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Preface

Aims

Our aim for this text is to give a connected and we hope readable account of some work since about 1965
on extending to higher dimensions the theory and applications in algebraic topology of the fundamental group.
This group, π1(X,x), for a space X with base point x, is determined by homotopy classes relative to the end
points of paths , i.e. maps f : [0, 1] → X from the unit interval to X which map 0, 1 to x. The fundamental
group is one of the corner stones of basic algebraic topology, with many applications in topology, analysis,
geometry, and group theory, which often, particularly in group theory, exploit nonabelian examples.

Our extension to higher dimensions of the fundamental group necessitates a parallel extension of some
concepts of group theory, such as a free group. These two extensions, running side by side, allow for an account
of some aspects of algebraic topology with more nonabelian features than those available from previous texts,
and this explains our title. We are also able to give a new exposition of group cohomology, including nonabelian
coefficients, based on analogies with homotopy theory.

Structure of the book

We divide our account into three parts, each with an Introduction.

In Part I we give some history of work on the fundamental group and groupoid, in particular explaining
how the van Kampen theorem gives a method of computation of the fundamental group. We are then mainly
concerned with the extension of nonabelian work to dimension 2, using the key concept, due to J.H.C. Whitehead
in 1946, of crossed module. This is a morphism

µ : M → P

of groups together with an action of the group P on the right of the group M , written (m, p) 7→ mp, satisfying
the two rules:

CM1) µ(mp) = p−1(µm)p;

CM2) m−1nm = nµm,
for all p ∈ P, m, n ∈ M . Algebraic examples of crossed modules include normal subgroups M of P ; P -
modules; the inner automorphism crossed module M → AutM ; and many others. There is the beginnings of a
combinatorial and also computational crossed module theory.

The standard geometric example of crossed module is the boundary morphism of the second relative homo-
topy group

∂ : π2(X,X1, x) → π1(X1, x)

where X1 is a subspace of the topological space X and x ∈ X1. This relative homotopy group is defined in
terms of certain homotopy classes of maps I2 → X. For this reason, and because they are a good model of 2-
dimensional pointed homotopy theory, crossed modules are commonly seen as good candidates for 2-dimensional
groups.

VII
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The remarkable fact is that we can calculate with these 2-dimensional structures and apply these calculations
to topology using a 2-dimensional version of the van Kampen theorem for the fundamental group.

We give a substantial account of this 2-dimensional theory because the step from dimension 1 to dimension 2
involves a number of new ideas for which the reader’s intuition needs to be developed. In particular, calculation
with crossed modules requires some extensions of combinatorial group theory, for example to induced crossed
modules. Finally in this Part, the proof of the van Kampen type theorem for crossed modules, involves a
notion of homotopy double groupoid, based on composing squares with common edges. The intuition for this
construction was the start of the theory of this book.

In Part II we extend the theory of crossed modules to crossed complexes, giving applications which include
many basic results in homotopy theory, such as the relative Hurewicz theorem. This Part is intended as a kind
of handbook of basic techniques in this border area between homology and homotopy theory.

However for the proofs of these results, particularly of the van Kampen type theorem and use of the tensor
product and homotopy theory of crossed complexes, we have to introduce in Part III another algebraic structure,
that of cubical ω-groupoid with connection. In principle, Part III can be read independently of the previous
parts, referring back for some basic definitions.

Background

Recall that two maps f, g : X → Y of topological spaces are called homotopic if there is a homotopy
H : f ' f ′, by which is meant a map H : [0, 1] × X → Y , such that H(0, x) = f(x),H(1, x) = f ′(x) for
all x ∈ X. In this way we get a set [X,Y ] of homotopy classes of maps X → Y . Spaces X, Y are homotopy
equivalent, written X ' Y , if there are maps f : X → Y, g : Y → X such that the composites fg, gf are
homotopic to the respective identity maps 1Y , 1X . Then f : X → Y is called a homotopy equivalence. Thus a
basic problem is to decide if spaces X, Y are, or are not, homotopy equivalent.

It is not surprising that the fundamental group is a homotopy invariant since it is defined in terms of
homotopy classes of maps. Thus if two connected spaces are homotopy equivalent, they have isomorphic
fundamental groups.

Another corner stone of algebraic topology is the theory of homology, with its abelian homology groups
Hn(X), n > 0, for a topological space X. The homology groups, like the fundamental group, are homotopy
invariants. A homotopy equivalence induces isomorphisms of homology groups as well of fundamental groups.
However the definition of homology, and the proof of homotopy invariance, are more subtle than those of the
various homotopy groups. Also the converse is false: a map may induce isomorphisms of fundamental group
and homology groups, and yet not be a homotopy equivalence.

Higher homotopy groups πn(X, x) were defined in 1932 for n > 2 and they are all abelian. One definition of
these is in terms of homotopy classes of maps of an n-cube In to X which map the boundary ∂In of the n-cube
to the base point x, and all homotopies are constant on ∂In.

A further important problem in algebraic topology, with many applications, is to calculate the set [X, Y ] of
homotopy classes of maps in terms of information on X, Y . This can be solved completely in some cases. For
instance, if X is a connected CW -complex and πi(Y, y) = 0 for i > 1, there is a bijection of sets

[X,Y ] ∼= [π1(X, x), π1(Y, y)]

where the right hand set is conjugacy classes of morphisms of groups. We give an analogous result when
dim X 6 n and πi(Y, y) = 0 for 1 < i < n.

We describe algebraic structures in dimensions greater than 1 which develop the nonabelian character of
the fundamental group: they are in some sense ‘more nonabelian than groups’, and they reflect better the
geometrical complications of higher dimensions than the known homology and homotopy groups. We show how
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these methods can be applied to determine homotopy invariants of spaces, and homotopy classification of maps,
in cases which include some classical results, and allow results not available by classical methods.

The development of such higher dimensional, nonabelian, methods in algebraic topology has been a pro-
gramme of the first author since about 1966. Its inspiration was work of Philip Higgins in 1963 generalising
the notion of presentation of groups to presentation of groupoids. This suggested a generalisation of the funda-
mental group on a space with base point to the fundamental groupoid on a set of base points, thus allowing a
more flexible modelling of the underlying geometry of a space. This modelling also allowed more calculations,
through a generalisation to groupoids of the van Kampen theorem for the fundamental group. The success of
groupoids at this level suggested a programme of using groupoids in higher dimensional homotopy theory, and
in particular developing a higher dimensional version of the van Kampen theorem.

Brown and Higgins found in the 1970s that higher homotopy groupoids could be defined, with values in what
we called ω-groupoids, using maps of squares or n-cubes rather than paths. The key idea is to use not groups
but groupoids, and to replace the space with base point by a filtered space

X∗ : X0 ⊆ X1 ⊆ · · · ⊆ Xn ⊆ · · · ⊆ X∞,

namely a topological space X∞ with an increasing sequence of subspaces. Then a new functor ρ(X∗) was
obtained using filtered maps In

∗ → X∗, where In
r consists of all faces of the n cube of dimension 6 r. The

homotopies are through filtered maps and keep the vertices of In fixed throughout.

An ω-groupoid is in the first instance a graded set with n groupoid structures in each dimension n > 1
satisfying a fairly complicated but geometrically clear set of laws. This idea yielded, after a struggle, new
abstract structures underlying homotopy theory, which led to new understanding and new calculations. The
use of groupoids, and of structures with algebraic operations not always defined, was essential for this work.

A pleasant surprise was that the investigation of the existence and use of higher homotopy groupoids led
to links of ω-groupoids with more classical structures, particularly crossed modules and crossed complexes, on
which J.H.C. Whitehead had done extensive work in the 1940s. His work gave key clues to the directions to
take.

The notion of crossed complex arose from relative homotopy theory, in which occur groups πn(X, A, x), n > 2,
and which are abelian for n > 3. They are defined in terms of homotopy classes of maps In → X which map
to x the set Jn−1 of all (n − 1)-faces of In except the (0, 1)-th face, map the remaining face to A, and all
homotopies keep Jn−1 fixed. Thus for a filtered space X∗ one obtains the fundamental groupoid π1(X1, X0)
and the relative homotopy groups πn(Xn, Xn−1, x), x ∈ X0, n > 2. The structure all these satisfy is called a
crossed complex. So we obtain a functor Π from filtered spaces to crossed complexes.

The remarkable fact is that this functor Π can be calculated directly in some important cases by a Generalised
van Kampen Theorem (GvKT). This theorem, like its version for the fundamental group or groupoid, is an
example of a ‘local-to-global’ theorem. It gives a method for calculating the functor Π for some filtered spaces
which are presented as a union of smaller pieces.

‘Local-to-global’ is a general term applied to a family of problems concerned with relating the behaviour of
a large structure to the way it is built out of smaller pieces. Such problems are central in mathematics and
science.

To express this idea in the cases of interest to us, we take from category theory the concept of colimit. This
gives a general definition of a kind of gluing process, of building large structures out of smaller ones of the
same type. Our aim is to build what we call ‘functors’ from topological data to algebraic data which ‘preserve
certain colimits’. This says intuitively that such functors allow a modelling by ‘gluing’ in algebra of the process
of gluing in topology. In this way we will obtain precise and useful algebraic calculations of some homotopical
information on spaces built out of smaller ones.
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Many of the main aims of the book can be summarised by stating that we construct a diagram, which we
call the Main Equivalence (ME) :

(ME)

(filtered spaces)

Π

wwnnnnnnnnnnnnnnnnn
ρ

&&MMMMMMMMMMMMMMMM

(crossed complexes)
λ // (ω-groupoids)
γ

oo

such that

(A) γ, λ give an equivalence of categories;

(B) γρ is naturally equivalent to Π;

(C) ρ, and hence also Π, preserves certain colimits.

The final statement we call a Generalised van Kampen Theorem (GvKT); it allows for calculations of Π, and
so of certain relative homotopy groups, to get started. Corollaries of these results include:

(i) the Brouwer degree theorem (the n-sphere Sn is (n − 1)-connected and the homotopy classes of maps of
Sn to itself are classified by an integer called the degree of the map);

(ii) the relative Hurewicz theorem, which relates relative homotopy and homology groups;

(iii) Whitehead’s theorem that πn(A ∪ {e2
λ}, A, x) is a free crossed π1(A, x)-module; and

(iv) computations of the second homotopy group, and even 2-type, of the mapping cone of the map Bf : BG →
BH of classifying spaces induced by a morphism f : G → H of groups.

The last two corollaries deal with constructions in crossed modules, seen as crossed complexes of length 2.
These are in general nonabelian, and so these two corollaries (which we give in Part I) are not easily reachable,
or not obtainable, by traditional means.

The proof of the Generalised van Kampen Theorem uses only a little knowledge of homotopy, CW -complexes,
and category theory, but it is quite elaborate. The facts (A), (B), (C) are crucial. It turns out that the functor
ρ is convenient for formulating and proving theorems, while the functor Π is convenient for calculation and for
relating to classical constructions, such as relative homotopy groups, and chain complexes.

Our proof of the higher dimensional, local-to-global GvKT relies on methods which allow the expression of
the intuitions of (i) algebraic inverse to subdivision, and (ii) of commutative cube.

For (i), cubical ideas are essential, since there is an easy notion of subdividing a cube by hyperplanes parallel
to the faces, and is is not so hard to envisage an algebraic structure on cubical sets which will model reversing
this process. These ideas are clearly related to local-to-global problems. The idea of (ii) is more subtle than
that of (i); it needs the full relation between the above algebraic categories to express it; and it is required in
order to show that a morphism on ρ(X∗) is well defined, i.e. is independent of the choices apparently made in
its construction.

Thus the full structure of the diagram is necessary for our proofs, and not only that of the Generalised
van Kampen Theorem (GvKT). We also use this equivalence of algebraic categories to formulate the further
important properties of homotopy and of tensor product of crossed complexes, and to show how these model
homotopies and tensor products of filtered spaces.
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These methods do not replace traditional homological methods, partly because of the restrictive conditions on
the colimits to which the GvKT applies. However, when it does apply, it can give direct and precise homotopical
information not available by other means. Further, these methods have opened out new directions in algebraic
topology and related areas.

Another theme in the book, containing results on crossed complexes and the functor Π, can be shown in
the following diagram of categories and functors, which we call the Main Diagram (MD), in which Top is the
category of topological spaces and continuous maps, and a notion of homotopy is assumed developed for filtered
spaces and crossed complexes:

(MD)
(filtered spaces)

Π //

U &&NNNNNNNNNNN
(crossed complexes)

B
oo

Bwwooooooooooooo

Top

satisfying the following properties:

(i) Π preserves homotopies.

(ii) There is a natural equivalence ΠB ' 1. This shows that the topology and the algebra are well related.

(iii) U is a ‘forgetful’ functor and B = UB. This gives a so-called classifying space BC of a crossed complex C.

(iv) If X is a CW -complex with skeletal filtration X∗, and C is a crossed complex, there is a natural bijection

[X, BC] ∼= [ΠX∗, C],

where the right hand side denotes homotopy classes of morphisms in the category of crossed complexes.

This last result allows for some explicit computation of homotopy classes of maps of spaces even in cases where
the fundamental groups are involved, as for example for maps of surfaces to the projective plane.

A central aspect of these homotopy classification applications is a notion of tensor product A⊗B for crossed
complexes A,B and of homotopy defined as morphism I ⊗ B → C, where I is the ‘unit interval’ groupoid or
crossed complex, with two objects 0, 1 and only one arrow ι : 0 → 1. The definition of this tensor product
seems formidable. However it relies on an equivalent definition for ω-groupoids, which follows geometrically
from the fact that Im × In ∼= Im+n. The transfer from ω-groupoids to crossed complexes uses the equivalence
of these structures. However, for the applications of crossed complexes it is sufficient to take the definition in
this context on trust, and this is what we do in Part II, with the proofs involving ω-groupoids left to Part III.
The proof of the above homotopy classification result also requires results from the theory of simplicial sets,
and these we have to assume in Part II.

As explained earlier, Part I is devoted to the Main Equivalence and applications in dimension 2, that is to
the theory and application of crossed modules.

Prerequisites:

Large parts of this book can be read by a graduate student acquainted with general topology, the fundamental
group, notions of homotopy, and some basic methods of category theory. Many of these areas, including the
concept of groupoid and its uses, are covered in Brown’s Topology text [30], which is in the process of being
prepared for web publication.

Some aspects of category theory perhaps less familiar to a graduate student are summarised in an Appendix,
particularly the notion of adjoint functor, and the preservation of colimits by a left adjoint functor. This is a
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basic tool of algebraic computation for those algebraic structures which are built up in several levels, since it
can often show that a colimit of such a structure can be built up level by level.

Some knowledge of homology theory could be useful at a few points.

For the notion of classifying space of a crossed module or crossed complex we will need results from the
theory of realisations of simplicial or cubical sets. The results needed are summarised in an Appendix.
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Part I

1 and 2-dimensional results
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Introduction to Part I

Part I develops in dimensions 1 and 2 that aspect of nonabelian algebraic topology related to the van Kampen
Theorem (vKT).

We start by giving a Historical background, and outline the proof of the van Kampen theorem in dimension
1. It was an analysis of this proof which suggested the higher dimensional possibilities.

We then explain the functor

Π2 : (pointed pairs of spaces) → (crossed modules)

in terms of second relative homotopy groups, state a Generalised van Kampen Theprem (GvKT) for this, and
give applications. These applications involve the algebra of crossed modules, and two important constructions
for calculations with crossed modules, namely coproducts of crossed modules on a fixed base group (Chapter 4)
and induced crossed modules (Chapter 5). The latter concept illustrates well the way in which low dimensional
identifications in a space can influence higher dimensional homotopical information. Induced crossed modules
also include free crossed modules, which are important in applications to defining and determining identities
among relations for presentations of groups. This has a relation to the cohomology theory of groups.

Both of these chapters illustrate how some nonabelian calculations in homotopy theory may be carried out
using crossed modules. They also show the advantages of having an invariant stronger than just an abelian
group of even a module over a group. The latter are pale shadows of the structure of a crossed module.

Finally in this Part, Chapter 6 gives the proof of the GvKT for the functor Π2. A major interest here is that
this proof requires another structure, namely that of double groupoid with connection, which we abbreviate to
double groupoid. We therefore construct a functor

ρ2 : (triples of spaces) → (double groupoids),

and show that this is equivalent in a clear sense to a small generalisation of our earlier Π2 functor, to

Π2 : (triples of spaces) → (crossed modules of groupoids).

Here a triple of spaces is of the form (X, X1, X0), where X0 ⊆ X1 ⊆ X, and the pointed case is when X0 is a
singleton.

This substantial chapter develops the 2-dimensional groupoid theory which is then used in the proof of the
GvKT, which gives precise situations where ρ2, and hence also Π2, preserves colimits. The surprising fact is
that in this book we are able to obtain many new nonabelian calculations in homotopy theory without any
of the standard machinery of algebraic topology, such as simplicial complexes, simplicial approximation, chain
complexes, or homology theory.

All this theory generalises to higher dimensions, as we show in Parts II and III, but the new ideas and basic
intuitions are more easily explained in dimension 2.

3
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Chapter 1

History

Understanding the context and historical background to the material developed here is, we believe, useful for
understanding, for evaluating results, and for analysing potential developments and applications.

It is generally accepted that the notion of abstract group is a central concept of mathematics, and one
which allows the successful expression of the intuitions of reversible processes. In order to obtain the higher
dimensional, nonabelian, local to global results described briefly in the Preface, the concept of group has:

A) to be ‘widened’ to that of groupoid, which in a sense generalises the notion of group to allow a spatial
component, and

B) to be ‘increased in height’ to higher dimensions.

Further step A) is a requirement for step B).

We would like to record that a major stimulus for this view was work of Philip Higgins in his 1963 paper
[106], and this book is based largely on the resulting collaboration with Brown. Higgins writes in the Preface to
[107] that “The main advantage of the transition [from groups to groupoids] is that the category of groupoids
provides a good model for certain aspects of homotopy theory. In it there are algebraic models such notions
as path, homotopy, deformation, covering and fibration. Most of these become vacuous when restricted to
groups, although they are clearly relevant to group-theoretic problems. . . . There is another side of the coin: in
applications of group theory to other topics it is often the case that the natural object of study is a groupoid
rather than a group, and the algebra of groupoids may provide a more concrete tool for handling concrete
problems.

In fact there is a range of intuitions which abstract groups are unable to express, and for which other concepts
such as groupoid, pseudogroup and inverse semigroup have turned out to be more appropriate. As Mackenzie
writes in [138]:

The concept of groupoid is one of the means by which the twentieth century reclaims the original
domain of applications of the group concept. The modern, rigorous concept of group is far too
restrictive for the range of geometrical applications envisaged in the work of Lie. There have thus
arisen the concepts of Lie pseudogroup, of differentiable and of Lie groupoid, and of principal bundle
– as well as various related infinitesimal concepts such as Lie equation, graded Lie algebra and Lie
algebroid – by which mathematics seeks to acquire a precise and rigorous language in which to
study the symmetry phenomena associated with geometrical transformations which are only locally
defined.

5
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A failure to accept a relaxation of the concept of group made it difficult to develop a higher dimensional
theory. To see the reasons for this we need to understand the basic intuitions which a higher dimensional theory
is trying to express, and to see how these intuitions were dealt with historically. This study will confirm a
view that it is reasonable to examine and develop the algebra which arises in a natural way from the geometry
rather than insist that the geometry has to be expressed within the current available concepts, schemata and
paradigms.

1.1 Basic intuitions

There were two simple intuitions involved. One was the notion of an

algebraic inverse to subdivision.

That is, we know how to cut things up, but do we have available an algebraic control over the way we put
them together again? This is of course a general problem in mathematics, science and engineering, where we
want to represent and determine the behaviour of complex objects from the way they are put together from
standard pieces. Any algebra which gives new insights into questions of this form, and yields new computations,
clearly has arguments in its favour.

We explain this a bit more in a very simple situation. We often translate geometry into algebra. For example,
a figure as follows:

• a //• b //• •coo d //•
is easily translated into

abc−1d.

Again, given a diagram as follows:

(1.1.1)

• a //

c

²²

•
b

²²•
d

//•

it is easy to write
ab = cd, or a = cdb−1.

All this is part of the standard repertoire of mathematics. The formulae given make excellent sense as part of
say the theory of groups. We also know how to calculate with such formulae.

The problem comes when we try to express similar ideas in one dimension higher. How can one write down
algebraically the following picture, where each small square is supposed labelled?

(1.1.2)

• //

²²

•

²²

•oo //

²²

• //

²²

• //

²²

• //

²²

•

²²• //

²²

•

²²

•oo //

²²

• //

²²

• //

²²

• //

²²

•

²²• //• •oo //• //• //• //•

• //

OO

•

OO

•oo //

OO

• //

OO

• //

OO

• //

OO

•

OO
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Again, how can one write down algebraically the formulae corresponding to the above commutative square
(1.1.1) but now for the cube:

(1.1.3)

• //

²²

•

²²

•

??~~~~~~~ //

²²

•

??~~~~~~~

²²

• //•

• //

??~~~~~~~ •

??~~~~~~~

What does it mean for the faces of the cube to commute, or for the top face to be the composition, in some
sense, of the other faces?

It is interesting that the step from a linear statement to a 2-dimensional statement should need a lot of
apparatus; it took a long time to find an appropriate formulation. As we shall see later, the 2-dimensional
composition (1.1.2) requires double groupoids or double categories, while the second (1.1.3) requires double
groupoids with thin structure, or with connections.

Thus the step from dimension 1 to dimension 2 is the critical one, and for this reason most of Part I of
this book is devoted 2-dimensional case. Further reasons are that the theory is less technical than it becomes
in higher dimensions, and that the new features of the 2-dimensional theory need to be well understood before
passing to higher dimensions. It is also intriguing that so much can be done once one has the mathematics to
express the intuitions, and that the mathematical structures then control the ways the calculations have to go.

1.2 The fundamental group and homology

The above questions on 2-dimensional compositions did not arise out of the void but from a historical context
which we now explain.

The intuition for a Nonabelian Algebraic Topology was seen early on in algebraic topology, after the ideas of
homology and of the fundamental group π1(X, x) of a space X at a point x of X were developed.

The motivation for Poincaré’s definition of the fundamental group in his 1895 paper [156] seems to be from
the notion of monodromy, that is the change in the value of a meromorphic function of many complex variables
as it is analytically continued along a loop avoiding the singularities. This change in value depends only on
the homotopy class of the loop, and this consideration led to the notion of the group π1(X, x) of homotopy
classes of loops at x, where the group structure arises from composition of loops. Poincaré called this group the
fundamental group, and this fundamental group π1(X, x), with its relation to covering spaces, surface theory,
and the later combinatorial group theory, came to play an increasing rôle in the geometry, complex analysis
and algebra of the next hundred years.

It also seems possible that an additional motivation arose from dynamics, in the classification of orbits in a
phase space.

The utility of groups in homotopy theory is increased by the relations between the fundamental group
considered as a functor from based topological spaces to groups

π1 : Top∗ → Groups
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and another functor called the classifying space

B : Groups → Top∗,

which is the composite of the geometric realisation and the nerve functor N from groups to simplicial sets.

We shall review the properties of B in Section 2.4. Now let us note that B and π1 are inverses in some sense.
To be more precise, BG is a based space that has all homotopy groups trivial except the fundamental group,
which itself is isomorphic to G. Moreover, if X is a connected based CW -complex and G is a group, then there
is a natural bijection

[X,BG]∗ ∼= Hom(π1X, G),

where the square brackets denote pointed homotopy classes of maps.

It follows that there is a map
X → Bπ1X

inducing an isomorphism of fundamental groups. It is in this sense that groups are said to model homotopy
1-types, and a computation of a group G is also regarded as a computation of the 1-type of the classifying space
BG.

The fundamental group of a space may be calculated in many cases using the Seifert-van Kampen theorem
(see Section 1.5), and in others using fibrations of spaces. The main result on the latter, for those familiar with
fibrations, is that if 1 → K → E → G → 1 is a short exact sequence of groups, then the induced sequence
BK → BE → BG is a fibration sequence of spaces. Conversely, if F

i−→ X
p−→ Y is a fibration sequence of

spaces, and x ∈ F then there is an induced exact sequence of groups and based sets

· · · −→ π1(F, x) i∗−→ π1(X, x)
p∗−→ π1(Y, px) → π0(F ) → π0(X) → π0(Y ).

This result gives some information on π1(X,x) if the other groups are known and even more if the various
spaces are connected. We shall go back to this sequence in Section 2.6.

Much earlier than the definition of the fundamental group there had been higher dimensional topological
information obtained in terms of Betti numbers and torsion coefficients. These were together formulated into
the idea of abelian homology groups Hn(X) of a space X defined for all n > 0, and which gave very useful
topological information on the space. They measured the presence of ‘holes’ in X of various dimensions and
various types. The origins of homology theory lie in integration, the theorems of Green and Stokes, and complex
variable theory.

The notion of boundary and of a cycle as having zero boundary is crucial in the methods and results of this
theory, but was always difficult to express precisely until Poincaré brought in simplicial decompositions, and
the notion of a ‘chain’ as a formal sum of oriented simplices. It seems that the earlier writers thought of a cycle
as in some sense a ‘composition’ of the pieces of which it was made, but this was, and still is, difficult to express
precisely. Dieudonné in [75] suggests that the key intuitions can be expressed in terms of cobordism. In any
case the notion of ‘formal sum’ fitted well with integration, where it was required to integrate over a formal
sum of domains of integration, with the correct orientation for these.

It was also found that if X is connected then the group H1(X) is the fundamental group π1(X,x) made
abelian:

H1(X) = π1(X, x)ab.

It was thus clear that the nonabelian fundamental group gave much more information than the first homol-
ogy group. However, the homology groups were defined in all dimensions. So there was pressure to find a
generalisation to all dimensions of the fundamental group.
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1.3 The search for higher dimensional versions of the fundamental

group

According to [75], Dehn had some ideas on this search in the 1920’s, as would not be surprising. The first
published attack on this question is the work of Čech, using the idea of classes of maps of spheres instead of
maps of circles. He submitted his paper on higher homotopy groups πn(X,x) to the International Congress of
Mathematicians at Zurich in 1932. The story is that Alexandroff and Hopf quickly proved that these groups
were commutative for n > 2, and so on these grounds persuaded Čech to withdraw his paper. All that appeared
in the Proceedings of the Congress was a brief paragraph [65].

The main algebraic reason for this commutativity was the following result, in which the two compositions
◦1, ◦2 are thought of as compositions of 2-spheres in two directions.

Theorem 1.3.1 Let S be a set with two monoid structures ◦1, ◦2 each of which is a morphism for the other.
Then the two monoid structures coincide and are Abelian.

Proof The condition that the structure ◦1 is a morphism for ◦2 is that the function

◦1 : (S, ◦2)× (S, ◦2) → (S, ◦2)

is a morphism of monoids, where (S, ◦2) denotes S with the monoid structure ◦2. This condition is equivalent
to the statement that for all x, y, z, w ∈ S

(x ◦2 y) ◦1 (z ◦2 w) = (x ◦1 z) ◦2 (y ◦1 w).

This can be interpreted as saying that the diagram

[
x y

z w

]
1

2
²²

//

has only one composition. Here the arrows indicate that we are using matrix conventions in which the first
coordinate gives the rows, and the second coordinate gives the columns. This law is commonly called the
interchange law.

We now use some special cases of the interchange law. Let e1, e2 denote the identities for the structures
◦1, ◦2. Consider the matrix [

e1 e2

e2 e1

]

This yields easily that e1 = e2. We write then e for e1.

Now we consider the matrix composition [
x e

e w

]

Interpreting this in two ways yields
x ◦1 w = x ◦2 w.

So we write ◦ for ◦1.
Finally we consider the matrix composition [

e y

z e

]
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and find easily that y ◦ z = z ◦ y. This completes the proof.

Incidentally, it will also be found that associativity comes for free. We leave this to the reader. 2

This result seemed to kill any possibility of “nonabelian algebraic topology”, or of any generalisations to
higher dimensions of the fundamental group. In 1935, Hurewicz published the first of his celebrated notes on
higher homotopy groups, and the latter are often referred to as the Hurewicz homotopy groups. The abelian
higher homotopy groups came to be accepted, a considerable amount of work in homotopy theory has moved
as far as possible from group theory and the nonabelian fundamental group, and the original concern about the
abelian nature of the higher homotopy groups came to be seen as a quirk of history, an unwillingness to accept
a basic fact of life. Indeed, Alexandroff in his Obituary Notice for Čech referred to the unfortunate lack of
appreciation of Čech’s work on higher homotopy groups, resulting from too much attention to the disadvantage
of their abelian nature [5].

However important nonabelian work using the notion of crossed module was done in dimension 2 by J.H.C.
Whitehead in 1941, 1946 and 1949 – these crossed modules are a central theme of this book. Brown remembers
Henry Whitehead remarking in 1958 that early workers in homotopy theory were fascinated by the action
of the fundamental group on higher homotopy groups. Again, many were dissatisfied with the fact that the
composition in higher homotopy groups was independent of the direction. Deeper reasons for this independence
are contained in the theory of iterated loop spaces (see the book by Adams [2] or the boopks and survey articles
by May [143, 144, 145, 146].

1.4 The origin of the concept of abstract groupoid

A groupoid is defined formally as a small category in which every arrow is invertible. For more detail and a
survey see [27, 174].

There are two important, related and relevant differences between groupoids and groups. One is that
groupoids have a partial multiplication, and the other is that the condition for two elements to be composable is
a geometric one (namely the end point of one is the starting point of the other). This partial multiplication allows
for groupoids to be thought of as “groups with many identities”. The other is that the geometry underlying
groupoids is that of directed graphs, whereas the geometry underlying groups is that of based sets, i.e. sets
with a chosen base point. It is clear that graphs are more interesting than sets, and can reflect more geometry.
Hence people find in practice that groupoids can reflect more geometry than can groups alone. It seems that
the objects of a groupoid allow the addition of a spatial component to group theory.

An argument usually made for groups is that they give the mathematics of reversible processes, and hence
have a strong connection with symmetry. This argument applies even more strongly for groupoids. For groups,
the processes all start and return to the same position. This is like considering only journeys which start at
and end at the same place. However to analyse a reversible process, such as a journey, we must describe the
intermediate steps, the stopping places. This requires groupoids, since in this setting the processes described
are allowed to start at one point and finish at another. This clearly allows a more flexible and powerful analysis,
and confirms a basic intuition that, in dimension 1, groupoids are more convenient than groups for writing down
an ‘algebraic inverse to subdivision’.

The definition of groupoid arose from Brandt’s attempts to extend to quaternary forms Gauss’ work on
a composition law of binary quadratic forms, which has a strong place in Disquitiones Arithmeticae. It is of
interest here that Bourbaki [18], p.153, cites this composition law as an influential early example of a composition
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law which arose not from numbers, even taken in a broad sense, but from distant analogues1. Brandt found
that each quaternary quadratic form had a left unit and a right unit, and that two forms were composable if
and only if the left unit of one was the right unit of the other. This led to his 1926 paper on groupoids [19]. (A
modern account of this work on composition of forms is given by Kneser et al. [124].)

Groupoids were then used in the theory of orders of algebras. Curiously, groupoids did not form an example
in Eilenberg and Mac Lane’s basic 1945 paper on category theory [81]. Groupoids appear in Reidemeister’s 1932
book on topology [162], as the edge path groupoid, and for handling isomorphisms of a family of structures.
The fundamental groupoid of a space was well known by the 1950’s, and Crowell and Fox write in [72]:

A few [definitions], like that of a group or of a topological space, have a fundamental importance
to the whole of mathematics that can hardly be exaggerated. Others are more in the nature of
convenient, and often highly specialised, labels which serve principally to pigeonhole ideas. As
far as this book is concerned, the notions of category and groupoid belong to the latter class. It
is an interesting curiosity that they provide a convenient systematisation of the ideas involved in
developing the fundamental group.

The fundamental groupoid π1(X, A) on a set A of base points is introduced and used in [30]. Its successes
suggest the value of an aesthetic approach to mathematics, namely that the concept which feels right and gives
the good exposition is likely to be the most powerful one. In this viewpoint, much good mathematics enables
difficult things to bec ome easy, and an important part of the development of good mathematics is finding:
(i) the appropriate underlying structures, (ii) the appropriate language to describe these structures, and (iii)
means of calculating with these structures.

There is no benefit today in arithmetic in Roman numerals. There is also no benefit today in insisting that
the group concept is more fundamental than that of groupoid; one uses each at the appropriate place. It is as
well to distinguish the sociology of the use of a mathematical concept from the scientific consideration of its
relevance to the progress of mathematics.

It should also be said that the development of new concepts and language is a different activity from the
successful employment of a range of known techniques to solve already formulated problems.

The notion that groupoids give a more flexible tool than groups in some situations is only beginning to be
widely appreciated. One of the most significant of the books which use the notion seriously is Connes book
“Noncommutative geometry”, published in 1994 [69]. He states that Heisenberg discovered quantum mechanics
by considering the groupoid of transitions for the hydrogen spectrum, rather than the usually considered group
of symmetry of an individual state. This fits with the previously expounded philosophy. The main examples of
groupoids in his book are equivalence relations and holonomy groupoids of foliations.

On the other hand, in books on category theory the role of groupoids is often fundamental (see for example
Mac Lane and Moerdijk [136]). In foliation theory, which is a part of differential topology and geometry, the
notion of holonomy groupoid is widely used. For surveys of the use of groupoids, see [29, 107, 138, 174].

1.5 The van Kampen Theorem

A change of prospects came about in a roundabout way, in the mid 1960s. R. Brown was writing the book [30]
and became dissatisfied with the standard treatments of the van Kampen Theorem, which is a basic tool for

1C’est vers cette même époque que, pour le premier fois en Algèbre, la notion de loi de composition s’étend, dans deux directions

différents, à des élements qui ne présentent plus avec les 〈〈nombres〉〉 (au sens le plus large donné jusque-là à ce mot) que des

analogies lointaines. La première de ces extensions est due à C.F.Gauss, à l’occasion de ses recherches arithmétiques sur les formes

quadratiques . . .
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computing the fundamental group of a space X given as the union of two connected open subsets U1, U2 with
connected intersection U12. For those familiar with the concepts, the result is that the natural morphism

(1.5.1) π1(U1, x) ∗π1(U12,x) π1(U2, x) → π1(X, x)

induced by inclusions is an isomorphism. The group on the left hand side of the above arrow is the free product
with amalgamation; it is the construction for groups corresponding to U1 ∪ U2 for spaces, as we shall see later
in discussing pushouts. This version of the theorem was given by Crowell [71], based on lectures by R.H.
Fox. One important consequence is that the fundamental group shared the same possibilities and difficulties of
computation as general abstract groups.

The problem was with the connectivity assumption on U12, since this prevented the use of the theorem for
deducing the result that the fundamental group of the circle S1 is isomorphic to the group Z of integers. (See
Section 1.7 where π1(S1) is calculated.) If S1 is the union of two connected open sets, then their intersection
cannot be connected. So the fundamental group of the circle is usually determined by the method of covering
spaces. Of course this method is basic stuff anyway, and needs to be explained, but having to make this detour,
however attractive, is unaesthetic.

U1

U1

U2

U2

¦
¦

¦

¦
¦

¦

¦

¦ ¦
¦ ¦

Figure 1.1: Example of spaces in a van Kampen type situation

It was found that a uniform method could be given using nonabelian cohomology [22], but a full exposition of
this became turgid. Then Brown came across a paper by Philip Higgins entitled ‘Presentations of groupoids with
applications to groups’ [106], which among other things defined free products with amalgamation of groupoids.
We will explain something about groupoids a bit later. It seemed reasonable to insert an exercise in the book
on an analogous result to (1.5.1) for the fundamental groupoid π1(X), namely that the natural morphism of
groupoids

(1.5.2) π1(U1) ∗π1(U12) π1(U2) → π1(X)

is an isomorphism. It then seemed desirable to write out a solution to the exercise, and lo and behold! the
solution was much better than all the turgid stuff on nonabelian cohomology. Further work yielded the idea
that it was sensible to generalise from the fundamental group π1(X, x) on a base point x to the fundamental
groupoid π1(X, A) on a set A chosen according to geometric reasons. In particular if U12 is not connected it is
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not clear from which component of U12 a base point should be chosen. So one hedges one’s bets, and chooses a
set of base points, one in each component of U12. One finds that the natural morphism

(1.5.3) π1(U1, A) ∗π1(U12,A) π1(U2, A) → π1(X, A)

is also an isomorphism and that the proof of this result using groupoids is simpler than the original proof of
(1.5.1) for groups. One also obtains a new range of calculations. For example, U1, U2, U12 may have respectively
27, 63, and 283 components, and yet X could be connected - a description of the fundamental group of this
situation in terms of groups alone is not so easy.

In view of these results the book [30] was redirected to give a full account of groupoids and the van Kampen
Theorem. A conversation with G.W.Mackey in 1967 informed Brown of Mackey’s work on ergodic groupoids.
It seemed that if the idea of groupoid arose in two separate fields, then there was more in this than met the
eye. As background to Mackey’s methods of relating group actions to groupoids the book was strengthened
with a account of covering spaces in terms of groupoids, following the initial lead of Higgins and of Gabriel and
Zisman [91].

Later Grothendieck was to write (1985):

“The idea of making systematic use of groupoids (notably fundamental groupoids of spaces, based on a
given set of base points), however evident as it may look today, is to be seen as a significant conceptual
advance, which has spread into the most manifold areas of mathematics. . . . In my own work in algebraic
geometry, I have made extensive use of groupoids - the first one being the theory of the passage to quotient
by a “pre-equivalence relation” (which may be viewed as being no more, no less than a groupoid in the
category one is working in, the category of schemes say), which at once led me to the notion (nowadays
quite popular) of the nerve of a category. The last time has been in my work on the Teichmüller tower,
where working with a “Teichmüller groupoid” (rather than a “Teichmüller group”) is a must, and part of
the very crux of the matter . . . ”

1.6 Proof of the van Kampen theorem for the fundamental groupoid

In this section we sketch a proof that the morphism induced by inclusions

(1.6.1) η : π1(U1, A) ∗π1(U12,A) π1(U2, A) → π1(X, A)

is an isomorphism when U1, U2 are open subsets of X = U1 ∪ U2 and A meets each path component of U1, U2

and U12 = U1 ∩ U2.

What one would expect is that the proof would construct directly an inverse to η. Alternatively, the proof
would verify in turn that η is surjective and injective.

The proof we give might at first seem roundabout, but in fact it follows an important procedure, that of
verifying a universal property. One advantage of this procedure is that we do not need to show that the free
product with amalgamation of groupoids exists in general, nor do we need to give a construction of it at this
stage. Instead we define the free product with amalgamation by its universal property, which enables us to
go directly to an efficient proof of the van Kampen Theorem. It also turns out that the universal property is
convenient for many explicit calculations.

We use the notion of pushout in the category of groupoids. It is a special case of the pushout in categories
that we study in the Appendix. Let us recall the definition in this case. We say that the groupoid G and the two
morphisms of groupoids G1

j1−→ G and G2
j2−→ G are the pushout of the two morphisms of groupoids G

i1−→ G1

and G
i2−→ G2 if they satisfy
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PO1) the diagram

(1.6.2)

G0
i1 //

i2

²²

G1

j1

²²
G2 j2

// G

is a commutative square, i.e. j1i1 = j2i2,

PO2) it is universal with respect to this type of diagram, i.e. for any groupoid K and morphisms of groupoids
G1

k1−→ K and G2
k2−→ K such that the following diagram is commutative

(1.6.3)

G0
i1 //

i2

²²

G1

k1

²²
G2

k2

// K

then there is a unique morphism of groupoids k : G → K such that kj1 = k1, kj2 = k2. The two diagrams are
often combined into one as follows:

(1.6.4)

G0

i2
²²

i1 // G1

j1
²² k1

¶¶

G2

j2 //

k2 ,,

G k

ÃÃB
B

B
B

K

We think of a pushout square as given by a standard input, the pair (i1, i2), and a standard output, the
pair (j1, j2). The properties of this standard output are defined by reference to all other commutative squares
with the same (i1, i2). At first sight this might seem strange, and logically invalid. However a pushout square
is somewhat like a computer program: given the data of another commutative square of the right type, then
the output will be a morphism (k in the above diagram) with certain defined properties.

It is a basic feature of universal properties that the standard output, in this case the pair (j1, j2) making
the diagram commute, is determined up to isomorphism by the standard input (i1, i2). The further details will
be given in the Appendix.

Thus in our case, we have

Theorem 1.6.1 If U1, U2 are open subsets of X, X = U1∪U2, and A is a subset of U12 = U1∩U2 meeting each
path component of U1, U2, U12 (and therefore of X), the following diagram of morphisms induced by inclusion

π1(U12, A)
i1 //

i2

²²

π1(U1, A)

ji

²²
π1(U2, A)

j2
// π1(X, A)

is a pushout of groupoids.
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Proof So we suppose given a commutative diagram of morphisms of groupoids

(1.6.5)

π1(U12, A)
i1 //

i2

²²

π1(U1, A)

k1

²²
π1(U2, A)

k2

// K

We have to prove that there is a unique morphism k : π1(X,A) → K such that kj1 = k1, kj2 = k2.

