : (A,C) → D for suitable fixed values of the first variable. We

have seen that the map a 7→ ψa from A to CRS(C,D) given in this way by θ is a morphism of

crossed complexes, so we can now read off the crossed complex operations on CRS(C,D) from the

bimorphism laws of Definition 9.3.11 for θ.

For example, given (F, f) ∈ CRSm(C,D)(m > 2) we determine δ(F, f) as follows. Write (F, f) =

(Fa, fa) for suitable a ∈ A as above, where Fa(c) = θ(a, c), fa(c) = θ(βa, c). Then δ(F, f) =

(Fδa, fδa). We note that fδa = f since δβa = βa. We write δF for Fδa, so that δ(F, f) = (δF, f). Now

(δF)(c) = θ(δa, c) is given by the formula in Definition 9.3.11 in terms of known elements, namely

(assuming m > 2)

θ(δa, c) =






δ(θ(a, c)) + (−1)m+1θ(a, δc) if c ∈ Cn (n > 2),

(−1)m+1θ(a, δ−c)θ(βa,c) + (−1)mθ(a, δ+c) + δ(θ(a, c)) if c ∈ C1,

δ(θ(a, c)) if c ∈ C0.

In other words

(δF)(c) =






δ(F(c)) + (−1)m+1F(δc) if c ∈ Cn (n > 2),

(−1)m+1F(δ−c)f(c) + (−1)mF(δ+c) + δ(F(c)) if c ∈ C1,

δ(h(c)) if c ∈ C0.

(***)

This automatic procedure gives the crossed complex structure of CRS(C,D) as stated in Defini-

tion 9.3.8.

15.2.5 Crossed complexes and cubical sets

[We need to be clear about the relation of this to our later written sections on cubical sets in the

classifying space chapter in Part II. There ΠK is defined as a coend. We have to show that this

definition is recovered. Maybe this is where the notion of density also comes in! See wikipedia or

the (downloadable) book by Adamek, Herrlich, Rosiscki (TAC reprint), and Mac Lane. ]

For any cubical set K we define the fundamental crossed complex of K to be Π(K) = γρ(K).

Propositions 15.1.13 and 15.1.14 then give immediately
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Theorem 15.2.9 If K, L are cubical sets, there is a natural isomorphism of crossed complexes

Π(K⊗ L) ∼= Π(K)⊗ Π(L).

In particular

Π(Im)⊗ Π(In) ∼= Π(Im+n).

For any crossed complex C we define the cubical nerve of C to be NC = UλC, which is a cubical

set. Since ρ is left adjoint to U,Π = γρ is left adjoint to N = Uλ, but we now prove a stronger

result. We observe that, for any ω-groupoid G and any cubical set L, Cub(L,UG) has a canonical ω-

groupoid structure induced by the structure of G (see Proposition 15.1.12). In particular Cub(L,NC)

is an ω-groupoid and Proposition 15.1.12 gives

Theorem 15.2.10 For any cubical set L and any crossed complex C, there are natural isomorphisms of

crossed complexes

Crs(ΠL,C) ∼= γ(ω-GPDS(ρL, λC)) ∼= γ(Cub(L,NC)).

By taking cubical nerves and connected components we obtain

Corollary 15.2.11 Let L be a cubical set and C be a crossed complex.

(i) There is a natural isomorphism of cubical sets

Cub(L,NC) ∼= N(Crs(ΠL,C)).

(ii) There is a natural bijection

[L,NC] ∼= [ΠL,C],

where [−, −] denotes the set of homotopy classes of morphisms in Cub or in Crs, as the case may

be.

15.3 The Eilenberg-Zilber natural transformation

We now prove the important Theorem 9.8.1 that if X∗, Y∗ are filtered spaces, then there is a natural

transformation

θ : Π(X∗)⊗ Π(Y∗)→ Π(X∗ ⊗ Y∗)

which is an isomorphism if X∗, Y∗ are CW-complexes (and in fact more generally as is proved in

[BB93]).

In view of the previous Sections, it is sufficient to prove a similar result for ω-groupoids.

Theorem 15.3.1 If X∗ and Y∗ are filtered spaces, then there is a natural morphism

θ ′ : ρX∗ ⊗ ρY∗ → ρ(X∗ ⊗ Y∗)

such that:

i) θ ′ is associative;
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ii) if ∗ denotes a singleton space or crossed complex, then the following diagrams are commutative

ρX∗

∼= $$I
IIIIIIII (ρX∗)⊗ ∗

∼=oo

θ′

��
ρ(X∗ ⊗ ∗)

∗ ⊗ ρX∗

θ′

��

∼= // ρX∗

∼=zzttttttttt

ρ(∗ ⊗ X∗)

iii) θ ′ is commutative in the sense that if Tc : C⊗D→ D⊗C is the transposition and Tt : X∗ ⊗ Y∗ →

Y∗ ⊗ X∗ is the twisting map, then the following diagram is commutative

ρX∗ ⊗ ρY∗
θ′

//

Tc

��

ρ(X∗ ⊗ Y∗)

ρ(Tt)

��
ρY∗ ⊗ ρX∗

θ′

// Π(Y∗ ⊗ X∗);

Proof To construct a natural morphism

θ ′ : ρX∗ ⊗ ρY∗ → ρ(X∗ ⊗ Y∗)

all we need is to construct a bimorphism of ω -groupoids

θ ′′ : (ρX∗, ρY∗)→ ρ(X∗ ⊗ Y∗).

Let f : I
p
∗ → X∗ , g : I

q
∗ → Y∗ be representatives of elements of ρpX∗, ρqY∗ respectively. We define

θ ′′([f], [g]) to be the class of the composite

Ip+q
∗

∼= Ip∗ ⊗ Iq∗
f⊗g
−→ X∗ ⊗ Y∗.

It is easy to check that θ ′′([f], [g]) is independent of the choice of representatives. Also, the conditions

that θ ′′ be a bimorphism are almost automatic. Thus, we have a natural morphism θ ′.

The proofs of (i) (associativity) and (ii) (preserves base point) are clear.

The proof of (iii) (symmetry) follows from the description of the isomorphism G ⊗ H → H ⊗ G

of ω-groupoids as given by x ⊗ y 7→ (y∗ ⊗ x∗)∗ where, in the geometric case G = ρX∗, x 7→ x∗ is

induced by the map (t1, . . . , tp) 7→ (tp, . . . , t1) of the unit cube. 2

This gives conditions (i)-(iii) of Theorem 9.8.1

To prove (iv) (it is an isomorphism for CW-filtrations) recall that X∗ ⊗ Y∗ is a CW-filtration, and

so the crossed complex Π(X∗ ⊗ Y∗) is of free type, with basis the characteristic maps of the product

cells ep × eq of X∗ ⊗ Y∗. So the theorem follows from Theorem 9.6.3 that the tensor product of free

crossed complexes is free.

15.4 The symmetry of tensor products

We have seen that in the category Cub, the map x ⊗ y 7→ y ⊗ x does not give an isomorphism

K ⊗ L → L ⊗ K; indeed it is easy to construct examples of cubical sets K, L such that K ⊗ L and

L⊗K are not isomorphic. However, in ω-GPDS, and Crs the situation is different. Although the map

x⊗ y 7→ y⊗ x still does not give an isomorphism K⊗ L→ L⊗ K, there is a less obvious map which

does. This is easiest to see in Crs.



424 [15.4] Nonabelian Algebraic Topology

Theorem 15.4.1 Let C,D be crossed complexes. Then there is a natural isomorphism C⊗D→ D⊗C

which, for c ∈ Cm,d ∈ Dn, sends the generator c ⊗ d to (−1)mnd ⊗ c. This isomorphism, combined

with the structure studied until now, makes the category of crossed complexes a symmetric monoidal

closed category.

Proof One merely checks that the relations defining the tensor product are preserved by the map

c⊗ d 7→ (−1)mnd⊗ c. The necessary coherence and naturality conditions are obviously satisfied. 2

Remark 15.4.2 This proof is unsatisfactory because, although it is clear that c ⊗ d 7→ d ⊗ c does

not preserve the relations of the tensor product, the fact that c ⊗ d 7→ (−1)mnd ⊗ c does preserve

them seems like a happy accident. A better explanation is provided by the transposing functor T

(see Sections 10.2 and 15.1). 2

For a cubical set K, TK is not in general isomorphic to K. But for any ω-groupoid G and any

crossed complex C we will construct isomorphisms G → TG and C → TC. Since in all these

categories we have obvious natural isomorphisms T(X ⊗ Y) ∼= TY ⊗ TX, this implies the symmetry

X⊗ Y ∼= Y ⊗ X.

For an ω-groupoid G, the transpose TG has the same elements as G but has all its operations

∂αi , εi, Γi, +i, −i numbered in reverse order with respect to i (but not with respect to α = ±). For

a crossed complex C, TC is defined, of course, as γ(T , λC). The calculation expressing this crossed

complex in terms of the crossed complex structure of C is straightforward (though it needs a clear

head).

Proposition 15.4.3 The crossed complex TC is defined, up to natural isomorphism, in the following

way:

(i) (TC)0 = C0 as a set;

(ii) (TC)2 = C
op
2 as a groupoid;

(iii) (TC)n = Cn as a groupoid for n = 1 and n > 3;

(iv) the action of (TC)1 on (TC)n(n > 2) is the same as the action of C1 on Cn;

(v) the boundary map Tδ : (TC)n+1 → (TC)n is given by

Tδ = (−1)nδ : Cn+1 → Cn.

We note that −δ : C2 → C1 is an anti-homomorphism, that is a homomorphism C
op
2 → C1, as

required; the map +δ : C3 → C
op
2 is also a homomorphism because the image is in the centre of C2.

In higher dimensions the groupoids Cn and C
op
n are the same.

Corollary 15.4.4 For any crossed complex C there is a natural isomorphism τ : C→ TC given by

τ(c) = (−1)[n/2]c for c ∈ Cn.

Remark 15.4.5 The somewhat surprising sign (−1)[n/2] is forced by the signs in Proposition 15.4.3;

it is less surprising when one notices that it is the signature of the permutation which reverses the

order of (1, 2, . . . ,n). The symmetry map of Theorem 15.4.1 now comes from the map

c⊗ d→ τ−1(τd⊗ τc) = (−1)kd⊗ c,

where k = [m/2] + [n/2] − [(m + n)/2], which is 0 if m or n is even, and 1 if both are odd. 2
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Let G be an ω-groupoid and C = γG. Then G = λC and the isomorphism τ : C → TC extends

uniquely to an isomorphism τ : G → TG. This isomorphism can be viewed as a ‘reversing auto-

morphism’ x 7→ x∗ of G, that is, a map of degree 0 from G to itself which preserves the operations

while reversing their order (e.g. (x +i y)
∗ = x∗ +n−i+1 y

∗ in dimension n). The isomorphism

G⊗H→ H⊗G for ω-groupoids is then given by

x⊗ y 7→ (y∗ ⊗ x∗)∗.

The element x∗ should be viewed as a transpose of the cube x.

Remark 15.4.6 In the geometric case G = ρ(X∗), x
∗ is induced from x by the map (t1, . . . , tn) 7→

(tn, . . . , t1) of the unit n-cube. 2

The operation ∗ is preserved by morphisms ofω-groupoids, because of the naturalness of τ : 1→

T . It follows (Is it that clear? NO) that the operation ∗ can be written in terms of the ω-groupoid

operations ∂αi , εi, Γi, +i, −i, but the formulae needed for this are rather complicated.

15.5 The pointed case

We consider briefly the notions of tensor product and homotopy in the categories ω-GPDS∗ and

Crs∗ of pointed ω-groupoids and pointed crossed complexes. Here the objects have a distinguished

element ∗ in dimension 0 and all morphisms are to preserve the base points.

Definition 15.5.1 For any ω-groupoid H with basepoint ∗, the ω-groupoid PmH has basepoint

0∗ = εm1 (∗), the constant cube at ∗. An m-fold pointed (left) homotopy h : G → H is a morphism

h : G → PmH preserving basepoints, that is, a homotopy h with h(∗) = 0∗. Clearly, all such

pointed homotopies form an ω-subgroupoid ω-GPDS∗(G,H) of ω-GPDS(G,H) since 0∗ = εm1 (∗) is

an identity for all the compositions +i(1 6 i 6 m). This ω-subgroupoid has as basepoint the trivial

morphismG→ Hwhich sends each element of dimension n to 0∗ = εn1 (∗). Thus we have an internal

hom functor ω-GPDS∗(G,H) in the pointed category ω-GPDS∗. The pointed morphisms from F to

ω-GPDS∗(G,H) are in one-one correspondence with the pointed bimorphisms χ : (F,G) → H, that

is, bimorphisms χ satisfying the extra conditions

{
χ(x, ∗) = 0∗ for all x ∈ F,

χ(∗,y) = 0∗ for all y ∈ G.
(i)

To retain the correspondence between bimorphisms (F,G)→ H and morphisms F⊗G→ H, we must

therefore add corresponding relations to the definition of the tensor product. Thus, for pointed ω-

groupoids F,G, we define F ⊗∗ G to be the ω-groupoid with generators x ⊗∗ y, (x ∈ F,y ∈ G),

basepoint ∗ = ∗ ⊗∗ ∗, and defining relations the same as in Definition 10.2.5 together with

{
x⊗∗ ∗ = 0∗ for all x ∈ F,

∗ ⊗∗ y = 0∗ for all y ∈ G.
(ii)

These equations are to be interpreted as x ⊗∗ ∗ = ∗ ⊗∗ y = ∗ when x,y have dimension 0, so that

(F⊗∗ G)0 = F0 ∧G0. 2

Theorem 15.5.2 The pointed tensor product and hom functor described above define a symmetric

monoidal closed structure on the pointed category ω-GPDS∗.
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15.6 Dense subcategories

Our aim in this section is to explain and prove the theorem:

Theorem 15.6.1 The full subcategory Î of ω-Gpds on the objects In is dense in ω-Gpds.