Let us take an element [α] ∈ π1(X,A) with α : (I, ∂I) → (X, A). By the Lebesgue covering lemma ([30,
3.6.4] ) there is a subdivision

0 = t0 < t1 < · · · < tn−1 < tn = 1

of I into intervals by equidistant points such that α maps each [ti, ti+1] into U1 or U2 (possibly in both). Choose
one of these for each i and call it U i and αi the restriction of α. This subdivision determines a decomposition

α = α0α1 . . . αn−1.

Of course the point α(ti) need not lie in A, but it lies in U i ∩ U i−1 and this intersection can only be U1, U2 or
U12. By the connectivity conditions, for each i = 0, 1, · · · , n− 1, we may choose a path ci in U i ∩ U i−1 joining
α(ti) to A. Moreover, if α(ti) already lies in A (which is the case when i = 0 and when i = n), we choose ci to
be the constant path at α(ti).

U1

U1

U2

U2

α

¦ ¦

¦
¦

¦

¦
¦ ¦

¦ ¦

Figure 1.2: A path α in a van Kampen type situation

For each 0 6 i < n we have the path βi = c−1
i αici+1 in U i joining points of A. It is clear that

[α] = [β0][β1] · · · [βn−1] ∈ π1(X, A).

Notice that βi also represents a class in π1(U i, A). Let us call ψi = ki([βi]). If the homomorphism of groups
that commutes the external square k exists, the value of k([α]) is determined, because

k([α]) = k([β0][β1] · · · [βn−1]) = k([β0])k([β1]) · · · k([βn−1]) = ψ0ψ1 · · ·ψn−1.

This proves uniqueness of k. We have also proved that π1(X, A) is generated as a groupoid by the images
of π1(U1, A), π1(U2, A).
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We have yet to prove that the element k([α]) is independent of all the choices made. Before going into that,
notice that the construction we have just made can be interpreted diagrammatically as follows. The starting
situation looks like the bottom side of the diagram

(1.6.6)

• β0 //____ • β1 //____ • • βn−2 //____ • βn−1 //____ •

•
c0

OO

α0

//◦
c1

OO

α1

//◦
c2

OO

◦

cn−2

OO

αn−2

//◦

cn−1

OO

αn−1

//•
cn

OO

where the solid circles denote points which definitely lie in A.

The way of getting βi may be seen as composing with a retraction from above like the one in the Fig 1.3.

¢
¢
¢
¢
¢

¥
¥
¥
¥
¥
¥
¥
¥

D
D
D
D
D
D
D
D

L
L

L
L

L
L

Figure 1.3: Retraction from above-centre

If necessary, this retraction also provides a homotopy α ' β0β1 · · ·βn−1 rel end points. This is the first of lots
of filling arguments where we have defined a map in a subset of the boundary of a cube and fill the whole cube
by appropriate retractions. This is studied in all generality in Chapter 16, using ‘expansions’ and ‘collapses’.

We shall use another filling argument in I3 to prove independence of choices. Suppose that we have a
homotopy rel end points h : α ' α′ of two maps (I, ∂I) → (X, A). We can perform the construction in (1.6.6)
for each of α, α′, and then glue the three homotopies together.

(1.6.7)

• β •

• α

h

•

•
α′

•

•
β′

•

So, replacing βs by αs, we can assume the maps α, α′ have subdivisions α = [αi], α′ = [α′j ] such that
each αi, α′j has end points in A and lies in one of U1, U2. Since h is a map I2 → X, we may again by the
Lebesgue covering lemma make a subdivision h = [hlm] such that each hlm lies in one of U1, U2. Also by further
subdivision as necessary, we may assume this subdivision of h refines on I × ∂I the given subdivisions of α, α′.
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The problem is that none of the vertices of this subdivision are necessarily mapped into A, except those on
∂I × I (since the homotopy is rel vertices and α, α′ both map ∂I to A) and those on I × ∂I determined by the
subdivisions of α, α′. So the situation looks like the following:

(1.6.8)

α′

• //• //◦ //• //◦ //• //•

• //

OO

◦ //

OO

◦ //

OO

◦ //

OO

◦ //

OO

◦ //

OO

•

OO

• //

OO

◦

OO

//◦ //

OO

◦ //

OO

◦ //

OO

◦

OO

//•

OO

• //

OO

◦ //

OO

• //

OO

• //

OO

α

• //

OO

◦ //

OO

•

OO

We want to deform h to h′ : α ' α′, a new homotopy rel end points between the same maps, having the same
subdivision as does h, and such that any subsquare mapped by h into Ui, i = 1, 2 remains so in h′, and any
vertex already in A is not moved. This is done inductively by filling arguments in the cube I3.

Let us imagine the 3-dimensional cube I3 as I2 × I where I2 has the subdivision we are working with in h.
Define the bottom map to be h. We have to fill I3 so that in the top face we get a similar diagram but with all
the vertices solid, i.e. in A, and each subsquare in the top face lies in the same Ui as the corresponding in the
bottom one.

We start by defining the map on all ‘vertical’ edges, i.e. on {v} × I for all vertices in the partition of I2.
If the image of a vertex lies in U12 but not in A, then we choose a path in U12 joining it to a point of A. We
work similarly for the case of vertices with images in U1 \U12, U2 \U12. Let us call elm the path we have chosen
between the vertex h(sl, tm) and A. (These elm are constant if h(sl, tm) lies already in A.) This gives us the
map on the vertical edges of I3.

• • • • •

• •

• •

• • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

Figure 1.4: Extending to the edges

From now on, we restrict our construction to the part of I3 over the square Slm = [sl, sl+1]× [tm, tm+1]. Let
us call σlm = h|[sl,sl+1]×{tm} and τlm = h|{sl}×[tm,tm+1]. Then, using the retraction of Figure 1.3 on each lateral
face, we can fill all the faces of a 3-cube except the top one. Now, using the retraction from a point on a line
perpendicular to the centre of the top face, as in the following Figure 1.5
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......

• •

• •

• •

• •

Figure 1.5: Extending to the lateral faces

we get at the top face a map that looks like

(1.6.9)

•
@@

@@
@@

@ •

~~
~~

~~
~

◦
τlm hlm

◦

◦
σlm

elm~~
~~

~~
~ ◦

@@
@@

@@
@

• •
Thus, in particular, it is a map into Ui sending all vertices in A.

If we do the above construction in each square of the subdivision, we get a top face of the cube that is an
homotopy rel end points between two paths in the same classes as α and α′, and subdivided in such a way that
each subsquare goes into some Ui sending all vertices into A. Each of these squares produces a commutative
square of paths in one of π1(Ui, A), i = 1, 2. Thus the diagram can be pictured as

(1.6.10)

α′

• //• //• //• //• //• //•

• //

OO

• //

OO

• //

OO

• //

OO

• //

OO

• //

OO

•

OO

• //

OO

•

OO

//• //

OO

• //

OO

• //

OO

•

OO

//•

OO

• //

OO

• //

OO

• //

OO

• //

OO

α

• //

OO

• //

OO

•

OO

Applying ki to each subsquare we get a commutative square li in K. Since k1i1 = k2i2, we get that the li
compose in K to give a square l in K.

Now comes the vital point. Since the composite of commutative squares in a groupoid produces a
commutative square, the external square l is commutative.

But because of the way we constructed it, two sides of this composite commutative square l in K are
identities. Therefore the opposite sides of l are equal. This shows that our element k([α]) is independent of
the choices made, and so proves that k is well defined as a function on arrows of the fundamental groupoid
π1(X, A).
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The proof that k is a morphism is now quite simple, while uniqueness has already been shown. So we have
shown that the diagram in the statement of the theorem is a pushout of groupoids.

This completes the sketch proof. 2

In the case of commutative squares, there is another way of expressing the above argument on the composition
of commutative squares being a commutative square, namely by working on formulae for each individual square
as in the expression a = cdb−1 for (1.1.1). Putting together two such squares as in

(1.6.11)

• a //

c
²²

•
b

²²

e //•
f

²²•
d

//•
g

//•

allows cancellation of the middle term

ae = (cdb−1)(bgf−1) = cdgf−1

which if c = 1, f = 1 reduces to ae = dg. This argument extends to longer gluings of commutative squares, and
hence extends, by induction, and in the other direction, to a subdivision of a square.

We would like to extend the above argument to the faces of a cube, and then to an n-dimensional cube.

For a cube, the expression of one of the faces in terms of the others can be done (see the Homotopy Addition
Lemma 6.7.7) and then can be used to prove a 2-dimensional van Kampen theorem. That is done in Section
6.8.

It is much more difficult to follow this route in the general case and a more roundabout method is developed
in Chapter 16. The algebra to carry out this argument in dimension n is given in Chapter 15. It is interesting
that such a complicated and subtle algebra seems to be needed to make it all work.

Remark 1.6.2 One of the nice things about proving the theorem by verifying the universal property is that
the proof uses some calculations in a general groupoid K, and groupoids have, in some sense, the minimal set of
properties needed for the result. This avoids a calculation in π1(X, A), and somehow makes the calculations as
easy as possible. The same characteristics hold in some other verifications of universal properties, for example
in the computation of the fundamental group of an orbit space in [30]. We will see a similar situation later for
double groupoids.

1.7 The fundamental group of the circle

In order to interpret the last theorem, one has to set up the basic algebra of computational groupoid theory.
In particular, one needs to be able to deal with presentations of groupoids. This is done to a good extent in
[107, 30]. Here we can give only the indications of the theory.

The theory of groupoids may be thought of as an algebraic analogue of the theory of groups, but based on
directed graphs rather than on sets. For some discussion of the philosophy of this, see [31].

We refer to the Appendix for the construction of a free groupoid over a directed graph.

Let us get over with some basic definitions in groupoid theory. A groupoid G is called connected if G(a, b)
is non empty for all a, b ∈ Ob(G). The maximal connected subgroupoids of G are called the (connected)
components of G.
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If a is an object of the groupoid G, then the set G(a, a) inherits a group structure from the composition
on G, and this is called the object group of G at a and is written also G(a). The groupoid G is called simply
connected if all its object groups are trivial. If it is connected and simply connected, it is called 1-connected, or
an indiscrete groupoid.

A standard example of an indiscrete groupoid is the groupoid I(S) on a set S. This has object set S and
arrow set S ×S, with s, t : S ×S → S being the first and second projections. The composition on I(S) is given
by

(a, b)(b, c) = (a, c), for all a, b, c ∈ S.

A directed graph X is called connected if the free groupoid F (X) on X is connected, and is called a forest
if every object group F (X)(a) of F (X), a ∈ Ob(X), is trivial. A connected forest is called a tree. If X is a tree,
then the groupoid F (X) is indiscrete.

Let G be a connected groupoid and a0 be an object of G. For each a ∈ Ob(G) choose an arrow τa : a0 → a,
with τa0 = 1a0 . Then an isomorphism

φ : G → G(a0)× I(Ob(G))

is given by g 7→ ((τa)g(τb)−1, (a, b)) when g ∈ G(a, b) and a, b ∈ Ob(G). The composition of φ with the
projection yields a morphism ρ : G → G(a0) which we call a deformation retraction, since it is the identity on
G(a0) and is in fact homotopic to the identity morphism of G, though we do not elaborate on this fact here.

It is also standard [30, 8.1.5] that a connected groupoid G is isomorphic to the free product groupoid G(a0)∗T
where a0 ∈ Ob(G) and T is any wide, tree subgroupoid of G. The importance of this is as follows.

Suppose that X is a graph which generates the connected groupoid G. Then X is connected. Choose
a maximal tree T in X. Then T determines for each a0 in Ob(G) a retraction ρT : G → G(a0) and the
isomorphisms

G ∼= G(a0) ∗ I(Ob(G)) ∼= G(a0) ∗ F (T )

show that a morphism G → K from G to a groupoid K is completely determined by a morphism of groupoids
G(a0) → K and a graph morphism T → K which agree on the object a0.

We shall use later the following proposition, which is a special case of [30, 6.7.3]:

Proposition 1.7.1 Let G,H be groupoids with the same set of objects, and let φ : G → H be a morphism of
groupoids which is the identity on objects. Suppose that G is connected and a0 ∈ Ob(G). Choose a retraction
ρ : G → G(a0). Then there is a retraction σ : H → H(a0) such that the following diagram, where φ′ is the
restriction of φ:

(1.7.1)

G
ρ //

φ

²²

G(a0)

φ′

²²
H σ

// H(a0)

is commutative and is a pushout of groupoids.

This result can be combined with Theorem 1.6.1 to determine the fundamental group of the circle S1.

Corollary 1.7.2 The fundamental group of the circle S1 is a free group on one generator.
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Proof We represent S1 as the union of two semicircles E1
+, E1

- with intersection {−1, 1}. Then both fundamental
groupoids π1(E1

+, {−1, 1}) and π1(E1
- , {−1, 1}) are easily seen to be isomorphic to the connected groupoid I

with object set {−1, 1} and trivial object groups. In fact this groupoid is the free groupoid on one generator
ι : −1 → 1.

Also, π1({−1, 1}, {−1, 1}) is the discrete groupoid on these objects {−1, 1}. By an application of Theorem
1.6.1 we get a pushout of groupoids

{−1, 1} //

²²

I

²²
I // π1(S1, {−1, 1})

From the previous Proposition, we have a pushout of groupoids

I //

²²

{1}

²²
π1(S1, {−1, 1}) // π1(S1, 1)

Gluing them, we get a pushout of groupoids

{−1, 1} //

²²

{1}

²²
I // π1(S1, 1)

and the result follows by an easy universal argument. 2

Note that S1 may be regarded as a pushout in the category of topological spaces

{−1, 1} //

²²

{1}

²²
[−1, 1] // S1

The correspondence between these last two diagrams was for R.Brown a major incentive to exploring the use
of groupoids. Here we have a successful algebraic model of a space, but of a different type from that previously
considered. An aspect of its success is that groupoids have structure in two dimensions, namely 0 and 1, and
this is useful for modelling the way spaces are built up using identifications in dimensions 0 and 1.

Another interesting aspect is that the groupoid I is finite, and it is easy to explore all its properties. By
contrast, the integers form an infinite set, and discussion of its properties usually requires induction.

The problem was to find analogous methods in higher dimensions.

1.8 Higher order groupoids

The successes of the use of groupoids in 1-dimensional homotopy theory and the successes in group theory as
exposed in the books [30, 107] suggested the potential interest in the use of groupoids in higher dimensional
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homotopy theory. In particular, it seemed possible that a higher dimensional van Kampen theorem could be
proved if the ‘right’ higher homotopy groupoids could be constructed, with properties analogous to those which
enabled the proof of this theorem in dimension 1.

Experiments by Brown to obtain such a construction in the years 1965-74 proved abortive. However in 1971
Chris Spencer came to Bangor as a Science Research Council Research Assistant, and in this and a subsequent
period considerable progress was made on the discovering the algebra of double groupoids. It was in this time
that the relation with crossed modules was made, so linking the notion of double groupoids with more classical
ideas.

Crossed modules had been defined by J.H.C. Whitehead in 1946 [177] in order to express the properties of
the properties of the boundary map

∂ : π2(X, X1, x) → π1(X1, x)

of the second relative homotopy group, a group which is in general nonabelian. He gave the first nontrivial
determination of this group in showing that when X is formed from X1 by attaching 2-cells, then π2(X, X1, x)
is isomorphic to the free crossed π1(X1, x)-module on the characteristic maps of the 2-cells.

This result was a crucial clue to Brown and Higgins in 1974. On the one hand it showed that a universal
property, namely freeness, did exist in 2-dimensional homotopy theory. Also, if our proposed theory was to
be any good, it should have this theorem as a corollary. However, Whitehead’s theorem was about relative
homotopy groups, which suggested that we should look at a relative theory, i.e. a space X with a subspace X1.
With the experience obtained by then, we quickly found a satisfactory, even simple, construction of a relative
homotopy double groupoid ρ2(X, X1, x) and a proof of a van Kampen theorem, as envisaged.

The equivalence between these sorts of double groupoids and crossed modules proved earlier by Brown and
Spencer, then gave the required van Kampen type theorem for the second homotopy crossed module, and so
new calculations of second relative homotopy groups.

So we have a pattern of proof:
A) construct a homotopically defined multiple groupoid,
B) prove it is equivalent to a more familiar homotopical construction, and
C) prove a van Kampen theorem in the multiple groupoid context.
The three combined give new nonabelian, higher dimensional, local-to-global results. This pattern has been
followed in the corresponding result for crossed complexes, which is dealt with in our Part II, and results for
the catn-groups of Loday [128]. However, we do not discuss the latter in this book.

Crossed modules had occurred earlier in other places. In the mid 1960s the great school of Grothendieck
in Paris had considered sets with two structures, that of group and of groupoid, and had proved these were
equivalent to crossed modules. However this result was not published, and so was known only to a restricted
group of people.

It is now clear that once one moves to higher version of groupoids, the presence of crossed modules is
inevitable, and is an important part of the theory and applications. This is why Part I is devoted entirely to
the crossed modules and double groupoid area.



Chapter 2

Homotopy theory and crossed modules

In this chapter we explain how crossed modules over groups arose in topology, and give some of the later
developments. The beginning lies in the first half of the last century.

The topologist Henry Whitehead was steeped in the combinatorial group theory of the 1930’s, and much
of his work can be seen as trying to extend the methods of group theory to higher dimensions, keeping the
interplay with geometry and topology. These attempts led to greatly significant work, such as the theory of
simple homotopy types. His ideas on crossed modules have taken longer to come into wide use, but they can
be regarded as equally significant.

One of his starting points was the van Kampen Theorem for the fundamental group. This tells us in
particular how the fundamental group is affected by the attaching of a 2-cell, or of a family of 2-cells, to a space.
Namely, if X = A ∪ {e2

i }i∈I , where the 2-cell e2
i is attached by a map which for convenience we suppose is

fi : (S1, 1) → (A, x), then each fi determines an element φi in π1(A, x), and a consequence of the van Kampen
Theorem for the fundamental group is that the group π1(X, x) is obtained from the group π1(A, x) by adding
the relations φi, i ∈ I.

• xX

A

Figure 2.1: Picture of an attached 2-cell

The next problem was clearly to determine the effect on the higher homotopy groups of adding cells to a
space. So his 1941 paper [176] was entitled ‘On adding relations to homotopy groups’. If we could solve this in
general then we would in particular be able to calculate all homotopy groups of spheres. Work over the last 60
years has shown the enormous difficulty of this task.

In this paper he gave important results in higher dimensions, but he was able to obtain information on
second homotopy groups of X = A ∪ {e2

i }i∈I . His results were clarified by him in two subsequent papers using
the notion of crossed module and then free crossed module. This formulation became the key for Brown and
Higgins to higher order van Kampen Theorems, as we shall see later. His basic method of proof uses what is

23



24 2. Homotopy theory and crossed modules

now called transversality, and has become the foundation of a technique called ‘pictures’ [110]. His algebraic
methods have also been recently exploited rather differently and in a more algorithmic way in [59] to compute
second homotopy modules.

We begin the chapter by giving a definition of the fundamental crossed module

Π2(X, A, x) = (∂ : π2(X, A, x) → π1(A, x))

of a pointed pair of spaces and explaining some of Whitehead’s work. Then we state two central results:
- the 2-dimensional van Kampen theorem, in Section 2.3;
- the notion of classifying space of a crossed module, in Section 2.4.

It is these two combined which give many of the important homotopical applications of crossed modules
(including Whitehead’s results). However the construction of the classifying space, and the proof of its proper-
ties, needs the methods of crossed complexes of Part II. We give applications of the 2-dimensional van Kampen
theorem in Chapters 4 and 5 and prove it in Chapter 6. This sets the scene for the corresponding higher
dimensional results of Part II.

Section 2.5 shows that crossed modules are equivalent to another algebraic structure, that of cat1-groups.
This is used in Section 2.6 to obtain the cat1-group of a fibration, which yields an alternative way of obtaining
the fundamental crossed module.

Section 2.7 shows that crossed modules are also equivalent to ‘categories internal to groups’, or, equivalently,
to groupoids internal to groups. This is important philosophically, because groupoids are a generalisation of
equivalence relations, and equivalence relations give an expression of the idea of quotienting, a fundamental
process in mathematics and science, because it is concerned with classification. We can think of groupoids as
giving ways of saying not only that two objects are equivalent, but also how they are equivalent: the arrows
between two objects give different ‘equivalences’ between them., which can sometimes be regarded as ‘proofs’
that the objects are equivalent.

Moving now to the case of groups, to obtain a quotient of a group P we need not just an equivalence relation,
but this equivalence relation needs to be a congruence, i.e. not just a subset but also a subgroup of P × P .
An elementary result in group theory is that a congruence on a group P is determined completely by a normal
subgroup of P . The corresponding result for groupoids is that a groupoid with a group structure is equivalent
to a crossed module M → P where P is the group of objects of the groupoid.

This family of equivalent structures – crossed modules, cat1-groups, group objects in groupoids – gives added
power to each of these structures. In fact in Chapter 6 we will use crucially another related structure, that of
double groupoids with connection. This is equivalent to an important generalisation of a crossed module, that
of crossed module of groupoids, which copes with the varied base points of second relative homotopy groups.

2.1 Homotopy groups and relative homotopy groups

Recall that two maps f, g : X → Y between two topological spaces are said to be homotopic if f can be
continuously deformed to g. Formally, they are homotopic, and this is denoted by f ' g, if there is a map

F : X × I → Y

such that F0(x) = F (x, 0) = f(x) and F1(x) = F (x, 1) = g(x). The map F is called a homotopy from f to g.

This definition gives an equivalence relation among the set of maps from X to Y . The quotient set is denoted
[X, Y ] and the equivalence class of a map f is denoted by [f ].
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Sometimes we are interested in considering only deformations that keep some subset fixed. If A ⊆ X, we
say that two maps as above are homotopic relative to A, and denote this by f ' g rel A, if there is a homotopy
F from f to g satisfying F (a, t) = f(a) for all a ∈ A, t ∈ I. This definition gives another equivalence relation
among the set of maps from X to Y . The quotient set is denoted [X, Y ]A and the equivalence class of a map f

is again denoted by [f ].

A particular case of this definition is when we study maps sending a fixed subset A of X to a given point
y ∈ Y . Then the quotient set corresponding to maps from X to Y sending all A to y with respect to homotopy
rel A, is written as [(X, A), (Y, y)] or, when A = {x}, as [X, Y ]∗.

To define the homotopy groups of a space, we consider homotopy classes of maps from particular spaces.
Namely if x ∈ X, the n-th homotopy group of X based at x is defined as

πn(X,x) = [(In, ∂In), (X, x)]

where ∂In is the boundary of In. The elements of πn(X, x) are classes of maps that can be pictured for n = 2
as in the following diagram:

(2.1.1)

x

x X x

x

1

2
²²

//

where we use throughout all the book a matrix like convention for directions. One of the reasons for this will
become clear in Chapter 6.

In the case n = 1 we obtain the fundamental group π1(X, x). For all n > 1 there initially seem to be n

group structures on this set induced by the composition of representatives given for 1 6 i 6 n by

(f +i g)(t1, t2, . . . , tn) =

{
f(t1, t2, . . . , 2ti, . . . , tn) if 0 6 ti 6 1/2,

g(t1, t2, . . . , 2ti − 1, . . . , tn) if 1/2 6 ti 6 1.

Remark 2.1.1 For the case n = 2 the following diagrams picture the two compositions.

α

γ

α +1 γ

α β

α +2 β

1

2
²²

//

Theorem 2.1.2 If n > 2, then any of the multiplications +i, i = 1, · · · , n on πn(X, x) induce the same group
structure, and all these group structures are abelian.

Proof By Theorem 1.3.1, we need only to verify the interchange law for the compositions +i,+j , 1 6 i < j 6 n.
It is easily seen that if f, g, h, k : (In, ∂In) → (X, x) are representatives of elements of πn(X,x), then the two
compositions obtained by evaluating the following matrix in two ways

f g

h k i

j

²²

//
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in fact coincide. The verification consists in checking the formula for such a multiple composition. 2

We shall need later that πn is functorial in the sense that to any map φ : X → Y there is associated a
homomorphism of groups

φ∗ : πn(X, x) → πn(Y, φ(x))

defined by φ∗[f ] = [φf ], and which satisfies the usual functorial properties (φψ)∗ = φ∗ψ∗, 1∗ = 1.

Now we may repeat everything for maps of triples and homotopies among them. By a based pair of spaces
(X,A, x) is meant a space X, a subspace A of X and a base point x ∈ A. The nth relative homotopy group
πn(X,A, x) of the based pair (X,A, x) is defined as the homotopy classes of maps of triples

πn(X, A, x) = [(In, ∂In, Jn−1), (X,A, x)]

where Jn−1 = {1} × In−1 ∪ I × ∂In−1. That is we consider maps α : In → X such that α(∂In) ⊆ A and
α(Jn−1) = {x} and homotopies through maps of this kind.

The picture we shall have in mind as representing elements of πn(X, A, x) is

(2.1.2)

A

x X x

x

1

2
²²

//

As before, a multiplication on πn(X, A, x) is defined by the compositions +i in any of the last (n − 1)
directions. It is not difficult to check that any of these multiplications gives a group structure and analogously to
Theorem 2.1.2 these all agree and are abelian if n > 3. Also, for any maps of based pairs φ : (X, A, x) → (Y, B, y),
there is a homomorphism of groups

φ∗ : πn(X, A, x) → πn(Y, B, y)

as before.

The homotopy groups defined above fit nicely in an exact sequence called the homotopy exact sequence of
the pair as follows:

· · · → πn(X,x)
j∗−→ πn(X, A, x) ∂n−→ πn−1(A, x) i∗−→ πn−1(X,x) → · · ·
j∗−→ π2(X,A, x) ∂2−→ π1(A, x) i∗−→ π1(X,x)

j∗−→
j∗−→ π1(X,A, x) ∂1−→ π0(A, x) i∗−→ π0(X,x)

(2.1.3)

where i∗ and j∗ are the homomorphisms defined by the inclusions, and ∂ is given by restriction, i.e. for any
[α] ∈ πn(X, A, x) represented by a map α : (In, ∂In, Jn−1) → (X, A, x), we define ∂[α] = [α′] where α′ is the
restriction of α to the face {0} × In−1, which we identify with In−1.

This exact sequence is of abelian groups and homomorphisms until π2(X, x), of groups and homomorphisms
until π1(X, x), and of based sets for the last three terms. The amount of exactness for the last terms is the
same as for the exact sequence of a fibration of groupoids [25, 27].

The final interesting piece of structure is the existence of a π1(A, x)-action on all the terms of the above
exact sequence which are groups. Let us define this action. For any [α] ∈ πn(X,A, x) and any [ω] ∈ π1(A, x),
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we define the map

F = F (α, ω) : In × {0} ∪ Jn−1 × I → X

given by α on In × {0} and by ω on {t} × I, for any t ∈ Jn−1. Then we have defined F on the subset of In+1

indicated in Figure 2.2

J
J
J
J
J
J
J
J
J!!!!!!!!!!!!

J
J
J
J
J
J
J
J
J!!!!!!!!!!!!

!!!!!!!!!!!!

!!!!!!!
JJ

³³³
T
T
T

α

x
x

3x

ω

x

x

A

1

2

Figure 2.2: Action of π1(A, x)

Now, we compose with the retraction

r : In+1 → In × {0} ∪ Jn−1 × I

given by projecting from a point P = (0, 1
2 , 1

2 , · · · , 1
2 , 2) and indicated in Figure 2.3, getting a map Fr : In+1 → X

extending F .



28 2. Homotopy theory and crossed modules

• P

Figure 2.3: Retraction from above-lateral

The “restriction” map

In ∼= In × {1} ↪→ In+1 Fr−→ X

represents an element [α][ω] ∈ πn(X,A, x).

We leave the reader to develop proofs that the action is an action of a group on a group, that is that various
axioms are satisfied. However all this will follow in a more algebraic fashion using the theory given in chapter
16.

Notice that in this definition we use another of the filling arguments that we have started using in the
proof of Theorem 1.6.1 in Section 1.6. Arguments of the same kind prove that the assignment just defined is
independent of the several choices involved (α, ω and the extension of F ), and it defines an action.

Remark 2.1.3 Notice that when n = 2 the map representing [α][ω] could be drawn

ωoo

F

ω //

ω
wwooooooooo ω

''OOOOOOOOO

ω

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
Ä

ω

²²

ω

ÂÂ?
??

??
??

??
??

1

2
²²

//
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or, equivalently we could have chosen the one described as follows

ωoo

F

ω //

ωoo ω //

ωoo

ω
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

ω

²²

ω

²²

ω

²²

ω

ÂÂ?
??

??
??

??
??

ω //
1

2
²²

//

In a similar way, we may define an action of π1(X,x) on πn(X, x). In our case, this gives an action of
π1(A, x) on both πn(A, x) and πn(X, x). Moreover, all maps in the homotopy exact sequence are maps of
π1(A, x)-groups.

All the above constructions can be repeated for based r-ads X∗ = (X;X1, X2, . . . , Xr, x), where all Xi are
subspaces of X. Homotopy groups πnX∗ are defined for n > r + 1 and are abelian for n > r + 2. There are
various long exact sequences relating the homotopy groups of (r + 1)-ads and r-ads. An account of these is in
[116]. The homotopy groups of an (r + 1)-ad are also a special case of the homotopy groups of an r-cube of
spaces [128, 53, 93]. All these groups are important for discussing the failure of excision for relative homotopy
groups, to which we have referred earlier, and whose analysis in some cases using nonabelian methods will be
an important feature of this book.

2.2 Whitehead’s work on crossed modules

We start with the basic definition of crossed module. All crossed modules in this chapter are going to be over
a group, so we shall not insist in this point.

Definition 2.2.1 A crossed module (over a group) M = (µ : M → P ) is a morphism of groups µ : M → P

called the boundary of M together with an action (m, p) 7→ mp of P on M satisfying the two axioms

CM1) µ(mp) = p−1µ(m)p

CM2) n−1mn = mµn

for all m,n ∈ M , p ∈ P.

When we wish to emphasise the codomain P , we call M a crossed P -module.

Basic algebraic examples of crossed modules are:

• A conjugation crossed module is an inclusion of a normal subgroup N/ G, with action given by conjugation.
In particular, for any group P the identity map IdP : P → P is a crossed module with the action of P

on itself by conjugation. T. Porter has remarked that the concept of crossed module can be seen as an
‘externalisation’ of the concept of normal subgroup. That is, an inclusion is replaced by a homomorphism
with special properties. This process occurs in other algebraic situations.

• if M is a group, its automorphism crossed module has the form (χ : M → Aut(M)) where χm is the inner
automorphism mapping n to m−1nm. If A satisfies Inn(M) 6 A 6 Aut(M) and χ(M) ⊆ A, we also call
the automorphism crossed module to (χ : M → A).

• A P -module crossed module has zero boundary and M is a P -module.
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• A central extension crossed module (µ : M → P ) has surjective boundary with kernel contained in the
centre of M and p ∈ P acts on m ∈ M by conjugation with any element of µ−1p.

• Any homomorphism (µ : M → P ), with M abelian and Im µ in the centre of P , provides a crossed module
with P acting trivially on M .

The category XMod/Groups of crossed modules has as objects all crossed modules over groups. Morphisms
in XMod/Groups from M to N are pair of group homomorphisms (g, f) forming commutative diagrams with
the two boundaries,

M
g //

µ

²²

N

ν

²²
P

f
// Q

and preserving the action in the sense that for all m ∈ M, p ∈ P we have g(mp) = (gm)fp. If P is a group, then
the category XMod/P of crossed P -modules is the subcategory of XMod/Groups whose objects are the crossed
P -modules and whose morphisms are the group homomorphisms g : M → N such that g preserves the action
(i.e. g(mp) = (gm)p, for all m ∈ M, p ∈ P ), and νg = µ.

Here are some elementary general properties of crossed modules which we will often use.

Proposition 2.2.2 For any crossed module µ : M → P , µM is a normal subgroup of P , i.e. µM / P .

Proof This is immediate from CM1). 2

The centraliser C(S) of a subset S of a group M is the set of elements of M which commute with all elements
of S. In particular, C(M) is written ZM and called the centre of M and is abelian. Any subset of ZM is called
central in M .

The commutator of elements m, n of a group M is the element [m,n] = m−1n−1mn. The commutator
subgroup [M,M ] of M , is the normal subgroup of M generated by all commutators. We write Mab for the
abelian group M/[M, M ], the abelianisation of M .

Proposition 2.2.3 Let µ : M → P be a crossed module, and let C = Coker µ. Then

(i) Ker µ is central in M .

(ii) µ(M) acts trivially on ZM .

(iii) ZM and Ker µ inherit an action of C to become C-modules.

(iv) P acts on Mab and µ(M) acts trivially on Mab which inherits an action of C to become a C-module.

Proof Axiom CM2) shows that if m,n ∈ M and µn = 1 then mn = nm. This proves (i). On the other hand,
and by CM2) and CM1), mn = nm implies mµn = m, and this proves (ii). Then (iii) follows using these and
Proposition 2.2.2, which implies C = P/µ(M).

Since [m,n]p = [mp, np] for m,n ∈ M , p ∈ P , we have [M,M ] is P -invariant, so that P acts on Mab.
However in this action µ(M) acts trivially since if m,n ∈ M then

mµn = n−1mn = m mod [M,M ].

2
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Thus for any crossed module (µ : M → P ) with C = Coker µ, π = Ker µ we have an exact sequence of
C-modules

π −→ Mab −→ (µM)ab −→ 1.

The first map is not injective in general. To see this, consider the crossed module χ : M → Aut(M) associated
to a group M . Then π = Ker χ = ZM , the centre of M . There are groups M for which

1 6= ZM ⊆ [M, M ],

for example the quaternion group, the dihedral groups and many others. For all these the composite map
π → ZM → Mab is trivial and so not injective. These examples give point to the following useful result.

Proposition 2.2.4 If there is a section s : µM → M of µ which is a group homomorphism (but not necessarily
a P -map) then M is isomorphic as a group to π × µM . Further [M,M ] ∩ π = 1, and the map π → Mab is
injective.

Proof Because s is a section (i.e. µs is the identity on µM) we have that M = (π)(Im s) and π∩ (Im s) = {1}.
Because the action of Im s on π is trivial, we have an internal product decomposition M = (π) × (Im s).
Furthermore, by Proposition 2.2.3 we know that π is abelian so [M, M ] = [Im s, Im s].

So, [M, M ] ∩ π = {1} and π → Mab is injective. 2

An important example where the section s exists is when µ(M) is a free group. The well known Schreier
Theorem of combinatorial group theory, that a subgroup of a free group is itself free (see for example [131] or
[118] and also [107] for a groupoid proof) assures us that this is the case when M itself is free.

The major geometric example of a crossed module is the following, where the basic definitions were given
in the last Section. Let (X,A, x) be a based pair of spaces, that is X is a topological space and x ∈ A ⊆ X.
Whitehead showed that the boundary map

(2.2.1) ∂ : π2(X, A, x) → π1(A, x),

from the second relative homotopy group of (X, A, x) to the fundamental group π1(A, x), together with the
standard action of π1(A, x) on π2(X, A, x), has the structure of crossed module. This result and its proof will
be seen in various lights in this book. Because of this example it is convenient and sensible to regard crossed
modules µ : M → P as 2-dimensional versions of groups, with P, M being respectively the 1- and 2-dimensional
parts. This analogy also will be pursued in more detail later. At this stage we only note that the full description
of the 2-dimensional part requires specification of its 1-dimensional foundation and of the way the two parts fit
together: that is, we need the whole structure of crossed module.

Now we see that we have a functor from based pairs of topological spaces to crossed modules

(2.2.2) Π2 : Top2
∗ → XMod/Groups

which sends the based pair (X, A, x) to the crossed module given in (2.2.1) above. (Later we shall formulate a
groupoid version of this functor, allowing the base point to vary, but it is best to get familiar with this special
case at first.)

The work of Whitehead on crossed modules over the years 1941-1949 contained in [176, 177, 179] and
mentioned in the Introduction to this Chapter can be summarised as follows.

He started trying to obtain information on how the higher homotopy groups of a space are affected by adding
cells. For the fundamental group, the answer is a direct consequence of the van Kampen Theorem:
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adding a 2-cell corresponds to adding a relation to the fundamental group, adding an n-cell for n > 3
does not change the fundamental group.

So the next question is:

how is the second homotopy group affected by adding 2-cells?, i.e. if X = A ∪ {e2
i }, what is the

relation between π2(A) and π2(X)?

In the first paper ([176]), he formulated a geometric proof of a theorem in this direction. In the second
paper ([177]) he gave the definition of crossed module and showed that the second relative homotopy group
π2(X, A, x) of a pair of spaces could be regarded as a crossed module over the fundamental group π1(A, x).
In the third paper ([179]) he introduced the notion of free crossed module and showed that his previous work
could be reformulated as showing that the second relative homotopy group π2(X, A, x) was isomorphic to the
free crossed module on a set of generators corresponding to the 2-cells. This concept of free crossed module will
be studied in detail in Section 3.4.

He was not in fact able to obtain any detailed computations as a result of this result, but it was fundamental
to his work on the classification of homotopy 2-types, and, together with the concept of chain complex with
operators that we shall develop in the second part, on a range of realisation problems [176, 177].

The proof he gave was difficult to read, since it was spread over three papers, with some notation changes,
and that is why a repackaged version of the proof by Brown was accepted for publication [25]. The main ideas
of the proof included knot theory, and also transversality, techniques of which became fashionable only in the
1960s (see also [110]). A number of other proofs have been given, including one we give in this book (see
Corollary 5.4.8) in which the result is seen as a special case of a 2-dimensional van Kampen type theorem.

The way this work was developed by Whitehead seems a very good example of what Grothendieck has called
‘struggling to bring new concepts out of the dark’ through the search for the underlying structural features of
a geometric situation.

Whitehead’s work on free crossed modules parallelled independent work by Reidemeister and his student
Renee Peiffer at about the same time on the closely related notion of identities among relations [162, 154], which
we deal with in Section 3.1. Whitehead also acknowledged in [176] that some of his results on second homotopy
groups were also obtainable from work of Reidemeister on chain complexes with operators, now recognised as
given by the complex of cellular chains of the universal cover of the space, and which has been extensively used
for example in simple homotopy theory [68].

2.3 The 2-dimensional van Kampen Theorem

Whitehead’s theorem on free crossed modules referred to in the last section demonstrated that a particular
universal property was available for homotopy theory in dimension 2. This suggested that there was scope for
some broader kind of universal property at this level.

It also gave a clue to a reasonable approach. Such a universal property, in order to be broader, would
clearly have to include Whitehead’s theorem. Now this theorem is about the fundamental crossed module of a
particular pair of spaces. So the broader principle should be about the fundamental crossed modules of pairs
of spaces. The simplest property would seem to be, in analogy to the van Kampen Theorem, that the functor

Π2 : Top2
∗ → XMod/Groups

described in (2.2.2) preserves certain pushouts. This led to the formulation of the next theorem. Also there
had been a long period of experimentation by Brown and Spencer on the relations between crossed modules
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and double groupoids [61, 60], and by Higgins on calculation with crossed modules, so that the proof of the
theorem, and the deduction of interesting calculations, came fairly quickly in 1974.

The next two theorems correspond to Theorem C of this Brown and Higgins paper ([39]). We separate
the statement into two theorems for an easier understanding. The first one is about coverings by two (open)
subspaces, the second one about adjunction spaces.

First, we say the based pair (X,A) is connected if A and X are path connected and for x ∈ A the induced map
of fundamental groups π1(A, x) → π1(X, x) is surjective, or, equivalently, using the homotopy exact sequence,
when π1(X, A, x) = 0.

Having in mind that all pairs are based but not including the base point in the statement, we have:

Theorem 2.3.1 Let A, U1, and U2 be subspaces of X such that the total space X is covered by the interiors of
U1 and U2. We define U12 = U1 ∩U2, and Aν = A∩Uν for ν = 1, 2, 12. If the pairs (Uν , Aν) are connected for
ν = 1, 2, 12, then:

(Con) The pair (X, A) is connected.

(Iso) The following diagram induced by inclusions

(2.3.1)

Π2(U12, A12) //

²²

Π2(U2, A2)

²²
Π2(U1, A1) // Π2(X,A)

is a pushout of crossed modules.

Remark 2.3.2 Recall that this statement means that the above mentioned diagram is commutative and has the
following universal property: For any crossed module M and morphisms of crossed modules φν : Π2(Uν , Aν) →
M for ν = 1, 2 making the external square commutative, there is a unique morphism of crossed modules
φ : Π2(X, A) →M such that the diagram

Π2(U12, A12) //

²²

Π2(U1, A1)

²² φ1

ºº

Π2(U2, A2) //

φ2 --

Π2(U,A)
φ

%%
M

commutes.

There is a slightly more general version of the theorem for adjunction spaces that can be deduced from the
preceding theorem by using general mapping cylinder arguments.