We recall the definition of a dense subcategory. First, in any category C, a morphism f : C → D

induces a natural transformation f∗ : C(−,C) → C(−,D) of functors Cop → Set. Conversely, any

such natural transformation is induced by a (unique) morphism C→ D.

Again, if I is a subcategory of C, then f : C → D induces a natural transformation of functors

f∗ : Iop → Set. The subcategory I is dense in C if every such natural transformation arises from a

morphism. More precisely, there is a functor η : C → Fun(Iop, Set) defined in the above way, and I

is dense in C if η is full and faithful.

Example 15.6.2 Let Z be the cyclic group of integers. Then {Z} is a generating set for the category

Ab of abelian groups, but the full subcategory of Ab on this set is not dense in Ab. In order for a

natural transformation to specify not just a function f : A → B but a morphism in Ab, we have to

enlarge this subcategory to include Z⊕ Z. 2

Example 15.6.3 Consider the Yoneda embedding

Υ : C→ Cop-Set = Fun(Cop, Set)

where C is a small category. Then each object K ∈ Cop-Set is a colimit of objects in the image of Υ

and this is conveniently expressed in terms of coends as that the natural morphism

∫c
(Cop-Set(Υc,K)× Υc)→ K

is an isomorphism. Thus the Yoneda image of C is dense in Cop-Set. 2

Proof of Theorem 15.6.1 Let G, H be ω–groupoids and let f̂ : ω-GpdsI(−,G)→ ω-GpdsI(−,H) be

a natural transformation. We define f : G→ H as follows.

Let x ∈ Gn. Then x defines x̂ : In → G. We set f(x) = f̂(x̂)(cn) ∈ Hn. We have to prove f

preserves all the structure.

For example, we prove that f(∂±i x) = ∂±i f(x). Let ∂̄±i : In−1 → In be given by having value ∂±i c
n

on cn−1. The natural transformation condition implies that f̂(∂̄±i )∗ = (∂̄±i )∗f̂. On evaluating this on

x̂ we obtain f(∂±i x) = ∂±i f(x) as required. In a similar way, we prove that f preserves the operations

ǫi, Γi.

Now suppose that t ∈ Gn is thin in G. We prove that f(t) is thin in H.

Consider the morphism of ω-groupoids t̂ : In → G. Let S be the shell consisting of all faces

but one of cn. Then S has a unique thin filler bt. Now t̂(S) consists of all faces but one of t, and

so is filled by t. Since t̂ preserves thin elements, we must have t̂(bt) = t. Let b̄ : In → In be

the unique morphism such that b̄(cn) = bt. Then the natural transformation condition implies

f(t) = f̂(t̂)(cn) = f̂(t̂)(bt). Since bt is thin, it follows that f(t)is thin. Thus f preserves the thin

structure.

Now Proposition 13.7.8 implies that the operations +i are preserved by f.

We can now conveniently represent each ω–groupoid as a coend.
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Corollary 15.6.4 The subcategory Î of ω-Gpds is dense and for each object G of ω-Gpds the natural

morphism
∫n
ω-Gpds(In,G)× In → G

is an isomorphism.

Proof This is a standard consequence of the property of Î being dense. 2

Corollary 15.6.5 The full subcategory of Crs generated by the objects ΠIn∗ is dense in Crs.

Proof This follows from the fact the equivalence γ : ω-Gpds → Crs takes In to ΠIn∗ (Theorem

14.4.1). 2

15.7 Fibrations and coverings of ω-groupoids

We use the definitions of fibration and covering morphism of crossed complexes as given earlier. We

now give corresponding conditions for ω-groupoids.

Theorem 15.7.1 Let p : G → H be a morphism of ω-Gpdss. Then the morphism of crossed complexes

γ(p) : γ(G) → γ(H) is a fibration (covering morphism) if and only if p : G → H is a Kan fibration

(covering map) of cubical sets.

Proof As regards fibrations this is the result of Proposition 10.5.10. The restriction to covering

morphisms follows in a similar way. 2

Corollary 15.7.2 Let p : K → L be a morphism of ω-Gpdss such that the underlying map of cubical

sets is a Kan fibration. Then the pullback functor

f∗ : ω-Gpds/L→ ω-Gpds/K

has a right adjoint and so preserves colimits.

Proof This is immediate from Theorem 15.7.1 and results of Howie stated as Theorem 11.2.9. 2

Remark 15.7.3 It seems likely that a covering ω-groupoid is also free.

15.8 Application to the tensor product of covering morphisms

First we know from [BH87] that the tensor product of ω-groupoids satisfies Im ⊗ In ∼= Im+n. It

follows that the tensor product G⊗H of ω-Gpdss G,H satisfies

G⊗H ∼=

∫m,n

ω-Gpds(Im,G)×ω-Gpds(In,H)× (Im ⊗ In). (15.8.1)

We suppose G,H are connected. Choose a base point (p,q) ∈ G0 ×H0. Now let p : C → G ⊗H

be a covering morphism determined by a pair of normal subgroups M� π1(G,p),N� π1(H,q). Let
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G̃ → G, H̃ → H be the covering morphisms determined by these subgroups. By corollary 15.7.2,

pullback p∗ by p preserves colimits. Hence

C ∼= p∗
(∫m,n

ω-Gpds(Im,G)×ω-Gpds(In,H)× (Im ⊗ In)

)

∼=

∫m,n

p∗(ω-Gpds(Im,G)×ω-Gpds(In,H))× (Im ⊗ In)

which, because of the construction of C by the specified subgroups:

∼=

∫m,n

ω-Gpds(Im, G̃)×ω-Gpds(Im, H̃)× (Im ⊗ In)

∼= G̃⊗ H̃.

This finally enables us to prove Theorem 11.1.14.

Corollary 15.8.1 If F, F′ are free and aspherical crossed complexes, then so also is F⊗ F′.

Proof It is sufficient to assume F, F′ are connected. Then the universal covers F̃, F̃′ are free and

acyclic and hence contractible. Therefore F̃⊗ F̃′ is contractible, and hence acyclic. Therefore F⊗ F′

is aspherical. 2



Chapter 16

Conclusion

We have now come to the end of our description of this intricate structure. We hope to have shown

how this fits together and allows a new approach to algebraic topology, in which some nonabelian

information is successfully taken into account. We also wanted to convey how the good modelling

of the geometry by the algebra, the way the algebra gives power and reality to some basic intuitions,

is a key to the success.

We have presented the material in a way which we hope will convince you that the intricacy

of the justification of the theory does not detract from the fact that crossed complexes theory are

usable as a tool without knowing exactly why they works. That is, we have given a pedagogical

order rather than a logical and structural order. It should be emphasised that the order of discovery

followed the logical order! The conjectures were made and verified in terms ofω-groupoids, and we

were amazed that the theory of crossed complexes, which was in essence already available, fitted

with this so nicely.

It is also surprising that this corpus of work followed from a simple aesthetic question posed in

1965, to find a determination of the fundamental group of the circle which avoided the detour of set-

ting up covering space theory. This led to nonabelian cohomology, [Bro65], and then to groupoids,

[Bro67]. The latter suggested the programme of rewriting homotopy theory replacing the word

‘group’ by ‘groupoid’ and seeing if the result was an improvement!

What more is there to do? We explain some potential areas of work in the next section.

16.1 Problems

There are a number of standard methods and results in algebraic topology to which the techniques

of crossed complexes given here have not been applied. So we leave these open for work to be done,

and to decide if the uses of crossed complexes in these areas can advance the subject of algebraic

topology. Where we do not give references, then we expect the reader to rely on Wikipedia for

further details.

Problem 16.1.1 Investigate Mayer-Vietoris type exact sequences for a pullback of a fibration of

crossed complexes, analogous to that given for a pullback of a covering morphism of groupoids in

[Bro06, Section 10.7]. See also [BHK83].

Problem 16.1.2 Can one use crossed complexes to give a finer form of Poincaré Duality? This

means developing cup and cap products, which should be no problem, and also coefficients in an

429
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object with an analogue of a ‘ring structure’. These could be the crossed differential algebras (i.e.

monoid objects in the monoidal category Crs) considered in [BT97], and the braided regular crossed

modules of [BG89a], further developed in [AU07].

Problem 16.1.3 Another standard area is fixed point theory, which includes the Lefschetz theory,

involving homology, and also Nielsen theory, involving the fundamental group.

Problem 16.1.4 Are there results on the fundamental crossed complex of an orbit space of a filtered

space analogous to those for the fundamental groupoid of an orbit space given in [Bro06, Chapter

11]? Some related work is in [HT82].

Problem 16.1.5 Are there applications of crossed complexes to the nonabelian cohomology of fibre

spaces? Could the well developed acyclic model theory and fibre spaces of [GM57] be suitably

modified and used? The spectral sequence of filtered crossed complexes has been developed by

Baues in [Bau89], but surely more work needs to be done.

Problem 16.1.6 Is there a non-Abelian homological perturbation theory for constructing non-Abelian

twisted tensor products from fibrations? Or for constructing small free crossed resolutions of groups?

References for the standard theory my be found by a web search.

Problem 16.1.7 The standard theory of chain complexes makes much use of double chain com-

plexes. Double crossed complexes have been defined in [Ton94] but presumably there is much more

to be done here.

Problem 16.1.8 The theory of equivariant crossed complexes has already been developed in [BGPT97,

BGPT01]. However notions such as fibrations of crossed complexes have not been applied here.

Problem 16.1.9 Can one make progress with nonabelian cohomology operations? The tensor prod-

uct of crossed complexes is symmetric, as proved in Chapter 13. So if K is a simplicial set, then we

can consider the non-commutativity of the diagonal map ∆ : π|K| → π|K|⊗ |K|. If T is the twisting

map A ⊗ B → B ⊗ A, then there is a natural homotopy T∆ ≃ ∆, by the usual acyclic models ar-

gument. This look like the beginnings of a theory of non-Abelian Steenrod cohomology operations.

Does such a theory exist and does it hold any surprises? By contrast, [Bau89] gives an obstruction

to the existence of a Pontrjagin square with local coefficients.

Problem 16.1.10 One use of chain complexes is in defining Kolmogorov-Steenrod homology. One

takes the usual net of polyhedra defined as the nerves of open covers of a space X, with maps

between them induced by choices of refinements. The result is a homotopy coherent diagram of

polyhedra. It is shown in [Cor87] that a strong homology theory results by taking the chain com-

plexes of this net, and forming the chain complex which is the homotopy inverse limit. What sort of

strong homology theory results from using the fundamental crossed complexes of the nerves instead

of the chain complexes? Is there a kind of “strong fundamental groupoid”, and could this be related

to defining universal covers of spaces which are not locally ‘nice’?

Problem 16.1.11 There are a number of areas of algebraic topology where chain complexes with a

group of operators are used, for example [RW90]. Is it helpful to reformulate this work in terms of

crossed complexes?

Problem 16.1.12 Another example for the last problem is the work of Dyer and Vasquez in [DV73]

on CW-models for one-relator groups.
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Problem 16.1.13 Find applications of these non-Abelian constructions to configuration space the-

ory and mapping space theory, particularly the theory of spaces of rational maps.

Problem 16.1.14 A further aim is to use these methods in the theory of stacks and gerbes, and more

generally in differential topology and geometry.

Problem 16.1.15 Investigate the relation between the cocycle approach to Postnikov invariants and

that given using triple cohomology in [BFGM05].

Other problems in crossed complexes and related areas are given in [Bro90].
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Appendix A

A resumé of some category theory.

A.1 Introduction

A categorical approach is basic to this book, and we use freely notions of category, functor, natural

transformation, pushout, product category covered in the book ‘Topology and Groupoids’, [Bro06].

Some of our key proofs, for example of the HHvKT, follow the pattern of: we verify the uni-

versal property. One importance of this is that we verify in this way that for example a particular

fundamental groupoid π1(X,X0) is given as a pushout of groupoids; but the proof makes no claim

as to the general existence of pushouts of groupoids, nor does it show how to construct pushouts of

groupoids in general. So the theorem raises questions as to how to prove existence of pushouts of

groupoids, and how to construct them in practical ways.

In addition to the above topics, we need at various stages limits and colimits, equalisers and

coequalisers, adjoint functors, ends and coends, cartesian closed categories, monoidal closed cat-

egories, and for all of these there are excellent texts available (for example Mac Lane, [ML71],

Adamek-Herrlich-Strecker, [AHS06] (downloadable), and many others). Readers will also profit

from accounts of these topics on Wikipedia and on Planet Math.

We find it difficult to give an adequate and complete coverage of what we need here, since that

would be too large a task. Further, there is a considerable amount of information freely available

online, including downloadable texts, or partial texts, and also web encyclopedia. Therefore the aim

of this Appendix is to indicate the necessary background and to supply more detail only when we

can present or highlight a particular viewpoint or the material is not so accessible in the format we

need. So this Appendix should be supplemented with downloadable material.

A.2 Representable functors

As a start, we give an introduction to the notion of representable functor, since this is simple but

includes a pattern of argument which may not be so familiar.

Let C be a category. Then for each d ∈ C there is a functor Cd : Cop → Sets given by Cd(c) =

C(c,d). An important property of such functors is the following. If h : d → e is a morphism in C

then h induces a natural transformation

Ch : Cd → Ce,

435
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given by Ch(c) = C(c,h). Thus if f : c→ b in C, we need to verify the commutativity of the diagram

C(c,d)
h∗ // C(c, e)

C(b,d)

f∗

OO

h∗

// C(b, e)

f∗

OO

Indeed for any g : b → d the evaluation of both ways round the diagram yields hgf, so that the

proof of naturality follows from associativity of the composition in C.

The converse of this result is easy to prove but turns out to be significant.1

Proposition A.2.1 If d, e ∈ C then there is a natural bijection

Nat(Cd,Ce)→ C(d, e).