Theorem 2.3.3 Let X and Y be spaces, A a subset of X and f : A → Y a map. We consider subspaces
X1 ⊆ X and Y1 ⊆ Y and define A1 = X1 ∪ A and f1 = f | : A1 → Y1. If the inclusions A ⊆ X and A1 ⊆ X1

are closed cofibrations and the pairs (Y, Y1), (X,X1), (A,A1) are connected, then:

(Con) The pair (X ∪f Y, X1 ∪f1 Y1) is connected.
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(Iso) The following diagram induced by inclusions

(2.3.2)

Π2(A,A1) //

²²

Π2(Y, Y1)

²²
Π2(X, X1) // Π2(X ∪f Y, X1 ∪f1 Y1)

is a pushout of crossed modules.

Remark 2.3.4 The term closed cofibration included in the hypothesis of the theorem is satisfied in a great
number of useful cases. It can be intuitively interpreted as saying that the placing of A in X and of A1 in X1

are ‘locally not wild’.

The interest in these theorems is at least seven fold:

• The theorem does have Whitehead’s Theorem as a consequence (see Corollary 5.4.8).

• The theorem is a very useful computational tool and gives information unobtainable so far by other
sources.

• The theorem is an example of a local-to-global theorem. Such theorems play an important rôle in math-
ematics and its applications.

• The theorem deals with nonabelian objects, and so cannot be proved by traditional means of algebraic
topology.

• The two available proofs use groupoid notions in an essential way.

• The existence of the theorem confirms the value of the crossed module concept, and of the methods used
in its proof. We should be interested in algebraic structures for which this kind of result is true.

• It shows the difficulty of homotopy theory since one has, it appears, to go through all this just to determine,
as we explain in Section 5.8, the second homotopy groups of certain mapping cones.

A further point is that the proof we shall give later does not assume the general existence of pushouts of
crossed modules. What it does is directly verify the required universal property in this case.

These theorems are deduced in the above mentioned paper from a more general theorem on double groupoids
([39, Theorem B]) which will be proved as Theorem 6.8.2 in its appropriate setting. Now we conclude this section
by stating a more general version of Theorem 2.3.1 for general covers of a space X that can also be deduced
from Theorem 6.8.2.

Let Λ be an indexing set and suppose we are given a family U = {Uλ}λ∈Λ of subsets of X such that the
interiors of the sets of U cover X. For each ν = {ν1, · · · , νn} ∈ Λn, we write

Uν = Uν1 ∩ · · · ∩ Uνn .

Let A be a subspace of X, and define Aν = Uν ∩ A, for any ν ∈ Λn. Suppose also given a base point x ∈ A

which is contained in every Xλ.

Theorem 2.3.5 Assume that for every ν ∈ Λn, n > 1, the pair (Uν , Aν) is connected. Then

(Con) the pair (X, A) is connected, and
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(Iso) the crossed module Π2(X, A) satisfies the following universal property: For any crossed module M and
any family of morphisms of crossed modules {φλ : Π2(Uλ, Aλ) →M | λ ∈ Λ} such that for any λ, µ ∈ Λ
the diagram

Π2(Uλµ, Aλµ) //

²²

Π2(Uλ, Aλ)

φλ

²²
Π2(Uµ, Aµ)

φµ // M
commutes, there is a unique morphism of crossed modules φ : Π2(X, A) → M such that all triangles of
the form

Π2(Uλ, Aλ)

''OOOOOOOOOOOO
// Π2(X, A)

φ
²²
M

commute.

The universal property of the theorem can be expressed as what is called a ‘co-equaliser condition’ (see Ap-
pendix).

Remark 2.3.6 It can be easily seen from the proof that the conditions on n-fold intersections for all n > 1
can be relaxed to path connectivity of all 4-fold intersections, and 1-connectivity of all pairs given by 8-fold
intersections. More refinements of the arguments, using Lebesgue covering dimension, reduce these numbers to
3 and 4 respectively. These improvements were originally shown by Razak Salleh in his thesis [161].

The proof of Theorem 2.3.5 will be given later via another intermediate algebraic structure, that of dou-
ble groupoids, since these have properties which are more appropriate than are those of crossed modules for
expressing the geometry of the proof.

2.4 The classifying spaces of a group and of a crossed module

We are going to give in the second part of this book the construction of the classifying space of a crossed complex
that includes as particular cases the classifying spaces of a group and of a crossed module.

Nevertheless, this is a good point to recall some of the properties of both. In particular we want to stress
that these classifying spaces classify the 1-type and the 2-type of a space.

The classifying space of a group P is a functorial construction

B : Groups → Top∗

assigning a reduced CW-complex BP to each group P so that

Proposition 2.4.1 The homotopy groups of the classifying space of the group P are given by

πi(BP ) ∼=
{

P if i = 1,

0 if i > 2.

This gives a natural equivalence from π1B to the identity. There is also some relation between Bπ1 and the
identity. It is given by
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Proposition 2.4.2 Let X be a reduced CW -complex and let φ : π1(X) → P be a homomorphism of groups.
Then there is a map

X → BP

inducing the homomorphism φ on fundamental groups.

As consequence we get that Bπ1 captures all information on fundamental groups.

Theorem 2.4.3 Let X be a reduced CW -complex and let P = π1(X). Then there is a map

X → BP

inducing an isomorphism of fundamental groups.

It is because of these results that groups are said to model pointed, connected homotopy 1-types.

Next, we indicate a definition and state some properties of the classifying space of a crossed module M =
(µ : M → P ) B. It is a functor

B : XMod → Top∗

assigning to M a pointed CW -space BM with the following properties:

Proposition 2.4.4 The homotopy groups of the classifying space of the crossed module M are given by

πi(BM) ∼=




Coker µ for i = 1
Ker µ for i = 2
0 for i > 2.

There is a twofold relation with the classifying space of a group defined before. On one hand, it is a
generalisation, i.e.

Proposition 2.4.5 If P is a group then the classifying space B(1 → P ) is exactly the classifying space BP

discussed before.

On the other hand

Proposition 2.4.6 Let M / P . Then the morphism of crossed modules (M → P ) → (1 → P/M) induces a
homotopy equivalence of classifying spaces B(M → P ) → B(P/M).

This follows from Whitehead’s theorem, that a map of CW-spaces inducing an isomorphism of all homotopy
groups is a homotopy equivalence.

Proposition 2.4.7 The classifying space BP is a subcomplex of BM, and there is a natural isomorphism of
crossed modules

(2.4.1) Π2(BM, BP ) ∼= M.

Theorem 2.4.8 Let X be a reduced CW -complex, and let Π2(X,X1) be the crossed module π2(X, X1) →
π1(X1), where X1 is the 1-skeleton of X. Then there is a map

(2.4.2) X → B(Π2(X,X1))

inducing an isomorphism of π1 and π2.



2.4 The classifying spaces of a group and of a crossed module 37

It is because of these results that it is reasonable to say that crossed modules model all pointed connected
homotopy 2-types. This result is originally due to Mac Lane and Whitehead [137] (they use the term 3-type for
what later came to be called 2-type), and with a different proof.

Later we shall give by means of crossed complexes an elegant description of the cells of the classifying
space B(M → P ). The existence and properties of the classifying space show that calculations of pushouts
of crossed modules, such as those required by the 2-dimensional van Kampen Theorem, may also be regarded
as calculations of homotopy 2-types. This is evidence that we do have in the fundamental crossed module of
a pair an appropriate candidate for a 2-dimensional version of the fundamental group, as sought by an earlier
generation of topologists.

The situation we have for crossed modules and pairs of spaces comes under the following format:

(2.4.3)
(topological data)

Π //

U ''OOOOOOOOOOOO
(algebraic data)

B
oo

Bxxppppppppppp

Top

We suppose the following properties:

(i) The functor Π preserves certain colimits.

(ii) There is a natural equivalence ΠB ' 1.

(iii) B = UB.

(iv) There is a convenient natural transformation 1 ' BΠ preserving some homotopy properties.

Property (i) is a form of the van Kampen Theorem. This enables some computations to get started.
Property (ii) shows that the algebraic data forms a reasonable mirror of the topological data.
Property (iii) allows the classifying space to be defined: U is some kind of forgetful functor.
Property (iv) is difficult to state precisely in general terms. The intention is to show that the structure BΠ
captures some slice of the homotopy properties of the original topological data.

We shall not use any general format of or deduction from these properties, but it should be realised that the
material we give on groups and on crossed modules forms part of a much more general pattern.

Let us finish this section by giving also some indications of how to go up one dimension further. First
a theorem about the behaviour of that classifying space of crossed modules functor when applied to a short
exact sequence. This theorem will be deduced from a more general theorem on the classifying space of crossed
complexes, where more machinery is available for the proof.

Theorem 2.4.9 Suppose the commutative diagram

(2.4.4)

0 // L
i //

λ
²²

M
p //

µ
²²

N //

ν
²²

1

1 // K
j

// P
f

// Q // 1

is such that the vertical arrows are crossed modules, the squares are morphisms of crossed modules, and the rows
are exact sequences of groups. Then the diagram of induced maps of classifying spaces

B(L → K) → B(M → P ) → B(N → Q)
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is a fibration sequence.

In the above situation we say that the crossed module L → K is a kernel of the morphism (p, f) of crossed
modules. Note that the groups L,K are essentially normal subgroups of M, P respectively. There is an additional
property, that if k ∈ K, m ∈ M, then p(m−1mj(k)) = 1, so that m−1mj(k) ∈ Im i. This gives rise to a function
h : K ×M → L. The properties are summarised by saying that the first square of diagram (2.4.4) is a crossed
square [128]. This structure gives the next stage after crossed modules for modelling homotopy types, that is
they model homotopy 3-types. There seem to be good reasons why the analysis of kernels should give rise to
a higher order structure modelling a further level of homotopy types. These ideas are quite subtle and require
notions of ‘crossed squares’ which cannot be pursued this book (see [53] and [158]).

2.5 Cat1-groups.

There are several algebraic and combinatorial categories that are equivalent to the category of crossed modules.
Some of these equivalences were already known to Verdier in the late 60’s, but the first published account seems
to have been by Brown and Spencer in 1976 [61]. Later, these equivalences have been generalised by Ellis in
[83] to a more categorical setting.

Of the categories equivalent to XMod/Groups, perhaps the most used is the category Cat1- Groups of cat1-
groups. One of its advantages is the naturality of the generalisation to higher dimensions and in this way was
used for Loday in [128]. It is also useful in some cases when describing the colimits used in the van Kampen
Theorem.

In this section, we explain this equivalence and some of the applications. Let us begin by trying to express
the basic properties of a crossed module M = (µ : M → P ) in an alternative way.

The action of P on M can be encoded using the semidirect product P n M . Then, the map µ gives a
homomorphism t : P nM → P nM by the rule (p,m) 7→ (pµ(m), 1). (Then t is a homomorphism of groups by
CM1)).

It is a bit more difficult to find the way CM2) can be translated, but after playing for a while can be seen
that it gives that the elements of Ker t and those of M commute in P nM . This is the kind of algebraic object
we are going to need.

A cat1-group is a triple G = (G, s, t) such that G is a group and s, t : G → G are group homomorphisms
satisfying

CG1) st = t and ts = s

CG2) [Ker s,Ker t] = 1.

A homomorphism of cat1-groups between (G, s, t) and (G′, s′, t′) is a homomorphism of groups f : G → G′

preserving the structure, i.e. such that s′f = fs and t′f = ft. These objects and morphisms define the category
Cat1- Groups of cat1-groups.

Example 2.5.1 The category of groups, Groups, can be considered a full subcategory of Cat1- Groups using the
inclusion functor

I : Groups → Cat1- Groups

given by I(G) = (G, Id , Id).

Having in mind the discussion at the beginning of this section, we define a functor

λ : XMod/Groups → Cat1- Groups
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given by λ(µ : M → P ) = (P nM, s, t), where s(g, m) = (g, 1) and t(g, m) = (g(µm), 1).

Proposition 2.5.2 If µ : M → P is a crossed module, then λ(µ : M → P ) is a cat1-group.

Proof It is clear that s is a homomorphism. To check that t is also a homomorphism , let us consider elements
(g, m), (g′,m′) ∈ P nM . Then, we have

t((g,m)(g′,m′)) = t(gg′,mg′m′)
= (gg′µ(mg′)µm′), 1) = (gg′g′−1µmg′µm′), 1) by CM1)
= (gµmg′µm′), 1) = t(g, m)t(g′, m′).

It is also easy to prove that s, t satisfy CG1).

To check CG2), let us consider generic elements (1,m) ∈ Ker s and (µm′, m′−1) ∈ Ker t. Then, we have

(1,m)(µm′, m′−1) = (µm′,mµm′
m′−1) = (µm′,m′−1

mm′m′−1) by CM2)
= (µm′,m′−1

m) = (µm′, m′−1)(1,m).

2

Example 2.5.3 Thus, associated to any normal subgroup M of G, we have a cat1-group M nG, where G acts
on M by conjugation.

To define the functor back, let us check that all cat1-groups have a semidirect product decomposition.

Proposition 2.5.4 For any cat1-group (G, s, t):

i) The maps s, t have the same range, i.e. s(G) = t(G) = N , and are the identity on N .

ii) The morphisms s and t are “projections”, i.e. t2 = t and s2 = s.

Proof i) As st = t, we have Im t ⊆ Im s and as ts = s, we have Im s ⊆ Im t.

ii) We have ss = sts = ts = s. Similarly, tt = t. 2

As an easy consequence, we have:

Corollary 2.5.5 There are two split short exact sequences

1 → Ker s ↪→ G
s−→ N → 1 and 1 → Ker t ↪→ G

t−→ N → 1.

Remark 2.5.6 Thus G is isomorphic to both semidirect products N n Ker s and N n Ker t, where N acts
on both kernel by conjugation. The map N n Ker s → G is just the product and the inverse isomorphism
G → N nKer s is given by g 7→ (s(g), s(g−1)g).

We can also define an inverse functor

γ : Cat1- Groups → XMod/Groups

given by γ(G, s, t) = (t| : Ker s → Im s) where Im s acts on Ker s by conjugation.

Proposition 2.5.7 If (G, s, t) is a cat1-group, then γ(G, s, t) is a crossed module.
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Proof With respect to CM1), for all g ∈ Im s and m ∈ Ker s, we have

t(mg) = t(g−1mg) = (tg)−1(tm)(tg).

Now, since g ∈ Im s = Im t, by Proposition 2.5.4 we have tg = g. Thus, t(mg) = g−1(tm)g.

On the other hand, with respect to CM2) for all m,m′ ∈ Ker s, we have

m′(tm) = (tm−1)m′(tm) = (tm−1)m′(tm)m−1m.

Now, since (tm)m−1 ∈ Ker s and m′ ∈ Ker s, they commute, giving

m′(tm) = (tm−1)(tm)m−1m′m = m−1m′m.

2

Proposition 2.5.8 The functors λ and γ give an equivalence of categories.

Proof On one hand we have λγ(G, s, t) = (Im tnKer s, s′, t′) where s′(g, m) = (g, 1) and t′(g, m) = (gt(m), 1).
Clearly there is a natural isomorphism of groups φ : G → Im t n Ker s given by φ(g) = (s(g), s(g)−1g) that is
an isomorphism of cat1-groups.

On the other hand, γλ(µ : M → P ) = (Ker t−→ Im s) where s : PnM → PnM is given by s(g, m) = (g, 1).
There are obvious natural isomorphisms Ker s ∼= M and Im s ∼= P giving a natural isomorphism of crossed
modules. 2

2.6 The fundamental crossed module of a fibration

In this section the proofs will be omitted or be sketchy, since background in fibrations of spaces is needed.
Throughout we assume that ‘space’ means ‘pointed space’.

In this section we are going to give a proof that for any fibration F = (F i−→ E
p−→ X) the induced map

i∗ : π1(F ) → π1(E)

is a crossed module Π2(F) which we call the fundamental crossed module of the fibration F . This is an
observation first made by Quillen and from it can be deduced the fundamental crossed module of a pair of
spaces.

Perhaps it is better first to recall in some detail the action of π1(E) on π1(F ) for any fibration F .

Let us consider [µ] ∈ π1(F ) and [α] ∈ π1(E). The projection to X of the loop α−1µα is homotopic to the
constant through a homotopy of loops H : I×I → X. Since p is a fibration, using the homotopy lifting property,
we get a homotopy of loops H : I × I → E from α−1µα to a loop projecting to the constant, i.e. Im H1 ⊆ F .
We define

[µ][α] = [H1] ∈ π1(E).

We omit the proof that this action is well defined. This is a good exercise on fibration theory.
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To prove that i∗ is a crossed module, we proceed in a roundabout way. Clearly, it is equivalent to prove
that the semidirect product π1(E)n π1(F ) given by the action just defined is a cat1-group. Again, this is not
done directly, but instead we prove that there is a natural isomorphism of groups

π1(E ×X E) ∼= π1(E)n π1(F )

and that the former is a cat1-group, where E ×X E is the pullback of p along p, i.e.

E ×X E = {(e, e′) ∈ E × E : p(e) = p(e′)}.

First, let us prove that π1(E ×X E) decomposes in the expected semidirect product.

Proposition 2.6.1 For any fibration F = (F i−→ E
p−→ X), there are two splitting short exact sequences

1 → π1(F ) i1∗−→ π1(E ×X E)
p1∗−→ π1(E) → 1 and 1 → π1(F ) i2∗−→ π1(E ×X E)

p2∗−→ π1(E) → 1

where il is the inclusion of F in the lth factor. Moreover both are natural with respect to maps of fibrations.

Proof Recall that the projection in the first factor E ×X E → E is a fibration with fibre F since it is the
pullback of p along itself. Also, the diagonal map gives a section of this fibration. Thus, its homotopy exact
sequence decomposes into a sequence of splitting short exact sequences. In particular,

1 → π1(F ) i1∗−→ π1(E ×X E)
p1∗−→ π1(E) → 1

is a splitting short exact sequence. The same is true in the second case. 2

Now, we are able to prove that (π1(E ×X E), s, t) where s (resp. t) is the homomorphism induced on the
fundamental groups by the composition of the projection in the first (resp. second) factor and the diagonal is
a cat1-group for any fibration F . We shall call it the fundamental cat1-group of the fibration F .

Proposition 2.6.2 Let F = (F i−→ E
p−→ X) be a fibration. Then (π1(E ×X E), s, t) is a cat1-group.

Proof It clearly satisfies CG1) since the maps s, t are essentially projections.

To prove CG2), using the exact sequence of Proposition 2.6.1, we have Ker s = Im i1∗ and Ker t = Im i2∗

Also by Proposition 2.6.1 the elements of Ker s are of the form [(ct, µ)] where µ is a loop in the fibre and
the elements of Im s are of the form [(α, α)] where α is a loop in E.

We choose elements [(ct, µ)] ∈ Ker s and [(ν, ct)] ∈ Ker t where µ and ν are loops in the fibre. The
commutativity of these elements is now clear, since

[(ν, ct)][(ct, µ)] = [(ct, µ)][(ν, ct)] = [(ν, µ)].

2

Now, we proceed to identify the crossed module associated with (π1(E ×X E), s, t).

Proposition 2.6.3 The crossed module (t| : Ker s → Im s) associated to the cat1-group π1(E×X E) is naturally
isomorphic to Π2F = (π1(F ) → π1(E)).
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Proof There are natural isomorphisms π1(F ) ∼= Ker s and π1(E) ∼= Im s, given by [µ] 7→ [(ct, µ)] and
[α] 7→ [(α, α)] respectively. It remains only to check that these isomorphisms preserve actions.

The action of Ker s on Im s is given by conjugation in π1(E ×X E). Under these isomorphisms the result
of the action of [α] ∈ π1(E) on [µ] ∈ π1(F ), is the homotopy class of any loop ν in F satisfying

[(ct, ν)] = [(α−1α, α−1µα)].

Recalling the definition of the π1(E) action on π1(F ) at the beginning of the section, we see that [µ][α] is
represented by just this same element. 2

To define the fundamental cat1-group functor on maps of general topological spaces we need some more
homotopy theory. There is no space to develop this here in full, and so we just sketch the ideas, which are well
covered in books on abstract homotopy theory, for example [120].

A standard procedure in homotopy theory is to factor any map f : Y → X through a homotopy equivalence
i and a fibration f : Y → X where Y = {(λ, y) ∈ XI × Y : λ(1) = f(y)} and f(λ, y) = λ(0).

This gives a functor Fib : f 7→ f from maps to fibrations. We define the cat1-group functor on maps of
general topological spaces by composition with the cat1-group of fibrations functor.

Let us sketch a direct description of the composite functor

Maps → Cat1- Groups

following ideas of Gilbert in [93].

The functor is defined by
(f : Y → X) 7→ (π1(Y ×X Y ), p1∗, p2∗).

Using the homeomorphism

Y ×X Y ≡ {(y1, λ, y2) ∈ Y ×XI × Y : λ(0) = f(y1) and λ(1) = f(y2)}

the projections in the factors correspond to the maps

p1(y1, λ, y2) = (y1, λ1), where λ1(t) = λ(t/2)
p2(y1, λ, y2) = (y2, λ2), where λ2(t) = λ(1− (t/2)).

Via the same homeomorphism, the elements of π1(Y ×X Y ) correspond to homotopy classes of triples,
[(α, µ, β)], where µ : I×I → X maps I×{0, 1} to the base point and α, β : I → Y are loops on Y lifting µ(0,−)
and µ(1,−) respectively. The homotopies correspond to triples, (F, H,G), the map H : I × I × I → X sending
I × {0, 1} × I to the base point, and F,G : I × I → Y being homotopies of loops, relative to the end points,
lifting H(0,−,−) and H(1,−,−), respectively.

The description of p1∗ and p2∗ follows easily.

For the sake of coherence let us point out that if f is already a fibration, both definitions of the fundamental
cat1-group produce the same group up to isomorphism.

If f is a fibration, f and f are fibre homotopy equivalent. It can be checked directly that Y ×X Y and
Y ×X Y are also homotopy equivalent, but it is also a consequence of the following cogluing theorem which is
a special case of the results of [37]. The dual of this result, namely a ‘gluing theorem’, is proved in [30] and in
an abstract setting in [120].
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Theorem 2.6.4 Suppose given maps over X
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such that f, f, g, g are fibrations, and i, j are homotopy equivalences. Then the induced map on pullbacks

i×X j : Y ×X Z → Y ×X Z

is also a homotopy equivalence, and in fact a fibre homotopy equivalence.

In the particular case in which we are mostly interested, we consider a pair of topological spaces (X, A).
Associated to the inclusion i : A → X there is the fibration A → X where Ā is the space of paths in X starting
at some point of A and the map sends each path to its end point. The fibre of this fibration is the space

Fi = {λ ∈ XI : λ(0) ∈ A and λ(1) = ∗}
whose homotopy groups are, by definition, those of the pair (X, A), i.e.

πn(Fi) = πn+1(X, A).

In particular, the fundamental crossed module of a pair functor

Π2 : Top2
∗ −→ Fib −→ XMod/Groups

is given by
Π2(X, A) = (∂ : π2(X, A) → π1(A))

with the usual action already known and used by Whitehead.

Finally in this section, we mention some relations of crossed modules with algebraic K-theory, for those
familiar with that area.

Let R be a ring. A basic structure for algebraic K-theory is the homotopy fibration

F (R) → BGL(R) → BGL(R)+.

This yields the crossed module
(π1(F (R)) → π1(BGL(R)))

which is equivalent to
(St(R) → GL(R))

which has cokernel K1(R) and kernel K2(R).

Now let I be an ideal of R, and let GL(R, I), the congruence subgroup, be the kernel of GL(R) → GL(R/I).
By the same trick, we get a crossed module

St(R, I) → GL(R, I)

which has cokernel K1(R, I) and kernel K2(R, I). This is Loday’s definition of the relative K2 [127]. It differs
from that of Milnor [149] by relations corresponding to those of the second rule CM2) for a crossed module.

One advantage of this procedure is the generalisation to multirelative groups K2(R; I1, . . . , In) [102, 84]. The
relevant algebra is that of crossed n-cubes of groups. All this was one of the motivations for the van Kampen
Theorem for n-cubes of spaces [53].
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2.7 The category of categories internal to groups

In this section, we study another category equivalent to XMod/Groups, namely the category of categories internal
to groups, written Cat[Groups]. This category has easy generalisations both to higher dimensions and to other
algebraic settings.

This category has two features that make it very interesting. On the one hand it can be used as an
intermediate step to get a simplicial equivalent of crossed modules which can be generalised to crossed n-cubes.
(This has been done by T. Porter in [158]).

On the other hand, we shall see that the category Cat[Groups] is formed by groupoids, being also the category
of group-groupoids. This will be generalised in Chapter 6 to an equivalence from the category XMod of crossed
modules over groupoids to a category of double groupoids.

First, let us recall from the Appendix that the definition of a category C is given by two sets, the object
set, Ob C, and the morphism set, Mor C, and four maps, the identity i, the source and target s, t, and the
composition of morphisms ◦, satisfying several axioms. Note that ◦ is considered as a function on its domain.

We say that C is a category internal to Groups, if both Ob C and Mor C have a group structure and the maps
s, t, i and ◦ are homomorphisms of groups. Thus, a category internal to Groups is also a group in the category
of all small categories. This principle for algebraic structure that ‘an A in a B is also a B in an A’ is of wide
applicability.

Similarly, a functor f : C → C′ between two categories, is a pair of maps Ob f and f commuting with the
structure maps (source, target, identity and composition).

A functor between categories internal to Groups is a functor internal to Groups if both maps are homomor-
phisms of groups.

Then, Cat[Groups] is the category whose objects and morphisms are categories and functors internal to
Groups.

For any object C in Cat[Groups], we will write the product in Mor C additively and the product in Ob C
multiplicatively. Then, if 1 and 0 are the identities in Ob C and Mor C, we have i(1) = 0, s(0) = 1 and t(0) = 1.
So, the elements of Ker s (resp. Ker t ) are the morphisms with source 1 (target 1 ).

The next property shows that, for any category internal to Groups, we can define the composition of mor-
phisms in terms of the other structure maps.

Proposition 2.7.1 For any two composable morphisms, u and v, we have

(i) v ◦ u = v − itu + u = v − isv + u,

(ii) v ◦ u = u− itu + v = u− isv + v.

Proof (i) We have

v ◦ u = (v + 0) ◦ (itu + (−itu + u)) = (v ◦ itu) + (0 ◦ (−itu + u)) = v − itu + u.

The second equality is immediate because the morphisms are composable, so itu = isv.

(ii) is proved in a similar way. 2
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Remark 2.7.2 Thus, to prove that a category where the objects and morphisms are groups, and the source
target and identity are homomorphisms, is internal to groups, all we have to check is that the composition
defined using Proposition 2.7.1 is a homomorphism.

There is also an expression for the inverse of a morphism, proving that all categories internal to groups are
groupoids.

Proposition 2.7.3 For any morphism in a category internal to groups we have

u−1 = isu− u + itu.

Proof Let us define u−1 by this formula. We can easily check that it has the appropriate source and target
and that both compositions are the identity. 2

Remark 2.7.4 As a consequence of this property, a category internal to groups is a groupoid internal to groups,
or, equivalently, a group in the category of groupoids.

Considering that a group is just a groupoid with only one object, we could try to study the category of
“groupoids of groupoids”, or “double groupoids”. We shall do this in Chapter 6.

To end this section, we state the relation of Cat[Groups] to the previous categories. The equivalence with
Cat1- Groups is easily defined.

In one direction, we assign to the cat1-group (G, s, t) the category having Im s = Im t as set of objects, G

as set of morphisms, s and t as source and target, identity the inclusion Im s ⊆ G and composition defined by
g′ ◦ g = g′ − itg + g, for any g, g′ ∈ G with tg = sg′. It can be easily checked that this gives a category internal
to Groups.

In the other direction, to any category C internal to Groups we assign the cat1-group (Mor C, i ◦ s, i ◦ t).

Thus, the categories XMod/Groups and Cat[Groups] are equivalent, since both are equivalent to Cat1- Groups.
However, it is convenient to record for further use the functors giving this equivalence.

The functor one way is defined as C 7→ (s| : Ker t → Ob C), where C is a cat1-group. The reverse
functor assigns to any crossed module M = (µ : M → P ) the category having P as set of objects, P nM

as set of morphisms; identity map given by the inclusion; source and target maps given by s(g, m) = g and
t(g, m) = g(µm) and composition given by any of the formulae in Proposition 2.7.1.

Nevertheless, there is a simpler expression for the composition in this case. Notice first that with the
definition of source and target, two morphisms (g′,m′), (g, m) ∈ P nM are composable when gµm = g′.

Proposition 2.7.5 The composition of morphisms in P nM ,

◦ : P nMs×t P nM → P nM

is given by (g(µm),m′) ◦ (g, m) = (g, mm′).

Proof This is not difficult to prove using the definition of composition given in Proposition 2.7.1 i). 2

With this property we can get another model of the category internal to Groups associated to a crossed
module.
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Proposition 2.7.6 The map A : Mor C s×t Mor C → P nM nM defined by A((g′,m′), (g,m)) = (g,m, m′),
is an isomorphism carrying the composition to the map

◦′ : P nM nM → P nM

sending (g, m,m′) to (g,mm′).

Proof Clearly A is bijective and transforms the composition to the afore mentioned map. It remains to check
that A is a homomorphism and that is left as an exercise. 2

Let us consider now the composite functor

Fib → Cat1- Groups → Cat[Groups]

i.e., mapping F to the category internal to Groups associated to the cat1-group π1(E ×X E).

Using the isomorphism Im pi∗ ∼= π1(E), this category is isomorphic to the category that has π1(E) as
objects, π1(E ×X E) as morphisms, source and target given by projections, identity given by the diagonal and
composition the only one possible to make this a category internal to groups.

As seen before, this category is also isomorphic to the one associated to π1(E) n π1(F ), that has π1(E) as
objects, π1(E) n π1(F ) as morphisms, ([α], [µ]) 7→ [α] and ([α], [µ]) 7→ [α] ∗ i∗([µ]) as source and target maps
and composition given by

([α] ∗ i∗[µ], [µ′]) ◦ ([α], [µ]) = ([α][µ ∗ µ′]).

We finish by stating a description of the composition in π1(E ×X E).

Proposition 2.7.7 Let [(α, β)], [(β′, γ′)] ∈ π1(E×X E) be such that [β] = [β′],i.e. there is a homotopy G : β′ ∼=
β. Since p is a fibration there is a homotopy H lifting pG and starting with γ′. Then

[(β′, γ′)] ◦ [(α, β)] = [(α,H1)].

Proof It is clear that [(β′, γ′)] and [(β,H1)] are homotopic using the homotopy (G,H). Then, [(β′, γ′)] ◦
[(α, β)] = [(β,H1)] ◦ [(α, β)]. So, we only have to consider the composition in the case [(β, γ)] ◦ [(α, β)]. Using
that F is a fibration there are unique [µ], [µ′] ∈ π1(F ) with

[(α, β)] = A([α], [µ]) = [(α ∗ ct, α ∗ µ)]

and
[(β, γ)] = A([β], [µ′]) = [(β ∗ ct, β ∗ µ′)].

Clearly, [β] = [α] ∗ i∗([µ]), and

[(β, γ)] ◦ [(α, β)] = A([β], [µ′]) ◦A([α], [µ])
= [(β ∗ ct, β ∗ µ′)] ◦ [(α ∗ ct, α ∗ µ)]
= [(α ∗ ct, α ∗ µ′ ∗ µ)]
= [((α ∗ ct) ∗ ct, α ∗ µ′ ∗ µ)]
= [(α ∗ ct, β ∗ µ′)]
= [(α, γ)].

2
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This proof is related to a proof in [50] which shows that in the construction of a double homotopy groupoid of
a map of spaces, a composition defined geometrically agrees with that derived from Generalised Galois Theory.

We can also describe easily the functor

Maps → Cat[Groups].

Notice that π1(Y ) is isomorphic to π1(Y ) under the projection. So the associated category internal to groups
is equivalent to the one having π1(Y ) as objects, π1(Y ×X Y ) as morphisms, source and target given by
[(α, µ, β)] → [α] and [(α, µ, β)] → [β], and composition given by [(β, µ′, γ)] ◦ [(α, µ, β)] = [(α, µ′ ∗ µ, γ)].

Note that if ν is an homotopy from β to β′, the composition of [(α, µ, β)] with [(β′, µ′, γ)] is given by
[(α, µ′ ∗ ν ∗ µ, γ)] since [(β′, µ′, γ)] = [(β, µ′ ∗ ν, γ)].
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Chapter 3

Basic algebra of crossed modules

In this chapter we analyse what historically was the second source of crossed modules over groups: identities
among relations in presentations of groups.

A central problem in mathematics is the representation of infinite objects in manipulable, and preferably
finite, terms. One method of doing this is by what is called a resolution. There is not a formal definition of
this, but we can see several examples.

This notion first arose in the 19th century study of invariants. Invariant theory deals with subalgebras of
polynomial algebras Λ = k[x1, . . . , xn], where k is a ring. Consider for example, the subalgebra A of Z[a, b, c, d]
generated by

a2 + b2, c2 + d2, ac + bd, ad− bc.

It is called an invariant subalgebra since it is invariant under the action of Z2 which switches the variables a, b

and c, d. As pointed out in [92, p.247], “these generators satisfy the relation

(ac + bd)2 + (ad− bc)2 = (a2 + b2)(c2 + d2)

which is classically called a syzygy, and the algebra A of invariant polynomials turns out to be the homomorphic
image of the polynomial algebra in four variables given by the quotient algebra

Z[x, y, z, w]/(z2 + w2 − xy).

In particular, the algebra is finitely generated by four explicit polynomials, and the ideal of relations is finitely
generated by a single explicit relation.”

On [92, p.253-4] we have: “Since the second main problem had succumbed so easily, it was natural to turn
to chains of syzygies, studying relations among the generating set of relations and so on. More precisely, this
work involved the sequence of finitely generated k[x1, . . . , xn]-modules

0 // J1
// F1

// B1
// 0

0 // J2
// F2

// J1
// 0

· · · · · · · · ·
0 // Jq // Fq // Jq−1 // 0,

where the Fi are free with rank equal to the minimal number of generators of the i’th syzygy Ji. Hilbert’s main
theorem on the chains of syzygies says that if k is a field then Jq = 0 if q > n. In effect, this launched the
theory of homological dimension of rings.”

49
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It was also natural to splice the morphisms Fq → Jq−1 → Fq−1 together to get a sequence

· · · ∂q+1−→ Fq
∂q−→ Fq−1

∂q−1−→ · · · ∂2−→ F1
∂1−→ B1

which was exact in the sense that
Ker ∂q = Im ∂q+1

for all q. This sequence was called a free resolution of the module B1.

A natural question was the independence of this sequence on the choices made. It was found that given
any two such free resolutions F∗ → B1, F ′∗ → B1, then there was a morphism F∗ → F ′∗ and any two such
morphisms were homotopic. It was also later found that the condition ‘free’ could conveniently be replaced by
the condition projective.

Another source for homological algebra was the homology and cohomology theory of groups. As pointed
out in [134], the starting point for this was the 1942 paper of Hopf [112]. Let X be an aspherical space (i.e.
connected and with πiX = 0 for i > 1), and let

1 → R → F → π1X → 1

be an exact sequence of groups with F free. Hopf proved the formula

H2X ∼= (R ∩ [F, F ])/[F, R].

We shall see in Section 5.5 that this formula follows from our van Kampen Theorem for crossed modules. Thus
we see the advantage for homotopy theory of having a 2-dimensional algebraic model of homotopy types.

Later work of Eilenberg-Mac Lane [80] found an algebraic formula for HnX, n > 2 as follows. Produce
sequences of ZG-modules

0 // J1
// F1

// Z // 0

0 // J2
// F2

// J1
// 0

· · · · · · · · ·
0 // Jq // Fq // Jq−1 // 0,

in which Z is the trivial ZG-module, and each Fn is a free ZG-module. Splice these together to give a free
resolution of Z:

F∗ : . . . → Fn → Fn−1 → . . . → F2 → F1 → Z.

Form the chain complex C = F ⊗ZG Z. Then HnC ∼= HnX. Using particular choices of the Fn, the Hopf
formula may be deduced [20, p.46].

Thus we see an input from the homotopy and homology theory of spaces into the development of homo-
logical algebra. The use of homological methods across vast areas of mathematics is a feature of 20th century
mathematics. It seems the solution of Fermat’s last theorem depended on it, but it has also been applied in
differential equations, coding theory and theoretical physics.

In its 20th century form, homological algebra is primarily an abelian theory. There is considerable work on
nonabelian homological algebra, but this is only beginning to link with work in homotopical algebra, differential
topology, and related areas. This book has an aim of showing one kind of start to a more systematic background
to such an area.

Now the elementary, computational and example-oriented approach to groups considers presentations 〈X;R〉
of a group Q: that is X is a subset of Q and there is an exact sequence

1 → N → FX
p→ Q → 1 (∗)
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where FX is the free group on generators [x], x ∈ X; p is defined by p[x] = x, x ∈ X; and R is a set of
generators of N as normal subgroup of FX. Thus, each element of N is a consequence

c = (rε1
1 )u1 . . . (rεn

n )un ,

ri ∈ R, εi = ±1, ui ∈ FX and ab = b−1ab. However, this representation of elements of N , and the persistent
use of N and FX as non-abelian groups (rather than of modules derived from them) plays a small role in the
homological algebra of groups. One would expect, a priori, that the sequence (*) would be the beginning of a
“nonabelian resolution” of the group Q. We will show that this is so in a later chapter.

Another curiosity is that there are a number of results in homotopy theory which are satisfactory for
1-connected spaces, but for which no formulation has been given when this assumption has been dropped,
particularly when some non-abelian group has to be described. As long as interest was focussed on high-
dimensional, or stable, problems, this restriction seemed not to matter. In many problems of current interest
(for example low-dimensional topology, low-dimensional homology of groups, algebraic K-theory) this restriction
has proved irksome, but few appropriate constructions have been generally seen to be available. This is one of
the reasons for promoting the subject matter of this book.

In section 3.1 we recall what is a presentation 〈X | ω〉 of a group P , and show that the ‘identities among
the relations’ can be seen as the elements of the kernel of a morphism θ : F (R× P ) → P which satisfies CM1)
in the definition of crossed modules.

This gives good reason to relax the concept of crossed module. In Section 3.3 we define precrossed modules
in terms of axiom CM1) and also the functor that associates to every precrossed module a crossed module. This
construction (−)cr is adjoint to the inclusion of categories XMod/Groups ↪→ PXMod/Groups.

The morphism θ : F (R × P ) → P has some extra freeness properties, making it what is called a ‘free
precrossed module’. These are studied in Section 3.4.

The chapter ends with the definition of a category of algebraic objects equivalent to that of precrossed
modules and generalising the equivalence defined in Section 2.5.

3.1 Presentation of groups and identities among relations.

We now show how crossed modules arise in combinatorial group theory, following to some extent the exposition
in [49].

A group G is of course defined as a set with a multiplication satisfying certain axioms. In some cases this
multiplication can be specified by a formula involving the elements: notable examples are certain matrix groups,
such as the Heisenberg group H of matrices of the form




1 x y

0 1 z

0 0 1




for x, y, z ∈ Z. Thus the elements of H are given by triples (x, y, z) of integers with multiplication

(x, y, z)(u, v, w) = (x + u, y + v + xw, z + w).

This is known as a ‘polynomial group law’. So we have a formula for the elements of the group H and for the
multiplication.

The reader should not be surprised that this could raise difficulties in other cases. Part of the problem
may be to give a useful formula for the elements of the group, let alone a formula for the multiplication. In
mathematics as a whole, the question of ‘presenting’ information on a structure is often a key part of a problem.
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An often useful way of representing the elements of a group is by giving generators for the group.

Example 3.1.1 Let D4 be the dihedral group of order 8, i.e. the group of symmetries of the square. This
group is generated by the elements x, y where x is rotation anticlockwise through 90◦ and y is reflection in a
vertical bisector of the square. The elements of D4 can then be written as

1, x, x2, x3, y, yx, yx2, yx3

and this is quite a convenient labelling of the elements. However if you try to work out the multiplication
table in terms of this labelling you find you need more information, namely relations among the generators, for
example

x4 = 1, y2 = 1, xyxy = 1.

If you are not already familiar with these, particularly the last one, then you are expected to verify them using
some kind of model of a square. It turns out that every relation you might need in working out the multiplication
table is a consequence only of these three. Thus we can specify the group completely also in terms of what we
call a ‘presentation’

P = 〈x, y | x4, y2, xyxy〉.
If there is any need, we shall write D4 = gpP. We need a definition of this idea of a presentation.

The first thing to note is that the term x4 in the presentation P is not an element of the group D4, since
the 4th power of the element x in D4 is 1. Rather, as is common with the mathematical use of =, one side of
the = sign in x4 = 1 is in fact an instruction: ‘multiply x by itself 4 times’, while the other side tells you what
will be the result. A convenient language to express both an ‘instruction for a procedure’ and the result of the
procedure is that of a morphism defined on a free group.