Proof Suppose η : Cd → Ce is a natural transformation, yielding for each c ∈ C a function

η(c) : C(c,d) → C(c, e). The naturality condition states that for each f : c → b in C the first of the

following diagrams is commutative:

C(c,d)
ηc // C(c, e)

C(b,d)

f∗

OO

ηb
// C(b, e)

f∗

OO
C(c,d)

ηc // C(c, e)

C(d,d)

f∗

OO

ηd
// C(d, e)

f∗

OO

(A.2.1)

Now choose b to be d, and set g = ηd(1d) : d → e. In order to evaluate ηc(f) where f : c → d we

use the second commutative diagram. Then ηc(f
∗(1d)) = ηc(f), while f∗ηd(1d) = f∗(g) = gf. 2

The idea can be extended.

Definition A.2.2 A functor T : Cop → Sets is called representable if it is naturally equivalent to

a functor Cc for some object c of C. Then c is called a representing object for T , or we say T is

represented by c.

Proposition A.2.3 If functors T ,U : Cop → Sets are represented by objects d, e of C, then there is a

bijection

Nat(T ,U) ∼= C(d, e).

In particular, a natural equivalence T ∼= U is determined completely by an isomorphism d ∼= e.

The proof is easy from proposition A.2.1.

A.3 Colimits and limits

We concentrate on the notion of colimit since this is a general concept closely related to the formu-

lation of local-to-global properties. The idea is to give a general formulation of ‘gluing’, of putting

together a complex object from smaller pieces, and rules for the gluing, to give what is called a

colimit.

1J.H.C. Whitehead once remarked: It is the snobbery of the young to suppose that a theorem is trivial because the proof

is trivial!
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The ‘input data’ for a colimit is a diagram D, that is a collection of some objects in a category C

and some morphisms between them. The output will be an object ColimD in C. A (co)cone with

base the diagram D and vertex C say consists of arrows from the objects of the diagram to the

vertex C satisfying a ‘commutativity’ condition: any path from a given object to C composes to give

the same composite arrow. Any such cocone factors through the colimiting cocone:

D = . // .

~~}}
}}

}}
}

.

>>}}}}}}}

  A
AA

AA
AA

.

``AAAAAAA
//

~~}}
}}

}}
}

.

``AAAAAAA

.

Cocone with base D and vertex C:

C

.

GG������������������� // .

zztttttt
ttt

t

WW///////////////////

.

::uuuuuuuuu

CC�����������������������������

$$I
IIIIIIII .

JJJJJJ

ddJJ

//

zzttt
ttt

ttt
t

OO

.

ddIIIIIIIII

[[66666666666666666666666666666

.

JJ�������������������������������

The next step is where the colimit sits in this picture (� = colimit D and the dotted arrows

represent new morphisms):

C

�

;;v
v

v
v

v
v

v
v

v
v

.

jj

HH��������������������� // .

kk

zzttt
ttt

tttt

VV.....................

.

OO

::tttttttttt

DD�������������������������������

$$JJ
JJJ

JJJ
JJ .

__

ddJJJJJJJJJJ
//

zzttt
ttttt

tt

OO

.

ddIIIIIIIII

ii

ZZ555555555555555555555555555555

.

JJ���������������������������������

WW
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and stripping away the ‘old’ cocone gives the factorisation of the cocone via the colimit:

C

�

;;v
v

v
v

v
v

v
v

v
v

.

jj

// .

kk

zzttt
ttt

tttt

.

OO

::tttttttttt

$$JJ
JJJ

JJJ
JJ .

__

JJJJJJ

ddJJ

//

zzttt
ttttt

tt
.

ddIIIIIIIII

ii

.

WW

INTUITIONS:

From beyond (or above in our diagrams) D, an object ‘sees’ the diagram D ‘mediated’ through

its colimit, i.e. if it tries to interact with the whole of D, it has to do it via colimD. Conversely, any

interaction of colimD with other objects comes from the whole of the diagram D.

Example A.3.1 The lcm of two positive integers a,b can be seen as the colimit of the diagram

a b

gcd(a,b)

]]<<<<<<<

AA�������

The gcd, from a lower level of the hierarchy, ‘measures’ the interaction of a and b.

Some people have viewed biological organs as colimits of the diagrams of interacting cells within

them.

Remark A.3.2 WARNING. Often colimits do not exist (in C) for some diagrams. However, one can

add colimits in a completion process, i.e. freely for a class of diagrams, and then compare these

‘virtual colimits’ with any that happen to exist.

It is important to note that a colimit has more structure than merely the disjoint union of its

individual parts, since it depends on the arrows of the diagram D as well as the objects. Thus the

specification for a colimit object of the arrows which define it can be thought of as a ‘subdivision’ of

the colimit object. This is why the notion is of importance in local-to-global questions.

We now give a more formal definition. First note that it is convenient to consider not a diagram

D but a small category, say S. This category can be obtained from D as the free category on the

graph D factored out by relations given by the commutative triangles ofD. So we consider a colimit

in C as defined by a functor T : S → C. The colimit of T , if it exists, is an object of C but it is

convenient to think of this as a constant functor L : S → C. The relation between T and L, the

cocone, is defined to be a natural transformation η : T ⇒ L. Thus η gives for each arrow s : x→ y of
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S a commutative diagram

Tx

ηx   A
AA

AA
AA

A
Ts // Ty

ηy~~}}
}}

}}
}}

Lx = Ly

(A.3.1)

So we have our definition:

Definition A.3.3 A colimit colim T of a functor T : S → C is a natural transformation η : T ⇒ L

to a constant functor, which is universal for natural transformations to constant functors: that is,

if ξ : T → L′ is a natural transformation to a constant functor L′, then there is a unique natural

transformation φ : L → L′ such that φ ◦ η = χ. (Note that a natural transformation between

constant functors to C reduces to a morphism of C between their values.) If a colimit of T exists then

it is unique up to natural equivalence, and is written colim T ; it is thought of either as a constant

functor to C or as an object of C; it always comes with its universal cocone T ⇒ colim T . Sometimes

the colimit is written as colimx T(x) where x ranges over the objects of S; this is an abuse of language

since the morphisms of S are crucial to the definition. 2

Example A.3.4 (i) A special case is the coproduct. In this case, S is the discrete category on a set

of objects.

(ii) Another example is the pushout: here the diagram D has three objects, say 0, 1 and 2, and

two arrows from 0, namely 0→ 1, 0→ 2.

(iii) Another example is the coequaliser: here the diagram D has two objects say 1 and 2 and two

arrows 1 ⇉ 2. 2

The next proposition shows that colimits may be constructed from coproducts and coequalisers.

Proposition A.3.5 If functors S→ C admit coproducts and coequalisers, then they admit colimits.

In a similar spirit, we define limits of a functor.

Definition A.3.6 Let S be a small category, and T : S→ C a functor. A limit of T is a constant functor

L : S→ C and a natural transformation ǫ : L⇒ T (called the cone on T) with the universal property:

for any natural transformation ξ : L′ ⇒ T from a constant functor L′ to T , there exists a unique

natural transformation φ : L′ → L such that ǫ ◦ φ = ξ. Then L is also written L = lim T = limx T(x).

A.4 Generating objects and dense subcategories

In the category of groups the infinite cyclic group C∞ plays a key role. This leads to the following

definition.

Definition A.4.1 A set S of objects in a category C is said to be generating C if for all pairs of

morphisms f,g : c → d on objects of C, f = g if and only if fh = gh for all s ∈ S and morphisms

h : s→ c in C. 2

Example A.4.2 In the category Sets of sets, any singleton is a generator. In the category Groups of

groups the infinite cyclic group C∞ is a generator. In the category Gpds of groupoids the unit interval

groupoid I is a generator. Note that in these examples the generator identifies the elements of a in
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each case a group or groupoid, but gives no further structural information. This leads to our next

definition. 2

Definition A.4.3 An inclusion K : D → C of a subcategory of a category is called dense in C if D is

small and for all objects d, e of C the canonical function

Nat(C(K(−),d), C(K(−), e)→ C(d, e) (A.4.1)

is a bijection. 2

Remark A.4.4 The meaning of this is that we can recover the morphisms d→ e in C from informa-

tion on the way the dense subcategory maps to d and e. Note that a universal property is defined by

relating to all objects of a category. The advantage of a dense subcategory is that in principle, and

for some purposes, we need look only at the objects of that dense subcategory. 2

Example A.4.5 The full subcategory of Groups on the object F{x,y}, the free group on the elements

x,y, is dense in the category of groups. The essential part of the argument is to show that if G,H

are groups, then a function f : G → H is a morphism of groups if and only if fg : F{x,y} → H is a

morphism for every morphism g : F{x,y}→ G of groups. The proof of this is a nice little exercise, as

is working out the analogous example for groupoids. 2

A.5 Adjoint functors

One of the concepts that took a bit more to unearth was that of a pair of adjoint functors. Neverthe-

less, is almost ubiquitous and most fruitful.

To define this concept we consider two categories C and D, two functors between them f : C→ D

and g : D→ C. We say that f is left adjoint of g (or that g is right adjoint of f) if there is an adjunction

between them, i.e. a natural equivalence between the “functors”

φ : C(−,g(−)) ∼= D(f(−), −).

Since these are really bifunctors (moreover covariant in one variable and contravariant in the

other one) and we do not want to digress in this direction, perhaps it is better to indicate how φ is

given and which properties it has to satisfy.

It is a map

φ : Ob C×Ob D→ Sets

such that for any x ∈ Ob C and y ∈ Ob D, the map

φ(x,y) : C(x,g(y))→ D(f(x),y)

is a bijection and it is natural with respect to both x and y, i.e. for any a ∈ C(x, x ′) the diagram

C(x,g(y))
φ(x,y)

// D(f(x),y)

C(x ′,g(y))
φ(x ′,y)

//

a∗

OO

D(f(x ′),y)

f(a)∗

OO
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commutes, where a∗ is given by composition with a, and for any b ∈ D(y,y′) the diagram

C(x,g(y))
φ(x,y)

//

g(b)∗

��

D(f(x),y)

b∗

��
C(x,g(y′))

φ(x,y′)
// D(f(x),y′)

also commutes, where b∗ is given by composition with b

Example A.5.1 There are many examples of adjoint pairs coming from algebra and topology. Let us

mention

(i) All free constructions are adjoint of the corresponding forgetful functors (free group, free R-

module, free category over a directed graph, etc);

(ii) the field of quotients of an integral domain is adjoint to the inclusion of the category of fields

in that of integral domains;

(iii) the completion of a metric space is adjoint to the inclusion of the category of complete metric

spaces in such of metric spaces;

(iv) the abelianisation of a group is left adjoint to the inclusion of the category of abelian groups in

that of groups. 2

Let us consider some functors that are associated to any adjunction and, under some conditions,

determine it. The first construction is the unit, a natural transformation

η : 1C → gf

For any x ∈ Ob C, η(x) : x → gf(x) is φ−1
f(x)

. It is easy to prove naturality. Moreover the unit is

universal in the following sense

Proposition A.5.2 For any x ∈ Ob C, η(x) is universal with respect to g, i.e. for any morphism

h : x→ g(y) there is a unique morphism h ′ : f(x)→ y so that the diagram

x
η(x) //

h

��

gf(x)

g(h′)

||yy
yy

yy
yy

yy
yy

g(y)

commutes

It is easy to see that we can recover the adjunction φ from η since, for any x ∈ Ob C, y ∈ Ob D,

a ∈ D(f(x),y), φ−1(x,y)(a) is η(x)g(a).

The same result can be got dually. The counit is a natural transformation

ε : fg→ 1D

For any xy ∈ Ob D, ε(y) : fg(y)→ y is φ1g(y). It is easy to prove naturality. Moreover the counit is

universal in the following sense
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Proposition A.5.3 For any y ∈ Ob C, ε(y) is universal with respect to f, i.e. for any morphism

h : f(x)→ y there is a unique morphism h ′ : g(y)→ x so that the diagram

fg(y)
f(h′) //

ε(y)

��

f(x)

h

||yyyyyyyyyyyy

y

commutes

It is easy to see that we can recover the adjunction φ from ε since, for any x ∈ Ob C, y ∈ Ob D

and a ∈ C(x,g(y) φ(x,y)(a) is ε(y)f(a).

A.6 Adjoint functors, limits and colimits

[There lots of excellent accounts of adjoint functors, e.g. wikipedia, downloadable texts such as

a TAC Reprint, and here we can say just that readers need to know: definition, unit and counit,

including notation, and preservation of limits and colimits. ]

One of the most useful results about adjoint functors is that on preservation of limits and colimits

as follows.

Proposition A.6.1 Let φ : C(−,g(−)) ∼= D(f(−), −) be an adjunction between the functors f : C →

D,g : D→ C. Then f preserves colimits, and g preserves limits.

Proof We first prove f preserves colimits. Let X be a small category and T : X → C a functor. We

use the following set of natural equivalences for c ∈ C:

C(f colim T , c) ∼= D(colim T ,gc) by adjointness

∼= limD(T ,gc) this needs an earlier justification

∼= limC(fT , c) by adjointness

∼= C(colim fT , c). by an earler result!

By the representability proposition A.2.3, there is a natural equivalence f colim T ∼= colim fT .

A similar argument, using D(d, lim S) ∼= limD(d, S), proves that g preserves limits. 2

Remark A.6.2 This result is useful in quite basic constructions in topology and algebra. For exam-

ple, it is standard that the forgetful functor U : Top→ Sets giving the underlying set of a topological

space has left and right adjoints, given respectively by the discrete, and the indiscrete topologies on

a set. Hence the underlying set of the product of topological spaces is the product of the underlying

sets. The property we want of the product of spaces is the universal property, since this enables one

to construct continuous functions.

A.7 Fibrations of categories

We recall the definition of fibration of categories.
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Definition A.7.1 Let Φ : X → B be a functor. A morphism φ : Y → X in X over u := Φ(φ) is called

cartesian if and only if for all v : K → J in B and θ : Z → X with Φ(θ) = uv there is a unique

morphism ψ : Z→ Y with Φ(ψ) = v and θ = φψ.