A free group F (X) on a set X is intuitively a group F (X) together with an inclusion mapping i : X → F (X)
such that X generates the group F (X) and ‘there are no relations among these generators’. There are two
useful ways of expressing this precisely.

One of them is to give what is called a ‘universal property’: this is that a morphism g : F (X) → G to a
group G is entirely determined by its values on the set X. Put in another way, given any function f : X → G,
there is a unique morphism g : F (X) → G such that gi = f . This ‘external’ definition thus defines a free group
by its relation to all other groups, and is a model for the notion of ‘freeness’ in other algebraic situations. A set
X generating a free group plays a rôle similar to that of a basis for a vector space, and we also talk about X as
a basis for the free group F (X). However, unlike vector spaces, not every group is free. The simplest example is
the group Z2 with two elements: it is not free because there is only one morphism Z2 → Z, the zero morphism.

The other ‘internal’ way of specifying a free group is to specify its elements and the multiplication, and this
can be done in terms of ‘reduced words’: every non identity element of F (X) is uniquely expressible in the form

(3.1.1) xr1
1 xr2

2 . . . xrn
n

where n > 1, xi ∈ X, ri ∈ Z, ri 6= 0, and for no i is xi = xi+1, i.e. no cancellation in the expression (3.1.1) is
possible. In this specification, work is needed to give the multiplication since adjoining two reduced words often
yields a non reduced word, and the reduction process has to be given. Accounts of this are in many books on
combinatorial group theory, for example [118, 131, 67]. Reduced words are commonly used to store elements of
a free group in computer implementations of combinatorial group theory.

We assume now that we have free groups, and this allows us to give our first definition of a presentation of
a group Q.
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Definition 3.1.2 A presentation P = 〈X | R〉 of a group Q consists of a set X and a subset R of the free group
F (X) together with a surjective morphism φ : F (X) → Q such that Ker φ is the normal closure in F (X) of the
set R.

If there is any need, we shall write D4 = gpP.

We explain in more detail the notion of normal closure, since this gives a useful model of an important general
process, and we will use a more general form later for presentations of groupoids. First recall that for any normal
subgroup K ¢ P , the group P acts on the group K by conjugation: we write kp for p−1kp, k ∈ K, p ∈ P . A
basic aspect of group theory is that a normal subgroup is a kernel of a morphism (in this case, for example, of
the quotient morphism P → P/K), and that the kernel of any morphism from P to a group is normal in P .

If R is a subset of the group P then the normal closure NP (R) of R in P is the smallest normal subgroup
of P containing R. We write conjugation of p by q as pq = q−1pq for all p, q ∈ P . The elements of NP (R) are
all consequences of R in P , namely all products

(3.1.2) c = (rε1
1 )p1 . . . (rεm

m )pm

where ri ∈ R, εi = ±1, pi ∈ P and m > 1. An important point is that if φ : P → Q is any morphism to a group
Q such that φ(R) = {1}, then φ(NP (R)) = {1}, since Ker φ is normal. Thus φ factors as P → P/NP (R) → Q

where the first morphism is the quotient morphism.

Now we can see that there might be identities among consequences. Intuitively, such an identity is a ‘formal’
product such as (3.1.2) which is 1 when evaluated in the group P . A definition is given below. Here we consider
some examples.

Example 3.1.3 For any elements r, s of R, we have the identities

r−1s−1rsr = 1,

rs−1r−1s(r−1) = 1.

These identities hold always, whatever R.

Example 3.1.4 Suppose r ∈ R, p ∈ P and r = pm,m ∈ Z. Then rp = pr, i.e. p belongs to the centraliser C(r)
of r in P . We have the identity

(3.1.3) r−1rp = 1.

It is known that if the group P is free and r ∈ R then there is a unique element p of P such that r = pm with
m ∈ N maximal and then C(r) is the infinite cyclic group generated by p. This element p is called the root of r

and if m > 1 then r is called a proper power.

Example 3.1.5 Suppose the commutators [p, q] = p−1q−1pq, [q, r], [r, p] are among the elements of R. Then
the well known rule

(3.1.4) [p, q][p, r]q [q, r][q, p]r [r, p][r, q]p = 1

is an identity among the consequences of R, since [q, p] = [p, q]−1.

Example 3.1.6 Let S3 be the symmetric group on three letters with presentation 〈x, y | r, s, t〉 where r =
x3, s = y2, t = xyxy. The fact that each relation is a proper power gives rise to three identities among relations,
namely

r−1rx, s−1sy, t−1txy.
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However there is also a fourth identity namely

(s−1)x−1
ts−1(r−1)y−1

tx(s−1)xr−1tx
−1

.

We leave it to you to verify that this is an identity among relations by writing out the formula in the free group
on x, y. This identity can also be interpreted as a kind of composition of 2-cells in the following picture:

1 - x

]

x2

À
y

Á

¾

yx

^
xy-

¾

Á
À

M ^

The Cayley graph of S3

We shall discuss this a bit more in the next Section in terms of van Kampen diagrams.

Note that in all these examples conjugation is crucial. This is related to the fact that the kernel K of a
morphism from a group P should be thought of not just as a subgroup K of the group P but also as a subgroup
with an action of P on K. This principle, that a kernel in nonabelian situations has more structure than just
that of subobject, is of general applicability. It is of direct applicability to the definition of an identity among
the consequences of a subset R of the group P .

One extra formality is needed. We wish to allow for the consideration of repeated elements of R. One reason
for this is that we may have some difficulty in recognising that two specified elements of P are in fact the same.
In the context of presentations, we wish to allow for repeated relations. In the geometric context, we allow
repeated attaching of cells by the same map (for example a constant map). Therefore we replace the subset R

of P by a function ω : R → P and denote a presentation as P = 〈X | ω〉. Nevertheless, we keep the notation
〈X | R〉 whenever R ⊆ F (X) and ω is the inclusion.

Now in order to say that an identity among consequences is a formal product such as (3.1.2) which is 1 when
evaluated in the group P , we need to define the free object in which such a ‘formal product’ should lie.

We adopt a more general notation and define the free P -group on R to be the free group on the set R× P .
We denote this P -group by H. The action of P on R× P is given by the product, i.e. by

(r, p)q = (r, pq)

and this determines an action of P on the free group H. By another use of the universal property of a free
group there is a morphism θ : H → P defined on generators by

θ(r, p) = p−1ω(r)p.

It is easy to see that the image of θ is the normal closure in P of ω(R). In symbols:

θ(H) = NP (ω(R)).

It is clear also that the map θ preserves the action of P : that is, for any h ∈ H, p ∈ P

(3.1.5) θ(hp) = p−1(θh)p.
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You will recognise this as the axiom CM1) for a crossed module; however H with θ does not necessarily satisfy
axiom CM2).

The elements of H will be called formal consequences of ω : R → P in P .

There is an alternative description of H which we give for those familiar with the group theoretic background.

Proposition 3.1.7 The group H is isomorphic to the normal closure of R in the free product P ∗ F (R).

Proof This is a simple consequence of the Kurosch subgroup Theorem for free products. 2

Our first definition is that an identity among the consequences of 〈X | ω〉 in P is an element of E = Ker θ.
Equivalently, an identity among consequences is a formal consequence which gives 1 when evaluated as an actual
consequence in P .

The idea of specifying an identity among consequences is thus very similar to that of specifying a relation
as an element of the free group FX, but taking the action into account. That is, we have to work with the
appropriate concept of ‘free’. However, we are not yet at our final position.

It is easy to see that certain identities are always present in E. We define the basic Pfeiffer elements to be
the elements of E of the form

a−1b−1abθ(a)

where a, b ∈ R× P . Note that
(r′, p′)θ(r,p) = (r′, p′p−1(wr)p).

More generally, if h, k ∈ H we will write

[[h, k]] = h−1k−1hkθ(h)

and call such an element a Peiffer element. These should be thought of as ‘twisted commutators’. In this spirit,
there is a ‘Peiffer commutator calculus’ whose study has been advanced considerably by Baues and Conduché
[13].

3.2 van Kampen diagrams

These diagrams give a geometric method of deducing consequences of relations, and can, as we shall see, be used
to show exactly how to write a word as a consequence of the relations. We do not give a general definition or
description, but illustrate it with examples. The idea has been used extensively in some sophisticated theorems
in combinatorial group theory. For our purposes, the idea illustrates geometric aspects of the use of crossed
modules.

The idea of these diagrams come from the fact that a relation in a presentation can be represented by a
based cell whose sides are labeled by the letters of the relation in such way that when they are read clockwise
from the base point we get the relation.

Then, we can get new relations by gluing two or more of these cell along some common sides. Let us consider
a simple case.

Example 3.2.1 Suppose for a given presentation we have the relations r = bd−1 and s = abc. They can be
represented as based cells as follows:
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We write δs = abc, δt = db−1. Now, we glue r and s alongside b getting
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The boundary of this new cell is

adc = abc · c−1b−1 · db−1 · bc = (δs)(δ(tbc)).

Of course tbc makes sense in the context of crossed modules of groupoids, since t is based at B whereas tbc is
based at A.

Here is a more complex example.

Example 3.2.2 The quaternion group of order 8 is usually presented in the form

Q8 = gp 〈x, y | x4, x2y−2, y−1xyx〉.

However the following diagram shows that the relation x4 is a consequence of the other two relations. Set
r = x4, s = x2y−2, t = y−1xyx and consider the drawing
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•
oo
x

In this diagram, each cell has a base point, represented by a •, which is where the reading of the boundary starts
in clockwise direction. This explains why we have an s and s−1, since the latter is s read counterclockwise.

Now we have to show how we can deduce from this diagram the expression we want.

We take the outside loop starting from A (which has a base point for the outside ‘cell’) and then change it
to traverse the boundary of each internal cell, obtaining the rule which you can easily verify:
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xxy−1y−1 · yx−1x−1y · y−1xyx · x−1 · y−1xyx · x = x4.

This can be reread as:

s · yx−1x−1y · t · x−1 · t · x = x4.

But yx−1x−1y = yx−1x−1 · yyx−1x−1 · xxy−1 = (s−1)xxy−1
. So our final result is that

s · (s−1)xxy−1 · t · tx · r−1

is an identity among relations, or, alternatively, shows in a precise way how x4 is a consequence of the other
relations.

One context for van Kampen diagrams is clarified by the notion of shelling of such a diagram. This is a
sequence of 2-dimensional subcomplexes K0,K1, . . . , Kn each of which is formed of 2-dimensional cells, with K0

consisting of a chosen basepoint ∗, K1 being a 2-cell s1 with ∗ on its boundary, and such that for i = 2, . . . , n,
Ki is obtained from Ki−1 by adding a 2-cell si such that si ∩Ki−1 is a non empty union of 1-cells which form
a connected and 1-connected set, i.e. a path. Such a shelling will yield a formula for the boundary of Kn in
terms of the boundaries of each individual cell, provided each cell is given a base point and orientation.

Here is a clear way of getting the formula (explained to us by Chris Wensley):

Choose ∗ = K0 as base point for all the Ki. The relation for K0 is the trivial word. If B1 is the base point
for s1 and P1 is the anticlockwise path around s1 from B1 to ∗ and w1 is the word in the generators read off
along P1, then the relation for K1 is δ(s1

w1). For i > 2, let Bi be the base point for si, and let Ui, Vi be the
first and last vertices in the intersection si ∩ Ki−1 met when traversing the boundary of Ki−1 in a clockwise
direction (so that the intersection is a path Ui . . . Vi). Then if Bi lies on Ui . . . Vi let Pi be the path Bi . . . Ui . . . ∗,
otherwise let Pi be the path Bi . . . Vi . . . Ui . . . ∗ (traversing the boundary of si in an anticlockwise direction and
the boundary of Ki−1 clockwise). If wi is the word in the generators read off along Pi then

(relation for Ki) = (relation for Ki−1).δ(si
wi).

We finish this short section by a more involved example

Example 3.2.3 Let us prove the non obvious fact that the relations

r = x2yxy3, s = y2xyx3

have x7 as a consequence using the next picture. We leave it as an exercise to check that base points and



58 3. Basic algebra of crossed modules

orientations can be assigned, and, harder, to give x7 as a consequence of r, s.
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These examples are from David Johnson’s book [118]. Other examples on van Kampen diagrams are in that
book, and may also be found by a web search. The geometric and metric analysis of van Kampen diagrams has
proved important in aspects of combinatorial group theory.

Here is a more formal definition of a van Kampen diagram.

A complete generalised van Kampen diagram is a finite regular CW -structure K on a compact subset of
the sphere S2. Regularity here means that each attaching map fs : (S1, 1) → (K1,K0) of a 2-cell s is a
homeomorphism into. By omitting one 2-cell s∞ from K and using stereographic projection we can also regard
K \ s∞ as a subset of the plane R2. The projection of K \ s∞ gives a planar van Kampen diagram.

Whitehead’s Theorem (Corollary 5.4.8) says essentially that Π(K, K1,K0) is the free crossed π1(K1,K0)-
module on the characteristic maps of the 2-cells of K.

3.3 Precrossed and crossed modules

Following the concepts introduced in the first section, it seems a good idea to study morphisms having the same
formal properties as θ : H → P . One way of describing the distinctive feature of θ is to say that θ is a morphism
of P -groups, where P acts on itself by conjugation.

So, let M and P be groups such that P acts on M on the right and let µ : M → P be a homomorphism of
groups. We say that M = (µ : M → P ) is a pre-crossed module if it satisfies CM1) of section 2.2, that is:

CM1) µmp = p−1µmp = (µm)p for all m ∈ M and p ∈ P,

i.e., µ is a morphism of P -groups when P acts on itself by conjugation.

A morphism between two precrossed modules M = (µ : M → P ) and N = (ν : N → Q) is a pair (g, f) of
homomorphisms of groups g : M → N and f : P → Q such that
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i) the diagram

M
g //

µ

²²

N

ν

²²
P

f
// Q

commutes, i.e. fµ = νg, and

ii) the actions are preserved, i.e. g(mp) = (gm)fp for any p ∈ P and m ∈ M .

The above objects and morphisms define the category PXMod/Groups of precrossed modules and morphisms.

Example 3.3.1 It is easy to see that if 〈X | R〉 is a presentation of a group, then using the notation of Section
3.1, θ : H → F (X) is a precrossed module.

Analogously to our method in this example, we can define Peiffer elements in any precrossed module. Let
M = (µ : M → P ) be a precrossed module and let m, m′ be elements of M . Their Peiffer commutator is
defined as

[[m,m′]] = m−1m′−1mm′µm
.

The precrossed modules in which all Peiffer commutators are trivial are precisely the crossed modules. Thus
the category of crossed modules is the full subcategory of the category of precrossed modules whose objects are
crossed modules.

Since the Peiffer elements are always defined in a precrossed module, it is a natural idea to factor out by the
normal subgroup that they generate and consider the induced map from the quotient. Let us check that this
produces a crossed module.

The Peiffer subgroup [[M, M ]] of M is the subgroup of M generated by all Peiffer commutators. We now
prove that this subgroup inherits the P -action and is a normal subgroup.

Theorem 3.3.2 For any precrossed module µ : M → P , the Peiffer subgroup [[M, M ]] of M is a P -invariant
normal subgroup.

Proof The Peiffer subgroup is P -invariant since for any m,m′ ∈ M and p ∈ P , we have

[[m,m′]]p = (m−1m′−1mm′µm)p

= (mp)−1(m′p)−1mpm′(µm)p

= (mp)−1(m′p)−1mpm′p(µm)p

= (mp)−1(m′p)−1mpm′p(µmp)

= [[mp,m′p]].

It is also normal since for any m, m′, n ∈ M we have

n−1[[m,m′]]n = n−1m−1m′−1mm′µm
n

= n−1m−1m′−1m(nm′µmn(m′−1)µmnn−1)m′µm
n

= ((mn)−1m′−1mnm′µmn)(((m′µm)µn)−1n−1m′µm
n)

= [[mn,m′]][[n,m′µm]]−1.



60 3. Basic algebra of crossed modules

2

Now for any precrossed module µ : M → P we define

M cr = M/[[M,M ]].

By the previous property, M cr is a P -group. Let us see that the homomorphism µ induces a crossed module.

Proposition 3.3.3 For any precrossed module µ : M → P , the induced map gives a crossed module

Mcr = (µcr : M cr → P )

which we call the crossed module associated to µ.

Proof It is easy to see that for each m, m′ ∈ M , µ[[m,m′]] = 1, so µ induces a homomorphism of groups µcr.

Clearly µcr satisfies CM1) because it was already satisfied by µ. It also satisfies CM2) because all Peiffer
commutators have been quotiented out. 2

The association of the crossed module M cr → P to a precrossed module M → P gives a functor

(−)cr : PXMod/Groups → XMod/Groups.

That is, a morphism (g, f) of precrossed modules yields a morphism (gcr, f) of crossed modules, and this
association satisfies the usual functorial rules.

Moreover let us prove that (−)cr is a left adjoint of the inclusion XMod/Groups ↪→ PXMod/Groups by checking
the appropriate universal property.

Proposition 3.3.4 Let M = (µ : M → P ) be a precrossed module. For any crossed module N = (ν : N → Q)
and any morphism of precrossed modules (g, f) : M→N there is a unique morphism of crossed modules

(gcr, f) : (µcr : M cr → P ) −→ (ν′ : N → Q)

such that g = gcr ◦ θ where θ is the quotient homomorphism θ : M → M cr.

Proof Obviously, gcr can only be the homomorphisms induced by g on the quotient, and this is well defined
since g[[m,m′]] = 1 for any elements m,m′ of M . 2

For future computations it is interesting to have a set of generators of the Peiffer subgroup as small as
possible. The following property taken from Brown-Huebschmann [49] is useful for this.

Proposition 3.3.5 Let µ : M → P be a precrossed module and let V be a subset of M which generates M as
a group and is also P -invariant. Then the Peiffer subgroup [[M, M ]] of M is the normal closure in M of the set
of Peiffer commutators

{[[a, b]] | a, b ∈ V }.

Proof Let Z be the normal closure of W = {[[a, b]] | a, b ∈ V }. Since [[M,M ]] is normal and contains W , it is
clear that Z ⊆ [[M,M ]] ⊆ Ker µ. On the other hand W is P -invariant since [[a, b]]p = [[ap, bp]] as was proved in
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Theorem 3.3.2. So Z is also P -invariant. Thus µ induces a homomorphism of groups µ : M/Z → P which is
P -invariant, so that we have a precrossed module. Let us check that it is also a crossed module.

Let V be the image of V in M/Z, i.e. V is the set of cosets of all elements in V . Notice that we have

yµx = x−1yx (∗∗)

for any x and y lying in V , which is a set of generators of M/Z. It is easy to see that for a fixed x in M/Z the
set Px of y’s satisfying this equation (**) is a subgroup containing V so Px has to be all of M/Z.

Consider now the set Qx of x in M/Z satisfying (**) for all y in M/Z. It is closed under multiplication
(since

yxx′ = (yx)x′ = (x−1yx)x′ = (x−1)x′yx′xx′ = x′−1x−1x′x′−1yx′x′−1xx′ = x′−1x−1yxx′)

and also under inversion (since if w = yx−1
, we have wx = y and wx = x−1wx, so that x−1wx = y and

w = xyx−1). So Qx = M/Z and thus µ : M/Z → P is a crossed module. It follows that [[M, M ]] ⊆ Z. 2

Corollary 3.3.6 Let ω : R → P be a function to the group P and let θ : H → P be the associated precrossed
module. Then the Peiffer subgroup [[H, H]] of H is the normal closure in H of the basic Peiffer elements
[[a, b]] = a−1b−1abθa where a, b ∈ R× P .

3.4 Free precrossed and crossed modules

Another crucial property satisfied by the precrossed module associated to a presentation of a group is that it
is, in some sense, free. We need to make this property explicit.

As explained in the Appendix, a free construction in a category is usually the left adjoint of some forgetful
functor. The appropriate forgetful functor in this case goes from the category of crossed modules to the category
of sets over a group forgetting the algebra of the top group and considering only the underlying boundary map.
We recall the appropriate categories.

Let P be a group. We have defined the category XMod/P of crossed P -modules in Section 2.2. In a similar
way, we define the category PXMod/P by restricting to precrossed modules over P .

Let P be a set. We define Sets/P to be the category whose objects are P -sets, i.e. maps ν : S → P , and
whose morphisms are P -maps, i.e. maps α : S → S′ making commutative the diagram

S
α //

ν
ÂÂ?

??
??

??
S′

ν′~~~~
~~

~~
~

P .

We have a forgetful functor
U : XMod/P → Sets/P.

Thus, the free crossed module construction is a functor

F : Sets/P → XMod/P

such that for any P -set S = (ν : S → P ) and for any crossed P -module M = (µ : M → P ) there is a natural
bijection

(Sets/P )(S, UM) ∼= (XMod/P )((FS,M),
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i.e. there is a P -inclusion i : S → FS, corresponding to the morphism IdFS of crossed P -modules such that for
any P -map f : S → M there exist a unique extension to a morphism f ′ : FS → M of crossed P -modules.

In the same way we may define the free precrossed module using the forgetful functor between PXMod/P

and Sets/P .

To determine when a crossed module is free, let M = (µ : M → P ) be a crossed module, R a set and
ω : R → M an injective map (equivalently, let {mr | r ∈ R} be an indexed family of elements of M). We
say that M is the free crossed P -module on ω (also, that ω is a basis of M) if the unique morphism of crossed
modules Fω : FR → M extending ω is an isomorphism, or, equivalently, if it satisfies the following universal
property: for any crossed module M′ = (µ′ : M ′ → P ) and map ω′ : R → M ′ such that µω = µ′ω′ there exists
a unique morphism h : M→M′ of P -crossed modules such that hω = ω′.

There is a similar definition of the free precrossed module on ω. As always in universal constructions, the
free crossed and precrossed P -modules on ω are unique up to isomorphism. We study now its existence.

We consider a group P and an injective map ω : R → P, or equivalently, an indexed family {pr | r ∈ R} of
elements of P . First we create the free P -group with basis R. To this end, we define E = F (R × P ). It is the
free group on the formal elements {rp | r ∈ R, p ∈ P}. We think of (r, p) as rp. Then, any element of E can be
seen as a formal product

(rp1
1 )ε1 · · · (rpn

n )εn

with n ∈ N, εi = ±1, pi ∈ P and ri ∈ R.

This representation makes clear the definition of the P -action on generators, since to be an action it has to
satisfy (rp)p′ = rpp′ . Thus, we define a P -action on E by

(r, p)p′ = (r, pp′)

on generators and we extend it in the only possible way.

We define a map θ : E → P by the only possible definition to make it a P -map, i.e. θ(r, p) = p−1ω(r)p on
generators.

Let us check that the map θ just constructed gives the free precrossed module.

Proposition 3.4.1 E = (θ : E → P ) is the free precrossed module on ω : R → E where ω(r) = (r, 1).

Proof It is clear that P acts on E and also that θ is a homomorphism by the way they are defined.

It is easy to check that θ : E → P is a precrossed module,

θ(r, p)p′ = θ(r, pp′) = p′−1p−1ω(r)pp′ = p′−1θ(r, p)p′.

To prove the universal property, consider M′ = (µ′ : M ′ → P ) a precrossed P -module and a map ω′ : R →
M ′. We can define the map

R× P → M ′

(r, p) 7→ (ω′r)p

that extends to a unique homomorphism h : E → M ′ that is a morphism of precrossed modules since

i) µ′h(r, p) = µ′(ω′r)p = p−1(µ′ω′r)p = θ(r, p) and

ii) h(r, p)p′ = h(r, pp′) = (ω′r)pp′ = ((ω′r)p)p′ = h(r, p)p′ .

Actually, this is the only possible definition of h to make it a map of P -groups. So h is unique. 2
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Corollary 3.4.2 The crossed P -module Ecr = (θcr : Ecr → P ) is the free crossed module on ω : R → Ecr.

Proof Obviously Ecr is a crossed module. Let us check the universal property.

For any crossed P -module M′ = (µ′ : M ′ → P ) and any map ω′ : R → M ′ there is a unique morphism
of precrossed modules α : E → M ′ satisfying ω′α = ω. Thus, the induced map αcr : Ecr → M ′ is the only
morphism of crossed modules satisfying ω′α = ω. 2

Remark 3.4.3 For any crossed module M = (µ : M → P ) such that µ(M) is a free group, there is a section
s : µM → M which is a homomorphism of groups. Then, the Proposition 2.2.4 applies.

So if µ : M → P is the free crossed P -module associated to a presentation (ω : R → P ) of a group G then
there is a short exact sequence of G-modules

0 → π = Ker µ −→ Mab µab

−→ (µM)ab → 0.

From the construction of the free precrossed module as a free group, it is clear that ω : R → E is injective.
It is not so clear that ω : R → Ecr is also injective. This is a consequence of the following property:

Proposition 3.4.4 Given a free crossed P -module M = (µ : M → P ) on ω : R → M , with G the cokernel of
µ, then Mab is a free G-module with basis ωab : R → Mab.

Proof We know by Proposition 2.2.3 ii) that Mab is a G-module. To see that Mab is free we will prove that
it satisfies the universal property of a free G-module.

Let M ′ be a G-module. The projection P ×M ′ → P becomes a crossed P -module when P acts on P ×M ′

by conjugation on P and the G action on M ′. For any map v : R → M ′ we define v′ = (µω, v) : R → P ×M ′.
Since µ : M → P is a free crossed P -module we get a unique morphism of P -crossed modules φ : M → P ×M ′

such that v′ = φω. The composite M → M ′ factors through a G-morphism φ : Mab → M ′ which is the only
morphism of G-modules satisfying φωab = v. 2

We now give an example due to Whitehead which illustrates some of the difficulties of working with free
crossed modules.

Example 3.4.5 Let (∂ : C(R) → F (X)) be the free crossed module on the subset R of F (X) and suppose
that Y is a subset of X, and S a subset of R. Let M be the subgroup of C(R) generated by F (Y ) operating on
S, and assume that ∂(M) ⊆ F (Y ). Let M′ = (∂′ : M → F (Y )) be the crossed module given by restricting ∂

to M . Then M′ is not necessarily a free crossed module. Whitehead in [176] gives the following example and
proposition.

Let X = Y = {x}, R = {a, b}, S = {b} be such that ∂a = x, ∂b = 1. Since ∂b = 1, we have ab = ba, whence
bxb−1 = a−1bab−1 = 1. Therefore M′ is not a free crossed module.

Proposition 3.4.6 Let G, G′ be the cokernels of ∂, ∂′ respectively, and let η : G → G′ be the morphism induced
by the inclusion i : F (Y ) → F (X). If η is injective, then M′ is the free crossed F (Y )-module on S.

Proof Let d : C(S) → F (Y ) be the free crossed F (Y )-module on S. It is clear that d(C(S)) = ∂(M). Let
j : C(S) → M be the morphism of crossed F (Y )-modules. Clearly j is surjective, and the result is proved when
we have shown that j is injective.
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Suppose that u ∈ C(S) and j(u) = 1. Then d(u) = 1. Let k : C(S)ab → C(R)ab be the induced morphism
of the abelianised groups. These abelianised groups are in fact free modules over G,G′ respectively on the bases
S,R respectively. Since η is injective, it follows that k is injective. Let u denote the class of u in C(S)ab. Then
ku = 0, and hence u = 0. But the morphism C(S) → C(S)ab is injective on Ker d. It follows that u = 1. 2

3.5 Pre Cat1-groups and the existence of colimits

In the two previous section we have seen that when working with crossed modules it is sometimes convenient to
consider the weaker structure of precrossed modules and see the category XMod/Groups as a full subcategory
of PXMod/Groups.

In Section 2.5 we have seen that the category Cat1−Groups of cat1-groups is equivalent to the category
XMod/Groups. It is an easy exercise to put both together and construct a category bigger than and equivalent
to PXMod/Groups.

So, a pre-cat1-group is a triple (G, s, t) where G is a group and s, t : G → G are endomorphisms satisfying
st = t and ts = s. Thus we are omitting CG2) from the axioms of a cat1-group, i.e. we do not impose
commutativity between elements of Ker s and Ker t.

As before, a morphism between pre-cat1-groups is just a homomorphism of groups commuting with the s’s
and t’s. These objects and morphisms define the category PCat1−Groups. It contains Cat1−Groups as a full
subcategory.

Proposition 3.5.1 The categories PCat1−Groups and PXMod/Groups are equivalent, by an equivalence ex-
tending that between Cat1−Groups and XMod/Groups.

Proof The definitions of both functors are the same as in Section 2.5, namely

λ : PXMod/Groups → PCat1−Groups

is given by λ(µ : M → P ) = (P nM, s, t), s and t being defined as before, and

γ : PCat1−Groups → PXMod/Groups,

is defined by γ(G, s, t) = (t| : Ker s → Im s).

It is easily checked that both functors are well defined and both compositions are naturally equivalent to
the identity. 2

As in the Section 3.3, we may define a functor associating to each pre-cat1-group a cat1-group

(−)cat : PCat1−Groups → Cat1−Groups

defined by (G, s, t)cat = (G/N, s′, t′), where N = [Ker s, Ker t].

It is easy to see that the functor (−)cat corresponds through the equivalences of categories to

(−)cr : PXMod/Groups → XMod/Groups.

Then, it follows
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Proposition 3.5.2 The functor (−)cat is a left adjoint of the inclusion.

Using this last property we can prove the existence of colimits in Cat1−Groups.

Since left adjoint functors preserve colimits (see [133] or Appendix A.6), for any indexed family Gλ =
(Gλ, sλ, tλ) of cat1-groups and morphisms between them, we have

colimcat{Gλ} = (colimpre{Gλ})cat.

So, the existence of colimits in Cat1−Groups has been reduced to the existence of colimits in PCat1−Groups.

It is not difficult now to check that in PCat1−Groups the colimits are as expected, i.e. for an indexed family
{Gλ | λ ∈ Λ} of pre-cat1-groups Gλ = (Gλ, sλ, tλ) and morphisms between them,

colimpre{Gλ} = (colimgr{Gλ}, colimgr{sλ}, colimgr{tλ}).

From the existence of colimits in Cat1 − Groups follows the existence of colimits in XMod/Groups using the
equivalence between both categories.

Remark 3.5.3 We have just added another way of computing colimits of crossed modules. So, if we have
an indexed family of crossed modules {µλ : Mλ → Pλ}, we construct the associated family of cat1-groups
{(Mλ n Pλ, sλ, tλ)} getting their colimit (G, s, t) and the colimit crossed module is t| : Ker s → Im t.

Even if it seems a long way around, it is worthwhile because for example MλnPλ may be finitely generated,
even if Mλ and Pλ are not. Also, there are some efficient computer-assisted ways of getting colimits, kernels
and images of finitely generated groups and homomorphisms.

3.6 Implementation of crossed modules in GAP

Nowadays is almost impossible to make any serious computational work in group theory without use of a
computational group theory package. Some of these packages have evolved to accommodate more structures
becoming veritable computational discrete algebra packages. The one we have been using along the book is
GAP (see [99] for more information). The package GAP has been developed primarily for combinatorial group
theory, and has the significant advantage of free availability of the library code, thus enabling the user to modify
a function so as to return additional information.

Work at Bangor (in particular by M.Alp and C.D. Wensley) has produced the module XMOD which includes
a number of constructions on crossed modules, cat1-groups and their morphisms. In particular: derivations,
kernels and images; the Whitehead group; cat1-groups and their relation with crossed modules; induced crossed
modules.

This package has already been in use for some time, and has been incorporated into GAP4. We note that
Alp and Wensley have in [6] used this programme to list many finite cat1-groups.

In Section 5.9 we shall show XMOD has been used to determine explicitly some induced crossed modules
which do not follow from general theorems and seem too hard to compute by hand.
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Chapter 4

Coproducts of crossed P-modules

In this chapter we start to show how the van Kampen theorem in dimension 2 and the algebra of crossed modules
allows specific nonabelian calculations in homotopy theory in dimension 2. To this end, we study the coproduct
of crossed modules (mainly of two crossed modules) over the same group P . We construct the coproduct of
crossed P -modules, check some properties and, using the van Kampen Theorem, we apply these general results
to some topological cases.

In the first section (4.1) we construct the coproduct of crossed P -modules. First, we see what the definition
of coproduct in a general category means in this case, and then we prove its existence by a two step procedure.
As a first step, we prove that the free product of groups gives the coproduct in the category of precrossed
P -modules. Then, using the fact that the functor (−)cr preserves coproducts, we see that its associated crossed
P -module is the coproduct in the category of P -modules.

This procedure is a bit complicated to implement because the free product is always a very big group (it
is normally infinite even if all groups are finite). So in Section 4.2 we give an alternative description of the
coproduct of two crossed P -modules. This is obtained by dividing the construction of the associated crossed
module in this case into two steps, of which the first gives a semidirect product. Thus the coproduct of two
crossed P -modules is a quotient of a semidirect product. Hence we can get presentations of the coproduct using
the known presentations of the semidirect product.

This has some topological bearings as explained in Section 4.3. First, we know that the coproduct of
two crossed P -modules is just the pushout of these two crossed modules with respect to the trivial crossed
module 1 → P . Thus in the case that we have a topological space X that is the union of two open subsets
U1, U2 such that both (Ui, U12) are 1-connected, the fundamental crossed module Π2(X, U12) is the coproduct
Π2(U1, U12) ◦Π2(U2, U12) (Theorem 4.3.1) and we can use the previous results to get information on the second
homotopy group of some spaces. We end this section by studying some consequences in this case.

In the last section (4.4) we study the coproduct in a particular case that we shall use later. We begin with
two crossed P -modules M = (µ : M → P ) and N = (ν : N → P ) satisfying the condition

(∗) : ν(N) ⊆ µ(M) and there is an equivariant section of µ.

In this case, we get a description of their coproduct using the displacement subgroup NM (Theorem 4.4.8). This
case is not uncommon and we get some topological applications when the space X is got from Y by attaching
a cone CA, that is, X is a mapping cone. We finish this last section with a description of the coproduct for
an arbitrary set of indexes satisfying the above condition (*). This result will be used at the end of the next
Chapter (see Section 5.8).

67



68 4. Coproducts of crossed P-modules

4.1 The coproduct of crossed P -modules

We give a construction of coproducts in the category XMod/P of crossed modules over the group P . We do
this for a general family of indices since this causes no more difficulty than the case of two crossed modules.

From the general definition of the coproduct in a category given in the Appendix, we see that the coproduct
of a family {Mt | t ∈ T} of crossed modules over P is given by a crossed module M and a family of morphisms
of crossed P -modules {it : Mt → M | t ∈ T} satisfying the following universal property: for any family
{ut : Mt → M′ | t ∈ T} of morphisms of crossed modules over P , there is a unique morphism u : M →M′

of crossed modules over P such that ut = uit for each t ∈ T . Diagrammatically, there exists a unique dashed
arrow such that the following diagram commutes:

Mt
it //

ut ""EE
EE

EE
EE

M

²²Â
Â
Â

u

M′.

As with any universal construction, the coproduct is unique up to isomorphism.

As we have seen in Section 3.3, the functor (−)cr from precrossed modules to crossed modules, obtained by
factoring out the Peiffer subgroup, is left adjoint to the inclusion of crossed modules into precrossed modules,
and so takes coproducts into coproducts. Thus to construct the coproduct of crossed P -modules we construct
the coproduct in PXMod/P , the category of precrossed modules over the group P and apply the functor crs to
it. The coproduct in PXMod/P is simply obtained using the coproduct in the category Groups of groups, and
this is the well known free product ∗tGt of a family {Gt} of groups [131].

Proposition 4.1.1 Let T be an indexing set and, for each t ∈ T let Mt = (µt : Mt → P ) be a precrossed
P -module. We define ∗tMt to be the free product of the groups Mt, t ∈ T . There is an action of P on ∗tMt

defined by the action of P on each Mt. Consider the morphism

∗tMt = (∂′ : ∗tMt → P ),

together with the homomorphisms it : Mt → ∗tMt given by the inclusion in the free product, and where ∂′ = ∗tµt

is the homomorphism of groups induced from the homomorphisms µt using the universal property of the coproduct
of groups. Then the above defined ∗tMt is a precrossed P -module and the homomorphisms it are morphisms of
precrossed modules over P giving the coproduct in the category PXMod/P.

Proof Let M = ∗tMt. If we represent by p# the action by p ∈ P , then the action p# : M→M of p is defined

by the composite morphisms Mt
p#−→Mt

it−→M.

In terms of the normal form of an element of the free product, this means that the action is given by the
formula

(mt1 . . .mtn)p = (mt1)
p . . . (mtn)p, mti ∈ Mti .

As already pointed out, the homomorphisms µt extend uniquely to a homomorphism ∗tµt. So

(∗tµt)((mt1 . . . mtn)p) = (∗tµt)(m
p
t1 . . . mp

tn
)

= (µt1(m
p
t1)) . . . (µtn(mp

tn
))

= p−1(µt1mt1)p . . . p−1(µtn(mtn))p

= p−1((µt1mt1) . . . (µtn(mtn))p
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and ∗tµt is a precrossed module.

The verification of the universal property is easy. 2

We now easily obtain:

Corollary 4.1.2 If Mt = (µt : Mt → P ), t ∈ T is a family of crossed P -modules, then applying the functor
(−)cr to ∗tMt to give

∂′cr : (∗tMt)cr → P

with the morphisms jt : Mt
it−→ ∗tMt → (∗tMt)cr, where the second morphism is the quotient homomorphism,

gives the coproduct of crossed P -modules.

We denote this coproduct by
©tMt = (∂ : ©tMt → P )

where the morphisms jt : Mt → ©tMt are understood to be part of the structure. These morphisms need
not be injective. In the case T = {1, 2, . . . , n}, this coproduct will be written M1 ◦ · · · ◦ Mn → P . As is
standard for coproducts in any category, the coproduct in XMod/P is associative and commutative up to
natural isomorphisms.

4.2 The coproduct of two crossed P -modules

Throughout this section we suppose given two crossed P -modules M = (µ : M → P ) and N = (ν : N → P ),
and we develop at some length the study of their coproduct in XMod/P

M◦N = (µ ◦ ν : M ◦N → P )

and the canonical morphisms from M,N into M ◦N . This is the case that has been analysed more deeply in
the literature. Most of the results of this section were in print for the first time in a paper by Brown ([27]).
Further results were obtained in [94], and some more applications and results are also given in [110]. However
this construction as a quotient of the free product really goes back to Whitehead [179].

The basic observation in [27] is that M ◦N may be obtained as a quotient of the semidirect product group
M n N where M operates on N via P . This result makes the coproduct of two crossed modules computable
and from this we get some topological computations.

For convenience, we assume M, N are disjoint. To study M ◦N = (M ∗N)cr in some detail we should have
a closer look at [[M ∗N, M ∗N ]], the Peiffer subgroup of M ∗N . As seen in Section 3.3, [[M ∗N, M ∗N ]] is the
subgroup of M ∗N generated by all Peiffer commutators

[[k, k′]] = k−1k′−1
kk′(µ∗ν)k

for all k, k′ ∈ M ∗N .

Notice that by Proposition 3.3.5, [[M ∗ N, M ∗ N ]] is also the normal subgroup generated by the Peiffer
commutators of any given P -invariant set of generators. Now M ∪N generates M ∗N and is P -invariant. Since
M and N are crossed modules, redwe have [[m,m′]] = 1 and [[n, n′]] = 1, for all m,m′ ∈ M and n, n′ ∈ N . Thus
[[M ∗N, M ∗N ]] is the normal subgroup of M ∗N generated by the elements

r(m,n) = n−1m−1nmn, and s(m,n) = m−1n−1mnm
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for all m ∈ M , n ∈ N .

It is useful to divide the process of quotienting out by the Peiffer subgroup into two steps. First, we consider
the quotient of M ∗N by the group U generated by {s(m,n) | m ∈ M, n ∈ N} all Peiffer commutators of the
second kind. A useful observation already developed in [27] is that this quotient is the well known semidirect
product.

Proposition 4.2.1 The precrossed P -module

M∗N
U

= (µ ∗ ν : (M ∗N)/U → P )

where U is the normal P -invariant subgroup generated by the set {m−1n−1mnm | m ∈ M, n ∈ N} is isomorphic
to

MnN = (µn ν : M nN → P )

where the semidirect product is associated to the action of M on N via µ and the P -action.

Proof The inclusions M → M nN and N → M nN extend to a homomorphism of groups

ϕ : M ∗N → M nN.

Let us check that ϕ(U) = 1 by computing ϕ on all generators,

ϕ(m−1n−1mnm) = (m−1, 1)(1, n−1)(m, 1)(1, nm)

= (m−1, n−1)(m,nm)

= (m−1m, (n−1)mnm)

= (1, 1).

So we have an induced homomorphism of P -groups

ϕ : (M ∗N)/U → M nN.

We define a homomorphism in the other direction

ψ : M nN → (M ∗N)/U

by ψ(m,n) = [mn] the equivalence class of the element mn ∈ M ∗ N . To check the homomorphism property,
we compute

ψ(m′, n′)−1ψ(m,n)−1ψ((m,n)(m′, n′)) = [n′−1
m′−1][n−1m−1]ψ(mm′, nm′

n′)

= [n′−1
m′−1

n−1m−1mm′nm′
n′]

= [n′−1(m′−1
n−1m′nm′

)n′]

= [1]

since m′−1
n−1m′nm′ ∈ U .

Clearly ϕψ = 1. Since ψϕ is a homomorphism, to prove that it is 1 it is enough to check this on the
generators ψϕ[mn], m ∈ M, n ∈ N , and this is clear.

It now follows, as may be proved directly, that µn ν : M nN → P, (m,n) 7→ (µm)(νn) is a homomorphism
which with the action of P given by (m,n)p = (mp, np) is a precrossed P -module. 2

So MnN is a precrossed module containing M and N as submodules. Let us see that it satisfies a universal
property with respect to maps of the crossed modules M and N to any given crossed module M′.
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Proposition 4.2.2 Let M′ = (µ′ : M ′ → P ) be a crossed P -module and let f : M → M ′ and g : N → M ′

be morphisms of crossed P -modules. Then there is a unique map of precrossed P -modules extending f and g,
namely f n g : M nN → M ′, (m,n) 7→ (fm)(gn).

Proof Uniqueness is obvious.

To prove existence we have to check that the morphism of precrossed P -modules

f ∗ g : M ∗N → M ′

sends all elements of U to 1, where U is the subgroup specified in Proposition 4.2.1. On generators of U we
have

(f ∗ g)(m−1n−1mnm) = f(m−1)g(n−1)f(m)g(nm) = g(n−1)µ′fmg(n)µm = 1

since µ′ : M ′ → P is a crossed module and µ′f = µ. 2

Therefore it is clear that the coproduct of two crossed P -modules µ : M → P and ν : N → P is the crossed
module associated to the precrossed module µn ν : M nN → P , i.e.

M◦N = ((µn ν)cr : (M nN)cr → P ) = (M ◦N → P ).

This has some striking consequences.

Remark 4.2.3 If we have two crossed P -modules such that M and N are finite groups (resp. finite p-groups),
then so also is the semidirect product M n N and hence their coproduct as crossed modules M ◦ N is also a
finite group (resp. a finite p-group). This result was not clear at all from previous descriptions of the coproduct
of crossed P -modules.

Remark 4.2.4 If (µ : M → P ), (ν : N → P ) are crossed P -modules such that each of M, N act trivially on
the other via P , then M nN = M ×N and ∂ : M ×N → P , where ∂(m,n) = (µm)(νn) is the coproduct where
(m,n)p = (mp, np).

We now study the Peiffer subgroup [[M nN,M nN ]] of M nN , which we shall write {M, N}. As we have
seen, it is the subgroup generated by the Peiffer commutators of all elements of M nN . Alternatively, {M, N}
is generated by the images by ϕ of r(m, n), i.e. by

{{n,m} | m ∈ M,n ∈ N}

Lemma 4.2.5 The elements {n, m} satisfy

{n,m} = ([m, n], [n, m]),

where [m,n] = m−1mn and [n,m] = n−1nm.

Proof Notice that any m, m′ ∈ M and n ∈ N satisfy the relation

n′(m
n) = ((n′n

−1

)m)n = n−1(nn′n−1)mn = n−1nmn′m(n−1)mn (∗)
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Thus,

{n,m} = n−1m−1nmn

= (1, n−1)(m−1, 1)(1, n)(mn, 1)

= (m−1, (n−1)m−1
)(mn, (nm)n)

= (m−1mn, ((n−1)m−1
)mn

(nm)n)

= (m−1mn, n−1nm) using (∗).
Finally, we have

{n,m} = ([m,n], [n,m]).

2

Using the previous result and some well known facts on the semidirect product, we get a presentation of the
coproduct of two crossed modules as follows. First, recall that the semidirect product has a presentation with
generators the elements (m,n) ∈ M ×N and relations

(m,n)(m′, n′) = (mm′, nm′
n′)

for all m,m′ ∈ M and n, n′ ∈ N . The set of relations may equivalently be expressed as

(m,nm′−1
)(m′, n′) = (mm′, nn′).

To get a presentation of M ◦ N we add the relations corresponding to the Peiffer subgroup {M, N}. By the
preceding property the relation {m,n} = 1 is equivalent to [m,n] = [n,m]−1, giving (mn)−1m = n−1nm, or
n(m−1)n = (nm−1

)−1m−1. This may be expressed, taking m′ = m−1,

nm′n = (nm′
)−1m′

suggesting the next proposition.

Theorem 4.2.6 The group M ◦N has a presentation with generators {m ◦ n | m ∈ M,n ∈ N}, and relations

mm′ ◦ nn′ = (m ◦ nm′−1
)(m′ ◦ n′) = (m ◦ n)(m′n ◦ n′),

for all m,m′ ∈ M and n, n′ ∈ N .

Proof Let K be the group with this presentation. Then P acts on K by (m ◦ n)p = mp ◦ np, and the map

ξ : K → P, m ◦ n 7→ (µm)(νn),

is a well defined homomorphism. It is routine to verify the crossed module rules for this structure.

It is also not difficult to check that this crossed module together with the morphisms i : M → K, m 7→ m◦1
and j : N → K, n 7→ 1 ◦ n satisfy the universal property of the coproduct. We omit further details. 2

We describe some extra facts about {M, N}. In particular, the expression of the products and inverses of
the elements {n,m}.

Proposition 4.2.7 For any m,m′ ∈ M and n, n′ ∈ N we have

{n,m}{n′,m′} = ([m,n][m′, n′], [n′,m′][n,m]).
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Proof

{n, m}{n′,m′} = ([m,n], [n,m])([m′, n′], [n′,m′])

= ([m,n][m′, n′], [n, m][m
′,n′][n′,m′],

and

[n,m][m
′,n′][n′,m′] = (n−1nm)m′−1m′n′

n′−1
n′m

′

= ((n−1)m′−1
(nm)m′−1

)m′n′
n′−1

n′m
′

= n′−1
n′m

′
n−1nm(n′−1)m′

n′n′−1
n′m

′
using (*) in Lemma 4.2.5

= n′−1
n′m

′
n−1nm

= [n′,m′][n,m].

Thus

{n, m}{n′,m′} = ([m,n][m′, n′], [n′,m′][n,m])

as indicated. 2

Remark 4.2.8 This result extends to any finite product of elements {ni,mi} with mi ∈ M,ni ∈ N .

Corollary 4.2.9 For any m ∈ M and n ∈ N we have

{n,m}−1 = {n−1,mn}.

The proof is left to the reader.

Finally for this section, and in preparation for the next, we express the universal property of the coproduct
of two crossed P -modules in another way.

Proposition 4.2.10 If (µ : M → P ), (ν : N → P ) are crossed P -modules then the following diagram

(4.2.1)

(1 → P ) //

²²

(N → P )

²²
(M → P ) // (M ◦N → P )

is a pushout in the category XMod/P and also in the category XMod/Groups.

The equivalence of the pushout property in the category XMod/P with the universal property of the coproduct
is easy to verify. We defer the proof of the pushout property in the category XMod/Groups until we have
introduced in Section 5.2 the pullback functor f∗ : XMod/Q → XMod/P for a morphism f : P → Q of groups.

4.3 The coproduct and the van Kampen theorem

One of the interesting features of the coproduct of crossed P -modules is its topological applications. The van
Kampen Theorem as stated in Theorem 2.3.1 involved a kind of generalised pushout (a coequaliser, in fact).
One of the simpler cases is the following.
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Theorem 4.3.1 Suppose that the connected space X is the union of the interior of two connected subspaces
U1, U2, with connected intersection U12. Suppose that the pairs (U1, U12) and (U2, U12) are 1-connected. Then
the pair (X, U12) is 1-connected and the morphism

Π2(U1, U12) ◦Π2(U2, U12) → Π2(X,U12)

induced by inclusions is an isomorphism of crossed π1(U12)-modules.

Proof We apply Theorem 2.3.1 to the cover of X given by U1 and U2 with A = U12. The connectivity result
is immediate. Also by the same theorem the following diagram is a pushout of crossed modules:

Π2(U12, U12) //

²²

Π2(U1, U12)

²²
Π2(U2, U12) // Π2(X, U12)

Since Π2(U12, U12) = (1 → π1(U12)), the result follows from Proposition 2.1.3. 2

We would like to extract from this result some information on the absolute homotopy group π2(X). Consider
the following part of the homotopy exact sequence of the pair (X,U12) stated in 2.1.3,

· · · → π2(U12)
i∗−→ π2(X)

j∗−→ π2(X,U12)
∂−→ π1(U12) → · · · .

It is clear that we have an isomorphism

(4.3.1)
π2(X)

i∗(π2(U12))
∼= Ker ∂ = Ker (∂1 ◦ ∂2).

Notice than, in particular, this result gives complete information on π2(X) when π2(U12) = 0.

It would be a good thing to be able to identify the kernel of the coproduct of two crossed P -modules in a
more workable way. To do this, let us introduce the pull back of crossed P -modules. Given two crossed modules
M = (µ : M → P ), N = (ν : N → P ) we form the pullback square

(4.3.2)

M ×P N
p1 //

p2

²²

M

µ

²²
N ν

// P

where M ×P N = {(m,n) ∈ M × N | µ(m) = ν(n)}, p1 and p2 are the projections. Obviously M ×P N is a
P -group (P acts diagonally).

Proposition 4.3.2 M ×P N is isomorphic as P -group to Ker (µn ν).

Proof Let

φ : M ×P N → M nN

be defined as φ(m,n) = (m, n−1).
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To check that it is a homomorphism of groups we compute for all m,m′ ∈ M and n, n′ ∈ N

φ(m,n)φ(m′, n′) = (m, n−1)(m′, n′−1)

= (mm′, (n−1)m′
n′−1)

= (mm′, (n−1)n′n′−1)

= (mm′, n′−1
n−1n′n′−1)

= (mm′, (nn′)−1)

= φ(mm′, nn′).

Clearly, φ is a bijection onto Ker (µn ν) that preserves the P -actions. 2

Now, to any m ∈ M and n ∈ N we associate an element of M ×P N defined as

(4.3.3) 〈m,n〉 = (m−1mn, (n−1)mn).

If we write 〈M,N〉 for the normal subgroup of M ×P N generated by {〈m,n〉|m ∈ M,n ∈ N}, we have seen
that φ(〈M,N〉) = {M, N}.

Thus, there is an induced map

φ :
M ×P N

〈M,N〉 −→ M nN

{M,N} = M ◦N.

We deduce immediately from the proposition

Corollary 4.3.3 The map φ gives an isomorphism of P -modules

φ :
M ×P N

〈M, N〉
∼= Ker(µ ◦ ν).

Remark 4.3.4 Notice that this result has some purely algebraic consequences. Since M ◦ N is a crossed
module, Ker (µ ◦ ν) is abelian; so 〈M,N〉 contains the commutator subgroup of M ×P N .

Now we can translate this algebraic result into a topological one.

Theorem 4.3.5 If (U1, U12) and (U2, U12) are 1-connected and π2(U12) = 0, we have,

π2(X) ∼= π2(U1, U12)×π1(U12) π2(U2, U12)
〈π2(U1, U12), π2(U2, U12)〉 .

Proof Since π2(U12) = 0, from the equation (4.3.1), we have π2(X) ∼= Ker (∂1 ◦ ∂2) and the result follows from
the corollary before. 2

Let us study some other algebraic way of computing Ker (µ ◦ ν) or, equivalently, the quotient

M ×P N

〈M, N〉 .

We may also define a homomorphism of groups k : M ×P N → P by the formula k(m,n) = µ(m) = ν(n).
This gives the following result.
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Proposition 4.3.6 There is an exact sequence of P -groups

0 → Ker µ⊕Ker ν → M ×P N
k→ µ(M) ∩ ν(N) → 1.

Proof It is immediate that k(M ×P N) = µ(M)∩ ν(N). It remains to check that Ker k = Ker µ⊕ Ker ν; but
this is clear since

Ker k = {(m,n) | µ(m) = ν(n) = 0}
and all m ∈ Ker µ and n ∈ Ker ν commute. 2

Bringing again the subgroup 〈M,N〉 into the picture, it is immediate that k(〈m,n〉) = [µ(m), ν(n)]. Then
we have k(〈M,N〉) = [µ(M), ν(N)] giving a homomorphism k onto the quotient. This gives directly the next
result.

Corollary 4.3.7 There is an exact sequence of P -modules

0 → (Ker µ⊕Ker ν) ∩ (〈M, N〉) → Ker µ⊕Ker ν → M ×P N

〈M, N〉 = Ker (µ ◦ ν) k−→ µ(M) ∩ ν(N)
[µ(M), ν(N)]

→ 0.

Remark 4.3.8 An easy consequence is that µ ◦ ν is injective if and only if

i) Ker µ ⊕Ker ν ⊂ 〈M, N〉 and

ii) [µ(M), ν(N)] = µ(M) ∩ ν(N).

As before, we can apply this result to the topological case, getting a way to compute the second homotopy
group of a space in some cases.

Theorem 4.3.9 If (U1, U12) and (U2, U12) are 1-connected and π2(U12) = 0, the following sequence of groups
and homomorphisms is exact

0 → (π2(U1)⊕ π2(U2)) ∩ 〈π2(U1, U12), π2(U2, U12)〉 → π2(U1)⊕ π2(U2) → π2(X) → R1 ∩R2

[R1, R2]
→ 1,

where Rl = Ker(π1(U12) → π1(Ul)) for l = 1, 2.

If further π2(U1) = π2(U2) = 0, then there is an isomorphism

π2(X) ∼= R1 ∩R2

[R1, R2]
.

Proof Let us consider the crossed modules ∂l : π2(Ul, U12) → π1(U12). Recall from (2.1.3) that the homotopy
exact sequence of the pair (Ul, U12) is

· · · → π2(U12)
il∗−→ π2(Ul)

jl∗−→ π2(Ul, U12)
∂l−→ π1(U12) → · · · .

Directly from this exact sequence, we have

Im ∂l = Rl.

On the other hand,
Ker ∂l = π2(Ul)
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using the same homotopy exact sequence and π2(U12) = 0.

Thus the result is a translation of Corollary 4.3.7.

2

Remark 4.3.10 Whenever U1, U2 are based subspaces of X with intersection U12 there is always a natural
map

σ : π2(U1, U12) ◦ π2(U2, U12) → π2(X,U12)

determined by the inclusions, but in general σ is not an isomorphism. Bogley and Gutierrez in [17] have had
some success in describing Ker σ and Coker σ in the case when all the above spaces are connected.

4.4 Some special cases of the coproduct

We end this chapter by giving a careful description of the coproduct of crossed P -modules in the particular case
of two crossed P -modules µ : M → P, ν : N → P in a useful special case, i.e. when ν(N) ⊆ µ(M) and there is a
P -equivariant section σ : µM → M of µ. Notice that this includes the case when M = P and µ is the identity.
These results were first published in [73].

This case is important because of the topological applications and also because it is useful in Section 5.6 for
describing as a coproduct the crossed module induced by a monomorphism.

We start with some general results that will be used several times in this book.

Definition 4.4.1 If M acts on the group N we define [N, M ] to be the subgroup of N generated by the elements,
often called pseudo-commutators, n−1nm for all n ∈ N, m ∈ M. This subgroup is called the displacement
subgroup and measures how much N is moved under the M -action.

The following result is analogous to a standard result on the commutator subgroup.

Proposition 4.4.2 The displacement subgroup [N, M ] is a normal subgroup of N .

Proof It is enough to prove that the conjugate of any generator of [N, M ] lies also in [N,M ].

Let m ∈ M,n, n1 ∈ N . We easily check that

n1
−1(n−1nm)n1 = ((nn1)−1(nn1)m)(n1

−1n1
m)−1

and the product on the right hand side belongs to [N, M ] since both factors are generators. So we have proved
n1
−1[N, M ]n1 ⊆ [N, M ], whence [N, M ] is a normal subgroup of N . 2

Definition 4.4.3 The quotient of N by the displacement subgroup is written NM = N/[N, M ]. The class in
NM of an element n ∈ N is written [n]. It is clear that NM is a trivial M -module since [nm] = [n].

Proposition 4.4.4 Let µ : M → P, ν : N → P be crossed P -modules, so that M acts on N via µ. Then P

acts on NM by [n]p = [np]. Moreover this action is trivial when restricted to µM .
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Proof To see that the P -action on N induces one on NM , we have to check that [N,M] is a P -invariant subgroup
and this follows because (n−1nm)p = (n−1)p(nm)p = (np)−1(np)mp

for all n ∈ N, m ∈ M, p ∈ P .

The action of µM is trivial since [n]µm = [nµm] = [nm] = [n]. 2

Now we study the homomorphism

ξ : M ×NM → P, (m, [n]) 7→ µm.

We have just seen that NM is a P -group.

Proposition 4.4.5 With P acting on M × NM by the diagonal action, ξ : M × NM → P is a precrossed
P -module.

Proof If m ∈ M,n ∈ N, p ∈ P then

ξ((m, [n])p) = ξ(mp, [np]) = µ(mp) = p−1(µm)p = p−1(ξ(m, [n])p))p.

2

Remark 4.4.6 In general it is not a crossed module. Nevertheless when NM is abelian, the actions of both
factors on each other are trivial. In this case it follows from Remark 4.2.4 that ξ : M ×NM → P is a crossed
module. (It is an easy exercise to prove this directly.)

We shall study now a condition first stated in [94] that implies that NM is abelian.

Proposition 4.4.7 Let µ : M → P, ν : N → P be crossed P -modules such that νN ⊆ µM. Then NM is abelian
and therefore ξ : M ×NM → P is a crossed P -module.

Proof Let n, n1 ∈ N . Choose m ∈ M such that νn1 = µm. Then by the crossed module rule CM2)

n1
−1nn1 = nνn1 = nµm

and so in the quotient [n1]−1[n][n1] = [nµm] = [n]. 2

We now study the case where there is also a P -equivariant section σ : µM → M of µ defined on µM . We
will see that in this case ξ : M × NM → P is isomorphic to the coproduct M◦N of crossed P -modules. We
shall follow the later proof given by Brown and Wensley in [63]. This contains the main result of [94] but it is
stronger in the sense that it determines explicitly the coproduct structure. Since we shall use this structure for
later results, we give the proof in detail.

Theorem 4.4.8 Let µ : M → P, ν : N → P be crossed P -modules with νN ⊆ µM and let σ : µM → M be a
P -equivariant section of µ. Then the morphisms of crossed P -modules

i : M → M ×NM , j : N → M ×NM ,

m 7→ (m, 1) n 7→ (σνn, [n])

give a coproduct of crossed P -modules. Hence the canonical morphism of crossed P -modules

M ◦N → M ×NM

given by m ◦ n 7→ (m(σνn), [n]) is an isomorphism.
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Proof We need to verify that the pair (i, j) satisfies the universal property of the coproduct of crossed P -
modules. Consider an arbitrary crossed P -module χ : C → P and morphisms of crossed P -modules β : M → C,

and γ : N → C. We have the following diagram:

M
i

%%KKKKKKKKKK

β

!!

N
j

yytttttttttt

γ

}}

M ×NM

φ
²²Â
Â
Â

C

and we want to prove that there is a unique φ : M ×NM → C determining a morphism of crossed P -modules
closing the diagram i.e. such that φi = β, and φj = γ.

Let us consider uniqueness. For any m ∈ M, n ∈ N , since φ has to be a homomorphism, we have

φ(m, [n]) = φ((m, 0)(σνn, 0)−1(σνn, [n]))

= (βm)(βσνn)−1(γn).

This proves uniqueness of any such a φ. We now prove that this formula gives a well-defined morphism.

It is immediate from the formula that φ : M × NM → C has to be β on the first factor and is defined
on the second one by the map [n] 7→ (βσνn)−1(γn). We have to check that this latter map is a well defined
homomorphism.

We define the function

ψ : N → C

by n 7→ (βσνn−1)(γn) and prove in turn the following statements.

4.4.9 ψ(N) ⊆ Z(C), the centre of C, and χ(C) acts trivially on ψ(N).

Proof of 4.4.9 Since χβ = µ and χγ = ν, it follows that χψ = 0 and ψ(N) ⊆ Ker χ. Since C is a crossed
module, χ(C) acts trivially on Ker χ and Ker χ ⊆ Z(C). 2

4.4.10 ψ is a morphism of crossed P -modules.

Proof of 4.4.10 We have to prove that ψ is a morphism and is P -equivariant. The latter is clear, since
β, γ, σ, ν are P -equivariant. So let n, n1 ∈ N . Then

ψ(nn1) = (βσνn−1
1 )(βσνn−1)(γn)(γn1)

= (βσνn−1
1 )(ψn)(γn1)

= (ψn)(βσνn−1
1 )(γn1) by (4.4.9)

= (ψn)(ψn1). 2

Note that even if σ is not P -equivariant, ψ is still a group homomorphism.

4.4.11 M acts trivially on ψ(N).
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Proof of 4.4.11 Let m ∈ M, n ∈ N. Note that (βσµm)(βm−1) lies in Ker χ, and so belongs to Z(C). Hence

(ψn)m = (βσνnm)−1(γn)µm

= βσ((µm−1)(νn)(µm))−1(γn)χβm

= (βσµm−1)(βσνn−1)(βσµm)(βm−1)(γn)(βm)

= (βσµm−1)(βσµm)(βm−1)(βσνn−1)(γn)(βm)

= (βm−1)(ψn)(βm)

= ψn by (4.4.9) 2

It follows that ψ induces a morphism ψ′ : NM → C, [n] 7→ ψn, and so we define

φ = (β, ψ′) : M ×NM → C

by (m, [n]) 7→ (βm)(ψn). Since ψn commutes with βm we easily verify that φ is a homomorphism, φi = β, φj =
γ and χφ = ξ. Thus the pair of morphisms i : M → M ×NM , j : N → M ×NM satisfies the universal property
of a coproduct. This completes the proof of the theorem. 2

A standard consequence of the existence of a homomorphism σ : µM → M which is a section of µ on µM

is that M is isomorphic to the semidirect product µM n Ker µ, where µM acts on Ker µ by conjugation, i.e.
m′µm = m−1m′m. Moreover, in the case when µ is a crossed module and σ is P -equivariant, the isomorphism
is as crossed P -modules. Thus we have a third expression for the coproduct.

Proposition 4.4.12 Let µ : M → P, ν : N → P be crossed P -modules with νN ⊆ µM and let σ : µM → M

be a P -equivariant section of µ. There is an isomorphism of crossed P -modules

M ◦N ∼= (µM ×Kerµ)×NM

given by m ◦ n 7→ (m(σµm)−1, (µm)(νn), [n]).

We now give a topological application.

Corollary 4.4.13 Let (Y, A) be a connected based pair of spaces, and let X = Y ∪ CA be obtained from Y by
attaching a cone on A. Then there is an isomorphism of crossed π1(A)-modules

π2(X, A) ∼= π1(A)× π2(Y, A)π1(A).

Proof We apply Theorem 4.3.1 with U1 = CA, U2 = Y , so that U12 = A. Then π2(CA,A) ∼= π1(A), by the
exact sequence of the pair (CA,A), so that we have π2(X,A) ∼= π1(A) ◦ π2(Y,A). The result now follows from
Theorem 4.4.8. 2

As another application of Theorem 4.4.8, we analyse the symmetry of the coproduct in a special case.

The symmetry morphism τ : M ◦ N → N ◦M is, as usual for a coproduct, given by the pair of canonical
morphisms M → N ◦M, N → N ◦M. Hence τ is given by m ◦ n 7→ (1 ◦m)(n ◦ 1) = n ◦mn.

Proposition 4.4.14 Let µ : M → P be a crossed module where µ is an inclusion of a normal subgroup of the
group P . Then the isomorphism of crossed P -modules

θ : M ◦M → M ×Mab

θ(m ◦ n) = (mn, [n])
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transforms the twist isomorphism τ : M ◦M → M ◦M to the isomorphism

θ−1τθ : M ×Mab → M ×Mab

(m, [n]) 7→ (m, [n−1m]).

Proof Notice that in this case Mab = MM . The isomorphism θ : M ◦ M → M × Mab is given in theorem
4.4.8. The twist isomorphism is transformed into the composition

(m, [n]) 7→ mn−1 ◦ n 7→ n ◦ (mn−1)n = n ◦ n−1m 7→ (m, [n−1m]).

2

For an application in the next section, we now extend the last results to more general coproducts. We first
prove:

Proposition 4.4.15 Let T be an indexing set, and let µ : M → P and νt : Nt → P, t ∈ T, be crossed
P -modules. Let

N = ©t∈T Nt.

Suppose that νtNt ⊆ µM for all t ∈ T . Then there is an isomorphism of P -modules

NM
∼=

⊕

t∈T

(Nt)M .

Proof Since N = ©t∈T Nt is the quotient of the free product ∗Nt by the Peiffer relations, NM can be presented
as the same free product with the Peiffer relations n−1

s n−1
t nsn

νsns
t = 1 and the relations nµm

t = nt for all
ns ∈ Ns, nt ∈ Nt, m ∈ M .

These relations are equivalent to the commutator relations [ns, nt] = 1 together with nµm
t = nt for all

ns ∈ Ns, nt ∈ Nt, m ∈ M . 2

Corollary 4.4.16 Suppose in addition that the restriction µ| : M → µM of µ has a P -equivariant section σ.
Then there are isomorphisms of crossed P -modules between

(i) M ◦ (©t∈T Nt),

(ii) ξ : M ×⊕
t∈T (Nt)M → P, ξ(m,n) = µm,

(iii) ξη−1 : µM ×Kerµ×⊕
t∈T (Nt)M → P.

Under the first isomorphism, the coproduct injections i : M → M ◦ (©t∈T Nt), jt : Nt → M ◦ (©t∈T Nt) are
given by m 7→ (m, 0), nt 7→ (σνtnt, [nt]).

When T is well-ordered, we may also obtain explicit isomorphisms by writing a typical element of ©t∈T Nt

as ©t∈T nt, and by writing a finite product of elements νtnt ∈ P as
∏

t∈T νtnt.

Corollary 4.4.17 When T is well-ordered, the rules

m ◦ (©t∈T nt) 7→ (m(
∏

t∈T

(σνtnt)),
⊕

t∈T

[nt] ) 7→ (m(σµm−1), (µm)(
∏

t∈T

νtnt),
⊕

t∈T

[nt]) )

define isomorphisms M ◦ (©t∈T Nt) ∼= M ×⊕
t∈T (Nt)M ,∼= µM ×Kerµ×⊕

t∈T (Nt)M .
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Chapter 5

Induced crossed modules

Here we give a full account of another construction which allows detailed computations of non abelian homotopi-
cal information in dimension 2, namely the induced crossed modules. These arise topologically from a pushout
of pairs of spaces of the form

(A,A) //

²²

(X,A)

²²
(Y, Y ) // (X ∪f Y, Y )

on applying the 2-dimensional van Kampen Theorem. The above diagram in fact gives a format for what is
known topologically as excision, since if all the maps are closed inclusions then X ∪f Y with Y cut out, or
excised, is the same as X with A excised. In the case of homology, and under suitable conditions, we end up
with isomorphisms Hn(X,A) → Hn(X ∪f Y, Y ).

This is by no means so for relative homotopy groups, and this illustrates the complication of 2-dimensional
algebra. The result we give on induced crossed modules shows how crossed modules cope with this complication.
There are many implications.

We also find as a consequence of these methods that we obtain the relative Hurewicz theorem in dimension
2 and also a famous formula of Hopf on the second homology of an aspherical space. This formula was one of
the starting points of the important theory of the cohomology of groups. These applications give a model for
higher dimensional results.

The induced construction illustrates a feature of homotopy theory, that identifications in low dimensions
can influence strongly high dimensional homotopy. Applications of generalised van Kampen theorems give
information, though in a limited range of dimensions and under restrictive conditions, on how this influence is
controlled.

The constructions in this chapter are quite elaborate and in places quite technical. This illustrates the
complications of the geometry. We are illustrating the complications of 2-dimensional homotopy theory, and
also that the algebra can cope with this.

Also the crossed module “induced” by a homomorphism of groups f : P → Q may be seen as one of the
family of “change of base” functors of algebraic categories that have proved interesting in many fields from
algebraic geometry to homological algebra.

The construction of the induced crossed module follows a natural pattern. Given the morphism f as above
and a crossed P -module µ : M → P , we need to construct from M and f a new group N on which Q acts so as

83
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to be a candidate for a crossed Q-module. Therefore we need new elements of the form mq for m ∈ M, q ∈ Q.
Since these do not for the moment exits, we construct them by taking the free group on pairs (m, q) and then
adding appropriate relations. This is done in detail in Section 5.3.

In Section 5.1 we describe the pullback of a crossed module (f∗(M)). This is quite easy to construct and the
existence of the induced crossed module (f∗(M)) defined in Section 5.2 follows from the existence of an adjoint
to the pullback construction. We prove by the universal property that the free crossed module of Section 3.4 is
a particular case of the induced crossed module and that an induced crossed module is the pushout of M and
the trivial crossed module 1 → Q over the trivial crossed module 1 → P .

That leaves the induced crossed module ready to be used in some applications of the van Kampen Theorem.
In Section 5.4 we prove that when X is a topological space having a decomposition in two sets U1, U2 such that
both pairs (U2, U12) are 1-connected, then the fundamental crossed module Π2(X, U1) is the crossed module
induced from Π2(U2, U12) by the homomorphism induced by the inclusion (Theorem 5.4.1). As a consequence
we get some homotopical results, in particular Whitehead’s Theorem.

The second part of the Chapter is devoted to study the construction of the induced crossed module in a
more useful guise. Since the direct construction is in general enormous (the first step uses a free group), it is
interesting to get a more manageable way of producing induced crossed modules. One fruitful idea is to study
separately the case when f is surjective and the case when f is injective and this is done in the next two sections.

The surjective case (Section 5.5) is quite direct and we prove that f∗(M) is the quotient of M by the
displacement subgroup [M, Ker f ]. This case has some interesting topological applications, in particular the
relative Hurewicz’s Theorem in dimension 2 and Hopf’s formula for the second homology group of a group.

The case when f is injective, i.e. a monomorphism (Section 5.6), is essentially the inclusion of a subgroup.
This case is much more intricate and we need the concept of the copower construction M∗T where T is a
transversal of P in Q. We get a description of the induced crossed module as a quotient of the copower
(Corollary 5.6.6). Both the group and the action have alternative descriptions that can be used to develop some
examples, so obtaining in particular a bound for the number of generators and relations for an induced crossed
module.

It is also proved (in Section 5.7) that the induced crossed module is finite when both M and the index
[P : Q] are finite. This suggests the problem of explicit computation, and in the last section of the chapter we
explain some computer calculations in the finite case obtained using the package GAP.

The next Section (5.8) is quite technical but contains a detailed description of the induced crossed module
in a useful special case, with many interesting examples, namely when P and M are both normal subgroups of
Q. We start by studying the induced crossed module when P is a normal subgroup of Q, getting a description
in terms of the coproduct M◦T . Then we use the description of the coproduct given in the last Section of the
preceding Chapter to derive just from the universal property both the action (Theorem 5.8.6) and the map
(Theorem 5.8.7). When M is just another normal subgroup included in P , we get some more concrete formulas.

This leaves many finite examples not covered by the previous theorems: the last section gives some computer
calculations.

The results of this chapter are taken mainly from [39, 62, 63, 64].

5.1 Pullbacks of precrossed and crossed modules.

The work of this section can be done both for crossed and for precrossed modules. We shall state only the
crossed case but, if nothing is said, it is understood that a similar result is true for precrossed modules. We
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shall not repeat the statement, but we only shall give indications of the differences.

Let us start by defining the functor that is going to be the adjoint of the induced crossed module, the
“pullback”. This is an important construction which, given a morphism of groups f : P → Q, enables us to
move from crossed Q-modules to crossed P -modules.

Definition 5.1.1 Let f : P → Q be a homomorphism of groups and let N = (ν : N → Q) be a crossed module.
We define the subgroup of N × P

f∗N = N ×Q P = {(n, p) ∈ N × P | νn = fp}.

This is the usual pullback in the category Groups. There is a commutative diagram

f∗N

ν

²²

f // N

ν

²²
P

f
// Q

where ν : (n, p) 7→ p, f : (n, p) 7→ n. Then P acts on f∗N via f and the diagonal, i.e. (n, p)p′ = (nfp′ , p′−1
pp′).

It is easy to see that this gives a P -action. The pullback crossed module is

f∗N = (ν : f∗N → P )

It is also called the pullback of N along f and it is easy to see that f∗N is a crossed module.

This construction satisfies a crucial universal property, analogous to that of the pullback of groups. To state
it, we use also the morphism of crossed modules

(f, f) : f∗N −→ N .

Theorem 5.1.2 For any crossed module M = (µ : M → P ) and any morphism of crossed modules

(h, f) : M−→ N

there is a unique morphism of crossed P -modules h′ : M→ f∗N such that the following diagram commutes

M
h

$$
µ

ÀÀ

h′

!!D
D

D
D

D

f∗N

ν

²²

f

// N

ν

²²
P

f // Q

Proof The existence and uniqueness of the homomorphism h′ follows from the fact that f∗N is the pullback in
the category of groups. It is defined by h′(m) = (h(m), µ(m)). So we have only to prove that h′ is a morphism
of crossed P -modules. This can be checked directly. 2
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Using this universal property, it is not difficult to see that this construction gives a functor

f∗ : XMod/Q → XMod/P.

Moreover, these functors are ‘natural’ in the sense that there are natural equivalences f∗f ′∗ ' (f ′f)∗ for any
homomorphisms f : P → Q and f ′ : Q → R.

In the last chapter, we dealt with the coproduct of crossed P -modules, which satisfied a universal property
in the category XMod/P of crossed P -modules. We shall need an extension of this property in Section 5.8. It
gives the existence and uniqueness of a morphism of crossed modules associated to a family of morphisms of
crossed modules {(βt, f)} over the same homomorphism f : P → Q. The standard universal property of the
coproduct is just the particular case f = Id. The argument we give uses the above pullback functor f∗ and can
be seen in a more general categorical light. You may skip this part until the result is needed. The proof takes
time to write out but is in essence quite direct.

Proposition 5.1.3 Let Mt, t ∈ T be a family of crossed P -modules. Let f : P → Q be a homomorphism
of groups, let N = (ν : N → Q) be an arbitrary crossed Q-module, and for each u ∈ T let βu : Mu → N

be a homomorphism giving a morphism of crossed modules over f . Then there exists a unique crossed module
morphism φ : ©tMt → N over f such that φiu = βu for all u ∈ T .

Proof The proof can be summarised by saying that we use the universal property of the pullback functor to
show that the universal property for the coproduct in the category XMod/P extends to the more general case.

This general universal property asks for the existence and uniqueness of the dashed homomorphism φ in the
diagram

Mu
βu

%%
µu

ÂÂ

iu

##GG
GG

GG
GG

G

©tMt

µ

²²

φ
//___ N

ν

²²
P

f // Q

such that the diagram commute and (φ, f) is a morphism of crossed modules.

As happens many times, uniqueness is immediate from the fact that
⋃

it(Mt) generates ©tMt.

By construction of the pullback of groups, if the homomorphism φ exists, it has to factor through f∗N
giving a commutative diagram

©tMt
φ

%%

V T R
P

N
L

µ

ÂÂ

φ′

##G
G

G
G

G

f∗N

ν

²²

f

// N

ν

²²
P

f // Q.

So we just have to construct a homomorphism φ′ that gives a morphism of crossed P -modules.

By the universal property of pullbacks, for each u there is a unique homomorphism β′u : Mu → f∗N such
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that fβ′u = βu. Moreover, β′u is a morphism of crossed P -modules and makes the diagram commutative:

Mu
βu

$$
µu

ÁÁ

β′u

""EEEEEEEE

f∗N

ν

²²

f

// N

ν

²²
P

f // Q.

By the universal property of coproducts of crossed modules over P , there is a unique morphism of crossed
P -modules φ′ : ©tMt → f∗N such that for all u ∈ T the diagrams

Mu
β′u

&&

µu

ÂÂ

iu

##GG
GG

GG
GG

G

©tMt

µ

²²

φ′
// f∗N

ν

²²
P

= // P

commute.

The composite morphism φ = fφ′ is the unique morphism satisfying φiu = βu for all u ∈ T . 2

5.2 Induced precrossed and crossed modules

Now we define a functor f∗ left adjoint to the pullback f∗ of the previous section. In particular we prove that
the free crossed module is a particular case of an induced crossed module. Then we apply this to the topological
case to get Whitehead’s Theorem (Corollary 5.4.8).

The “induced crossed module” functor is defined by the following universal property, adjoint to that of
pullback.

Definition 5.2.1 For any crossed P -module M = (µ : M → P ) and any homomorphism f : P → Q the
crossed module induced by f from µ should be given by:

i) a crossed Q-module f∗M = (f∗µ : f∗M → Q);

ii) a morphism of crossed modules (φ, f) : M −→ f∗M, satisfying the dual universal property that for any
morphism of crossed modules

(h, f) : M−→ N
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there is a unique morphism of Q-crossed modules h′ : f∗M → N such that the diagram

N

ν

¢¢

M

h

33

φ
//

µ

²²

f∗M

h′

=={
{

{
{

{

f∗µ

²²
P

f // Q

commutes.

Now we prove that this functor if it exists, forms an adjoint pair with the pullback functor. Using general
categorical considerations, we can deduce the existence of the induced crossed module functor

f∗ : XMod/P → XMod/Q

and, also, that they satisfy the ‘naturality condition’ that there is a natural equivalence of functors f ′∗f∗ ' (f ′f)∗.

Theorem 5.2.2 For any homomorphism of groups f : P → Q, f∗ is the left adjoint of f∗.

Proof From the naturality conditions expressed earlier, it is immediate that for any crossed modules M = (µ :
M → P ) and N = (ν : N → Q) there are bijections

(XMod/P )(N , f∗N ) ∼= {h : M → N | (h, f) : M→N is a morphism of crossed modules},

as proved in Proposition 5.1.2 , and

(XMod/Q)(f∗M,N ) ∼= {h : M → N | (h, f) : M→N is a morphism of crossed modules}

as given in the definition.

Their composition gives the bijection needed for adjointness. 2

We end this section by comparing the universal properties defining the induced crossed module and two
other constructions. The first one is the free crossed module on a map. Using the induced crossed module, we
get an alternative description of the free crossed module.

Proposition 5.2.3 Let P be a group and {ωr | r ∈ R} be an indexed family of elements of P , or, equivalently,
a function ω : R → P . Let F be the free group generated by R and f : F → P the homomorphism of groups
such that f(r) = ωr ∈ P . Then the crossed module f∗(1F ) : f∗F → P induced from 1F = (IdF : F → F ) by f

is the free crossed P -module on {(1, r) ∈ f∗F | r ∈ R}.

Proof Both universal properties assert the existence of morphisms of crossed P -modules commuting the
appropriate diagrams. Let us check that the data in both constructions are equivalent.

The data in the induced crossed module are a crossed module N and a morphism of crossed modules
(h, f) : 1F → N . The data in the free crossed module are a crossed module N and a map ω′ : R → N lifting
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ω. Since F is the free group on R, the map ω′ is equivalent to a homomorphism of groups h : F → N lifting ω

(i.e. h(r) = ω′(r)). Moreover, h satisfies

(5.2.1) h(rr′) = h(r′−1
rr′) = h(r′)−1h(r)h(r′) = (hr)νh(r′) = (hr)f(r′)

for all r, r′ ∈ R. So h preserves the action and (h, f) is a morphism of crossed modules.

Thus the data in both cases are equivalent. 2

Remark 5.2.4 It is clear that the proof in Proposition 5.2.3 does not work for precrossed modules since in
proving the equality (5.2.1) we have used axiom CM2). It is easy to see that the precrossed module induced
from Id F : F → F is not the free precrossed module but its quotient with respect to the normal subgroup
generated by all relations

(p, rr′) = (pω(r), r′)

when p ∈ P and r, r′ ∈ R.

It is a nice exercise to find a crossed module L → F such that the free precrossed module is the induced
from L.

We now give an important re-interpretation of induced crossed modules in terms of pushout. This is how we
can show that induced crossed modules arise from a van Kampen theorem. The proof is obtained by relating
the two universal properties.

Proposition 5.2.5 For any crossed module M = (µ : M → P ) and any homomorphism f : P → Q, the
induced crossed module f∗M is such that the commutative diagram of crossed modules

(1 → P )
(1,f) //

(0,Id)

²²

(1 → Q)

(0,Id)

²²
(M → P )

(φ,f)
// (f∗M → Q)

is a pushout of crossed modules.