This is illustrated by the following diagram:

Z
ψ

//

θ

##
Y

φ
// X

Φ

��
K v

//

uv

##
J

u
// I

2

It is straightforward to check that cartesian morphisms are closed under composition, and that

φ is an isomorphism if and only if φ is a cartesian morphism over an isomorphism.

A morphism α : Z → Y is called vertical (with respect to Φ) if and only if Φ(α) is an identity

morphism in B. In particular, for I ∈ B we write XI, called the fibre over I, for the subcategory of X

consisting of those morphisms α with Φ(α) = idI.

Definition A.7.2 The functor Φ : X → B is a fibration or category fibred over B if and only if for all

u : J → I in B and X ∈ XI there is a cartesian morphism φ : Y → X over u: such a φ is called a

cartesian lifting of X along u. 2

Notice that cartesian liftings of X ∈ XI along u : J → I are unique up to vertical isomorphism:

if φ : Y → X and ψ : Z → X are cartesian over u, then there exist vertical arrows α : Z → Y and

β : Y → Z with φα = ψ and ψβ = φ respectively, from which it follows by cartesianness of φ and ψ

that αβ = idY and βα = idZ as ψβα = φα = ψ = ψ idY and similarly φβα = φ idY .

Example A.7.3 The forgetful functor, Ob : Gpds → Sets, from the category of groupoids to the

category of sets is a fibration. We can for a groupoid G over I and function u : J → I define the

cartesian lifting φ : H→ G as follows: for j, j ′ ∈ J set

H(j, j ′) = {(j,g, j ′) | g ∈ G(uj,uj ′)}

with composition

(j1,g1, j
′
1)(j,g, j

′) = (j1,g1g, j
′),

with φ given by φ(j,g, j ′) = g. The universal property is easily verified. The groupoid H is usually

called the pullback of G by u. This is a well known construction (see for example [Mac05, §2.3],

where pullback by u is written u↓↓). Q.E.D.

Definition A.7.4 If Φ : X → B is a fibration, then using the axiom of choice for classes we may

select for every u : J→ I in B and X ∈ XI a cartesian lifting of X along u

uX : u∗X→ X.

Such a choice of cartesian liftings is called a cleavage or splitting of Φ.

If we fix the morphism u : J→ I in B, the splitting gives a so-called reindexing functor

u∗ : XI → XJ
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defined on objects by X 7→ u∗X and the image of a morphism α : X → Y is u∗α the unique vertical

arrow commuting the diagram:

u∗X
uX //

u∗α

���
�
�
� X

α

��
u∗Y

uY
// Y

2

We can use this reindexing functor to get an adjoint situation for each u : J→ I in B.

Proposition A.7.5 Suppose Φ : X → B is a fibration of categories, u : J → I in B, and a reindexing

functor u∗ : XI → XJ is chosen. Then there is a bijection

XJ(Y,u∗X) ∼= Xu(Y,X)

natural in Y ∈ XJ, X ∈ XI where Xu(Y,X) consists of those morphisms α ∈ X(Y,X) with Φ(α) = u.

Proof This is just a restatement of the universal properties concerned. 2

In general for composable maps u : J→ I and v : K→ J in B it does not hold that

v∗u∗ = (uv)∗

as may be seen with the fibration of Example A.7.3. Nevertheless there is a natural equivalence

cu,v : v∗u∗ ≃ (uv)∗ as shown in the following diagram in which the full arrows are cartesian and

where (cu,v)X is the unique vertical arrow making the diagram commute:

v∗u∗X

(cu,v)X ∼=

���
�
�
�

vu
∗X

// u∗X

uX

��
(uv)∗X

(uv)X
// X

Let us consider this phenomenon for our main examples:

Example A.7.6 1.- Typically, for ΦB = ∂1 : B2 → B, the fundamental fibration for a category with

pullbacks, we do not know how to choose pullbacks in a functorial way.

2.- In considering groupoids as a fibration over sets, if u : J → I is a map, we have a reindexing

functor, also called pullback, u∗ : GpdsI → GpdsJ. We notice that v∗u∗Q is naturally isomorphic to,

but not identical to (uv)∗Q. Q.E.D.

A result which aids understanding of our calculation of pushouts and some other colimits of

groupoids, modules, crossed complexes and higher categories is the following. Recall that a category

C is connected if for any c, c′ ∈ C there is a sequence of objects c0 = c, c1, . . . , cn−1, cn = c′ such

that for each i = 0, . . . ,n − 1 there is a morphism ci → ci+1 or ci+1 → ci in C. The sequence of

morphisms arising in this way is called a zig-zag from c to c′ of length n.

Theorem A.7.7 Let Φ : X→ B be a fibration, and let J ∈ B. Then the inclusion iJ : XJ → X preserves

colimits of connected diagrams.
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Proof We will need the following diagrams:

T(c)

T(f)

��

ψ(c)

��

θ(c)

""E
EEEEEEEEEEE

Y φ // X

T(c′)

ψ(c′)

OO

θ(c′)

<<yyyyyyyyyyyy

Φ

��
J

u
// I

(a)

T(c)

γ(c)

��

ψ(c)

��

θ(c)

""D
DD

DD
DD

DD
DD

D

Y φ // X

L

ψ ′

OO

θ ′

<<

Φ

��
J

u
// I

(b)

Let T : C → XJ be a functor from a small connected category C and suppose T has a colimit

L ∈ XJ. So we regard L as a constant functor L : C → XJ which comes with a universal cocone

γ : T ⇒ L in XJ. Let iJ : XJ → X be the inclusion. We prove that the natural transformation

iJγ : iJT ⇒ iJL is a colimit cocone in X.

We use the following lemma.

Lemma A.7.8 Let X ∈ X, with Φ(X) = I, be regarded as a constant functor X : C → X and let

θ : iJT ⇒ X be a natural transformation, i.e. a cocone. Then

(i) for all c ∈ C, u = Φ(θ(c)) : J→ I in B is independent of c, and

(ii) the cartesian lifting Y → X of u determines a cocone ψ : T ⇒ Y.

Proof The natural transformation θ gives for each object the morphism θ(c) : T(c) → X in X.

Since C is connected, induction on the length of a ziz-zag shows it is sufficient to prove (i) when

there is a morphism f : c → c′ in C. By naturality of θ, θ(c′)T(f) = θ(c). But ΦT(f) is the identity,

since T has values in XJ, and so Φ(θ(c)) = Φ(θ(c′)). Write u = Φ(θ(c)).

Since Φ is a fibration, there is a Y ∈ XJ and a cartesian lifting φ : Y → X of u. Hence for each

c ∈ C there is a unique vertical morphism ψ(c) : T(c) → Y in XJ such that φψ(c) = θ(c). We now

prove that ψ is a natural transformation T ⇒ Y in XJ, where Y is regarded as a constant functor.

To this end, let f : c→ c′ be a morphism in XJ. We need to prove ψ(c) = ψ(c′)T(f).

The outer part of diagram (a) commutes, since θ is a natural transformation. The upper and

lower triangles commute, by construction of φ. Hence

φψ(c) = θ(c) = θ(c′)T(f) = φψ(c′)T(f).

Now T(f), ψ(c) and ψ(c′) are all vertical. By the universal property of φ, ψ(c) = ψ(c′)T(f), i.e. the

left hand cell commutes. That is, ψ is a natural transformation T ⇒ Y in XJ. 2

To return to the theorem, since L is a colimit in XJ, there is a unique vertical morphismψ ′ : L→ Y

in the right hand diagram (b) such that for all c ∈ C, ψ ′γ(c) = ψ(c). Let θ ′ = φψ ′ : L → X. This

gives a morphism θ ′ : L → X such that θ ′γ(c) = θ(c) for all c, and, again using universality of φ,

this morphism is unique. 2
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Remark A.7.9 The connectedness assumption is essential in the Theorem. Any small category C is

the disjoint union of its connected components. If T : C → X is a functor, and X has colimits, then

colim T is the coproduct (in X) of the colim Ti where Ti is the restriction of T to a component Ci. But

given two objects in the same fibre of Φ : X → B, their coproduct in that fibre is in general not the

same as their coproduct in X. For example, the coproduct of two groups in the category of groups is

the free product of groups, while their coproduct as groupoids is their disjoint union. 2

Remark A.7.10 A common application of the theorem is that the inclusion XJ → X preserves

pushouts. This is relevant to our application of pushouts in section A.9. Pushouts are used to

construct free crossed modules as a special case of induced crossed modules, [BH78], and to con-

struct free crossed complexes as explained in [BH91, BG89b]. Q.E.D.

Remark A.7.11 George Janelidze has pointed out a short proof of Theorem A.7.7 in the case Φ has

a right adjoint, and so preserves colimits, which applies to our main examples here. If the image of

T is inside Φ(b), then ΦT is the constant diagram whose value is {b, 1b}, and if C is connected this

implies that colimΦT = b. But if Φ(colim T) = colimΦT = b, then colim T is inside Φ(b). Q.E.D.

A.8 Cofibrations of categories

We now give the duals of the above results.

Definition A.8.1 Let Φ : X → B be a functor. A morphism ψ : Z → Y in X over v := Φ(ψ) is called

cocartesian if and only if for all u : J → I in B and θ : Z → X with Φ(θ) = uv there is a unique

morphism φ : Y → X with Φ(φ) = u and θ = φψ.

This is illustrated by the following diagram:

Z
ψ

//

θ

##
Y

φ
// X

Φ

��
K v

//

uv

##
J

u
// I

2

It is straightforward to check that cocartesian morphisms are closed under composition, and that

ψ is an isomorphism if and only if ψ is a cocartesian morphism over an isomorphism.

Definition A.8.2 The functor Φ : X→ B is a cofibration or category cofibred over B if and only if for

all v : K→ J in B and Z ∈ XK there is a cartesian morphism ψ : Z → Z′ over v: such a ψ is called a

cocartesian lifting of Z along v. 2

The cocartesian liftings of Z ∈ XK along v : K→ J are also unique up to vertical isomorphism.

Remark A.8.3 As in Definition A.7.4, if Φ : X → B is a cofibration, then using the axiom of choice

for classes we may select for every v : K→ J in B and Z ∈ XK a cocartesian lifting of Z along v

vZ : Z→ v∗Z.
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Under these conditions, the functor v∗ is commonly said to give the objects induced by v. Ex-

amples of induced crossed modules of groups are developed in [BW03], following on from the first

definition of these in [BH78]. 2

We now have the dual of Proposition A.7.5.

Proposition A.8.4 For a cofibration Φ : X→ B, a choice of cocartesian liftings of v : K→ J in B yields

a functor v∗ : XK → XJ, and an adjointness

XJ(v∗Z, Y) ∼= Xv(Z, Y)

for all Y ∈ XJ, Z ∈ XK.

We now state the dual of Theorem A.7.7.

Theorem A.8.5 Let Φ : X→ B be a category cofibred over B. Then the inclusion of each fibre of Φ into

X preserves limits of connected diagrams.

Many of the examples we are interested in are both fibred and cofibred. For them we have an

adjoint situation.

Proposition A.8.6 For a functor Φ : X→ B which is both a fibration and cofibration, and a morphism

u : J→ I in B, a choice of cartesian and cocartesian liftings of u gives an adjointness

XJ(Y,u∗X) ∼= XI(u∗Y,X)

for Y ∈ XJ, X ∈ XI.

It is interesting to get a characterisation of the cofibration property for a functor that already is

a fibration. The following is a useful weakening of the condition for cocartesian in the case of a

fibration of categories.

Proposition A.8.7 Let Φ : X→ B be a fibration of categories. Then ψ : Z→ Y in X over v : K → J in

B is cocartesian if only if for all θ ′ : Z→ X′ over v there is a unique morphism ψ ′ : Y → X′ in XJ with

θ ′ = ψ ′ψ.

Proof The ‘only if’ part is trivial. So to prove ‘if’ we have to prove that for any u : J → I and

θ : Z→ X such that Φ(θ) = uv, there exists a unique φ : Y → X over u completing the diagram

Z
ψ

//

θ

##
Y

φ
// X

Φ

��
K v

// J
u

// I.

Since Φ is a fibration there is a cartesian morphism κ : X′ → X over u. By the cartesian property,

there is a unique morphism θ ′ : Z→ X′ over v such that κθ ′ = θ, as in the diagram

Z
θ ′

//___

θ

$$
X′

κ
// X.
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Now, suppose φ : Y → X over u : J→ I satisfies φψ = θ, as in the diagram:

Z

θ ′

��=
=

=
=

= ψ
//

θ

$$
Y

φ
// X

X′

κ

@@����������

By the given property of ψ there is a unique morphism ψ ′ : Y → X′ in XJ such that ψ ′ψ = θ ′. By

the cartesian property of κ, there is a unique morphism φ′ in XJ such that κφ′ = φ. Then

κψ ′ψ = κθ ′ = θ = φψ = κφ′ψ.

By the cartesian property of κ, and since ψ ′ψ, φ′ψ are over uv, we have ψ ′ψ = φ′ψ. By the given

property of ψ, and since φ′, ψ ′ are in XJ, we have φ′ = ψ ′. So φ = κψ ′, and this proves uniqueness.

But we have already checked that κψ ′ψ = θ, so we are done. 2

The following Proposition allows us to prove that a fibration is also a cofibration by constructing

the adjoints u∗ of u∗ for every u.

Proposition A.8.8 Let Φ : X → B be a fibration of categories. Let u : J → I have reindexing functor

u∗ : XI → XJ. Then the following are equivalent:

(i) For all Y ∈ XJ, there is a morphism uY : Y → u∗Y which is cocartesian over u;

(ii) there is a functor u∗ : XJ → XI which is left adjoint to u∗.

Proof That (ii) implies (i) is clear, using Proposition A.8.7, since the adjointness gives the bijection

required for the cocartesian property.