Proof To check that the diagram satisfies the universal property of the pushout, let N = (ν : N → R) be
a crossed module, and (h, f ′) : M → N and (1, g) : 1Q → N morphisms of crossed modules, such that the
diagram of full arrows commutes. We have to construct the dotted morphism of crossed modules (k, g):

(1 → P )
(0,f)

//

(0,1)

²²

(1 → Q)

(0,1)

²² (0,g)

¼¼

(M → P )

(h,f ′) ,,

(φ,f) // (f∗M → Q)
(k,g)

&&
(N → R)
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It immediate that f ′ = gf, kφ = h. So we can transform morphisms in turn

(M → P )
(kφ,gf)−→ (N → R)

(M → P )
(kφ,1)−→ ((gf)∗N → P )

(M → P )
(kφ,1)−→ (f∗g∗N → P )

(f∗M → Q)
(φ,1)−→ (g∗N → Q)

(f∗M → Q)
(k,g)−→ (N → R)

as required. 2

5.3 Induced crossed modules: Construction in general.

We now give a simple construction of the induced crossed module, thus showing its existence. This construction
is not particularly useful for computations, and this problem is dealt with later.

We are going to construct the induced crossed module in two steps, producing first the induced precrossed
module and then from this the associated crossed module by quotienting out by its Peiffer subgroup.

Let us start with a homomorphism of groups f : P → Q and a crossed module (µ : M → P ). We construct

F = F (M ×Q),

the free group generated by the elements of M ×Q (to make things easier to remember, we think of (m, q) as
“mq”).

There is an obvious Q-action on F given on generators by

(m, q)q′ = (m, qq′)

for any q, q′ ∈ Q and m ∈ M . Also, the map
µ̃ : F → Q

given on generators by µ̃(m, q) = q−1fµ(m)q for any q ∈ Q and m ∈ M is a precrossed module.

To get the induced precrossed module from this map µ̃, we take into the picture both the multiplication and
the P -action on the first factor, and so make a quotient by the appropriate normal subgroup. Let S be the
normal subgroup generated by all the relations of the two following types:

(m, q)(m′, q) = (mm′, q)(5.3.1)

(mp, q) = (m, f(p)q)(5.3.2)

for any m,m′ ∈ M,p ∈ P, q ∈ Q. We define E = F/S. It is easy to see that the action of Q on F induces one
on E. Also, µ̃ induces a precrossed module

µ̂ : E → Q.

There is a map
φ : M → E

got by projecting the map on F defined as φ(m) = (m, 1). This map is a morphism of groups thanks to the
relations of type (5.3.1), while (φ, f) is a morphism of precrossed modules thanks to the relations of (5.3.2).
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Theorem 5.3.1 The precrossed module µ̂ : E → Q is that induced from µ by the homomorphism f .

Proof We have only to check the universal property.

For any morphism of precrossed modules

(h, f) : (µ : M → P ) −→ (ν : N → Q)

there is a unique morphism of precrossed Q-modules h′ : E → N such that h = h′φ because the only way to
define this homomorphism is by h′(m, q) = (hm)q on generators. It is a very easy exercise to check that this
definition maps S to 1, and that the induced homomorphism gives a morphism of crossed modules. 2

Remark 5.3.2 If M = (µ : M → P ) is a crossed module, there are two equivalent ways to obtain the induced
crossed module f∗M = (f∗M → Q). One way is to get the associated crossed module to the one above. The
second way is to quotient out F , not only by the relations of the above two kinds, but also adding the Peiffer
relations

(m1, q1)−1(m2, q2)(m1, q1) = (m2, q2q
−1
1 fµ(m1)q1)

for any q1, q2 ∈ Q and m1, m2 ∈ M.

There are much easier descriptions of the induced crossed module in the particular cases that f is either
surjective or injective and they go back to [39]. They give an alternative way of constructing the induced crossed
module since every map decomposes as the product of an injection and a surjection. These are given later in
Sections 5.5 and 5.6.

5.4 Induced crossed modules and the van Kampen Theorem

The relation between induced crossed module and the pushout of crossed modules suggests that the induced
crossed module may appear in some cases when using the van Kampen Theorem 2.3.1. After looking to the
statement of the theorem for general subspaces A,U1, U2 ⊆ X it is easy to see that this case occurs when
A = U1, and this situation ia also known as ‘excision’. We should give some background to this idea.

In the situation where X = U1 ∪ U2, the inclusion of pairs

E : (U1, U1 ∩ U2) → (X, U2)

is known as the ‘excision map’ because the smaller pair is obtained by cutting out or ‘excising’ X \U2 from the
larger pair. It is a theorem of homology (The Excision Theorem) that if U1, U2 are open in X then the excision
map induces an isomorphism of relative homology groups. This is one of the basic results which make homology
groups readily computable.

Here we get a result that can be interpreted as a limited form of Excision Theorem for homotopy, but it
shows that the excision map is in general not an isomorphism even for second relative homotopy groups. Lack
of excision is one of the reasons for the difficulty of computing homotopy groups of spaces.

Theorem 5.4.1 Let X be a space which is the union of the interior of two subspaces U1 and U2 and define
U12 = U1 ∩ U2. If all spaces are connected and (U2, U12) is 1-connected, then (X, U1) is also 1-connected and
the morphism of crossed modules

Π2(U2, U12) → Π2(X, U1)
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realises the crossed module Π2(X, U1) as induced from Π2(U2, U12) by the homomorphism induced by the inclusion
π1(U12) → π1(U1).

Proof Following the notation of Theorem 2.3.1 with A = U1 we have

A1 = A ∩ U1 = U1, A2 = A ∩ U2 = U12 and A12 = A ∩ U12 = U12.

It is clear that the hypothesis of Theorem 2.3.1 are satisfied since (U1, A1) = (U1, U1), (U2, A2) = (U2, U12)
and (U12, A12) = (U12, U12) are 1-connected. The consequence is that the diagram of crossed modules

(5.4.1)

Π2(U12, U12) //

²²

Π2(U2, U12)

²²
Π2(U1, U1) // Π2(X,U1)

is a pushout.

Proposition 5.2.5 now implies the result. 2

As in the case of Theorem 2.3.1, using standard mapping cylinder arguments, we can prove a slightly more
general statement.

Corollary 5.4.2 Let (X, A) be a pair and f : A → Y a continuous map. If all spaces are connected, the
inclusion i : A → X is a closed cofibration and the pair (X, A) is 1-connected, then the pair (Y ∪f X,Y ) is also
1-connected and Π2(Y ∪f X, Y ) is the crossed module induced from Π2(X, A) by f∗ : π1(A) → π1(Y ).

Proof This can either be deduced from the proceeding theorem by use of mapping cylinder arguments, or can
be seen as a particular case of Theorem 2.3.3 when U1 = A and Y1 = Y . 2

This last corollary has as a consequence a homotopical Excision Theorem for closed subsets under weak
conditions.

Corollary 5.4.3 Let X be a space that is the union of two closed subspaces U1 and U2 and let U12 = U1∩U2. If
all spaces are connected, the inclusion U1 → X is a cofibration, and the pair (U2, U12) is connected, then the pair
(U1, X) is also connected and the crossed module (π2(X,U1) → π1(U1)) is the one induced from (π2(U2, U12) →
π1(U12)) by the morphism π1(U12) → π1(U1) induced by the inclusion.

Before proceeding any further, we consider the case of a space X that is the homotopy pushout of classifying
spaces.

Theorem 5.4.4 Let M = (µ : M → P ) be a crossed module, and let f : P → Q be a morphism of groups. Let
β : BP → BM be the inclusion. Consider the pushout diagram

BP
β //

Bf

²²

BM

²²
BQ

β′
// X.
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i.e. X = BQ ∪Bf BM. Then the fundamental crossed module Π2(X,BQ) is isomorphic to the induced crossed
module f∗M.

Further, there is a map of spaces X → Bf∗M inducing an isomorphism of the corresponding π1, π2.

Proof This first part immediate from Corollary 5.4.2.

The last statement requires a generalisation of Proposition 2.4.8, in which the 1-skeleton is replaced by a
subcomplex Z with the property that π2(Z) = 0 and the induced map π1(Z) → π1(X) is surjective. (In our
case Z = BQ.) This result is proved in Chapter 9. 2

Remark 5.4.5 The most striking consequence of the last theorem is that we have determined completely a
non trivial homotopy 2-type of a space. That is, we have replaced geometric constructions by corresponding
algebraic ones. As we shall see, induced crossed modules are computable in many cases, and so we can obtain
many explicit computations of homotopy 2-types. The further surprise is that all this theory is needed for
just this example. This shows the difficulty of homotopy theory, in that new ranges of algebraic structures are
required to explain what is going on.

In the next sections, we will be able to obtain some explicit calculations as a consequence of the last results.

Remark 5.4.6 An interesting special case of the last theorem is when M is an inclusion of a normal subgroup,
since then BM has the homotopy type of B(P/M) by Proposition 2.4.6. So we have determined the fundamental
crossed module of (X,BR) when X is the homotopy pushout

BP
Bp //

Bf

²²

BR

²²
BQ

p′
// X

in which p : P → R is surjective. In this case M = (Ker p → P ).

To end, we consider the case where the space we are attaching is a cone.

Theorem 5.4.7 Let f : A → Y be a continuous map between connected spaces. Then the pair (CA ∪f Y, Y )
is 1-connected and Π2(CA ∪f Y, Y ) is the crossed module induced from the identity crossed module 1π1(A) by
f∗ : π1(A) → π1(Y ).

Proof Using part of the homotopy exact sequence of the pair (CA,A),

π2(CA, x) = 0 → π2(CA, A, x) → π1(A, x) → π1(CA, x) = 0

we get an isomorphism of π1(A, x) groups that transforms the fundamental crossed module Π2(CA,A) in
1π1(A,x).

Now, we can use Corollary 5.4.2 and identify the induced crossed module with the free module by Proposition
5.2.3. 2

As a consequence we get Whitehead’s theorem on free crossed modules [177].



94 5. Induced crossed modules

Corollary 5.4.8 (Whitehead Theorem) Let Y be a space constructed from X by gluing cells of dimension two.
Then the map π1(X) → π1(Y ) is surjective and Π2(Y, X) is the free crossed module on the characteristic maps
of the 2-cells.

As before, we apply the results just obtained to the case of a space X that is the pushout of classifying
spaces.

Theorem 5.4.9 Let f : P → Q be a morphism of groups. Then the crossed module Π2(BQ ∪Bf CBP, BQ) is
isomorphic to the induced crossed module f∗(1P ).

Proof Taking in the preceding remark R = 1, its classifying space is contractible. Thus, we can take CBP as
equivalent to the classifying space BR. 2

5.5 Calculation of induced crossed modules: the epimorphism case.

Let us consider now the case where f : P → Q is an epimorphism. Then Ker f acts on M via the map f and
the induced crossed module f∗M may be seen as M quotiented out by the normal subgroup appropriate for
trivialising the action of Ker f (since Q is isomorphic to P/Ker f), i.e. by quotienting out the displacement
subgroup (recall 4.4.1 to 4.4.7).

Proposition 5.5.1 If f : P → Q is an epimorphism and µ : M → P is a crossed module, then

f∗M ∼= M

[M, Ker f ]

where [M, Ker f ] is the displacement subgroup, i.e. the subgroup of M generated by {m−1mk | m ∈ M, k ∈
Ker f}.

Proof Let us recall that by Proposition 4.4.7 the quotient M/[M, Ker f ] is a Q-crossed module with the
Q-action on M/[M, Ker f ] given by [m]q = [mp] for m ∈ M, q ∈ Q, q = f(p), p ∈ P , and the homomorphism

fµ :
M

[M, Ker f ]
→ Q,

is induced by the composition µf : M → Q.

It remains only to prove that this fµ satisfies the universal property. Let

(h, f) : (µ : M → P ) −→ (ν : N → Q)

be a morphism of crossed modules. We have to prove that there exists a unique homomorphism of groups

h′ :
M

[M, Ker f ]
−→ N

such that
(h′, f) : (fµ :

M

[M, Ker f ]
→ P ) −→ (ν : N → Q)

is a morphism of crossed modules and h′φ = h where φ is the natural projection. Equivalently, we have to prove
that h induces a homomorphism of groups h′ and that (h′, f) is a morphism of crossed modules.
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Since h(mp) = (hm)f(p) for any m ∈ M and p ∈ P , we have h[M, Ker f ] = 1. Then, h induces a homomor-
phism of groups h′ as above such that h′φ = h.

We have only to check that h′ is a map of Q-crossed modules. But

νh′[m] = νh(m) = fµ(m) = fµ[m],

so the square commutes, and

h′([m]q) = h′[mp] = h(mp) = (hm)f(p) = (h′[m])q

so h′ preserves the actions. 2

This description gives as a topological consequence a version of the relative Hurewicz Theorem.

Theorem 5.5.2 (Relative Hurewicz Theorem in dimension 2) Consider a 1-connected pair of spaces (Y,A)
such that the inclusion i : A → Y is a closed cofibration. Then the space Y ∪ C(A) is simply connected and its
second homotopy group π2(Y ∪ C(A)) and the singular homology group H2(Y ∪ C(A)) are each isomorphic to
π2(Y, A) factored by the action of π1(A).

Proof It is clear from the classical van Kampen Theorem that the space Y ∪ C(A) is 1-connected.

Using the homotopy exact sequence of the pair (Y ∪ C(A), C(A)),

· · · → 0 = π2(C(A)) → π2(Y ∪ C(A)) → π2(Y ∪ C(A), C(A)) → 0 = π1(C(A)) → · · ·

we have
π2(Y ∪ C(A)) ∼= π2(Y ∪ C(A), C(A)).

Now we can apply Corollary 5.4.2 to show that the crossed module

π2(Y ∪ C(A), C(A)) → π1(C(A)) = 1

is induced from π2(Y,A) → π1(A) by the map given by the morphism π1(A) → 1 induced by the inclusion
A → CA.

Moreover, since the map i∗ : π1(A) → π1(Y ) is onto, by Proposition 5.5.1 we have

π2(Y ∪ C(A), C(A)) ∼= π2(Y, A)/[π2(Y, A), π1(A)].

This yields the result on the second homotopy group.

The absolute Hurewicz theorem for Y ∪ C(A) yields the result on the second homology group. 2

Remark 5.5.3 Note that we obtain immediately a result on the second absolute homotopy group of Y ∪C(A)
without using any homology arguments. This is significant because the setting up of singular homology, proving
all its basic properties, and proving the absolute Hurewicz theorem takes a considerable time. An exposition
of the Hurewicz theorems occurs on pages 166-180 of G. Whitehead’s text [175], assuming the properties of
singular homology.

Corollary 5.5.4 The first two homotopy groups of S2 are given by π1(S2) = 0, π2(S2) ∼= Z.
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Proof This is the case of Theorem 5.5.2 when A = S1, Y = E2
+, where E2

+ denotes the top hemisphere of the
2-sphere S2. Then π2(Y, A) ∼= Z with trivial action by π1(A) ∼= Z. 2

Actually we have a more general result.

Corollary 5.5.5 If A is a connected space, and SA = CA ∪A CA denotes the suspension of A, then SA is
simply connected and

π2(SA) ∼= π1(A)ab.

Proof This is simply the result that π1(A)ab = π1(A)/[π1(A), π1(A)]. 2

One interest in this result is the method, which extends to other situations where the notion of abelianisation
is not so clear [52].

Example 5.5.6 Let f : A → Y be as in Theorem 5.4.7, let Z = Y ∪f CA, and suppose that f∗ : π1(A) → π1(Y )
is surjective with kernel K. An application of Proposition 5.5.1 to the conclusion of Theorem 5.4.7 gives
π2(Z) = π1(A)/[π1(A), K], and it follows from the homotopy exact sequence of the pair (Z, Y ) that there is an
exact sequence

(5.5.1) π2(Y ) → π2(Z) → K/[π1(A),K] → 0.

It follows from this exact sequence that if A = BP and Y = BQ, so that we have an exact sequence 1 → K →
P → Q → 1 of groups, then π2(Z) ∼= K/[P, K]. Now we assume some knowledge of homology of spaces. In
particular, the homology Hi(P ) of a group P is defined to be the homology Hi(BP ) of the space BP , i > 0.
Since Z is simply connected, we get the same value for H2(Z), by the absolute Hurewicz theorem. Now the
homology exact sequence of the cofibre sequence A → Y → Z gives an exact sequence

H2(P ) → H2(Q) → K/[P, K] → H1(P ) → H1(Q) → 0

(originally due to Stallings). In particular if P = F , a free group, or one with H2(F ) = 0, then we obtain an
exact sequence

0 → H2(Q) → K/[F,K] → F ab → Qab → 0.

This gives the famous Hopf formula

H2(Q) ∼= K ∩ [F, F ]
[K, F ]

which was one of the starting points of homological algebra.

Again, one of the reason for emphasising these kinds of results is that they arise from a uniform procedure,
which involves first establishing a higher order van Kampen Theorem. This theorem has analogues for algebraic
models of homotopy types more elaborate than just groups or crossed modules. This procedure has led to new
results, such as a higher order Hopf formula [32], which is deduced from an (n+1)-adic Hurewicz Theorem [52].
The only proof known of the last result is as a deduction from a van Kampen Theorem for n-cubes of spaces
[53].

5.6 The monomorphism case. Inducing from crossed modules over

a subgroup

In Section 5.3 we have considered the construction of an induced crossed module for a general homomorphism,
and in Section 5.5 we have got a simpler expression for the case when f is an epimorphism. Now we study the
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case of a monomorphism. This is essentially the same as studying the case of an inclusion in a subgroup. So in
all this section we shall consider the inclusion ι : P → Q of a subgroup P of Q.

As we shall see this case is rather involved and we get an expression of the induced crossed module that is
quite complicated and in some cases very much related to the coproduct. Let us introduce some concepts that
shall be helpful.

Definition 5.6.1 Let M be a group and let T be a set, we define the copower M∗T to be the free product
of the groups Mt = M × {t} for all t ∈ T . Notice that all Mt are naturally isomorphic to M under the map
(m, t) 7→ m. So M∗T can be seen as the free product of copies of M indexed by T .

This construction satisfies the adjointness condition that for any group N there is a bijection

Sets(T, Groups(M, N)) ∼= Groups(M∗T , N)

natural in M, N, T . Notice also that the precrossed module induced from M : (µ : M → P ) by f : P → Q is a
quotient of M∗UQ where UQ is the underlying set of Q.

In the case where we have the inclusion of a subgroup ι : P → Q, we choose T to be a right transversal
of P in Q, by which is meant a subset of Q including the identity 1 and such that any q ∈ Q has a unique
representation as q = pt where p ∈ P, t ∈ T . For any crossed P -module M = (µ : M → P ), the precrossed
Q-module induced by ι will have the form µ̂ : M∗T → Q. Let us describe the Q-action.

Proposition 5.6.2 Let ι : P → Q, M, and T be as above. Then there is a Q-action on M∗T defined on
generators using the coset decomposition by

(m, t)q = (mp, u)

for any q ∈ Q, m ∈ M, t ∈ T, where p, u are the unique p ∈ P, u ∈ T, such that tq = pu.

Proof Let m ∈ M , t, u, u′ ∈ T , p, p′ ∈ P and q, q′ ∈ Q be elements such that tq = pu and uq′ = p′u′. We have
t(qq′) = puq′ = pp′u′. Therefore,

((m, t)q)q′ = (mp, u)q′ = (mpp′ , u′) = (m, t)qq′

and Q acts on M∗T . 2

Remark 5.6.3 We can think of (m, t) as mt, so the action is (mt)q = (mp)u where tq = pu. Notice that if P

is normal in Q then the Q-action induces an action of P on Mt given by (m, t)p = (mtpt−1
, t). We shall exploit

this later.

Now we define the boundary homomorphism by specifying the images of the generators

µ̂ : M∗T → Q, (m, t) 7→ t−1µ(m)t.

Proposition 5.6.4 Let ι : P → Q, M and T be as above. Then (µ̂ : M∗T → Q) is a precrossed Q-module with
the above action.
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Proof We verify axiom CM1). For any m ∈ M , t ∈ T , and q ∈ Q, we have

µ̂((m, t)q) = µ̂(mp, u) when tq = pu

= u−1µ(mp)u by definition of µ̂

= u−1(p)−1µ(m)pu because µ is a crossed module

= q−1(t)−1µ(m)tq because tq = pu

= q−1µ̂(m, t)q because µ is a crossed module.

2

To complete the characterisation we now prove that in this case this precrossed module is the induced one.

Theorem 5.6.5 If ι : P → Q is a monomorphism, and M = (µ : M → P ) is a crossed P-module then
µ̂ : M∗T → Q is the precrossed module induced by ι from µ.

Proof We check the universal property. There is a homomorphism of groups φ : M → M∗T defined by
φ(m) = (m, 1) that makes commutative the square

M
φ //

µ

²²

M∗T

µ̂

²²
P ι

// Q

and so that (φ, ι) is a morphism of precrossed modules.

For any morphism of precrossed modules

(h, ι) : (µ : M → P ) −→ (ν : N → Q)

the only possible definition of a homomorphism of groups h′ : M∗T → N such that h′φ = h is the one given by
h′(m, t) = (hm)t on generators. It is easy to see that it is a morphism of Q-precrossed modules. 2

It is immediate that the induced crossed module is the one associated to the precrossed module µ̂, i.e. the
quotient with respect to the Peiffer subgroup.

Corollary 5.6.6 If ι : P → Q is a monomorphism, and (µ : M → P ) is a crossed P-module, then the crossed
module induced by ι from µ is the homomorphism induced by µ̂ on the quotient

µ̂ :
M∗T

[[M∗T ,M∗T ]]
→ Q

together with the induced action of Q.

It is useful to have a smaller number of generators of the Peiffer subgroup [[M∗T , M∗T ]].

Proposition 5.6.7 Let ι : P → Q be a monomorphism, M = (µ : M → P ) be a crossed P-module and M∗T

as before. Let S be a set of generators of M as a group, and let us define SP = {sp | s ∈ S, p ∈ P}. Then there
is an isomorphism of the induced crossed module ι∗M = (ι∗M → Q) to a quotient

ι∗M ∼= (M∗T )
R
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where R is the normal closure in M∗T of the elements

[[(r, t), (s, u)]] = (r, t)−1(s, u)−1(r, t)(s, u)µ̂(r,t)

for all r, s ∈ SP and t, u ∈ T .

Proof By Corollary 5.6.6 we just have to prove that R is the Peiffer subgroup [[M∗T , M∗T ]] of M∗T .

Now, M∗T is generated by the set

(SP , T ) = {(sp, t) | s ∈ S, p ∈ P, t ∈ T}

and this set is Q-invariant since (sp, t)q = (spp′ , u) where u ∈ T , p′ ∈ P satisfying tq = p′u. Then by Proposition
3.3.5 {M∗T ,M∗T } is the normal closure of the set {(SP , T ), (SP , T )} of basic Peiffer commutators and this is
just R. 2

The next corollary gives a bound on the number of generators and relations of a presentation for the induced
crossed module in terms of those of a presentation of M and the index of ιµ(M) in Q.

Corollary 5.6.8 Suppose ι : P → Q is injective, M has a presentation as a group with g generators and r

relations, the set of generators of M is P -invariant, and n = [Q : ιµ(M)]. Then ι∗M has a presentation with
gn generators and rn + g2n(n− 1) relations.

Proof This is just a process of counting. The transversal T has n elements, so M∗T has gn generators and rn

relations. To get a presentation of ι∗M we just add as relations the basic Peiffer commutators of the generators
and those are g2n(n− 1) relations more. 2

We show how this construction works out in the case of the dihedral crossed module, which exhibits a
number of typical features.

Example 5.6.9 Let us recall that the dihedral group D2n has presentation

〈x, y | xn, y2, xyxy〉.

We consider another copy D̃2n of D2n with presentation 〈u, v | un, v2, uvuv〉 and the homomorphism

∂ : D̃2n → D2n, u 7→ x2, v 7→ y.

There is a crossed module with boundary ∂ and action of D2n on D̃2n given on generators by the equations

uy = vuv−1, vy = v, ux = u, vx = vu.

As an exercise, check this result and also that ∂ : D̃2n → D2n is an isomorphism if n is odd, and has kernel and
cokernel isomorphic to C2 if n is even.

Example 5.6.10 We let Q = D2n be the dihedral group with generators x, y, and let M = P = C2 be the
cyclic subgroup of order 2 generated by y. Let us denote by ι : C2 ↪→ D2n the inclusion.

We have that Id : C2 → C2 is a crossed module and we are going to identify the induced crossed module

µ̂ = ι∗(Id) : ι∗(C2) −→ D2n.
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A right transversal of C2 in D2n is given by the elements T = {xi | i = 0, 1, 2, . . . , n− 1}.
If we apply the Proposition 5.6.7 we have that ι∗C2 has a presentation with generators ai = (y, xi), i =

0, 1, 2, . . . , n − 1 and relations a2
i = 1, i = 0, 1, 2, . . . , n − 1, together with the Peiffer relations associated to

these generators.

Since the D2n-action on C∗T2 is given by

ax
i = ai+1 and ay

i = an−i,

and
µ̂(ai) = x−iyxi = yx2i,

we have (ai)µ̂aj = a2j−i, so that the Peiffer relations become

a−1
j aiaj = a2j−i.

In this group, we define u = a0a1, v = a0. As consequence, we have u = aiai+1 and ui = a0ai and it is now
easy to check that (C∗T2 )cr ∼= D̃2n. Also the map µ̂ satisfies

µ̂u = µ̂(a0a1) = yyx2 = x2, µ̂v = y.

Thus y acts on ι∗C2 by conjugation by v. However x acts by ux = u, vx = vu.

This crossed module is the dihedral crossed module of the previous Example 5.6.9.

It is worth pointing out that this induced crossed module is finite while the corresponding precrossed module
M∗T is clearly infinite. We shall insist on these points in the next section.

Our last proposition determines induced crossed modules under some abelian conditions. This result has
some useful applications. If M is a P -module, i.e. an abelian P -group, and T is a set we define the copower of
M with T , written M⊕T , to be the sum of copies of M one for each element of T.

Proposition 5.6.11 Let ι : P → Q and (µ : M → P ) be as before. Moreover assume that M is abelian and
ιµ(M) is normal in Q. Then ι∗M is abelian and as a Q-module is just the induced Q-module in the usual sense.

Proof We use the result and notation of Proposition 5.6.7. Note that if u, t ∈ T and r ∈ S then

uµ̂(r, t) = ut−1µ(r)t = ιµ(m)ut−1t = µ(m)u

for some m ∈ M, by the normality condition.

The Peiffer commutator given in Proposition 5.6.7 can therefore be rewritten as

(r, t)−1(s, u)−1(r, t)(s, u)µ̂(r,t) = (r−1, t)(s, u)−1(r, t)(sm, u).

Since M is abelian, sm = s. Thus the basic Peiffer commutators reduce to ordinary commutators. Hence ι∗M
is the copower M⊕T , and this, with the given action, is the usual presentation of the induced Q-module. 2

Example 5.6.12 Let M = P = Q be the infinite cyclic group, which we write Z, and let ι : P → Q be
multiplication by 2. Then

ι∗M ∼= Z⊕ Z,

and the action of a generator of Q on ι∗M is to switch the two copies of Z. This result could also be deduced
from well known results on free crossed modules. However, our results show that we get a similar conclusion
simply by replacing each Z in the above by for example C4, and this fact is new.
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5.7 On the finiteness of some induced crossed modules

With the results of the previous section, we have an alternative way of constructing the induced crossed module
associated to a homomorphism f . We can factor f in an epimorphism and a monomorphism and then apply
the constructions. As pointed out before it is always a good thing to have as many equivalent ways as possible
since then we can choose the most appropriate to some particular situation.

As we have seen in the previous section, if we have a (pre)crossed module M = (M → P ) in which M is
generated by a finite P -set of a generators, and a group homomorphism P → Q with finite cokernel, the induced
(pre)crossed module is also generated by a finite set. In this section we give an algebraic proof that a crossed
module induced from a finite crossed module by a morphism with finite cokernel is also finite. The result is
false for precrossed modules.

Theorem 5.7.1 Let µ : M → P be a crossed module and let f : P → Q be a morphism of groups. Suppose
that M and the index of f(P ) in Q are finite. Then the induced crossed module f∗M is finite.

Proof Factor the morphism f : P → Q as τσ where τ is injective and σ is surjective. Then f∗M is isomorphic
to τ∗σ∗M. It is immediate from Proposition 5.5.1 that if M is finite then so also is σ∗M. So it is enough to
assume that f is injective.

Let T be a right transversal of f(P ) in Q. Then there are maps

(ξ, η) : T ×Q → f(P )× T

defined by (ξ, η)(t, q) = (p, u) where p ∈ P , u ∈ T are elements such that tq = f(p)u. With this notation, the
form of a basic Peiffer relation got in Corollary 5.6.6 is then of the form

(5.7.1) (m, t)(n, u) = (n, u)(mξ(t,u−1fµ(n)u), η(t, u−1fµ(n)u))

where m,n ∈ M, t, u ∈ T.

We now assume that the finite set T has l elements and has been given the total order t1 < t2 < · · · < tl.
An element of M∗T may be represented as a word

(5.7.2) (m1, u1)(m2, u2) . . . (me, ue).

Such a word is said to be reduced when ui 6= ui+1, 1 6 i < e, and to be ordered if u1 < u2 < · · · < ue in the
given order on T . This yields a partial ordering of M ∗ T where (mi, ui) 6 (mj , uj) whenever ui 6 uj .

A twist uses the Peiffer relation (5.7.1) to replace a reduced word w = w1(m, t)(n, v)w2, with v < t, by
w′ = w1(n, v)(mp, u)w2. If the resulting word is not reduced, multiplication in Mv and Mu may be used to
reduce it. In order to show that any word may be ordered by a finite sequence of twists and reductions, we
define an integer weight function on the set Wn of non-empty words of length at most n by

Ωn : Wn −→ Z+

(m1, tj1)(m2, tj2) . . . (me, tje) 7→ le
∑e

i=1 ln−iji.

It is easy to see that Ωn(w′) < Ωn(w) when w → w′ is a reduction. Similarly, for a twist

w = w1(mi, tji)(mi+1, tji+1)w2 → w′ = w1(mi+1, tji+1)(n, tk)w2

the weight reduction is

Ωn(w)− Ωn(w′) = ln+e−i−1( l(ji − ji+1) + ji+1 − jk ) > ln+e−i−1,
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so the process terminates in a finite number of moves.

We now specify an algorithm for converting a reduced word to an ordered word. Various algorithms are
possible, some presumably more efficient than others, but we are not interested in efficiency here. We call a
reduced word k-ordered if the subword consisting of the first k elements is ordered and the remaining elements
are greater than these. Every reduced word is at least 0-ordered. Given a k-ordered, reduced word, find the
rightmost minimal element to the right of the k-th position. Move this element one place to the left with a
twist, and reduce if necessary. The resulting word may only be j-ordered, with j < k, but its weight will be less
than that of the original word. Repeat until an ordered word is obtained.

Let Z = Mt1 ×Mt2 × . . . ×Mtl
be the product of the sets Mti = M × {ti}. Then the algorithm yields a

function φ : Y → Z such that the quotient morphism Y → f∗M factors through φ. Since Z is finite, it follows
that f∗M is finite. 2

Remark 5.7.2 In this last proof, it is in general not possible to give a group structure on the set Z such
that the quotient morphism Y → f∗M factors through a morphism to Z. For example, in the dihedral crossed
module of Example 5.6.9, with n = 3, the set Z will have 8 elements, and so has no group structure admitting
a morphism onto D6.

So the proof of the main theorem of this section does not extend to a proof that the induced crossed module
construction is closed also in the category of p-groups. Nevertheless, the result is true and there is a topological
proof [62].

5.8 Inducing crossed modules by a normal inclusion

We continue the study of the crossed modules induced by the inclusion of a subgroup that we have begun in
general in Section 5.6. In this section we consider the particular case when P is a normal subgroup of Q.
We shall show in Theorem 5.8.4 that the coproduct of crossed P -modules described in Section 4.1 may be
used to give a presentation of the crossed Q-modules induced by the inclusion ι : P → Q analogous to known
presentations of induced modules.

Let us start by digressing a bit about crossed modules constructed from a given one using an isomorphism.

Definition 5.8.1 Let µ : M → P be a crossed P -module and let α be an automorphism of P . The crossed
module µα : Mα → P associated to α is defined as follows. The group Mα is just M × {α}, the morphism µα

is given by (m,α) 7→ αµm and the action of P is given by (m,α)p = (mα−1p, α).

Proposition 5.8.2 The map µα : Mα → P is a crossed module. Moreover this crossed module is isomorphic
to µ since the map kα : M → Mα given by kαm = (m,α) produces an isomorphism over α.

Proof Let us check both properties of crossed module

µα(mα−1p, α) = α(µmα−1p) = α(α−1(p)−1µ(m)α−1(p)) = p−1αµ(m)p = p−1µα(m)p

and

(m,α)µα(m′,α) = (m,α)αµ(m
′) = (mα−1αµ(m′), α) = (mµ(m′), α) = (m′, α)−1(m,α)(m′, α).



5.8 Inducing crossed modules by a normal inclusion 103

It is immediate that the map kα : M → Mα is an isomorphism. Also, the diagram

M
kα //

µ

²²

Mα

µα

²²
P α

// P.

commutes and the map kα preserves the P -action over α. 2

Remark 5.8.3 Notice that if α = Id , there is a natural identification MId = M.

We continue to assume that P is a normal subgroup of Q. In this case, for any t ∈ Q, there is an inner
automorphism αt : P → P defined by αt(p) = t−1pt. Let us write (µt : Mt → P ) instead of (µαt

: Mαt
→ P ).

Let recall that this crossed P -module is the same (µt : Mt → P ) that we have used to construct ι∗M in
Section 5.6, namely Mt = M × {t}, the P -action was given by (m, t)p = (mtpt−1

, t) and the homomorphism µt

was defined by µt(m, t) = t−1µmt. We have just seen that it is a crossed P -module isomorphic to M.

Now let T be a right transversal of P in Q. We can form the precrossed Q-module M′ = (∂′ : M∗T → Q) as
in Proposition 5.6.2. Recall that the Q-action is defined on generators as follows. For any q ∈ Q, m ∈ M, t ∈ T

we define
(m, t)q = (mp, u),

where p ∈ P and u ∈ T are the only ones satisfying tq = pu. Also the homomorphism ∂′ is defined by
∂′(m, t) = t−1pt

We had seen in Theorem 5.6.5 that the induced crossed Q-module ι∗M is the quotient of M∗T by the Peiffer
subgroup associated to the Q-action. On the other hand, we have seen in Corollary 4.1.2 that the coproduct as
crossed P -modules

∂ : M◦T → P

is the quotient of M∗T with respect to the Peiffer subgroup associated to the P -action. We are going to check
that they are the same.

Theorem 5.8.4 In the situation we have just described, the homomorphism

M◦T ∂→ P
ι

↪→ Q

with the morphism of crossed modules

(i1, ι) : M→ (ι∂ : M◦T → Q)

is the induced crossed Q-module.

Proof It is immediately checked in this case that the Peiffer subgroup is the same whether M∗T is considered
as a precrossed P -module M∗T → P or as a precrossed Q-module M∗T → Q. It can also be directly checked.
We leave that as an exercise.

2
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We remark that the result of Theorem 5.8.4 is analogous to well known descriptions of induced modules,
except that here we have replaced the direct sum which is used in the module case by the coproduct of crossed
modules. Corresponding descriptions in the non-normal case look to be considerably harder.

As a consequence we obtain easily a result on p-finiteness that can be strengthened by topological means
([62]). We prove it here for normal subgroups.

Proposition 5.8.5 If M is a finite p-group and P is a normal subgroup of finite index in Q, then the induced
crossed module ι∗M is a finite p-group.

Proof This follows immediately from the discussion in Section 4.1. 2

Now the induced module (ι∂ : M◦T → Q) in Theorem 5.8.4 may be described using Corollary 4.4.16, if
the hypotheses there are satisfied. So let P be a normal subgroup of Q and T a transversal as before, and let
(µ : M → P ) be a crossed P -module.

We can divide the construction of the group M◦T into two parts. We define W = M◦T ′ the coproduct of
all but M1 = M . Then there is an isomorphism of crossed Q-modules

ι∗M∼= M ◦W.

To apply Corollary 4.4.16 we have to assume that for all t ∈ T we have µt(M) ⊆ µ(M), i.e. that for all t ∈ T

we have t−1µ(M)t ⊆ µ(M) (notice that this is immediately satisfied if µM is normal in Q), and that there is a
section σ : µM → M of µ defined on µM . Most of the time we shall require also that σ is P -equivariant.

Then there is an isomorphism
ι∗M∼= M ×

⊕

t∈T ′
(Mt)M

through which the morphisms giving the coproduct structure become

(i, ι) : (µ : M → P ) −→ (ξ = ιµ pr1 : M ×
⊕

t∈T ′
(Mt)M → Q)

where i = i1 : (m, 1) 7→ (m, 0) and

(it, ι) : (µ : Mt → P ) −→ (ξ = ιµpr1 : M ×
⊕

t∈T ′
(Mt)M → Q)

where for t 6= 1, it(m, t) = (σ((µm)t), [m, t]).

Let us describe first how the Q-action is defined on this last crossed Q-module. Later we shall check the
universal property.

The result we give is quite complicated, technical and non memorable. It is given principally because it
shows the method, and also because we it shows that these methods give control over quite complex actions in
a way which seems to be unobtainable by traditional methods, since they do not allow control of nonabelian
structures.

Theorem 5.8.6 The Q-action on the group M ×⊕
t∈T ′(Mt)M is given as follows,

(i) For any m ∈ M, q ∈ Q

(m, 0)q =

{
(mq, 0) if v = 1,

(σ((µm)q), [mr, v]) if v 6= 1;
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where r ∈ P and v,∈ T, satisfy q = rv and [m, v] denotes the class of (m, v) in (Mv)M

(ii) If m ∈ M, t ∈ T ′, q ∈ Q then

(1, [m, t])q =





(1, [mp, t]) if v = 1,

(σ(µmp)−1mp,−[σ((µmp)v−1
), v]) if v 6= 1, u = 1,

(1,−[σ((µmp)uv−1
), v] + [mp, u]) if v 6= 1, u 6= 1,

where p ∈ P, u ∈ T are the unique elements satisfying tq = pu.

Proof We use the description of the morphisms associated to the coproduct structure given above to calculate
the action given by Theorem 5.8.4.

The formulae (i) and (ii) for the case v = 1 follow from the description of the action of P on Mt given at
the beginning of this section.

The remaining cases will be deduced from the formula for the action of Q given in Theorem 5.8.4, namely
if m ∈ M, t ∈ T, q ∈ Q then

(it(m, t))q =

{
i1(mp, 1) = (mp, 0), if tq = p ∈ P,

iu(mp, u) = (σ((µmp)u), [mp, u]), if tq = pu, p ∈ P, u ∈ T ′.

We first prove (i) for v 6= 1. We have since q = rv, v ∈ T ′,

(m, 0)q = (i1(m, 1))rv

= iv(mr, v)

= (σ((µmr)v), [mr, v]).

To prove (ii) with v 6= 1, first note that

(1, [m, t]) = (σ((µm)t), 0)−1 (σ((µm)t), [m, t])

= (σ((µm)t), 0)−1 it(m, t).

But

(σ((µm)t), 0)q = (σ((µσ((µm)t))q), [(σ((µm)t))r, v])by (i)

= (σ((µm)tq), [σ((µm)tr), v]) since µσ = 1,

and, from the definition of the Q-action,

(it(m, t))q =

{
(mp, 0) if u = 1,

(σ((µm)tq), [mp, u]) if u 6= 1.

It follows that

(1, [m, t])q =

{
(σ(µmp)−1mp,− [σ((µmp)v−1

), v]) if u = 1,

(1,− [σ((µmp)uv−1
), v] + [mp, u]) if u 6= 1.

2

Now we check that the universal property is satisfied.
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Theorem 5.8.7 For any crossed module N = (ν : N → Q) and any morphism of crossed modules (β, ι) : M→
N , the induced morphism φ : M ×⊕

t∈T ′(Mt)M → N is given by

φ(m, 0) = βm, φ(m, [n, v]) = (βm)β(σ((µn)v))−1 (βn)v.

Proof The formula for φ is obtained as follows:

φ(m, [n, v]) = φ(m, 0)φ(σ((µn)v), 0)−1 φ(iv(n, v))

= (βm) (β(σ((µn)v))−1) (βn)v

where the definition of φ is taken from Theorem 5.8.4 2

We now include an example for Theorem 5.8.6 showing the action in the case v 6= 1, u = 1.

Example 5.8.8 Let n be an odd integer and let Q = D8n be the dihedral group of order 8n generated by
elements {t, y} with relators {t4n, y2, (ty)2}. Let P = D4n be generated by {x, y}, and let ι : P → Q be the
monomorphism given by x 7→ t2, y 7→ y. Then let M = C2n be generated by {m}. Define M = (µ : M → P )
where µm = x2, mx = m and my = m−1. This crossed module is isomorphic to a sub-crossed module of
(D4n → Aut(D4n)) and has kernel {1,mn}.

The image µM is the cyclic group of order n generated by x2, and there is an equivariant section σ : µM →
M, x2 7→ mn+1 since (x2)(n+1) = x2 and gcd(n + 1, 2n) = 2. Then Q = P ∪ Pt, T = {1, t} is a transversal, Mt

is generated by (m, t) and µt(m, t) = x2. The action of P on Mt is given by

(m, t)x = (m, t), (m, t)y = (m−1, t).