To prove that (i) implies (ii) we have to check that the allocation Y 7→ u∗(Y) gives a functor that

is adjoint to u∗. As before the adjointness comes from the cocartesian property.

We leave to the reader the check the details of the functoriality of u∗. 2

To end this section, we give a useful result on compositions.

Proposition A.8.9 The composition of fibrations, (cofibrations), is also a fibration (cofibration).

Proof We leave this as an exercise. 2

A.9 Pushouts and cocartesian morphisms

Here is a small result which we use in this section and section ??, as it applies to many examples,

such as the fibration Ob : Gpds→ Set.

Proposition A.9.1 Let Φ : X→ B be a functor that has a left adjoint D. Then for each K ∈ ObB, D(K)

is initial in XK. In fact if u : K→ J in B, then for any X ∈ XJ there is a unique morphism ǫK : DK→ X

over u.

Proof This follows immediately from the adjoint relation Xu(DK,X) ∼= B(K,ΦX) for all X ∈ ObXJ.

2
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Special cases of cocartesian morphisms are used in [Bro06, BH78, BH81a], and we review these

in section ??. A construction which arises naturally from the various Higher Homotopy van Kampen

theorems is given a general setting as follows:

Theorem A.9.2 Let Φ : X → B be a fibration of categories which has a left adjoint D. Suppose that

X admits pushouts. Let v : K → J be a morphism in B, and let Z ∈ XK. Then a cocartesian lifting

ψ : Z→ Y of v is given precisely by the pushout in X:

D(K)

ǫK

��

D(v)
// D(J)

ǫJ

��
Z

ψ
// Y

(*)

Proof Suppose first that diagram (*) is a pushout in X. Let u : J→ I in B and let θ : Z→ X satisfy

Φ(θ) = uv, so that Φ(X) = I. Let f : D(J)→ X be the adjoint of u : J→ Φ(X).

D(K)

ǫK
��

D(v)
// D(J)

ǫJ
��

f

��1
11

11
11

11
11

11
1

Z

θ
))RRRRRRRRRRRRRRRRRR

ψ // Y

φ

!!
X

K v
// J

u
// I

(**)

ThenΦ(fD(v)) = uv = Φ(θǫK) and so by Proposition A.9.1, fD(v) = θǫK. The pushout property

implies there is a unique φ : Y → X such that φψ = θ and φǫJ = f. This last condition gives

Φ(φ) = u since u = Φ(f) = Φ(φǫJ) = Φ(φ) idJ = Φ(φ).

For the converse, we suppose given f : D(J) → X and θ : Z → X such that θǫK = fD(v). Then

Φ(θ) = uv and so there is a cocartesian lifting φ : Y → X of u. The additional condition φǫJ = f is

immediate by Proposition A.9.1. 2

Corollary A.9.3 Let Φ : X → B be a fibration which has a left adjoint and suppose that X admits

pushouts. Then Φ is also a cofibration.

In view of the construction of hierarchical homotopical invariants as colimits from the HHvKT in

Chapter 8 28, the following is worth recording, as a consequence of Theorem A.7.7.

Theorem A.9.4 Let Φ : X → B be fibred and cofibred. Assume B and all fibres XI are cocomplete. Let

T : C → X be a functor from a small connected category. Then colim T exists and may be calculated as

follows:

(i) First calculate I = colim(ΦT), with cocone γ : ΦT ⇒ I;

(ii) for each c ∈ C choose cocartesian morphisms γ ′(c) : T(c)→ X(c), over γ(c) where X(c) ∈ XI;
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(iii) make c 7→ X(c) into a functor X : C→ XI, so that γ ′ becomes a natural transformation γ ′ : T ⇒

X;

(iv) form Y = colimX ∈ XI with cocone µ : X⇒ Y.

Then Y with µγ ′ : T ⇒ Y is colim T .

Proof We first explain how to make X into a functor.

We will in stages build up the following diagram:

T(c)

η

))

T(f) %%KKKKKKKKK γ ′(c)
// X(c)

X(f)
���
�
�

µ(c)
// Y

1
��

τ
// Z

Φ

��

T(c′)
γ ′(c′)

// X(c′)
µ(c′)

// Y
τ ′

// Z

K
ΦT(f)

// J
γ(c′)

// I
1

// I w
// H

(A.9.1)

Let f : c → c′ be a morphism in C, K = ΦT(c), J = ΦT(c′). By cocartesianness of γ ′(c), there is a

unique vertical morphism X(f) : X(c) → X(c′) such that X(f)γ ′(c) = γ ′(c′)T(f). It is easy to check,

again using cocartesianness, that if further g : c′ → c′′, then X(gf) = X(g)X(f), and X(1) = 1. So X

is a functor and the above diagram shows that γ ′ becomes a natural transformation T ⇒ X.

Let η : T ⇒ Z be a natural transformation to a constant functor Z, and let Φ(Z) = H. Since

I = colim(ΦT), there is a unique morphism w : I→ H such that wγ = Φ(η).

By the cocartesian property of γ ′, there is a natural transformation η ′ : X⇒ Z such that η ′γ ′ = η.

Since Y is also a colimit in X of X, we obtain a morphism τ : Y → Z in X such that τµ = η ′. Then

τµγ ′ = η ′γ ′ = η.

Let τ ′ : Y → Z be another morphism such that τ ′µγ ′ = η. Then Φ(τ) = Φ(τ ′) = w, since I is a

colimit. Again by cocartesianness, τ ′µ = τµ. By the colimit property of Y, τ = τ ′. 2

This with Theorem A.9.4 shows how to compute colimits of connected diagrams in the examples we

discuss in sections A.10 to ??, and in all of which a van Kampen type theorem is available giving

colimits of algebraic data for some glued topological data.

Corollary A.9.5 Let Φ : X → B be a functor satisfying the assumptions of theorem A.9.4. Then X is

connected complete, i.e. admits colimits of all connected diagrams.

A.10 Groupoids bifibred over sets

We have already seen in Example A.7.3 that the functor Ob : Gpds → Sets is a fibration. It also has

a left adjoint D assigning to a set I the discrete groupoid on I, and a right adjoint assigning to a set

I the codiscrete groupoid on I.

It follows from general theorems on algebraic theories that the category Gpds is cocomplete, and

in particular admits pushouts, and so it follows from previous results that Ob : Gpds → Sets is also

a cofibration. A construction of the cocartesian liftings of u : I → J for G a groupoid over I is
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given in terms of words, generalising the construction of free groups and free products of groups, in

[Hig71, Bro06]. In these references the cocartesian lifting of u to G is called a universal morphism,

and is written u∗ : G → Uu(G). This construction is of interest as it yields a normal form for the

elements of Uu(G), and hence u∗ is injective on the set of non-identity elements of G.

A homotopical application of this cocartesian lifting is the following theorem on the fundamental

groupoid. It shows how identification of points of a discrete subset of a space can lead to ‘identifica-

tions of the objects’ of the fundamental groupoid:

Theorem A.10.1 Let (X,A) be a pair of spaces such that A is discrete and the inclusion A → X is a

closed cofibration. Let f : A→ B be a function to a discrete space B. Then the induced morphism

π1(X,A)→ π1(B ∪f X,B)

is the cocartesian lifting of f.

This theorem immediately gives the fundamental group of the circle S1 as the infinite cyclic group C,

since S1 is obtained from the unit interval [0, 1] by identifying 0 and 1, as shown in the Introduction

in diagram (1.7.3). The theorem is a translation of [Bro06, 9.2.1], where the words ‘universal

morphism’ are used instead of ‘cocartesian lifting’. Section 8.2 of [Bro06] shows how free groupoids

on directed graphs are obtained by a generalisation of this example.

The calculation of colimits in a fibre GpdsI is similar to that in the category of groups, since both

categories are protomodular, [BB04]. Thus a colimit is calculated as a quotient of a coproduct, where

quotients are themselves obtained by factoring by a normal subgroupoid. Quotients are discussed in

[Hig71, Bro06].

Theorem A.9.4 now shows how to compute general colimits of groupoids.

We refer again to [Hig71, Bro06] for further developments and applications of the algebra of

groupoids. We generalise some aspects of the above to modules, crossed modules and crossed

complexes in Chapter 7.

The following subsections cover some aspects of groupoid theory needed earlier.

A.10.1 Covering morphisms of groupoids

For the convenience of readers, and to fix the notation, we recall here the basic facts on covering

morphisms of groupoids. Proofs can be found in the books [Bro06, ?]. However we find it convenient

to adopt different conventions, focussing on costars rather than stars, which ensure that some of our

formulae in Subsection 11.2.4 work out in a nice way, see equation (A.10.3).

Let G be a groupoid. For each object a of G the Costar of a0 in G, denoted by CostG a0, is the

union of the sets G(a,a0) for all objects a of G, i.e. CotGa0 = {g ∈ G | tg = a0}. A morphism

p : G̃→ G of groupoids is a covering morphism if for each object ã of G̃ the restriction of p

Cost
G̃
ã→ CostG pã

is bijective. In this case G̃ is called a covering groupoid of G.

A basic result for covering groupoids is unique path lifting. That is, let p : G̃ → G be a covering

morphism of groupoids, and let (g1,g2, . . . ,gn) be a sequence of composable elements of G. Let

ã ∈ Ob(G̃) be such that pã is the target of gn. Then there is a unique composable sequence

(g̃1, g̃2, . . . , g̃n) of elements of G̃ such that g̃n ends at ã and pg̃i = gi, i = 1, . . . ,n.
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If G is a groupoid, the slice category GpdsCov/G of coverings of G has as objects the covering

morphisms p : H → G and has as arrows (morphisms) the commutative diagrams of morphisms of

groupoids, where p and q are covering morphisms,

H

p
��@

@@
@@

@@
f // K

q
����

��
��

�

G

By a standard result on compositions and covering morphisms ([Bro06, 10.2.3]), f also is a cov-

ering morphism. It is convenient to write such a diagram as a triple (f,p,q). The composition in

GpdsCov/G is then given as usual by

(g,q, r)(f,p,q) = (gf,p, r).

It is a standard result (see for example [Hig71, Bro70]) that the category GpdsCov/G is equiv-

alent to the functor category SetsG
op

. Thus if X : Gop → Sets is a functor, then G̃ = G ⋉ X has

object set the disjoint union of the sets X(a) for a ∈ Ob(G) and arrows y → x the pairs (g, x)

such that x ∈ X(tg) and y = X(g)x; in operator notation: (g, x) : gx → x. The composition is

then (g ′,gx)(g, x) = (g ′g, x). The projection morphism G ⋉ X → G, (g, x) 7→ g, is then a covering

morphism.

This ‘semidirect product’ or ‘Grothendieck construction’ 29 is fundamental for constructing cov-

ering morphisms to the groupoid G. For example, if a0 is an object of the transitive groupoid G,

and A is a subgroup of the object group G(a0) then the groupoid G operates on the family of cosets

{gA | g ∈ CostG a0}, by g ′.(gA) = g ′gA whenever g ′g is defined, and the associated covering mor-

phism G̃ → G defines the covering groupoid G̃ of the groupoid G determined by the subgroup A.

When A is trivial this gives the universal cover at a0 of the groupoid G. In particular, this gives the

universal covering groupoid of a group, whose objects are the elements of G and arrows are pairs

(g,h) : gh → h, g,h ∈ G. Then G operates on the right of the universal cover by (g,h)k = (g,hk).

This operation preserves the map p and is called a covering transformation.

Example A.10.2 Here is a simple example: the universal covering groupoid K̃ of the Klein 4-group

K = C2 × C2 with elements say 1,a,b,ab. The group is generated by a,b with the relations

a2,b2,aba−1b−1, which we write respectively r, s, t. Then K̃ has the elements of K as vertices

and an arrow (g, x) : gx → x for each g, x ∈ K. The covering morphism p : K̃ → K is (g, x) 7→ g.

In terms of the generators a,b we obtain a diagram of K̃ as the left hand diagram in the following

picture:

b

(b, 1)

��

�
�
��
!
#
%

(a,ab)

22 ab = ba

(b,a)





)
%
"
�

�
�

�

(a,b)
tt

1

(b,b)

TT

�
�
�

�
"
%

)

(a,a)
** a

(b,ba)

JJ

)
%
"
� �
�
�

(a, 1)

jj
��

�
�

$

55

		

&

�

�
)) a

Note that for example (a,ab) : b → ab because a2 = 1. The right hand diagram illustrates a lift of

the path b−1a−1ba in K to a path starting and ending at a in the diagram of K̃. You should draw the

similar loops starting in turn at 1,b,ab. We show in Section 11.2.4 that in the context of covering

morphisms of crossed complexes these four loops form boundaries of four ‘lifts’ of the relation t. 2
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Example A.10.3 Given a morphism φ : F → G of groups, let q : F̂ → F be the pullback by φ of the

universal covering morphism p : G̃→ G giving a commutative diagram

F̂

q
��

φ̄ //
G̃

p
��

F
φ

// G

(A.10.1)

Note that an arrow in F̂ is a pair (u, (φu,g)) : (φu)g → g, u ∈ F,g ∈ G. Since u determines

φu, we can write an arrow of F̂ as (u,g) : (φu)g → g. Again, G operates on the right of F̂ by

(u,g)k = (u,gk), k ∈ G.

If X is a set of generators of the group G, we have an epimorphism φ : F → G where F is the

free group on the set X. Let X̂ be the graph q−1(X) in F̂. This is called the Cayley graph of the set

of generators X of G. Its vertices are the elements of G and the arrows are pairs (x,g) : (φx)g→ g.

For our particular example with generators of the Klein group K this Cayley graph is often drawn in

an abbreviated form as:

b

b

��

ab
aoo

b

��
a a

a
oo

(A.10.2)

2

Exercise A.10.4 Carry out a similar analysis to the above for the universal cover of the symmetric

group S3, whose Cayley graph is drawn in Example 3.1.6.

The following is a key result.

Proposition A.10.5 Given the epimorphism φ : F → G where F = F(X) is the free group on the

set X of generators of G, then F̂ is the free groupoid on the graph X̂, whose arrows can be written

(x,g) : (φx)g→ g.

Proof This is [Bro06, 8.2.1 Corollary 1]. See also [Hig71, Theorem 8, p.112]. The proofs use the

solution of the word problem. 2

This construction is used in Section 11.2.4 for computing resolutions, and is also relevant to Section

8.4.

Remark A.10.6 The main reason for our choice of conventions on covering morphisms is the foll-

owing. Let G be a group and p : G̃ → G its universal covering morphism. Then G operates on the

right of the groupoid G̃ by (g,h)k = (g,hk), (g,h) ∈ G̃, k ∈ G. Let e : G → G̃ be the function

g 7→ (g, 1) : g→ 1. Then one easily checks that

e(gh) = e(g)h e(h)

Thus e is a (nonabelian) derivation. Also if φ : F → G is a morphism of groups and q : F̂ → F is

the pullback of p by φ, then G again operates on the groupoid F̂ and d : F → F̂ given by u 7→ (u, 1)

satisfies

d(uv) = d(u)φv d(v), (A.10.3)

i.e. d is a (nonabelian) φ-derivation. 2
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Remark A.10.7 It is also useful to note that in the situation of the last remark, if

(x1,g1), (x2,g2), . . . , (xn,gn)

is a sequence of composable morphisms of F̂, so that (φxi)gi = gi−1, 1 < i 6 n, where the xi or

their inverse belongs to X, then their composite is (x1x2 . . .xn, tgn). 2

A.10.2 Abelianisation of groupoids

We will need in sections 7.5.3 and 14.7 the notion of abelianisation of a groupoid.

Let Ab, Groups, Gpds denote respectively the categories of abelian groups, groups, and groupoids.

Each of the inclusions

Ab→ Groups→ Gpds (A.10.4)

has a left adjoint. That from groupoids to groups is called the universal group UG of a groupoid G

and is described in detail in [Bro06, Chapter 8] and [Hig71]. In particular, the universal group of a

groupoid G is the free product of the universal groups of the transitive components of G.

It follows that we have what we call the universal abelianisation Gtotab of a groupoid, namely

the usual abelianisation of the group UG. It is isomorphic to the direct sum of the Gtotab
i over all

components Gi of G. Any transitive groupoid G may be written in a non canonical way as the free

product G(a0)∗ T of a vertex group G(a0) and an indiscrete or tree groupoid T (This result has been

used to suggest that ‘groupoids reduce to groups’; but this is analogous to suggesting that vector

spaces reduce to numbers!). Then

UG ∼= G(a0) ∗UT

and UT is the free group on the elements x : a0 → a in T for all a ∈ Ob(T), a 6= a0. So for a

transitive groupoid G with a0 ∈ ObG

Gtotab ∼= G(a0)
ab ⊕ F

where F is the free abelian group on the elements x : a0 → a in T for all a ∈ Ob(T),a 6= a0, for T a

wide tree subgroupoid of G.

However we also need a more restrictive abelianisation of a groupoid G with object set I, which

we write Gab. Here the abelianisation takes place in the category of groupoids with object set I, and

an abelian groupoid over I is one in which all vertex groups are abelian. It is this construction which

we apply to C2 as part of the abelianisation ∇C of a crossed complex C, giving a chain complex with

π1C as groupoid of operators, in section 7.5.3.

Exercise A.10.8 A groupoid G is abelian if all its vertex groups are abelian. Show that the abelian

groupoids form a reflexive subcategory of the category of all groupoids. 2
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Notes

28p. 449 See also [BL87b, BL87a, ES87, EM08].

29p. 452 This has also been developed by C. Ehresmann in [Ehr57], in which he defines both an

action of a category and the associated “category of hypermorphisms” (and also what he calls the

complete enlargement of a species of structures in the case of local groupoids).
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Appendix B

Closed categories.

In section 9.1 we have given an account of various exponential laws. Here we give a sketch of some

of the underlying categorical ideas.

In specialising to the category of groupoids, we get some indication of possible notion of ‘higher

order symmetry.

B.1 Products of categories and coherence

Let Cat be the category of all small categories with morphisms being the functors. This category

is known to be complete and cocomplete. The product of categories is constructed in for example

[Bro06, section 6.4], and has the universal property of a product in a category.

Let C,D be categories. The product C × D is defined to have objects all pairs (x,y) for x in

Ob(C),y in Ob(D) and to have as arrows the pairs (c,d), for c in C,d in D–thus the set C×D is just

the cartesian product of the two sets. Also, if c : x→ x ′ in C, d : y→ y′ in D, then we take in C×D

(c,d) : (x,y)→ (x ′,y′).

The composition is defined as one would expect by

(c′,d ′)(c,d) = (c′c,d ′d)

whenever c′c,d ′d are defined. It is very easy to show that C×D is a category.

Notice also that if c,d have inverses c−1,d−1 then (c,d) has inverse (c−1,d−1). It follows that if

C,D are both groupoids then so also is C×D.

Let p1 : C × D → C,p2 : C × D → D be the obvious projection functors. Then we have the

universal property: if f : E → C,g : E → D are functors then there is a unique functor (f,g) : E →

C ×D such that p1(f,g) = f,p2(f,g) = g. The proof is easy and is left to the reader. As usual, this

property characterises the product up to isomorphism.

Note that this is how product is defined in elementary category theory. So, in an interesting kind

of self reference, we use category theory to discuss category theory itself. This is partly because of

the dual role of categories and groupoids in mathematics – on the one hand for metamathematical

considerations, and on the other as algebraic objects in their own right.

Let f : C×D → E be a functor, where C,D,E are categories. If 1x is the identity at x in C, then

let us write f(x,d) for f(1x,d) where d is any arrow in D. Similarly, let us write f(c,y) for f(c, 1y)

457
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for any object y ofD and a arrow c of C. Then, as is easily verified, f(x, ∼) is a functorD→ E (called

the x-section of f) and f(∼,y) is a functor C → E (called the y-section of f). These two families of

functors determine f. If c : x → x ′,d : y → y′ are arrows in C,D respectively then we have a

commutative diagram

f(x,y)
f(c,y)

//

f(x,d)

��

f(c,d)

##G
GGGG

GGGGG
GGGG

GGG
f(x ′,y)

f(x ′,d)

��
f(x,y′)

f(c,y′)
// f(x ′,y′)

since f(1x′c,d1y) = f(c,d) = f(c1x, 1y′d).

Proposition B.1.1 Suppose for each x in Ob(C) and y in Ob(D) we are given functors

f(x, ∼) : D→ E, f(∼,y) : C→ E

such that f(x,y) is a unique object of E. Suppose for each c : x → x ′ in C and d : y → y′ in D the

outer square of B.1 commutes. Then the diagonal composite f(c,d) makes f a functor C ×D → E. All

functors C×D→ E arise in this way.

Proof The verification of the preservation of the identity for f is easy since

f(1x, 1y) = f(1x,y)f(x, 1y)

= 1f(x,y)1f(x,y)

= 1f(x,y).

The verification of the composition rule involves a diagram of four commutative squares:

f(x,y)
f(c,y) //

f(x,d)

��

f(c,d)

%%KKKKKKKKKK
f(x ′,y)

f(c′,y) //

f(x′,d)

��

f(x ′′,y)

f(x′′,d)

��
f(x,y′)

f(c′,y′)//

f(x,d′)

��

f(x ′,y′)
f(c′,y′)//

f(x′,d′)

��

f(c′,d′)

&&LLLLLLLLLL
f(x ′′,y′)

f(x′′,d′)

��
f(x,y′′)

f(c,y′′)// f(x ′,y′′)
f(c′,y′′)// f(x ′′,y′′)

The last statement is clear from the discussion preceding B.1.1. 2

It is clear that if G,H are groupoids, regarded as a special case of categories, then their product

G×H as categories is also a groupoid. This defines the product of groupoids.

B.2 Cartesian closed categories

We have already given in section 9.1 some background to the fundamental notion of an ‘exponential

law’. Here we will sketch the ideas for one aspect of that, and how the category Cat of small

categories comes into this framework with an exponential law of the form of a natural bijection

Cat(C×D,E) ∼= Cat(C, CAT(D,E)) (B.2.1)



[B.3] 459

for all small categories C,D,E. The small category CAT(D,E) has objects the functors D → E and

morphisms the natural transformations.

We will not give a proof of this, but sketch some of the ideas in a way related to previous work.

In section 6.1 we have defined the notion of double category and given the example of the double

category E of commuting squares in a category E. This double category has two compositions

which were there written +1, +2 and here we will write ◦1, ◦2. This gives rise to two categories

1 E, 2 E in which the morphisms are the commutative squares in E but in which the compositions

are respectively ◦1, ◦2.

Proposition B.2.1 The natural transformations of functors D → E are bijective with the elements of

Cat(D, 2 E).

That is, instead of saying that a natural transformation φ : F → G assigns to each object d of D a

morphism φ(d) : F(d) → G(d) in E such that for every morphism f : d → d ′ in D a certain square

diagram in E commutes, we say that a natural transformation φ is a functor D → 2 E, and the

composition of natural transformations is determined by the composition ◦1 in E. This approach

has been used in [BN79], where it has the advantage of applying to the topological case.

B.3 The internal hom for categories and groupoids

Let us prove that the category of small categories (and that of groupoids) is closed. Thus, for any

couple of small categories (groupoids) C,D, we need to construct the small category (groupoid) of

internal morphisms from C to D that we are going to denote as CAT(C,D) (GPDS(C,D)).

The objects of CAT(C,D) are Cat(C,D), all functors (morphisms) between the given categories.

Its arrows are all the natural transformations between such functors. Recall that a natural trans-

formation φ : f⇒ f ′ between two functors f, f ′ : C→ D is a family of arrows {φ : f(x)→ f ′(x) | x ∈

Ob(C)} such that for any arrow in C, c : x→ x ′, the diagram

f(x)
f(a) //

φ(x)

��

f(x ′)

φ(x′)

��
f ′(x)

f′(a)

// f ′(x ′)

commutes. We are going to denote this diagram as φ(a).

The source, target and identity of CAT(C,D) are the obvious one. For any two natural transfor-

mations φ : f ⇒ f ′ and φ′ : f ′ ⇒ f ′′, we define the composition φ′φ by φ′φ(x) = φ′(φ(x)). It is

clear that this composition completes the structure of category over CAT(C,D).

It is immediate to see that when C and D are groupoids, any natural transformation φ : f ⇒ f ′

has inverse φ−1 defined by φ−1(x) = (φ(x))−1. Thus CAT(C,D) is a groupoid that we denote by

GPDS(C,D).

The construction of internal morphisms CAT(C,D) is natural in C and D. Let us check that it is

the adjoint of the cartesian product using essentially the same procedure as in Sets.

Theorem B.3.1 If C,D,E are small categories, there is a natural bijection of sets

θ : Cat(C×D,E) ∼= Cat(C, CAT(D,E))
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Proof To define θ, let us start with any functor f : C ×D → E and we are going to construct the

functor θ(f) = f̂ : C→ CAT(D,E).

For an object x ∈ Ob(C), its image is the functor f̂(x) : D → E given by the x-section of f, i.e.

f̂(x) = f(x, ∼)

Now, let c : x → x ′ be an arrow in C. The natural transformation f̂(c) : f(x, ∼) → f(x ′, ∼) is

defined by assigning to each object y in D an arrow f̂(c)(y) = f(c,y). It is clear that for any arrow

d : y→ y′ in D the square

f(x,y)
f(c,y)

//

f(x,d)
��

f(x ′,y)

f(x ′,d)
��

f(x,y′)
f(c,y′)

// f(x ′,y′)

commutes.

To prove bijectivity, we construct φ = θ−1. Thus, for any functor g : C→ CAT(D,E) we define a

functor φ(g) = ĝ : C×D→ E using B.1.1 by giving its sections ĝ(x, ∼) : D→ E, and ĝ(∼,y) : C→ E,

and verifying the commutativity of the appropriate diagram.

For any x object in C, we define the x-section ĝ(x, ∼) = g(x) : D→ E. Then, on objects ĝ(x,y) =

g(x)(y).

For any y object in D, the functor ĝ(∼,y) is clear on objects. Let c : x → x ′ be an arrow of C.

The natural transformation g(c) : g(x) ⇒ g(y) is given by g(c)(y) : g(x,y) → g(x ′,y) . We take

ĝ(c,y) = g(c)(y).

These sections give a functor C → E because the commutativity of the square is a direct conse-

quence of naturality. 2

Corollary B.3.2 There is a natural isomorphism of categories

Θ : CAT(C×D,E) ∼= CAT(C, CAT(D,E))

that on objects is θ.

Our interest lays not only in general small categories but mainly in groupoids. It is clear that if G

and H are groupoids, the category CAT(G,H) is also a groupoid that we represent by GPDS(G,H).

The same bijection above proves that this internal morphisms make Gpds a cartesian closed category.

Corollary B.3.3 If G,H,K are groupoids, there is a natural bijection of sets

Gpds(G ×H,K) ∼= Gpds(G, GPDS(H,K))

and hence a natural isomorphism of groupoids

GPDS(G×H,K) ∼= GPDS(G, GPDS(H,K)).

The reader will have noticed that since groups are special cases of groupoids, this corollary

applies to the case when G,H,K are all groups and then yields a bijection of sets

Groups(G×H,K) ∼= Gpds(G, GPDS(H,K))

natural with respect to morphisms of G,H,K. Thus to obtain an adjoint to the cartesian product of

groups, we have to go outside the category of groups since GPDS(H,K) has, in general, more than

one object. We shall go back to this case in section B.6
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The applications of this exponential law confirm again that the sensible approach is to study

the algebraic objects which arise in say a given geometric situation, and to examine their uses in

order to see how their algebraic properties match up to the formal requirements of the geometric

situation. An important aspect of the properties of the algebraic objects is the properties of the

category of these objects. As we see above, the category of groups has limitations, in that it is not

cartesian closed. On the other hand, the category of groupoids is cartesian closed. We will obtain an

application of this in the next section.