Since M acts trivially on Mt,
ι∗M ∼= M ×Mt

∼= C2n × C2n.

Using the section σ given above, Q acts on ι∗M by

(m, 0)t = (mn+1, [m, t]),

(m, 0)y = (m−1, 0),

(1, [m, t])t = (mn, (n− 1)[m, t]),

(1, [m, t])y = (1,−[m, t]).

It is worth recalling that our objective was not only to get an easier expression of the induced crossed module,
but also to have some information about the kernel of its boundary map. We can obtain some information on
the later in the case where P is of index 2 in Q, even without the assumption that µM is normal in Q following
[25].

Suppose then that T = {1, t} is a right transversal of P in Q. Let the morphism M nMt → P be given as
usual by (m, (n, t)) 7→ (µm)(µt(n, t)) = mt−1nt.

Write 〈M,Mt〉 for the subgroup of M ×P Mt generated by the elements

〈m, (n, t)〉 = (m−1mt−1(µn)t, ((n, t)−1)m(n, t)),

for all m ∈ M, (n, t) ∈ Mt.



5.8 Inducing crossed modules by a normal inclusion 107

Proposition 5.8.9 Let µ : M → P and ι : P → Q be inclusions of normal subgroups. Suppose that P is of
index 2 in Q, and t ∈ Q \ P . Then the kernel of the induced crossed module (∂ : ι∗M → Q) is isomorphic to

(M ∩ t−1Mt) / [M, t−1Mt].

In particular, if M is also normal in Q, then this kernel is isomorphic to M/[M,M ], i.e. to M made abelian.

Proof By previous results ι∗M is isomorphic to the coproduct crossed P -module M ◦Mt with a further action
of Q. The result follows from Corollary 4.3.7 2

We now give some topological applications of the last result.

Example 5.8.10 Let ι : P = D4n → Q = D8n be as in Example 5.8.8, and let M = D2n be the subgroup of P

generated by {x2, y}, so that ιM ¢ ιP ¢ Q and t−1Mt is isomorphic to a second D2n generated by {x2, yx}.
Then

M ∩ t−1Mt = [M, t−1Mt]

(since [y, yx] = x2), and both are isomorphic to Cn generated by {x2}.
It follows from Proposition 5.8.9 that if X is the homotopy pushout of the maps

BD4n

²²

// BC2

²²
BD8n

// X

where the horizontal map is induced by D4n → D4n/D2n
∼= C2, then π2(X) = 0.

Example 5.8.11 Let M,N be normal subgroups of the group G, and let Q be the wreath product

Q = G o C2 = (G×G)o C2.

Take P = G × G, and consider the crossed module (∂ : Z → Q) induced from M × N → P by the inclusion
P → Q. If t is the generator of C2 which interchanges the two factors of G × G, then Q = P ∪ Pt and
t−1(M ×N)t = N ×M . So

(M ×N) ∩ t−1(M ×N)t = (M ∩N)× (N ∩M)

and
[M ×N, N ×M ] = [M, N ]× [N,M ].

It follows that if X is the homotopy pushout of

BG×BG

²²

// B(G/M)×B(G/N)

²²
B(G o C2) // X

then
π2(X) ∼= ((M ∩N)/[M,N ])2.

If ([m], [n]) denotes the class of (m,n) ∈ (M ∩N)2 in π2(X), the action of Q is determined by

([m], [n])(g,h) = ([mg], [nh]), (g, h) ∈ P, ([m], [n])t = ([n], [m]).
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We end this section by giving a very concrete description of the induced crossed module in the case that
both M and P are normal subgroups of Q and M ⊆ P . It is proved by a direct verification of the universal
property for an induced crossed module.

There are two construction used in the description. The first one is the abelianisation Mab of a group M .
If n ∈ M , then the class of n in Mab is written [n].

The second construction is the augmentation ideal IQ of a group Q, which we further develop later on. For
now let us say that the augmentation ideal I(Q/P ) of a quotient group Q/P has basis {t− 1 | t ∈ T ′} where T

is a transversal of P in Q, T ′ = T \ {1} and q denotes the image of q in Q/P.

Theorem 5.8.12 Let M ⊆ P be normal subgroups of Q, so that Q acts on P and M by conjugation. Let
µ : M → P, ι : P → Q be the inclusions and let M = (µ : M → P ). Then the induced crossed Q-module ι∗M
is isomorphic as a crossed Q-module to

(ζ : M × (Mab ⊗ I(Q/P )) → Q)

where for m,n ∈ M, x ∈ I(Q/P ) :

(i) ζ(m, [n]⊗ x) = m;

(ii) the action of Q is given by

(m, [n]⊗ x)q = (mq, [mq]⊗ (q − 1) + [nq]⊗ xq).

The universal map i : M → M × (Mab ⊗ I(Q/P )) is given by m 7→ (m, 0).

Proof This could be proved directly (see [63]) but instead, in view of what has already been set up, we
will deduce it from Theorem 5.8.6. Specialising this theorem to the current situation, in which σµ = 1 and
it(m, t) = (mt, [m, t]), yields an isomorphism of crossed Q-modules

ι∗M→ X = (ξ = ιµ pr1 : M ×
⊕

t∈T ′
(Mab) → Q).

In X the action of Q is given as follows, where m ∈ M, r ∈ P, q = rv and v ∈ T :

(i)

(m, 0)q =

{
(mq, 0) if v = 1,

(mq, [mr, v]) if v 6= 1.

(ii) if tq = pu, t ∈ T ′, p ∈ P and u ∈ T , then

(1, [m, t])q =





(1, [mp, t]) if v = 1,

(1,−[mpv−1
, v]) if v 6= 1, u = 1,

(1,−[mpuv−1
, v] + [mp, u]) if v 6= 1, u 6= 1.

Now we construct an isomorphism

ω : M ×
⊕

t∈T ′
(Mab) → M × (Mab ⊗ I(Q/P ))

where for m, n ∈ M, t ∈ T ′,

ω(m, 0) = (m, 0), ω(m, [n, t]) = (m, [nt]⊗ (t− 1)).
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Clearly ω is an isomorphism of groups, since it is an isomorphism on the part determined by a fixed t ∈ T ′,
and I(Q/P ) has a basis {t− 1 : t ∈ T ′} when considered as an abelian group. Now we prove that ω preserves
the action of Q. Let m,n ∈ M, t ∈ T ′, q ∈ Q. Let q = rv, tq = pu, p, r ∈ P, u, v ∈ T . When v = 1 we have
tqt−1 ∈ P and so u = t. Then

ω((m, 0)q) =
{

ω(mq, 0) if v = 1,

ω(mq, [mr, v]) if v 6= 1.

=
{

(mq, 0) if v = 1,

(mq, [mq]⊗ (v − 1) if v 6= 1,

= (ω(m, 0))q.

Further,

ω((1, [m, t])q) =





ω(1, [mp, t]) if v = 1,

ω(1,−[mpv−1
, v]) if v 6= 1, u = 1,

ω(1,−[mpuv−1
, v] + [mp, u]) if v 6= 1, u 6= 1,

=





(1, [mpt]⊗ (t− 1)) if v = 1,

(1,−[mp]⊗ (v − 1)) if v 6= 1, u = 1,

(1,−[mpu]⊗ (v − 1) + [mpu]⊗ (u− 1)) if v 6= 1, u 6= 1,

= (1,−[mpu]⊗ (v − 1) + [mpu]⊗ (u− 1) in every case,

= (1, [mtq]⊗ (t− 1)q),

= (ω(1, [m, t]))q

since, in I(Q/P ),
(t− 1)q = pu− rv = u− v = (u− 1)− (v − 1).

Finally, we have to compute the universal extension φ of β. For this, it is sufficient to determine

φ(1, [n]⊗ (q − 1)) = φω(1, [nv−1
, v])

= φω((n−1, 0) iv(nv−1
, v))

= β(n−1)β(nv−1
)v

= β(n−1)β(nq−1
)q

since β is a P -morphism and q = rv = v. 2

With this description, we can get new results on the fundamental crossed module of a space which is the
pushout of classifying spaces. The following corollary is immediate.

Corollary 5.8.13 Under the assumptions of the theorem, let us consider the space X = BQ∪BP B(P/M). Its
fundamental crossed module Π2(X, BQ) is isomorphic to the above crossed Q-module

(ζ : M × (Mab ⊗ I(Q/P )) → Q).

In particular, the second homotopy group π2(X) is isomorphic to Mab ⊗ I(Q/P ) as Q/M -module.

Proof The proof is immediate. 2
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Note one of our major arguments: in order to compute an abelian second homotopy group, we may have
to use nonabelian algebraic methods which better reflect the structure of the problem than the usual abelian
methods.

Corollary 5.8.14 In particular, if the index [Q : P ] is finite, and P is the crossed module (1 : P → P ), then
ι∗P is isomorphic to the crossed module (pr1 : P × (P ab)[Q:P ]−1 → Q) with action as above.

Remark 5.8.15 In this case, X = BQ∪BP B(P/P ) may be interpreted either as the space obtained from BQ

by collapsing BP to a point, or, better, as X = BQ ∪BP CB(P ) the space got by attaching a cone. This is a
consequence of the gluing theorem for homotopy equivalences proved in [30].

This crossed module is not equivalent to the trivial one. At first sight, it seems that the projection

pr2 : P × (P ab ⊗ I(Q/P )) → (P ab ⊗ I(Q/P ))

determines a morphism of crossed modules to the trivial one 0 : (P ab ⊗ I(Q/P )) → I(Q/P )), but this is not so
because the map pr2 is not a Q-morphism.

We are going to show later that this crossed module is not equivalent in a certain sense to the projection
crossed module.

We have now completed the applications of the 2-dimensional van Kampen Theorem which we will give
in this book. In the next chapter we give the proof of the theorem, using the algebraic concepts of double
groupoids. In the next section, we explain how the computer algebra system GAP has been used to give further
computations of induced crossed modules, and of course these have topological applications according to the
results of this chapter.

5.9 Computational issues for induced crossed modules

The following discusses significant aspects of the computation of induced crossed modules. Let us consider the
description of the induced module from a computational point of view. It involves the copower, i.e. a free
product of groups. This usually gives infinite groups, but let us consider how to get a finite presentation in the
case M ⊆ P ⊆ Q.

If M = 〈X | R〉 is a finite presentation of M , there is a finite presentation of M∗T with |X||T | generators
and |R||T | relations.

Let XP be the closure of X under the action of P . Then ι∗(M) = (M∗T )/N where N is the normal closure
in M∗T of the elements

(5.9.1) 〈(m, t), (n, u)〉 = (m, t)−1(n, u)−1(m, t)(n, u)δ(m,t) (m,n ∈ ΣP , t, u ∈ T ).

The homomorphism ι∗ is induced by the projection pr()m = (m, () ) onto the first factor, and the boundary δ

of ι∗M is induced from δ′ as shown in the following diagram:

M
ι∗ //

µ

²²

(M∗T )/N

δ

²²
P ι

// Q
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When Σ is a set and σ : Σ → Q any map, take M = P = F (Σ) to be the free group on Σ and let
FΣ = (idF (Σ) : F (Σ) → F (Σ) ). Then σ extends uniquely to a homomorphism σ′ : F (Σ) → Q and σ′∗FΣ is the
free crossed module Fσ described in section 3.4. However, computation in free crossed modules is in general
difficult since the groups are usually infinite.

So, in order to compute the induced crossed module ι∗M for M = (µ : M → P ) a conjugation crossed
module and ι : P → Q an inclusion, we construct finitely presented groups FM,FP, FQ isomorphic to the
permutation groups M, P,Q and monomorphisms FM → FP → FQ mimicking the inclusions M → P → Q.

As well as returning an induced crossed module, the construction should return a morphism of crossed
modules (ι∗, ι) : M→ ι∗M.

A finitely presented form FC for the copower M∗T is constructed with |X||T | generators. The relators of
FC comprise |T | copies of the relators of FM , suitably renumbered.

The inclusion δ′ maps the generators of FM to the first |X| generators of FC. A finitely presented form FI

for ι∗M is then obtained by adding to the relators of FC further relators corresponding to the list of elements
in equation (5.9.1).

Then we can apply some Tietze transformations to the resulting presentation. During the resulting simpli-
fication, some of the first |X| generators may be eliminated, so the projection pr() may be lost. In order to
preserve this projection, and so obtain the morphism ι∗, it is necessary to record for each eliminated generator
g a relator gw−1 where w is the word in the remaining generators by which g was eliminated.

The Tietze transformation code in GAP was modified so that the resulting presentation presI contained an
additional field presI.remember, namely a list of (at least) |X||T | relators expressing the original generators
in terms of the final ones. (In the recent release 3.4.4 of GAP this facility has been made generally available
using the TzInitGeneratorImages function).

Let us see how this process works in some examples, and notesome of the limitations of the process.

Recall that a polycyclic group is a group G with power-conjugate presentation having generators {g1, . . . , gn}
and relations

(5.9.2) {goi
i = wii(gi+1, . . . , gn), g

gj

i = w′ij(gj+1, . . . , gn) ∀ 1 6 j < i 6 n}.

(These are implemented in GAP as AgGroups (see [99], Chapters 24, 25)). Since subgroups M 6 P 6 G have
induced power-conjugate presentations, if T is a transversal for the right cosets of P in G, then the relators of
M∗T are all of the form in (5.9.2).

Furthermore, all the Peiffer relations in equation (5.9.1) are of the form g
gj

i = gp
k, so one might hope that a

power conjugate presentation would result. Consideration of the cyclic-by-cyclic case in the following example
shows that this does not happen in general.

Example 5.9.1 Let Cn be cyclic of order n and let α : x 7→ xa be an automorphism of Cn of order p. Take
G = 〈g, h | gp, hn, hgh−a〉 ∼= Cp n Cn. It follows from these relators that hig = ghai, 0 < i < n and that
h−1(ghi(1−a))h = gh(i+1)(1−a). So if we put gi = ghi(1−a), 0 6 i < n then g

gj

i = g[j+a(i−j)]. When
M = P = Cn ¢ G Theorem 5.8.12 apply, and ι∗P ∼= Cm

n . Now take M = P = Cp, with power-conjugate form
〈g | gp〉, and ι : Cp → G. We may choose as transversal T = {λ, h, h2, . . . , hn−1}, where λ is the empty word.
Then M∗T has generators {(g, hi) | 0 6 i < n}, all of order p, and relators {(g, hi)p | 0 6 i < n}. The additional
Peiffer relators in equation (5.9.1) have the form

(g, hi)(g, hj) = (g, hj)(gk, hl) where hih−jghj = gkhl

so k = 1 and l = [j + a(i− j)]. Hence θ : ι∗M → Q, (g, hi) 7→ gi is an isomorphism, and ι∗M is isomorphic to
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the identity crossed module on Q. Furthermore, if we take M to be a cyclic subgroup Cm of Cp then ι∗M is
the conjugation crossed module (∂ : Cm n Cn → Cp n Cn).

Also, we know that many of the induced groups ι∗M are direct products. However the generating sets in
the presentations that arise following the Tietze transformation do not in general split into generating sets for
direct summands. This is clearly illustrated by the following simple example.

Example 5.9.2 Let Q = S4, the symmetric group of degree 4, and M = P = A4, the alternating subgroup of
Q of index 2. Since the abelianisation of A4 is cyclic of order 3, Theorem 5.8.12 shows that ι∗M ∼= A4 × C3.
However a typical presentation for A4 × C3 obtained from the program is

〈x, y, z | x3, y3, z3, (xy)2, zy−1z−1x−1, yzyx−1z−1, y−1x2y2x−1〉,
and one generator for the C3 summand is yzx2. Converting to an isomorphic permutation group H gives a
degree 12 representation with generating set

{(2, 9, 4)(3, 5, 6)(8, 12, 10), (1, 4, 2)(3, 5, 7)(10, 11, 12), (1, 8, 3)(2, 10, 5)(7, 9, 12)}.
Converting H to an AgGroup produces a 4-generator group with subnormal series A4×C3 > A4 > C2

2 > C2 > I,
and g1g2g4 is a generator for the normal C3. After conversion of this AgGroup to a SpecialAgGroup, the
corresponding generator is g1g2. In all these representations, the cyclic summand remains hidden, and an
explicit search among the normal subgroups must be undertaken to find it.

We finish the results obtained in our computation by listing all the induced crossed modules coming from
subgroups of groups of order at most 23 (excluding 16) which are not covered by the special cases mentioned
earlier. This enables us to exclude abelian and dihedral groups, cases P ¢ Q and Q ∼= Cm n Cn.

In the first table, we assume given an inclusion ι : P → Q of a subgroup P of a group Q, and a normal
subgroup M of P . We list the crossed module ι∗M induced from (µ : M → P ) by the inclusion ι. The kernel of
∂ : ι∗M → Q is written ν2(ι). This kernel is related to the second homotopy group in the topological application
(in some cases like Theorems 5.4.4 and 5.4.7 it is exactly the second homotopy group).

In this table the labels I, Cn, D2n, An, Sn denote the identity, cyclic, dihedral, alternating and symmetric
groups of order 1, n, 2n, n!/2 and n! respectively. The group Hn is the holomorph of Cn and H+

n is its positive
subgroup in degree n. SL(2, 3) and GL(2, 3) are the special and general linear groups of order 24, 48 respectively.
Labels of the form m.n refer to the nth group of order m according to the GAP numbering.

Table 1

|Q| M P Q ι∗M ν2(ι)

12 C2 C2 A4 H+
8 C4

C3 C3 A4 SL(2, 3) C2

18 C2 C2 C2 n C2
3 54.10 C3

S3 S3 C2 n C2
3 54.10 C3

20 C2 C2 H5 D10 C2

C2 C2
2 D20 D10 I

C2
2 C2

2 D20 D20 I

21 C3 C3 H+
7 H7+ I

The second table contains the results of calculations with Q = S4, where C2 = 〈(1, 2)〉, C ′2 = 〈(1, 2)(3, 4)〉,
and C2

2 = 〈(1, 2), (3, 4)〉. The final column contains the automorphism group Aut(ι∗M) (where known).
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Table 2

M P ι∗M ν2(ι) Aut(ι∗M)

C2 C2 GL(2, 3) C2 S4C2

C3 C3 C3 SL(2, 3) C6 144.?
C3 S3 SL(2, 3) C2 S4

S3 S3 GL(2, 3) C2 S4C2

C ′2 C ′2 128.? C4C
3
2

C ′2 C2
2 , C4 H+

8 C4 S4C2

C ′2 D8 C3
2 C2 SL(3, 2)

C2
2 C2

2 S4C2 C2 S4C2

C2
2 D8 S4 I S4

C4 C4 96.219 C4 96.227
C4 D8 S4 I S4

D8 D8 S4C2 C2 S4C2
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Chapter 6

Double groupoids and the

2-dimensional van Kampen theorem.

In Chapter 2 we saw that an important topological example of crossed module was provided by the fundamental
crossed module of a based pair of spaces

Π2(X, A)(x) = (∂ : π2(X, A, x) → π1(A, x)).

As in the case of the fundamental group, to prove the van Kampen theorem for crossed modules, it is interesting,
even necessary, to include in the same structure all the fundamental crossed modules when varying the base
point x ∈ A. In the 1-dimensional case, we generalised the fundamental group to the fundamental groupoid.
To prove a van Kampen Theorem in the 2-dimensional case the idea was to use double groupoids but it took
some time to find the required 2-dimensional analogue of the fundamental group. After a good deal of trying
the structure we need for the van Kampen Theorem in dimension 2 happens to be the double groupoids with
connection or, equivalently, a crossed module over a groupoid.

Now the question can be fairly put: Why introduce a new version? The answer is the usual kind of answer,
that sometimes the new version is useful for proving theorems. In particular, we are unable to prove directly in
terms of crossed modules the version of the 2-dimensional van Kampen theorem which gives a result in terms
of the classical crossed modules. One reason for conceiving of the homotopy double groupoid was to find an
algebraic gadget more appropriate than groups for giving an

algebraic inverse to subdivision.

This is the slogan underlying the work on higher dimensional van Kampen Theorems. Subdividing a square
into little squares has a convenient expression in terms of double groupoids, and much more inconvenient
expressions, if they exist at all, in terms of crossed modules. The 2-dimensional van Kampen Theorem was
conceived first in terms of double groupoids, and it was only gradually that the link with crossed modules was
realised. In the end, the aim of obtaining Whitehead’s theorem on free crossed modules (Corollary 5.4.8) as a
corollary was an important impetus to forming a definition of a homotopy double groupoid for a pointed pair
of spaces, since that theorem involved a crossed module defined for such a pair of spaces.

Further, the structure of double groupoids that we use was expressly sought in order to make valid Lemma
6.8.4 in the proof of our 2-dimensional van Kampen Theorem in the last section. This lemma shows that a
construction of an element of a double groupoid is independent of all the choices made. This makes use of the
notion of commutative cube in a crucial way.

This theory gives also in a sense an algebraic formulation of different ways which have been classically

115
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used and found necessary in considering properties of second relative homotopy groups. We find that the 2-
dimensional double groupoid viewpoint is useful both for understanding the theory and for proving theorems,
while the crossed module viewpoint is useful both for specific calculations, and because of its closer relation to
chain complexes. The importance of the algebraic formulation of the equivalence between crossed modules and
double groupoids is the equivalence between colimits, and in particular pushouts, in the two categories.

Since this is a longish chapter, it seems a good idea to include a more detailed sketch of the way that all
this material is presented here.

The first part describes the step up one dimension from groupoids to double groupoids. Since these are
double categories where all structures are groupoids and have either a connection pair or a thin structure the
first few sections are devoted to defining first double categories and then connections. In parallel another
algebraic category is described, that of crossed modules over groupoids, which is equivalent to that of double
groupoids. The equivalence is finally proved in Section 6.6

The first Section gives the definition and properties of double categories. Some notions to be used later are
also presented here, e.g. the double category of commutative squares or 2-shells in a groupoid.

With this model in mind, we can think of the elements of a double category D as squares. Also, we can
restrict our attention to the subspace γD of “squares” having all faces trivial but the top one.

If we restrict ourselves to double categories G that have all three structures groupoids, the space γG is
algebraically a crossed module over a groupoid. These algebraic structures are studied in Section 6.2 and they
are an easy step away from that of a crossed module over a group.

A direct topological example is the fundamental crossed module of a triple of topological spaces (X, A, C)
formed by all the crossed modules ∂ : π2(X,A, x) → π1(A, x) for varying x ∈ C. We denote this crossed
module by Π2(X, A) and we shall prove that it is a crossed module in an indirect way by showing in Proposition
6.3.7 that Π2(X,A) is the crossed module associated to the fundamental double groupoid of a triple ρ(X, A, C)
defined in Section 6.3.

Both the fundamental crossed module of a triple and the double category of commutative 2-shells on a
groupoid have some extra structure that can be defined in two equivalent ways: as a thin structure (as in
Section 6.4) and as a connection pair (in Section 6.5). In this way we define the objects in the category of
double groupoids.

Using 2-shells that ‘commute up to some element’, in Section 6.6 we associate to each crossed module M a
double groupoid λM in such a way that it is clear that γλM is naturally isomorphic to M. It is a bit more
challenging to prove that for any double groupoid G, λγG is also naturally isomorphic to G. In order to do this
we use the folding operation Φ : G2 → G2 which has the effect of folding all faces of an element of G2 into the
top face.

With all the algebra in place, we turn to the topological part. As seen in Chapter 1, the proof of the van
Kampen Theorem uses the homotopy commutativity of squares. Thanks to the algebraic machinery developed
earlier, we can talk about commutative 3-cubes and prove that any composition of commutative cubes is
commutative. This commutativity of the boundary of a cube in ρ(X, A, C) has a homotopy meaning stated in
Section 6.7 which is analogous to the 1-dimensional case.

We finish this chapter by giving in Section 6.8 a proof of the 2-dimensional van Kampen theorem for the
fundamental double groupoid and the main consequences.

The whole chapter can be seen as an introduction to the generalisation to all dimensions which is carried out
in Part II. Chapter 15 generalises the algebraic part by giving an equivalence between crossed complexes and
cubical ω-groupoids with connections, while Chapter 16 covers the topological part, including the statement,
proof and applications of the GVKT.
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6.1 Double categories

Let us start by pointing out that there are several candidates for the name “double groupoids”. We are going to
keep that name for the structures which are defined in Section 6.4 and are then used to prove the 2-dimensional
van Kampen theorems. We start by investigating what a double category should be.

It is interesting to think of a category in a different way that lends itself better to the generalisation to
higher dimensions. As seen in the Appendix, a category C is given by two sets: the set of objects that we
denote C0 and the set of morphisms that we call C1; three maps among them: the source ∂0 : C1 → C0, target
∂1 : C1 → C0 and identity 1 = ε : C0 → C1, satisfying

∂iε = Id ;

and a partial composition C1 ×C0 C1 → C1 that is associative and has 1x = ε(x) as right and left identity.

Thus we can think of the elements of C0 as 0-dimensional, called points, and the elements of C1 as 1-
dimensional and oriented, called arrows. An element a ∈ C1 is represented by

• a

∂0a ∂1a
•

and for any x ∈ C0 its identity 1x = ε(x) is

• 1x

x x
•

The composition ab of two elements a, b ∈ C1 is described by juxtaposition:

• a

∂0a ∂1a = ∂0b
• b

∂1b
• = • ab

∂0(ab) ∂1(ab)
•

This gives a 1-dimensional pictorial description of a category.

For a 2-dimensional generalisation, namely a double category D, apart from the sets of “points”, D0 and of
“arrows”, D1, we need a set of “squares”, D2. We shall also have two categories associated to the “horizontal”
and “vertical” structures on squares, with their faces and compositions. Also, we should have all the appropriate
compatibility conditions dictated by the geometry. In some sense these categories are special since the objects
of the horizontal and the vertical category structures on squares are the same; in other words, the horizontal
and vertical edges of the squares come from the same category. This is the case we need in this book.

Thus we think of an element u ∈ D2 as a square

c

a u d

b

1

2
²²

//

where the directions are labelled as indicated, and we call a, b, c, d the edges, or faces of u.

Let us make it formal.

Definition 6.1.1 A double category is given by three sets D0, D1 and D2 and three structures of category.
The first one on (D1, D0) has maps ∂0, ∂1 and ε and composition denoted as multiplication. The other two
are defined on (D2, D1), a “vertical” one with maps ∂0

1 , ∂1
1 and ε1 and composition denoted by u +1 w and the

“horizontal” one with maps ∂0
2 , ∂1

2 and ε2 and composition denoted by u +2 v, satisfying some conditions.
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Before describing the compatibility conditions it is worth getting used to the diagrammatic expression of
the elements in a double category. Thus an element u ∈ D2 is represented using a matrix like convention

∂0
1u

∂0
2u u ∂1

2u

∂1
1u

1

2
²²

//

where the labels on the sides are given as indicated.

From this representation it seems indicated, and we assume, that the sources and targets have to satisfy

∂j∂i
1 = ∂i∂j

2 for i, j = 0, 1, (DC 1)

since they represent the same vertex. We shall find it convenient to represent the horizontal identity in several
ways, i.e.

ε2(a) = a a = =

In the first representation the unlabeled sides are identities:

∂i
1ε2 = ε∂i for i = 0, 1. (DC 2.1)

In the other two, the sides corresponding to those drawn in the middle are identities. Similarly, the vertical
identity is represented by

ε1(a) =

a

= =

a

with the same conventions as before. It has also the expected faces in the horizontal direction:

∂i
2ε1 = ε∂i for i = 0, 1. (DC 2.2)

There are also some relations between the identities. The two double degenerate maps are the same and are
denoted by 0:

ε2ε = ε1ε = 0. (DC 3)

So 0x = 0(x) is both a horizontal and a vertical identity and is represented as

=

All elements ε(x), ε1(a), ε2(a) are called degeneracies.

The vertical and horizontal compositions can be represented by “juxtaposition” in the corresponding direc-
tion, and are indicated by:

u +1 w =

u

w

u +2 v = u v
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They satisfy all the usual rules of a category, and may be given a diagrammatic representation. For example,
the fact that ε2 is the horizontal identity may be represented as

u = u = u

The composition in one direction satisfies compatibility conditions with respect to the faces and degeneracies
in the other direction, i.e. these functions are homomorphisms. This can be read from the representation. Thus
the horizontal faces of a vertical composition are

∂i
2(u +1 v) = (∂i

2u)(∂i
2v) for i = 0, 1. (DC 4.1)

and the vertical faces of the horizontal composition are

∂i
1(u +2 v) = (∂i

1u)(∂i
1v) for i = 0, 1. (DC 4.2)

The same applies to the vertical and horizontal identities, i.e.

ε2(ab) = ε2(a) +1 ε2(b), (DC 5.1)

ε1(ab) = ε1(a) +2 ε1(b). (DC 5.2)

Our final compatibility condition is known as the “interchange law” and says that, when composing 4
elements in a square, it is irrelevant if we compose first in the horizontal direction and then in the vertical one,
or the other way around, i.e.

(u +2 v) +1 (w +2 x) = (u +1 w) +2 (v +1 x) (DC 6)

when both sides are defined. This can be represented as giving only one way of evaluating the double composition

u v

w x

To complete the description of the category of double categories, a double functor between two double
categories D and D′ is given by three maps Fi : Di → D′

i for i = 0, 1, 2 which commute with all structure
maps (faces, degeneracies, composition, etc.). In particular, the pair (F1, F0) gives a functor from (D1, D0) to
(D′

1, D
′
0).

With these objects and morphisms, we get the category DCat of double categories.

Remark 6.1.2 Thus a double category has a structure which is called a 2-truncated cubical complex with
compositions. Properties (DC 1-3) give the 2-truncated cube structure and (DC 4-6) the compatibility with
compositions.

Remark 6.1.3 On matrix notation. There is also a matrix notation for the compositions which will be
useful later on and is as follows:

u +1 w =
[

u

w

]
u +2 v = [u, v].
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With this notation we can represent all the rules in the definition of double categories. For instance, we have
[

u
]

=
[

u,
]

= u.

Choosing the matrix description, the ‘interchange law’ (DC 6) may be written

[[
u

w

] [
v

x

]]
=

[ [
u w

]
[

w x
]

]

This common value is represented by [
u v

w x

]
.

Here is a caution about using this interchange law. Let u, v be squares in a double category such that

w =
[
u v

]
= u +2 v

is defined. Suppose further that

u =
[
u1

u2

]
= u1 +1 v1 v =

[
v1

v2

]
= u2 +1 v2.

Then we can assert

w =
[
u1 v1

u2 v2

]

only when u1 +2 v1, and u2 +2 v2 are defined. Thus care is needed in 2-dimensional rewriting.

This matrix notation has a generalisation that we are going to use in proving several equalities.

Definition 6.1.4 Let D be a double category. A composable array (uij) in D, is given by elements uij ∈
D2 (1 6 i 6 m, 1 6 j 6 n) satisfying

{
∂1
2ui,j−1 = ∂0

2ui,j (1 6 i 6 m, 2 6 j 6 n),

∂1
1ui−1,j = ∂0

1ui,j (2 6 i 6 m, 1 6 j 6 n).

It follows from the interchange law that a composable array (uij) in D can be composed both ways, getting
the same result which is denoted by [uij ].

If u ∈ D2, and (uij) is a composable array in D satisfying [uij ] = u, we say that the array (uij) is a
subdivision of u. We also say that u is the composite of the array (uij).

Remark 6.1.5 Subdivisions and their use. The interchange law implies that if in the composable array
(uij) we partition the rows and columns into blocks which produce another composable array and compute the
composite vkl of each block, then [uij ] = [vkl]. We call the (uij) a refinement of (vkl) in this case.

This observation is used in several ways to prove equalities. The method consists usually in starting from
the definition of one side of the equation, then change the array using this subdivision technique and compose
the new array getting the other side of the equation.

Changes in a composable array that are clearly possible using this subdivision technique are
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1. Select a block of an array and change it for another block having the same composition and the same
boundary (see Proposition 6.6.4)

2. Substitute some adjacent columns by another set of adjacent columns having the same boundary and
such that each row has the same horizontal composition in both cases. The same can done with rows (see
Proposition 6.4.4 and Theorem 6.4.6)

Example 6.1.6 Let us give a couple of examples of double categories associated to a category C. The first
one is the double category of “squares” or, better still, “2-shells” in a category C, denoted by ′ C.

The points and arrows of ′ C and the category structure on (( ′ C)1, ( ′ C)0) are the same as those of
C. The set of squares ( ′ C)2 is defined by

( ′ C)2 = {(a, d, b, c) ∈ C4
1 : ∂0b = ∂1a, ∂0d = ∂1c, ∂1b = ∂1d, and ∂0a = ∂0c}.

Its elements may be represented by “brackets”
(

c
a d

b

)

and the horizontal and vertical face and degeneracy maps are obvious from the representation. The compositions
are defined by (

c
a d

b

)
+1

(
b

f h
g

)
=

(
c

af dh
g

)

and (
c

a d
b

)
+2

(
u

d w
v

)
=

(
cu

a w
bv

)

It is easy to see that ′ C is a double category and that ′ is a functorial construction. Moreover this functor
is right adjoint to the truncation functor which sends each double category D to the category D1. We leave the
proof of adjointness as an exercise.

There are several sub-double-categories of ′ C that can be obtained taking the same 0 and 1-dimensional
part and restricting the 2-dimensional part by putting some commutativity condition on the 2-shells.

Let us consider C, the category of “commutative squares” or “commutative 2-shells”. Its squares are

C2 = {(a, d, b, c) ∈ C4
1 : ab = cd}.

The horizontal and vertical face and degeneracy maps and the compositions are the restriction of those in
′ C.

There are quite a few categories that can be defined in the same fashion. All we need is to ask the com-
positions ab and cd to differ by the action of an element of some fixed subset of C. It is a good exercise to
investigate which conditions has to satisfy this subset of C. We shall come back to this in the Example 6.1.8.

As we have stated before, our main objects of interest are double groupoids. These are double categories
where all the categories involved are groupoids and which also have an extra structure. Let us start by studying
double categories where all category structures are groupoids.

Definition 6.1.7 The category DCatG is the full subcategory of DCat that has as objects double categories in
which all three structures are groupoids.
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First, recall that a groupoid is a category G which has a map ( )−1 : G1 → G1 such that

aa−1 = 1∂0a and a−1a = 1∂1a.

Thus in a double category G where all three category structures are groupoids, there are three “inverse”
maps

( )−1 : G1 → G1, −1 : G2 → G2 and −2 : G2 → G2,

where
(εia) +j (εia

−1) = 0∂0a, (εia
−1) +j (εia) = 0∂1a, for i 6= j.

From the compatibility conditions (DC 4.1, 4.2), we see that the boundary maps preserve inverses in the other
direction since they are homomorphisms, i.e.

∂i
1(−2u) = (∂i

1(u))−1, ∂i
2(−1u) = (∂i

2(u))−1. (DCG 4)

From the compatibility conditions (DC 5.1, 5.2), we get that the identity maps also preserve inverses, i.e.

ε1(a−1) = −2(ε1(a)), ε2(a−1) = −1(ε2(a)). (DCG 5)

We also easily check from the interchange law that for u ∈ G2

−1 −2 u = −2 −1 u (DCG 6)

and we denote the “rotation” −1−2 by −12.

Example 6.1.8 In the case G is a groupoid, the double categories G of commutative 2-shells and ′G of
2-shells in G defined in Example 6.1.6 have all three structures of groupoid, the inverses being as follows.

u =

(
c

a d
b

)
, −1u =

(
b

a−1 d−1

c

)
, −2u =

(
c−1

d a
b−1

)
, −1 −2 u =

(
b−1

d−1 a−1

c−1

)
.

There are interesting differences between the category and groupoid cases with regard to commutative 2-
shells. If G is a groupoid, the commutativity condition of a 2-shell can also be stated as c = abd−1 or even as
abd−1c−1 = 0.

Thus when searching for new examples of double categories an obvious generalisation of C comes by
considering 2-shells that are commutative up to an element lying in some subcategory C ′ ⊆ C. That is, instead
of ab = cd we require abd−1c−1 ∈ C ′ which works well in the groupoid case.

It is a nice exercise that you should try at this stage, to check that this works if C is a group and C ′ is a
normal subgroup.

This leads to a possible extension of the notion of normal subgroups to ‘normal subgroupoids’ (It is also
a good exercise for you to think how this extension can be made). At a further stage, the concept of normal
subgroupoid can be ‘externalised’ as a crossed module of groupoids, analogously to what has been done for
groups. We shall define this concept and prove that it works in Section 6.2.

6.2 The category XMod of crossed modules of groupoids.

We have explained that there was an early hint that crossed modules (of groupoids) were related to double
categories where all structures are groupoids. Since crossed modules appear quite naturally in algebraic topology,
that was a suggestion of strong links between higher order groupoids and classical objects of algebraic topology.
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Crossed modules of groupoids are an easy step away from crossed modules of groups and mimic the structure
of the family of fundamental crossed modules Π2(X, A, x) when x ∈ A ⊆ X. Also, for any double category
which has all three structures of groupoid, we get an associated crossed module over a groupoid.

It is natural to define a crossed module of groupoids to be a groupoid morphism (µ : M → P ) with an action
of P on M such that axioms equivalent to CM1) and CM2) are satisfied. Thus, we start with a groupoid P

where P0 its set of vertices, ∂0, ∂1 its initial and final maps. We write P1(p, q) for the set of arrows from p to q

(p, q ∈ P ) and P1(p) for the group P1(p, p).

Definition 6.2.1 A crossed module over the groupoid P = (P1, P0) is given by a groupoid M = (M2, P0) and
a morphism of groupoids which is the identity on objects

M
µ // P

satisfying

- M is a totally disconnected groupoid with the same objects as P . Equivalently, it can be seen as a family of
groups {M2(p)}p∈P0 .

We shall use additive notation for all groups M2(p) and we shall use the same symbol 0 for all their identity
elements.

Also, µ is given by a family of homomorphisms {µp : M2(p) → P1(p)}p∈P0 .

- The groupoid P operates on the right on M . The action is denoted (x, a) 7→ xa. If x ∈ M2(p) and a ∈ P1(p, q)
then xa ∈ M2(q). It satisfies the usual two axioms of an action.

i) (xab) = (xa)b

ii) (xy)a = xaya.

(Thus M2(p) ∼= M2(q) if p and q lie in the same component of the groupoid P .)

- These data satisfy two properties

CM1) µ preserves the actions, i.e. µ(xa) = (µx)a

CM2) For all c ∈ M2(p), µc acts on M by conjugation by c, i.e. for any x ∈ M2(p), xµc = −c + x + c.

Notice that M2(p) is a crossed module over P1(p) for all p ∈ P0. In the case when P0 is a single point we
call µ a crossed module over a group, or a reduced crossed module.

A morphism of crossed modules f : (µ : M → P ) → (ν : N → Q) is a pair of morphisms of groupoids
f2 : M → N , f1 : P → Q inducing the same map of vertices and compatible with the boundary maps and the
actions of both crossed modules. We denote by XMod the resulting category of crossed modules over groupoids.
Notice that the category XMod/Groups studied in the preceding chapters can be seen as the full subcategory of
XMod whose objects are reduced crossed modules of groupoids.

Example 6.2.2 As we have pointed out, there is an immediate topological example. For any topological pair
(X, A) and C ⊆ A, we consider P = π1(A,C), the fundamental groupoid of (A,C). Recall that the objects of
π1(A, C) are the points of C and for any x, y ∈ C, the elements of π1(A,C)(x, y) are the homotopy classes rel
{0, 1} of maps

ω : (I, 0, 1) → (A, x, y).

The fundamental crossed module Π2(X, A, C) of the triple (X, A,C) is given by the family of groups
{π2(X,A, x)}x∈C . These groups have been defined already in Section 2.1.
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Recall that any [α] ∈ π2(X,A, x) is a homotopy class rel J1 of maps

α : (I2, ∂I2, J1) → (X, A, x),

that can be represented as a square
A

x α x

x

1

2
²²

//

that is the usual convention for R2 rotated clockwise through π/2 to make it equal to the algebraic convention.
We shall keep the axes drawn beside the square to make this easier to remember.

The action
π2(X, A, x)× π1(A,C)(x, y) → π2(X, A, y)

was also described in Section 2.1.

The morphism of groupoids ∂ : π2(X,A, C) → π1(A,C) is given, for each x ∈ C, by the restriction to the
top face 0× I, so giving

∂(x) : π2(X,A, x) → π1(A, x).

As before, it could be proved directly that these maps satisfy the properties of a crossed module over a
groupoid, but we prefer the roundabout way of proving that this crossed module is the one associated to a
double groupoid called the fundamental double groupoid that shall be defined in Section 6.3.

Let us go back to the general theory and see how to associate to any object G ∈ DCatG a crossed module of
groupoids which we denote by γG = (∂ : γG → P ). To make it a crossed module we need: groupoid structures
on γG and P , a map of groupoids ∂ and an action satisfying CM1) and CM2).