The above result is a special case of the result that the category of categories or of groupoids

internal to a cartesian closed category is also cartesian closed. (Ehresmann and Ehresmann.)

In order to use the preceding results we have to make some deductions from them and get

familiar with the deductions of some standard operations. Some of these arguments work in a

general cartesian closed category, but it is important to become familiar with a particular example

other than the standard category of sets, in which it is possible to proceed in an ad hoc basis.

B.4 The monoid of endomorphisms in the case of groupoids

It is well known that in the case of a cartesian closed category C, for any object E the internal

endomorphisms EE may be given a monoid structure. We are going to study the case of the category

of groupoids. For the general case see [Kel36].

As we have seen for any groupoids, G,H, and K there are natural bijections

Gpds(G×H,K) ∼= Gpds(G, GPDS(H,K)).

In particular, for any groupoids G and H there is a bijection

φ : Gpds(GPDS(G,H), GPDS(G,H))→ Gpds(GPDS(G,H)×G,H).

We are going to study the evaluation,

εGH = φ(1GPDS(G,H)) : GPDS(G,H)×G→ H

i.e.the functor corresponding to the identity 1GPDS(G,H) under the above bijection.

Remark B.4.1 Let us see the action of the evaluation recalling the definition of φ. So, to define

εGH, we give its sections.

For any functor f : G→ H, the section εGH(f, ∼) : G→ H is defined to be f. Then, on objects, we

have εGH(f, x) = f(x), for any functor f : G→ H and object x ∈ G.

For any object x in G, the section εGH(∼, x) : GPDS(G,H) → H is defined on objects as before,

and for any natural transformation φ : f⇒ f ′, εGH(∼, x)(φ) = φ(x).

Then, for any natural transformation φ : f ⇒ f ′ and arrow a : x → y, εGH(φ,a) is the common

composition of the commutative square

f(x)
f(a) //

φ(x)

��

φ(a)

##G
GGGGGGG
f(x ′)

φ(x′)

��
f ′(x)

f′(a)

// f ′(x ′)

that we call φ(a). notice that for a = 1x, we have φ(1x) = φ(x). 2
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Using the evaluation maps εGH we can define the map

α : GPDS(H,K)× GPDS(G,H)×G
1×εGH−→ GPDS(H,K)×H

εHK−→ K

Now, using the bijection above, we get a functor

∗ = θ(α) : GPDS(H,K)× GPDS(G,H)→ GPDS(G,K)

that we call the product of internal morphisms.

Remark B.4.2 To study the product functor, it is better to have a more explicit description of α. On

objects, for any two morphisms of groupoids g : H → K, f : G → H and an object x in G, we have

α(g, f, x) = g(f(x)). On morphisms, given two natural transformations ψ : g ⇒ g ′, φ : f ⇒ f ′ and

an arrow a : x→ x ′, α(ψ,φ,a) = ψφ(a)

Now, we construct θ(α) following B.3.1. Thus, on objects is (g, f) → gf and on arrows, for

any two natural transformations ψ : g ⇒ g ′ and φ : f ⇒ f ′, ψ ∗ φ : gf ⇒ g ′f ′ is thew natural

transformation given by ψ ∗ φ(x) = α((ψ,φ), 1x) = ψφ(1x) = ψφ(x), i.e. the common composition

of the diagram

gf(x)
gφ(x) //

ψf(x)

��

gf ′(x)

ψf′(x)

��
g ′f(x)

g′φ(x)

// g ′f ′(x)

Notice that ψ ∗ φ may be seen as the common composition (ψf ′)(gφ) = (g ′φ)(ψf). It is easy to see

that the product is natural. 2

Thus, for any groupoid G, the set of morphisms of the groupoid END(G) = GPDS(G,G) is a

monoid with respect to the composition just defined

∗ : END(G)× END(G)→ END(G).

Moreover, the source target and identity are homomorphisms between END(G) and End(G). To

check that those compositions make END(G) a monoid on the category of groupoids it remains to

prove the following

Proposition B.4.3 The composition of arrows in END(G)

END(G)×End (G)END(G)→ END(G)

is a homomorphism with respect to the composition ∗, i.e. , we have

(ψ ′ψ) ∗ (φ′φ) = (ψ ′ ∗ φ′)(ψ ∗ φ).

for any natural transformations φ : f⇒ f ′, φ′ : f ′ ⇒ f ′′, ψ : g⇒ g ′ and ψ ′ : g ′ ⇒ g ′′.

Proof It is direct from the definition and the commutative diagram

g ′f ′

ψ′∗φ′

))RRRRRRRRRRRRRRRR

ψ′f′ ""E
EE

EE
EE

E

gf
ψf //

ψ∗φ

66nnnnnnnnnnnnnnn

ψ′ψf
((QQQQQQQQQQQQQQQ g ′f

ψ′f

!!C
CC

CC
CC

C

g′φ

=={{{{{{{{
g ′′f ′

g′′φ′

// g ′′f ′′

g ′′f

g′′φ′φ

55llllllllllllllll

g′′φ
<<yyyyyyyy

since the composition of the two arrows on the bottom is (ψ ′ψ) ∗ (φ′φ). 2
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B.5 The symmetry groupoid and the actor of a groupoid

It can be regarded as a general expectation that the symmetry of an object of type T should in some

sense be a ‘group object’ of type T , and so some kind of higher order structure than T itself.

When looking for a structure reflecting the symmetries of a groupoid G, it is logical to consider

all invertible elements of END(G). Let us call Aut(G) the subgroup of End(G) of all automorphisms

of the groupoid G and AUT(G) the full subcategory of END(G) having Aut(G) as objects. Clearly

AUT(G) is a submonoid and a subgroupoid. Let us check that it is also a group with respect to ∗.

The group-groupoid AUT(G) is called the symmetry groupoid of the groupoid G.

Proposition B.5.1 The category AUT(G) is a group internal to groupoids

Proof Let φ : f ⇒ f ′ be natural transformation from f to f ′, both being automorphisms of the

groupoid G. Then the natural transformation f ′
−1
φ−1f−1 : f−1 ⇒ f ′

−1
is the inverse of φ with

respect to ∗. 2

Now, we are going to define an equivalent structure. Let us consider the source map

s : AUT(G)→ Aut(G).

It is a homomorphism and the identity homomorphism is a right inverse. Thus the short exact

sequence of groups and homomorphisms

1→ Ker s→ AUT(G)→ Aut(G)→ 1

splits, i.e there is a bijection

AUT(G) ∼= Aut(G)×Ker s

that maps any natural transformation of automorphisms φ : f ⇒ f ′ to the pair (f, 1f−1 ∗ φ) where

the latter is a natural transformation 1→ f−1f ′, i.e. an element in Ker s.

This bijection is an isomorphism when we endow the cartesian product with appropriate struc-

ture. This is the semi-direct product with respect to the action of Aut(G) on Ker s on the right given

by the identity and conjugation, i.e.

AUT(G) ∼= Aut(G) ⋉ Ker s

where the semidirect product G ⋉M of a group G and a G-group M is the cartesian product with

the product given by (g,m)(g ′,m ′) = (gg ′,mg
′

m ′).

Thus, given Ker s and the action of Aut(G) on it, the source homomorphism is recovered directly

since it is the identity on Aut(G) and the constant map on Ker s and the target homomorphism is

determined once we know its restriction

t| : Ker s→ Aut(G)

since it is also the identity on Aut(G). This morphism t|is called the actor of the groupoid. We shall

see that it is an example of crossed module and that it is equivalent to the group-groupoid AUT(G).

Let us now consider yet another group that is equivalent to the actor. For any groupoid G, we

define M(G) the set of sections σ : Ob(G)→ G of the target map t : G→ Ob(G), i.e. such section σ

to each object x ∈ Ob(G) corresponds an arrow σ(x) : s(σ(x))→ x. Then there is a map

∆ : M(G)→ END(G)
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such that to any section σ : Ob(G)→ Gmaps the natural transformation ∆(σ) : δ(σ)→ 1 where δ(σ)

is the functor defined on objects by δ(σ)(x) = sσ(x) and on arrows by δ(σ)(g) = σ(t(g))−1gσ(s(g)).

The natural transformation ∆(σ) is then given by σ(x).

It is clear from the definition that ∆ is a bijection onto Ker t. It is an isomorphism once we give

the appropriate definition to the product of sections. For any two sections σ, τ their product τ ∗ σ is

defined as the section that for any x ∈ Ob(G), τ ∗ σ(x) is the composition

sτ(sσ(x))llabto2τsσ(x)sσ(x)
σ(x)
−→ x.

It is not difficult to prove that ∆ is a homomorphism with this product. Let us consider the restriction

to the group of units M∗(G)

Proposition B.5.2 For any section σ ∈ M(G), the following are equivalent:

1. σ is a unit;

2. ∆(σ) is bijective on objects;

3. ∆(σ) is bijective on arrows;

4. ∆(σ) is an automorphism.

Proof 2

Thus, the restriction gives an isomorphism ∆ : M∗(G) ∼= Ker t ⊆ AUT(G). Using this isomorphism,

the map s becomes δ : M∗(G)→ Aut(G) and the action of Aut(G) on AUT(G) induces an action on

M∗(G) given by σf(x) = f−1σf(x). This produces another possible interpretation of the actor of a

groupoid.

B.6 The case of a group

As we have seen, a group G may be regarded as a category, that is denoted also by G, with one

object ∗G and G as set of arrows. The composition of arrows is given by the product in G. This gives

a full embedding of categories

Groups →֒ CAT.

that is full and preserves products.

Thus the internal structure of Groups, if it has one, should correspond to that of CAT, i.e. the

internal morphism between two groups G,H should be CAT(G,H) = GPDS(G,H). We know that it

is a groupoid. We shall see that, in general, this groupoid has more than one object.

The set of objects of GPDS(G,H) is Gpds(G,H) = Hom(G,H), i.e. the set of homomorphisms

between the two groupoids. Clearly this set has many elements in general, thus GPDS(G,H) lies

outside the category of groups and the category of groups is not closed.

Let us see a characterisation of the arrows of GPDS(G,H). Recall than an arrow of Groups is

just a group homomorphism f : G → H. A natural transformation φ : f ⇒ f ′ is given by a unique

arrow φ(∗G) = y ∈ H corresponding to the object ∗G, such that for any x ∈ G satisfies the naturality

condition, i.e. the diagram

∗H
f(x) //

y

��

∗H

y

��
∗H

f′(x))

// ∗H
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commutes, giving f ′(x)y = yf(x) for all x ∈ G. Thus f ′ may be recovered from f and y since

f ′(x) = yf(x)y−1 for all x ∈ G. We write y : f⇒ f ′.

Let us see what is the evaluation and composition maps in this case.

Following the remark B.4.1 the evaluation map εGH : GPDS(G,H) × G → H may be easily

described in the case of groups. Since both G and H have a unique object, the functor εGH is trivial

on objects. To describe the action on arrows, we use the above characterisation of the elements

of GPDS(G,H) as elements of H. Thus for any y : f ⇒ f ′ : G → H and any x ∈ G, we define

εGH(y, x) ∈ H as the common product εGH(y, x) = yf(x) = f ′(x)y.

Following the remark B.4.2, the composition GPDS(H,K) × GPDS(G,H) → GPDS(G,K) for

groups G,H,K can be easily described. It is direct that on objects is just the composition of ho-

momorphisms. Let us study the arrows using the same characterisation as before. Let us consider

y : f ⇒ f ′ : G → H and z : g ⇒ g ′ : H → K, its composite z ∗ y : gf ⇒ g ′f ′ : G → K is the common

product z ∗ y = zg(y) = g ′(y)z.

Thus END(G) = GPDS(G,G) is a monoid with the product just described.

Let us study the symmetry groupoid of the group G. As before, AUT(G) is the full subcategory of

END(G) having as set of objects Aut(G) the group of all automorphisms of the group G. Its elements

are x : f ⇒ f ′ where x ∈ G, f, f ′ ∈ Aut(G) and f ′(x ′) = xf(x ′)x−1 for all x ′ ∈ G, i.e. f ′ is the ’left

conjugate of f by x’. As seen, it is a groupoid and a group with respect to ∗. In this case the inverse

with respect to ∗ of an element x : f⇒ f ′ may be easily computed to be f ′
−1

(x−1) : f−1 ⇒ f ′
−1

.

Now, let us consider Ker s, the kernel of the source map. Its elements are x : 1 ⇒ f, where f is

left conjugation by x, i.e. f(x ′) = xxx−1 for all x ′ ∈ G. The ∗ product in this subgroup is x∗x ′ = xx ′,

thus Ker s is naturally isomorphic to G.

The action of Aut(G) on Ker s by the identity and conjugation, in this case is xf
′

= f ′
−1

(x) for

any natural transformation x : 1 ⇒ f and automorphism f ′. Notice that xf
′

: 1 ⇒ f ′
−1
ff ′. With this

action

AUT(G) ∼= Aut(G) ⋉ Ker s ∼= Aut(G) ⋉G.

B.7 Crossed modules and quotients of groups

We start with some very basic facts on group theory.

LetN be the kernel of a homomorphism f : G→ H of groups. ThenN is a normal subgroup of G.

This is equivalent to saying that the group G acts on the group N by conjugation in G. This is why a

normal subgroup is a special case of a crossed module. We can put the emphasis slightly differently

by saying that the kernel of a homomorphism of groups is a group with action, and in fact a special

case of a crossed module.

Now a normal subgroup is closely associated with the notion of quotient group. The notion of

quotient structure is very important in mathematics and science since it is closely associated with

the idea of classification. In looking at insect in a rain forest, say, we do not try to list all insects,

but we do try to list as many species as we can find. Similarly, in mathematics, we often want to

consider sets of elements as objects in themselves, for example lines are considered as sets of points

in a plane. The basic tool for this is the standard notion of equivalence relation R on a set X and the

associated set X/R of equivalence classes.
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In order to fit the notion of equivalence relation into the notion of quotient groups, it is conve-

nient to use the fact that a subgroup N of a group G determines an equivalence relation ∼N on G by

the rule g ∼N g
′ if and only if Ng = Ng′, for (g,g ′) ∈ G ×G. In general this subset ∼N of G× G is

not a subgroup of G×G, where the latter has its usual group structure (for example, considered as

a product of categories).

Proposition B.7.1 The equivalence relation ∼N is a subgroup of G × G if and only if the subgroup N

is normal in G. 2

We omit the proof since this is exactly the kind of result you have to verify for yourself.

It is usual to call an equivalence relation on G which is a subgroup of G×G a congruence on the

group G.

It was quite early observed that an equivalence relation R on a set X is a special case of a

groupoid with object set X, in which the set of arrows is R and R(x,y) consists of the set {(y, x)}

with multiplication (z,y)(y, x) = (z, x). That is, in thinking about a groupoid H, we realise that H

defines an equivalence relation on Ob(H) whose classes are the connected components of H. For

this equivalence relation the elements of H(x,y) could be thought of ‘reasons why’ x is equivalent to

y, or as ‘proofs that’ x is equivalent to y. This analogy leads naturally to the consideration of higher

dimensional theories, such as ‘proofs of proofs’, and so on. The relations of this idea with homotopy

theory is steadily becoming more apparent. From this basic approach, the utility of notions of higher

dimensional groupoids also becomes clear.

Thus it is natural to consider the generalisation of a congruence on a group G to some kind of

groupoid on the set G. Part of the reason is that the notion of presentation of an equivalence rela-

tion is not well defined. However the notion of presentation of a groupoid (and more generally of

a group-groupoid) is well defined, and so to use analogues of combinatorial group theory for equiv-

alence relations it is convenient to widen the scope of combinatorial group theory to combinatorial

groupoid theory. This also allows the discussion of presentations of group actions, by considering

the corresponding covering groupoids.
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Cahiers Topologie Géom. Différentielle 22 (4) (1981) 371–386. 189, 380

[BH81c] Brown, R. and Higgins, P. J. ‘The equivalence of ω-groupoids and cubical T -complexes’.
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Čech

homotopy groups, 9

cartesian

morphism, 443

cartesian lifting, 443

cartesian subgroupoid, 252

cat1-group (G, s, t), 41

category Cat1- Groups, 41

equivalence to XMod/Groups, 41

homomorphism, 41

of a fibration, 43

of a map, 44

categories

cofibration of

functor induced v∗, 447

fibration of

cleavage, 443

reindexing u∗, 443

splitting, 443

category

478



[B.7] 479

box, 268
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connection (Γ−, Γ+), 141

associated to a thin structure, 142
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home for, 307
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of crossed P-modules©tMt, 71

case of two modules M ◦N, 71
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crossed complex, 193

ω-groupoid, 371
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crossed complexes, 194
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groupoid, 452
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covering morphism

crossed complexes, 307

groupoids, 451

crossed
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crossed complex
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of an, 360

ω-groupoid associated, 374

regular, 211

simplex, of a, 262

tree, 184

crossed complexes, 180

n-homology group of a, 183

bimorphism, 244

category Crs, 181

cofibration, 287

component of, 182

Cone, 263
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cotruncation, 194
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exponential law, 249
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fundamental groupoid of, 182

homotopy equivalence, 242

homotopy pushout, 303

internal hom, 240

left lifting property (LLP), 287
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reduced, 181

category Crsred, 181

restriction functor, 194
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tensor product, 246
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weak equivalence, 183

crossed mdoule

associated to precrossed module, 62

crossed module

P-module, 32

associated to some double categories γG, 127
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automorphism crossed module χ, 31

central extension, 32

conjugacy, 198

conjugation crossed module N ⊳G, 31

dihedral, 100, 333

free, 198

over groupoid, 191

fundamental, of a triple, 126

fundamental, of based pair, 33

morphism, 126

morphisms, 32

over group, 126

over groupoid, 125, 189

over groups, 31

reduced, 126

regular, 211

the category XMod, 126

the category XMod/Groups, 32

crossed modules (over groups) M

classifying space BM, 38

free

basis, 64

existence, 64

induced f∗M, 92

by a monomorphism, 98

by a subgroup, 98

by an epimorphism, 95

seen as a pushout, 91

pullback along a homomorphism f∗N, 87

crossed modules (over groups) M

free

on a P-set, 63

seen as induced by a homomorphism, 90

fundamental crossed module of a based pair,

45

crossed resolution, 297

cubes, see 3-shells

cubical

singular set

of simplicial, 281

chain complex, 401

homology groups, 401

homotopy, 280

Homotopy addition lemma, 284

set, 268

T-complex, 380

cubical set

fundamental crossed complex, 284

Kan, 278

n-shell x, 370

filler, 370

path complex PK, 273

singular, 269

triangulation, 281

with connections Γi, 356

with connections and compositions, 356

interchange law, 357

transport law, 357

cubical sets

internal hom, 275

tensor product, 271

realisation, 271

transposition functor, 275

tricubical map, 272

CW-complex, 179

relative, 179

cyclic group

resolution, 298, 305

cylinder

crossed complex, 239

Dφ, 207

deformation retraction

groupoids, 20

dense

subcategory, 426

derivation, 204

φ, 204

over φ, 204

derivative

Fox, 209

derived chain complex

crossed complex, 209

derived module

exact sequence, 209

derived module of a morphism Dφ, 207

dihedral

crossed module, 100, 333

group, 100

Dold-Kan theorem, 381

double category, 120

and cubical sets, 122

degeneracies, 121

elements represented as squares, 120

horizontal structure, 120

identities, 120

interchange law, 121, 122
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vertical structure, 120

double category D

composable array (uij), 122

refinement, 123

composite of an array [uij], 122

connection pair (Γ−, Γ+), 141

matrix notation for composition, 122

of 2-shells on a category ′ C, 123

of commutative 2-shells on a category C,

123

subdivision of an element, 122

thin structure Θ, 135

where all structures are groupoids DCatG,

124

double groupoids (G2,G1,G0), 138

associated to a crossed module λM, 148

category, 138

folding Φ

in a, 148

morphisms, 138

Ehresmann, C., 6

Eilenberg Zilber theorem

ω-groupoids, 422

exact sequence

derived module, 209

fibration

crossed complexes, 341

fibration of spaces, 8

homotopy groups of a pair, 28

Whitehead, 404

excision

homotopical

dimension n, 224

in dimension2, 93

exponentail law

crossed complexes, 238

exponential law, 233

chain complexes, 255

crossed complexes, 249

cubical sets, 270

filtered spaces, 259

for numbers, 233

for sets, 233

modules, 234, 238

ω-groupoids, 410

spaces, 233

extension

central

as crossed module, 32

crossed n-fold, 332

f-homotopy, see filter homotopy

faces

oppposite, 277

factor set, 299, 331

fibration

crossed complexes, 287

exact sequence, 341

cubical sets, 279

functor, 443

fibration F, 43

associated to a map, 44

associated to a pair of spaces, 45

fundamental cat1-group, 43

fundamental crossed module, 43

fibre

of a functor, 443

filler

of an n-shell, 370

unique, 372

filter homotopy α ≡ β, 130

filtered

singular cubical set RX∗, 355

filtered homotopies

filter-homotopy extension property, 390

filter-homotopy in the ith direction, 385

homotopy rel vertices, 385

filtered maps

deficient on a cell, 390

deformation theorem, 390

fibration theorem, 391

filter-double-homotopy, 385

into a triple, 129

filtered spaces

fundamental ω-groupoid ρX∗, 388

ρnX∗, 385

compositions, 385

fundamental crossed complex ΠX∗

as associated to ρX∗, 396

internal hom, 259

tensor product, 259

filtered spaces X∗, 177

category FTop, 178

filtration preserving map f : X∗ → Y∗, 177

tensor product X∗ ⊗ Y∗, 178

filtration

skeletal
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ω-groupoid, 398

finite

induced crossed module, 102

finite cyclic group

resolution, 298

folding

behaviour with compositions, 149

characterisation of x ∈ γG (Φx = x), 366

on ω-groupoids, 365

folding Φ

characterisation of thin elements using, 151

in a double groupoid, 148

Fox

derivative, 209

free differential calculus, 215

free

crossed P-module on a P-set, 63

crossed complex

relative free, 200

relative free of pure dimension n, 199

with one generator F⋉, 199

crossed module, 198

over groupoid, 191

group, 54

groupoid, 198

module, 199

ω-groupoid

cubical set, 399

precrossed P-module on a P-set, 64

resolution, 52

free face, 276

free product

groups (coproduct), 70

functor

representative, 398

fundamental

chain complex of a filtered space, 230

crossed complex of a filtered space Π(X∗),

181

crossed module of a based pair

Whitehead work, 33

crossed module of a triple Π2(X,A,C), 126

double groupoid of a triple ρ(X,A,C), 130

thin structure, 137

van Kampen Theorem, 160

group π1(X, x), 8

of the circle S1, 20

van Kampen Theorem, 8, 12

groupoid of a crossed complex π1(C), 182

groupoid of a pair π1(X,A), 11

van Kampen Theorem, 12

fundamental crossed complex

cubical set, 284

fundamental group of

circle, 21

fundamental groupoid

cubical set, 281

GAP, 67

Gauss, C.F., 11

geometric realisation

of a simplicial complex, 8

graph, 197

category of, 197

Cayley, 307, 312, 453

directed, 197

connected, 20

forest, 20

tree, 20

edges, 197

vertices, 197

graph of groups, 327

free crossed resolution, 305

fundamental groupoid, 305

graphs

of groups, 327

Grothendieck, 13

Grothendieck, A., 13

group

abelianisation of a group Mab, 32

central subset, 32

centraliser of a subset C(S), 32

centre ZP, 32

commutator of two elements [m,n], 32

dihedral, 33, 100

HNN extension, 304

Klein 4-, 452

Klein bottle, 305

quaternion, 33

trefoil, 304

groupoid

abelian, 187, 454

abelianisation, 208, 211

covering morphism, 451

free, 198

higher order, 22

n-tuple, 360

tree, 20, 184
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trefoil, 304

unit interval, 20

universal covering, 452

universal group of, 187, 454

groupoids, 10
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augmentation map ε :
−→
ZG→

−→
Z , 204

connected, 20

connected component, 20

deformation retraction, 20

indiscrete, 20

generated by a set I(S), 20

object group at a point G(a), 20

pushout, 14

simply connected, 20

groups

augmentation ideal IP, 108

classifying space BP, 8, 38

commutator subgroup [M,M], 32

copower M∗T , 98

coproduct (free product) ∗tGt, 70

normal form of an element, 70

free, 54

nerve NP, 8

normal closure of a subset NP(R), 55

pullback f∗P, 87

right transversal, 98

wreath product G ≀ C2, 108

groups with an action

displacement subgroup [N,M], 79

pseudo-commutator of two elements, 79

HAL, 284

HHvKT

for Π, 396

HHvKT for ρ, 393

higher order groupoids, 22

HNN extension, 304

homology

cubical, 401

homotopic

cubical maps, 280

homotopic maps f ≃ g, 26

relative A, 27

homotopical

excision

dimension n, 224

homotopy

cubical sets, 280

left

n-fold, 274

left cubical, 274

morphisms

crossed complexes, 184

pushout

crossed complexes, 303

spaces, 303

Homotopy Addition Lemma, 264

Homotopy addition Lemma

folding in ω-groupoid, 378

Homotopy addition lemma

cubical, 266, 284

homotopy addition lemma

cubical, 266

homotopy category
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homotopy class

of a map [f], 27

of maps [X, Y], 27

Homotopy Classification Theorem, 286

homotopy commutativity lemma

for a triple, 157

homotopy equivalence

crossed complexes, 242

homotopy groups

action of the fundamental group [α][ω], 29

boundary map of a pair ∂, 29

Čech, 9

homomorphism associated to a map of pairs,

28

homomorphism associated to a map of spaces,

28

homotopy exact sequence of a pair, 28

Hurewicz, 10

of a based pair πn(X,A, x), 28

of a based space πn(X, x), 27

of an r-cube of spaces, 31

of based r-ads, 31

relative, 28

homotopy pushout

of classifying spaces of groups, 94
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Hopf

classification theorem, 345
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formula in dimension 2, 97
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Hurewicz
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Relative Theorem
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Hurewicz Theorem

Absolute, 403
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among consequences, 55
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computation, 311

S3, 56
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crossed module
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crossed module f∗M, 92

as a pushout, 91

by a monomorphism, 98

by a subgroup, 98

by an epimorphism, 95

free seen as induced, 90

precrossed module, 89, 92
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chain complexes, 255
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Kurosch

subgroup theorem, 57

left lifting property (LLP)

crossed complexes, 287

LLP

crossed complexes, 287
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map

bicubical, 272

matrix

notation for composition

double category, 122

Mod, 188

module

adjoint, 203
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ZG, 203

as crossed module, 32
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I G, 204

crossed

over groupoid, 189

free, 199

morphism, 187

over a groupoid, 187

precrossed, 60
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semidirect product G⋉M, 204

monoidal
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morphism

crossed P-modules, 32

crossed module, 32

module, 187
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array (x(p)), 358
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category ω-Gpdsn, 360
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unique thin filler, 379

n-ball En, 178
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based pair, 224
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crossed complex

cubical, 422
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n-simplex ∆n∗ , 178

n-skeleton

relative, 179

n-sphere Sn, 178

n-tuple groupoid

n-truncation trn, 369

n-tuple groupoid

n-coskeleton cosknG, 371

n-skeleton sknG, 373
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crossed complexes, 246

pointed, 291
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modules, 237
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