We start by defining P as the groupoid (G1, G0). Thus the objects of γG are (γG)0 = G0 and as morphisms
we choose all u ∈ G2 that have all faces degenerate except ∂0

1u, i.e.

(γG)2 = {u ∈ G2 : ∂1
2u = ∂0

2u = ∂1
1u = ε∂0∂0

1u = ε∂1∂0
1u}.

The reason we chose to use the subindex 2 in the set of morphisms M2 of M is now apparent: because in this
very important example they have “dimension” two. The elements in γG2, when represented with a matrix like
convention, are

∂0
1u

1 u 1

1

1

2
²²

//

With the obvious source, target, and identity, and the composition u + v defined to be u +2 v, we get a
totally disconnected groupoid γG.

The next element we need to get a crossed P -module, is a morphism of groupoids. It is defined by

(6.2.1) ∂ = ∂0
1 : γG2 → P1.
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The last ingredient is an action
γG2(x)×G1(x, y) → γG2(y)

for all x, y ∈ G0. It is given by degeneration and conjugation: i.e. for any u ∈ γG2(x) and a ∈ G1(x, y),

(6.2.2) ua = [−2ε1a, u, ε1a],

or, in the usual representation,

1

(∂0
1u)a

ua 1 =

a−1 ∂0
1u

u

a

1 a−1 1 a

Now we have to check that this gives an action that satisfies both properties in the definition of crossed
module.

Proposition 6.2.3 The definition in (6.2.2) gives a right action of G1 on γG2.

Proof From the diagram, it is clear that ua ∈ γG2. It is also not difficult to prove all properties of an action:

uab = (ua)b, (u +2 v)a = ua +2 va and u1 = u.

2

It remains to check the two axioms CM1) and CM2).

Proposition 6.2.4 γG = (∂0
1 : γG2 → G1) is a crossed module with the action defined by (6.2.2).

Proof For CM1) is clear from the diagram that the top face is the conjugate:

∂(ua) = ∂0
1(ua) = ∂0

1(−2ε1a)∂0
1u∂0

1(ε1a) = a−1∂0
1ua = (∂u)a.

Also, for any a = ∂v, v ∈ γG2, we may construct an array such that when computing both ways gives the
equality. In this case the array is

a−1

u

a

−2v v

Composing first in the horizontal direction and then in the vertical one, the first row gives ua and the second
one a degenerate square, so we get ua.

On the other hand, composing first vertically, we get

[−2v, u, v] = uv.
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2

It is important to notice that this construction is functorial, thus giving a functor

γ : DCatG → XMod.

Remark 6.2.5 We finish this section by pointing out that for a double category which has all three structures
groupoids we have not only one associated crossed module of groupoids but four, since we may chose any of the
sides to be the unique one not equal to the identity. Let us call γGi

j the crossed module structure on the set of
all elements of G2 having all faces degenerate but the i-face in the j-direction defined by the map ∂i

j . Then γG0
j

and γG1
j are isomorphic. In general, γGj

1 and γGj
2 are not isomorphic but we shall see that they are isomorphic

in the case of interest here, namely Example 6.2.2.

6.3 Fundamental double groupoid

Granted the success of the fundamental groupoid and the known definition of double groupoid, perhaps it was
natural in 1966 to attempt to define a fundamental or homotopy double groupoid of a space by considering
maps I2 → X of a square. Nevertheless, it was not until 1974 that Brown and Higgins realised that a successful
theory could be obtained by considering a triple (X,A, C), i.e. a space X and two subspaces C ⊆ A ⊆ X.

We shall start by describing the space of maps and some structure over it before getting homotopy classes.
We consider a triple (X,A, C). We shall use the triple (I2, ∂I2, ∂2I2) given by the square, its boundary and the
four vertices, respectively. We consider three sets

R0(X,A, C) = C

R1(X,A, C) = {σ : (I, {0, 1}) → (A,C)}
R2(X,A, C) = {α : (I2, ∂I2, ∂2I2) → (X,A, C)}.

and call the elements of R2(X,A, C) filtered maps

α : (I2, ∂I2, ∂2I2) → (X, A,C).

Remark 6.3.1 The elements of R2 can be represented by squares as follows.

A

A α

C

A

C

AC C

1

2
²²

//

There is an obvious definition of the source and target maps given by restriction to the appropriate faces of
I2. More formally they are composition with the maps

∂i
1(x) = (i, x) and ∂i

2(x) = (x, i) for i = 0, 1

and they can be seen in the diagram

∂0
2

∂0
1

∂1
2

∂1
1

1

2
²²

//
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The identities are given by composing with the projection in the appropriate direction, i.e.

p1(x, y) = x and p2(x, y) = y

and we use the same notation for degenerate squares as in the previous section.

Also, there are several compositions on R given by juxtaposition. The one in R1 has been defined when
talking about the fundamental groupoid. The set R2 has two similar compositions given by

(α +1 β)(x, y) =

{
α(2x, y) if 0 6 x 6 1/2

β(2x− 1, y) if 1/2 6 x 6 1

and

(α +2 β)(x, y) =

{
α(x, 2y) if 0 6 y 6 1/2

β(x, 2y − 1) if 1/2 6 y 6 1.

We leave the reader to check that the interchange law holds for these two compositions. The reverse of an
element α ∈ R2, with respect these two directions are written −1α, −2α and are defined respectively by
(x, y) 7→ α(1− x, y), (x, y) 7→ α(x, 1− y).

All this structure means in particular that R(X, A, C) is a 2-truncated cubical set with compositions. It is
not a double category (no associativity, etc.). Nevertheless, it is useful to fix the meaning of composition of
arrays. We study this in the next remark.

Remark 6.3.2 For positive integers m,n let ϕm,n : I2 → [0,m] × [0, n] be the map (x, y) 7→ (mx, ny). An
m×n subdivision of a square α : I2 → X is a factorisation α = α′ ◦ϕm,n; its parts are the squares αij : I2 → X

defined by
αij(x, y) = α′(x + i− 1, y + j − 1).

We then say that α is the composite of the squares αij , and we write α = [αij ]. Similar definitions apply to
paths and cubes.

Such a subdivision determines a cell-structure on I2 as follows. The intervals [0,m], [0, n] have cell-structures
with integral points as 0-cells and the intervals [i, i + 1] as closed 1-cells. Then [0,m] × [0, n] has the product
cell-structure which is transferred to I2 by ϕ−1

m,n. We call the 2-cell ϕ−1
m,n([i− 1, i]× [j − 1]) the domain of αij .

Definition 6.3.3 To define the fundamental double groupoid associated to a triple of spaces (X, A,C) we shall
use the three sets

ρ0(X, A,C) = C

ρ1(X, A,C) = R1(X, A,C)/ ≡
ρ2(X, A,C) = R2(X, A,C)/ ≡ .

where ≡ is the relation of homotopy rel vertices on R1 and of homotopy of pairs rel vertices on R2. That is,
for such a homotopy Ht : I2 → X, we have Ht(c) = H0(c) for all t ∈ I and c ∈ ∂2I2. We call this relation
f-homotopy (or filter homotopy), to distinguish it from homotopy of maps I → A or I2 → X which we shall
write '. It is important that f -homotopy is rel vertices, that is that the vertices of I and of I2 are fixed in the
homotopies. This allows us to obtain the groupoid structures on the filtered homotopy classes without adding
any condition on the spaces. (In this we diverge from the definition given in [39].)

The f-homotopy class of an element α is written 〈〈α〉〉.
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We expect all the structure maps in ρ(X,A, C) to be those induced by the corresponding structure maps of
R(X,A, C). So we have to prove that they are compatible with the homotopies. In the case of the structure
maps for (ρ1, ρ0) this is clear, since they form the relative fundamental groupoid of the pair (A,C).

Let us try the maps for the horizontal and vertical structure on (ρ2, ρ1). There is no problem with the source
and target since the homotopies are filtered. Also a homotopy between elements of R1(X,A, C) gives easily a
homotopy between the associated identities. The only problems appear to be with the compositions.

We develop only the horizontal case; the other follows by symmetry. So, let us consider two elements
〈〈α〉〉, 〈〈β〉〉 ∈ ρ2(X,A, C) such that 〈〈∂1

2α〉〉 = 〈〈∂0
2β〉〉, i.e. we have continuous maps

α, β : (I2, ∂I2, ∂2I2) → (X,A, C)

and a homotopy

h : (I, ∂(I))× I → (A,C)

from α|{1}×I to β|{0}×I rel vertices, i.e. h(0× I) = y and h(1× I) = x. We define now the composition by

〈〈α〉〉+2 〈〈β〉〉 = 〈〈α +2 h +2 β〉〉 = 〈〈[α, h, β]〉〉.

This is given in a diagram by

(6.3.1)

A

A α

x

h

A

β A

A y A

.

Our first important step is that these compositions are well defined.

Proposition 6.3.4 The compositions are well defined in ρ2(X,A, C) = R2(X,A, C)/ ≡ .

Proof To prove this we chose two other representatives α′ ∈ 〈〈α〉〉 and β′ ∈ 〈〈β〉〉 and a homotopy h′ from
α′|{1}×I to β′|{0}×I . Using them, we get

A

A α′

x

h′

A

β′ A

A y A

which should give the same composition in ρ2 as (6.3.1).

Since 〈〈α〉〉 = 〈〈α′〉〉, 〈〈β〉〉 = 〈〈β′〉〉 there are the f-homotopies φ : α ≡ α′, ψ : β ≡ β′ which can be seen in the
next figure, in which the thin lines denote edges on which the maps are constant.

To complete this to an f -homotopy

α +2 h +2 β ≡ α′ +2 h′ +2 β′

we need to “fill” appropriately the hole in the middle (see Figure 6.1).
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α h β

α′ h′ β′

φ ψ

-
?

¸

1

2

3

Figure 6.1: Filling the hole in the middle

Let k : I × ∂I2 → A be given by (r, s, 0) 7→ h(r, s), (r, s, 1) 7→ h′(r, s), (r, 0, t) 7→ φt(r, 1), (r, 1, t) 7→ ψt(r, 0).
In terms of Figure 6.1, k is the map defined on the four side faces of the central hole. But k is constant on the
edges of the bottom face, since all the homotopies are rel vertices. So k extends over {1} × I2 → A extending
k to five faces of I3.

Now we can retract I3 onto any five faces by projecting from a point above the centre of the remaining face.
Composing with this retraction, we obtain a further extension k : I3 → A. The composite cube φ +2 k +2 ψ is
an f -homotopy γ ≡ γ′ as required: the key point is that the extension maps the top face of the middle cube
into A, since that is true for all the other faces of this middle cube. 2

Once we have proved that compositions in ρ2 are well defined, we can easily prove that they are groupoids,
with 〈〈−iα〉〉 being the inverse of 〈〈α〉〉 for the composition +i, i = 1, 2. We also need to prove the interchange
law.

Proposition 6.3.5 The compositions +1,+2 in ρ2(X, A, C) = R2(X, A, C)/ ≡ satisfy the interchange law.

Proof The argument also involves “filling a hole”. So, let us start with four elements 〈〈α〉〉, 〈〈β〉〉, 〈〈γ〉〉, 〈〈δ〉〉 ∈
ρ2(X, A,C) such that 〈〈∂1

2α〉〉 = 〈〈∂0
2β〉〉, 〈〈∂1

2γ〉〉 = 〈〈∂0
2δ〉〉, 〈〈∂1

1α〉〉 = 〈〈∂0
1γ〉〉 and 〈〈∂1

1β〉〉 = 〈〈∂0
1δ〉〉. To prove that

(〈〈α〉〉+2 〈〈β〉〉) +1 (〈〈γ〉〉+2 〈〈δ〉〉) = (〈〈α〉〉+1 〈〈γ〉〉) +2 (〈〈β〉〉+1 〈〈δ〉〉)

we construct an element of R2(X, A, C) that represents both compositions.

Using f -homotopies h : ∂1
2α ≡ ∂0

2β, h′ : ∂1
2γ ≡ ∂0

2δ, k : ∂1
1α ≡ ∂0

1γ and k′ : ∂1
1β ≡ ∂0

1δ given because the
compositions are defined we have a map defined on the whole square except on a hole in the middle:

A

A α

x1

h

A

β A

x2 k

y

y ? y k′ x3

A γ

y

h′ δ A

A x4 A

We only need to fill appropriately the hole. But all homotopies are rel vertices, so the map is constant on the
boundary of the hole. So we extend with the constant map, and evaluate the resulting composition in two ways
to prove the interchange law. 2
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Thus we have proved that ρ(X, A, C) is a double category where all three structures are groupoids. We call
this the fundamental double groupoid of the triple (X,A, C) and leave the study of its extra structure which
justifies its name till Section 6.4.

A map f : (X,A, C) → (X ′, A′, C ′) of triples clearly defines a morphism ρ(f) : ρ(X, A, C) → ρ(X ′, A′, C ′)
of double categories.

Proposition 6.3.6 If f : (X,A, C) → (X ′, A′, C ′) is a map of triples such that each of f : X → X ′, f1 : A → A′

are homotopy equivalences, and f0 : C → C ′ is a bijection, then ρ(f) : ρ(X, A, C) → ρ(X ′, A′, C ′) is an
isomorphism.

Proof This is an easy consequence of a cogluing theorem for homotopy equivalences. We give the details for
the analogous result for filtered spaces in an Appendix. 2

Now let us check that the not quite so straightforward fact that the crossed module associated to the fun-
damental double groupoid ρ(X, A, C) is the fundamental crossed module Π2(X, A, C), i.e. γ(ρ(X,A, C))2 =
Π2(X,A, C). Recall that γ(ρ(X,A, C))2(x) is formed by f -homotopy classes of filtered maps α : (I2, ∂I2, ∂2I2) →
(X,A, x) such that the restriction to all sides but the last vertical one are homotopically trivial. On the other
hand, π2(X,A, x) consists of homotopy classes of maps α : (I2, ∂I2, J1) → (X,A, x). Let us check that they are
the same.

Proposition 6.3.7 If x ∈ C, then the group γ(ρ(X, A,C))2(x) may be identified with the group π2(X, A, x).

Proof Recall from the definitions that in both cases the elements are homotopy classes of maps

α : (I2, ∂I2) → (X,A).

For α to define an element in π2(X, A, x), which we are going to denote also by 〈〈α〉〉, the maps send all J1 to
x and the same is true for homotopies in this case. In the case 〈〈α〉〉 ∈ ρ(X,A, C)2(x) the map sends only the
vertices to x and the homotopy is rel vertices. Clearly the map

φ : π2(X, A, x) → γ(ρ(X,A, C))2(x)

defined by φ(〈〈α〉〉) = 〈〈α〉〉 is well defined, is a group homomorphism and preserves action. We only have to
prove that φ is bijective. We shall use a couple of filling arguments.

To see that φ is onto, let 〈〈α〉〉 ∈ γ(ρ(X, A, C))2(x), i.e. we have a map α : (I2, ∂I2, ∂2I2) → (X, A, C) such
that its restrictions to all faces of the square but the top one are homotopic rel vertices to the constant map.
Putting all these three homotopies in one diagram we get

x h1

A

α h2 x

x

x h3 x

x

x
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We want to get a map β : (I2, ∂I2, J1) → (X, A, x) such that φ〈〈β〉〉 = 〈〈α〉〉 i.e filter homotopic rel vertices
to α.

We can fold the above diagram, getting a map defined on four of the six faces of a cube I3. Thus, composing
with the retraction of I3 onto such four faces, as seen in Figure 2.3, we get both the desired β (the restriction
to the top face) and the homotopy (the cube).

Intuitively, the map β is

x

h1

A

α h2

x

x

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

h3
x

??
??

??
??

??
??

x

and the homotopy is got by shrinking the bigger square into the smaller one.

It remains to prove that φ is injective, i.e. that Ker φ contains only the homotopy class of the constant map.

Thus we start with a map α : (I2, {0}×I, J1) → (X,A, x) so that there is an f -homotopy h : (I2, ∂I2, ∂2I2)×
I → (X,A, x) from α to 0. This h can be represented by a cube that is the constant x both in the back face

©©©
©©©

©©©

x
α

Figure 6.2: f -homotopy from α to the constant map

and in the four slanted lines.

We have to get a homotopy of maps of triples h′ : α ' 0 rel J1. This h′ : (I2, {0}× I, J1)× I → (X, A, x) is
α on the front 2-face and has to be constant not only on ∂2I2 × I as was h, but also on ({1} × I ∪ I × ∂I)× I.

We will do that by changing h to h′ in a similar way to the one used in the first part of this proof. Instead
of working in four dimensions, we are going to explain what to do in each section for a fixed third coordinate
with the 3-cube given by h. We have the following situation

Ax x

A ht A

Ax x

1

2
²²

//

and we want to change this ht to an h′t sending all J1 to x.

So, using a filling argument like the one in 1.3 we extend ht

Ax

A ht A

x

x

Ax
____

1

2
²²

//
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to an square sending one side (the right one) to x. Also, the edge represented by the discontinuous line goes in
A, let us call it a.

To change another side, we need some way of ‘turning right’. This is produced by a degenerate square got
by composing a with the map σ : I2 → I given by σ(s, t) = max(s, t) that is represented by

a

a

where the unlabeled sides are constant. Adding this square, we can use a similar filling argument and extend to

Ax

A ht A

x

x

A
x

Â
Â
Â
Â

a

a

x

1

2
²²

//

let us call by b the edge without label and repeat the filling argument to get

x

Ax

A ht A

x

x

b A
b

a

a

x

1

2
²²

//

where the square ‘turning left’ in the bottom left corner is defined in a similar way as ‘turning right’. It is clear
that the edges without label goes in A.

Therefore, the above constructions all fit together to obtain h′t as in the diagram below

x

x

A

A ht A

x

x

b
x

A
b

a

a x

x x x

1

2
²²

//

Since we could do the above construction for any section t and all of them fit together, we get a homotopy

h′ : (I2, {0} × I, J1) → (X, A, x)

from α to the constant map that is clearly continuous. 2

The reader will have noticed the widespread use of filling arguments in the above proofs. These arguments
become the key to the proof of corresponding results for higher dimensions which are developed in Chapter 16.



6.4 Thin structures on a double category. The category DGpds of double groupoids. 133

6.4 Thin structures on a double category. The category DGpds of

double groupoids.

We have examples of double categories coming from two sources: first, the 2-shells commutative up to an element
of a crossed modules over groupoids hinted at the end of Section 6.1 and which will be properly developed in
Section 6.6, and second, the fundamental double groupoid of a topological pair seen in Section 6.3. In both
cases not only are all three structures groupoids but they have also some extra structure. Let us see one way of
introducing this structure.

We have already introduced in Example 6.1.6 the double category ′C of 2-shells in the category C and
its sub double category C of commuting 2-shells.

For any double category D there is a morphism of double categories D → ′D1 which is the identity in
dimensions 0,1 and in dimension 2 gives the bounding shell of any element. On the other hand, there is no
natural morphism the other way, from either ′D1 or D1, which is the identity on D1.

In this Section, we are going to study double categories endowed with such a morphism, i.e. for any given
commuting shell in D1, there is a chosen ‘filler’ in D2. Next, in Section 6.5, we develop an alternative approach
using some extra degeneracies called connections.

Definition 6.4.1 We therefore define a thin structure on a double category D to be a morphism of double
categories

Θ : D1 → D

which is the identity on D1, D0. The 2-dimensional elements of the form Θα for α ∈ ( D1)2 will be called thin
squares in (D, Θ) or simply in D if Θ is given.

Equivalently, the axioms for thin squares are:

T0) Any identity square in D is thin.

T1) Each commuting shell in D has a unique thin filler.

T2) Any composite of thin squares is thin.

By T0), particular thin squares represent the degenerate squares, namely those of the form

(6.4.1)

1

1 1

1

a

a

a a

which we write in short as

.

Notice that identity edges are those drawn with a solid line. The notation is ambiguous, since for example the
second element is the same as the first if a = 1. Also we have not named the vertices. Nevertheless, it is clear
that they represent the degenerate squares since Θ is a morphism of double categories.
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We also have two new ‘degenerate’ squares

(6.4.2)

a

a a

a

which we write in short as

.

The fact that Θ is a morphism of double categories leads immediately to some equations for compositions
of such elements, i.e.

(6.4.3)
[ ]

=





 = .

In writing such matrix compositions, of course we always assume that the compositions are defined. The reason
why these equations hold is that the composites are certainly thin, by T2), and since they are determined by
their shell, by T1), they are by T0) of the form given.

Here are some more consequences which are known as “transport laws”:

(6.4.4)





 = ,





 = .

If in addition the category D1 is a groupoid then we have two further thin elements namely

a

a

a−1

a−1

(6.4.5)

which we write

.

Those elements give rise to new equations, for example




 = .

Note here that three of the sides are identities, and hence so also is the fourth, by commutativity.

Now we apply these ideas to the fundamental double groupoid ρ(X, A,C).
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Proposition 6.4.2 The fundamental double groupoid ρ(X, A, C) has a natural thin structure in which a class
〈〈α〉〉 is thin if and only it has a representative α such that α(I2) ⊆ A.

Proof Let a, b, c, d : I → A be paths in A such that ab ' cd in A. It is a standard property of the fundamental
groupoid that the given paths can then be represented by the sides of a square α : I2 → A. We have to prove
that such a square is unique in ρ2.

Let α′ : I2 → A be another square whose edges a′, b′, c′, d′ are equivalent in π1(A,C) to a, b, c, d respectively.
If we choose maps h, k, l : I2 → A giving homotopies rel end points a ' a′, b ' b′, c ' c′. These homotopies,
with α and α′ can be represented as

c′

x l

α′

x

a′ h

c

a α d

x b

x k

b′

folding the diagram they give a map H from five 2-faces of I3 to A.

l

k

'

Figure 6.3: Box without a lateral face

Now, using the retraction from I3, we can extend this to a map I3 → A. This gives an f -homotopy as
required.

Note that this is where we use the fact that an f -homotopy is allowed to move the edges of the square within
A. 2

Since this important example has this structure, it is reasonable to call them double groupoids (they were
called special double groupoids with special connections in [60], since more general connections were discussed
there). This leads to:

Definition 6.4.3 A double groupoid is a double category such that all three structures are groupoids, together
with a thin structure. We write DGpds for the category of double groupoids taking as morphisms the double
functors that preserve the given thin structures.

We are interested in the restriction to this category of the functor defined in Section 6.2. It is still denoted

γ : DGpds → Crs.
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Notice that the thin elements , in ρ(X, A, C) are, like , , determined by specific maps, namely in
the first two cases are composition of a path I → A with the maps max,min : I2 → I. We will say more on this
in the next section.

An important consequence of the existence of a thin structure in a double groupoid is that the vertical and
horizontal groupoid structures in dimension 2 are isomorphic. The isomorphism is given by “rotation” maps
σ, τ : G2 → G2 which correspond to a clockwise and an anticlockwise rotation through π/2.

Let G be a double groupoid. We define σ, τ for any u ∈ G2 by

σ(u) =


 u


 and τ(u) =


 u


 .

To prove the main properties of these operations is a diversion from our main aims, but one which illustrates
some points in higher dimensional algebra.

Let us start by proving that σ is a homomorphism from the horizontal to the vertical composition, while τ

is a homomorphism from the vertical to the horizontal composition. We next prove that τ is an inverse to σ. It
follows that in the case of a double groupoid the horizontal and the vertical groupoid structures in dimension
2 are isomorphic.

Proposition 6.4.4 For any u, v, w ∈ G2,

σ([u, v]) =
[

σu

σv

]
and σ(

[
u

w

]
) = [σw, σu]

τ([u, v]) =
[

τv

τu

]
and τ(

[
u

w

]
) = [τu, τw]

whenever the compositions are defined.

Proof We prove only the first rule and leave the others to the reader.

By definition, the element σ([u, v]) is the composition of the array



u +2 v




.

We get a refinement of this array by substituting each element for a box which has the initial element as its
composition as follows: 



u v




.
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By Remark 6.1.5 this new array has the same composition as the initial one. We now subdivide the second
column horizontally in two, getting a new refinement




u v




which still has the same composition. Finally, we expand the three middle rows into six in such a way that we
do not change the vertical composition of each column getting




u

v




.

The composition of this array still is σ([u, v]) by Remark 6.1.5. To get the result, we now see that the composition
of the block given by the first four rows is σu and the composition of the other four is σv. 2

It is a nice exercise to extend this result to any rectangular array using associativity.

Since thin elements are determined by their boundaries, the next result follows immediately.

Proposition 6.4.5 The images of thin elements under σ and τ are as follows

σ : 7→ , 7→ 7→ , 7→ 7→ 7→ 7→ ,

τ : 7→ , 7→ 7→ , 7→ 7→ 7→ 7→ .

A key fact is that σ is a bijection with inverse τ and that these maps together with the inverse maps −1

and −2, generate all symmetries of a square.
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Theorem 6.4.6 The isomorphisms −1, −2, σ, τ and their composites form a group of transformations of G2

which is isomorphic to the group D8 of symmetries of a square.

Proof We choose a presentation of D8 and verify that the relations are satisfied:

D8 = 〈−1,−2, σ, τ : (−1)2 = (−2)2 = στ = (−12)2 = Id , −1σ = τ−1 , σ2 = −12〉.
We already know that {Id,−1,−2,−12} form a Klein 4-group.

To verify the fourth relation, we show that for any u ∈ G2, we have τσ(u) = u. It is easily seen that τσ(u)
is the composition of the array 



u




.

Using Remark 6.1.5 four times, we can change the four blocks one by one and substitute them for another four
having the same boundary and composition, getting that τσ(u) is also the composition of the array




u




whose composition reduces to u.

We next show that, for any u ∈ G2, we have

−1σ(u) = −1


 u


 =


 −1u


 = τ(−1u)

For the final relation we note that

σ2 = (σ−1)(−1σ) = (−1τ)(τ−2) = −12

2

Remark 6.4.7 When these results are applied to the fundamental double groupoid ρ(X,A, C), they imply the
existence of specific f -homotopies. Indeed one of the aims of higher order groupoid theory is to give an algebraic
framework for calculating with homotopies and higher homotopies.
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6.5 Connections in a double category: equivalence with thin struc-

ture.

The extension of the notion of thin structure to higher dimensions is not straightforward since it would require
the notion of commutative n-cube and this notion is not easy even for a 3-cube. We shall return to this at the
end of this section.

So, we look for an alternative which generalises more easily to higher dimensions. We take as basic the two
maps Γ0,Γ1 : D1 → D2, that correspond to the thin elements , , satisfying the properties we have seen in
(6.4.3) and (6.4.4). We make this concept clear and develop the equivalence between the two notions in this
section.

A connection pair on a double category D is a pair of maps

Γ0, Γ1 : D1 → D2

satisfying the four properties below.

The first one is that the shells are what one expects, i.e., if a : x → y in D1 then Γ0(a), Γ1(a) shells are

Γ0(a) = a

a

1y

1y

Γ1(a) = 1x

1x

a

a

which can be more formally stated as

∂0
2Γ0(a) = ∂0

1Γ0(a) = a and ∂1
2Γ0(a) = ∂1

1Γ0(a) = ε∂1a (CON 1)

∂1
2Γ1(a) = ∂1

1Γ1(a) = a and ∂0
2Γ1(a) = ∂0

1Γ1(a) = ε∂0a. (CON′ 1)

We also assume that the connections associate to a degenerate element a double degenerate one:

Γ0ε(x) = 0x (CON 2)

Γ1ε(x) = 0x. (CON′ 2)

The relation with composition is given by the “transport laws” (see (6.4.4)):

Γ0(ab) =
[

Γ0a

Γ0b

]
=

(CON 3)

Γ1(ab) =
[

Γ1a

Γ1b

]
=

(CON′ 3)
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Intuitively, a feature that 2-dimensional movements can have extra to 1-dimensional movements is the possi-
bility of turning left or right. The transport laws state intuitively that turning left with one’s arm outstretched
is the same as turning left, and similarly for turning right.

The name ‘transport laws’ was given because they were initially borrowed from a transport law for path
connections in differential geometry, as explained in [61].

A final condition deduced from the same idea is that they are “inverse” to each other in both directions
(corresponding to (6.4.3)), i.e.

Γ1(a) +2 Γ0(a) = ε1(a) (CON 4)

Γ1(a) +1 Γ0(a) = ε2(a). (CON′ 4)

It is interesting to notice that for double categories where all structures are groupoids we need only a map
Γ0 satisfying the conditions CON 1-3 since Γ1 can be defined using (CON 4).

Proposition 6.5.1 For a double category in which all structures are groupoids, Γ0 and Γ1 may be obtained
from each other by the formula

Γ1(a) = −2 −1 Γ0(a−1).

Proof Let us define Γ′′(a) = −2 −1 Γ0(a−1).

Since Γ0(aa−1) = Γ0(1) = , we obtain from the transport law (CON 3.1) that Γ0(a−1) = −1[Γ0a, (ε1a
−1)].

Hence Γ′′(a) = [(ε1a), −2Γ0a].

This implies that Γ′′(a) +2 Γ0(a) = ε1(a), and so by (CON 4) Γ′′(a) = Γ1(a). 2

If we use an analogue of our previous notations , for Γ0,Γ1 respectively then of course we see that
all these laws are the ones we have given before for thin elements. So it is not very difficult to see, and it was
already done by Brown and Spencer ([60]) in the case that all structures are groupoids, that any thin structure
has associated a unique connection, and that the given thin structure is determined by this connection.

Proposition 6.5.2 If there is a thin structure Θ on D we have an associated connection defined by

Γ0a = Θ

(
a

a 1
1

)
and Γ1a = Θ

(
1

1 a
a

)
.

Moreover, the morphism Θ can be recovered from the connection, since

Θ

(
c

a d
b

)
= (ε2a +1 Γ1b) +2 (Γ0c +1 ε2d) = (ε1c +2 Γ1d) +1 (Γ0a +2 ε1b). (CON 5)

Proof The results on the behaviour of Γ0 and Γ1 with respect to boundaries and degeneracies are immediate.

Before proving the relation with the compositions, it is worth mentioning that the values of Θ on degenerate
elements are determined by the fact that Θ is a morphism of double categories, so, Θε1(b) = ε1(b) and Θε2(b) =
ε2(b).
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Applying Θ to the equation

(
ab

ab 1
1

)
=




(
a

a 1
1

) (
b

1 1
b

)

(
1

b b
1

) (
b

b 1
1

)




we get the transport law

Γ0(ab) =
[

Γ0a ε1b

ε2b Γ0b

]
.

and the one for Γ1 is obtained along the same lines.

Moreover, it is easy to see that on D, the element

(
c

a d
b

)

may by decomposed as the product of any of the two arrays




(
1

a a
1

) (
c

c 1
1

)

(
1

1 b
b

) (
1

d d
1

)




or




(
c

1 1
c

) (
1

1 d
d

)

(
a

a 1
1

) (
b

1 1
b

)




where in the first one we have to compose first columns then rows and in the second one the other way about.

Applying Θ to these expressions, we get both formulae. 2

Remark 6.5.3 As we have seen in the proof of the preceding property, the thin elements are composition of
degenerate elements and connections. Conversely, all degeneracies and connections lie in the image of Θ, so any
composition of such elements is a thin element. Thus we have an easy characterisation of the thin elements.

There is more work in obtaining the other implication, i.e. getting the thin structure from the connection
maps. We follow the proof given by Brown and Mosa for the case of double categories ([56]). It is easier for
double groupoids and in this case the proof may be traced back to Brown-Higgins ([39]). Nevertheless it is
interesting to give the proof in the more general case for the possible applications in other situations.

Proposition 6.5.4 If there is a connection on D, we have an associated thin structure Θ defined by the formula
(CON 5) in Proposition 6.5.2. Moreover, the connection can be recovered from Θ, since

Γ0(a) = Θ

(
a

a 1
1

)
and Γ1(a) = Θ

(
1

1 a
a

)
.
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Proof Let us first prove that either formulae gives the same function. This will make it easier to prove the
morphism property. We write

Θ1

(
c

a d
b

)
= (ε1c +2 Γ1d) +1 (Γ0a +2 ε1b) =

c d

a b

where the last diagram is obtained adding the degenerate middle row, and

Θ2

(
c

a d
b

)
= (ε2a +1 Γ1b) +2 (Γ0c +1 ε2b) =

a

b

c

d

Then we want to prove Θ1 = Θ2. A usual way of proving that two compositions of arrays produce the same
result is to construct a common subdivision. One that is appropriate for this case is

a

c

a

b

c

d

d

b

.

From this diagram, we may compose the second and third row using the transport law and then rearrange
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things, getting Θ1 as indicated

a

c

ab cd

d

c d

a b

b

=

a

c

d

c d

a b

b

= Θ1

(
c

a d
b

)
.

Similarly, operating in the bottom left and the top right corner, we get

a

c

a

b

c

d d

b

=

a

c

a

b

c

d d

b

and this last diagram is, quite clearly Θ2. We write Θ for the common value.

We would like to prove that Θ is a morphism. From any of its representations, it is clear that Θ commutes
with faces and degeneracies. The only point we have to prove is that it commutes with both compositions. In
this direction, it is good to have two definitions of Θ. First, we use Θ = Θ2 to prove that Θ preserves the
vertical composition. The use of Θ = Θ1 to prove that it preserves the horizontal composition is similar.

So we want to prove

Θ2

(
c

a d
b

)
+1 Θ2

(
b

a′ d′
e

)
= Θ2

(
c

aa′ dd′
e

)
.
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As before we compute a common subdivision in two ways. The common subdivision we choose is

a

a′

c

a′

e

b

d′

a

b

c

d d

d′

b

e

.

If we compose the first two rows, they produce Θ2

(
c

a d
b

)
. Similarly, the two last rows give Θ2

(
b

a′ d′
e

)
.

On the other hand, making some easy adjusts on the three middle rows, we get

a

a′

c

a′

e

a

b

d′

c

d d

d′

e

=

aa′

c

aa′

e

c

dd′ dd′

e

which clearly is Θ2

(
c

aa′ dd′
e

)
. 2

6.6 Equivalence between XMod and DGpds: folding

In this section, we prove the equivalence between the category DGpds of double groupoids of Definition 6.4.3
and that of crossed modules of groupoids XMod of Definition 6.2.1.

On the one hand, the crossed module associated to a double groupoid is given by the functor

γ : DGpds → XMod.

restriction of the one defined in Section 6.2.

On the other hand, there is a double groupoid associated to each crossed module as was already hinted at
the end of Section 6.1. We shall develop this idea in this Section. We recall that to generalise the category of
shells in a category, we use 2-shells which commute up to some element in the image of the crossed module.
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Let M = (µ : M → P ) be a crossed module over a groupoid. There is an associated double groupoid
G = λM whose sets are

G0 = P0, G1 = P1 and G2 = {(m, (a, b, c, d)) | b−1a−1cd = µm}.

The elements of G2 may be represented by

a m

c

d

b

where m measures the lack of commutativity of the boundary, giving the composition of the sides of the boundary
in clockwise direction starting from the right bottom corner.

The category structure in (G1, G0) is the same as that of (P1, P0), so it is a groupoid. The horizontal and
vertical structures on (G2, G1) have source, target and identities defined as in P . The compositions deserve
some extra care. On the second component they are defined by juxtaposition as in P . On the first one, they
are not just composition since they have to measure the lack of commutativity. After playing a bit with the
boundaries, it is not difficult to see that they can be defined by

a m

c

d

b

+2 d u

c′

f

b′

= a mb′u

cc′

f

bb′

and

a m

c

d

b

+1 a′ n

b

d′

e

= aa′ nmd′

c

dd′

e

and they are well defined since

µ(mb′u) = b′−1(µm)b′(µu) = b′−1
b−1a−1cdb′b′−1

d−1c′f = b′−1
b−1a−1cc′f.

and

µ(nmd′) = µ(n)d′−1
µ(m)d′ = e−1a′−1

bd′d′−1
b−1a−1cdd′ = e−1a′−1

a−1cdd′.

This is where we have used rule CM1) for a crossed module.

It is not difficult to check that with these compositions all three categories are groupoids. We now verify
the interchange law, using the following diagram,

m u

n d

b

v e

c
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Evaluating the rows first gives the first component of the composition, in an abbreviated notation since the
edges are omitted, as [

mbu

ncv

]
= (ncv)(mbu)e

while evaluating the columns first gives the first component of the composition, in a similar notation, as
[
nmd vue

]
= (nmd)cvue.

So to prove the interchange law we have to verify that

vmbe = mdcv.

This follows from CM2) since µv = c−1d−1be and then

vmdcv−1 = (mdc)µv = mdcc−1d−1be = mbe.

To finish, we define a thin structure on G by the obvious morphism

Θ : P → G2

given by Θ(a, b, c, d) = (1, (a, b, c, d)).

This gives a functor
λ : XMod → DGpds

and that γλM is naturally isomorphic to M is trivial in dimensions 0,1 and in dimension 2 follows from

(γλM)2 = {(m, (1, 1, 1, µm)) | m ∈ M} ∼= M.

It is rather more involved to get a natural isomorphism from G to λγG for any double groupoid G. In order
to do this, we shall see first that a double groupoid is “generated” by the thin elements and those that have
only one non-degenerate face, which we assume to be the top face. To this end we “fold” all faces to the chosen
one.

Definition 6.6.1 Let G be a double groupoid. We define the folding map

Φ : G2 → (γG)2 ⊆ G2

by the formula Φu = [−2ε1∂
1
1u, −2Γ0∂0

2u, u, Γ0∂1
2u]. Notice that this can be defined only in the groupoid case

because we are using −2.

In the usual description

Φu =

b−1 a−1

a u

c

d

d

b−1 b

Now let us see that the boundary of Φu is the one we expect. As a consequence Φ is well defined.

Proposition 6.6.2 All faces of Φu are identities except the first in the vertical direction, and

∂0
1Φu = ∂1

1u−1∂0
2u−1∂0

1u∂1
2u.

Thus Φu ∈ γG2 and Im Φ ⊆ γG2.
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Proof All are easy calculations which are left as exercises. 2

Also from the definition, the following property is clear.

Proposition 6.6.3 All u ∈ γG2 satisfy Φu = u. Thus γG2 = Im Φ and ΦΦ = Φ.

Proof This is immediate since in this case all the elements making up Φu except u itself are identities. 2

We are now able to define a map
Ψ : G2 → (λγ)G2

by mapping any element u ∈ G2 to the element given by the folding map Φu and the shell of u:

a u

c

d

b

7−→ a Φu

c

d

b

We shall see that this map is an isomorphism between the two double groupoids.

It is clear that Ψ preserves faces. Also Ψ preserves thin elements since Φ of a thin element is a composition
of thin elements and so is thin.

The most delicate part of the proof is the behaviour of the folding map Φ with respect to compositions. We
obtain not a homomorphism but a kind of ‘derivation’, involving conjugacies, or, equivalently, the action in the
crossed module γG.

Proposition 6.6.4 Let u, v, w ∈ G2 be such that u +1 v, u +2 w exist, and let b = ∂1
1u, g = ∂1

2v. Then

Φ(u +1 v) = [Φv,−2ε1g, Φu, ε1g] = Φv +2 (Φu)g

Φ(u +2 w) = [−2ε1b,Φu, ε1b,Φw] = (Φu)b +2 Φw.

Proof The proof of the second rule is simple, involving composition and cancelation in direction 2, so we prove
in detail only the first rule. As before, this is done by constructing a common subdivision and computing it in
two ways. Namely if both u, v are represented by

a u

c

d

b

and e v

b

g

f

then

u +1 v = ae u +1 v

c

dg

f
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So we have

Φ(u +1 v) =

f−1 (ae)−1

u +1 v

c dg

Applying both transport laws to the second and fourth square, we get a refinement

f−1
e−1 a−1

u

c d g

v

having the same composition by Remark 6.1.5. Next we get another array

f−1
e−1 b g g−1

b−1 a−1

u

c d g

v

having the same composite because each row has same composite in both cases (apply Remark 6.1.5). Now we
can compose vertically in this last diagram to get

f−1
e−1

v

b g g−1
b−1 a−1

u

c d g

and this is clearly Φv +2 (Φu)g as stated.

2

The important consequence is that the map

Ψ : G2 → (λγG)2

we are studying is a homomorphism with respect to both compositions since the equations proved in the
preceding property are part of the definition of the compositions in (λγG)2.

To end our proof of the equivalence between the categories of crossed modules over groupoids and double
groupoids, it just remains to prove that the map Ψ is bijective, and preserves the thin structures. Let us start
by characterising the thin elements of G2 using the folding map.

Proposition 6.6.5 An element u ∈ G2 is thin if and only if Φu = 1.

Proof As we pointed out in the Remark 6.5.3 an element u ∈ G2 is thin if and only if it is a composition of
identities and connections. By the preceding properties, it is clear that both identities and connections go to 1
under the folding map, so the same remains true for their compositions.
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Conversely, if u ∈ G2 is such that Φu = 1, by the definition of Φ, we have the following diagram

u = 1

Solving this equation for u, we get that it is a product of identities and connections:

u =

b b−1

u

= Φu

2

Corollary 6.6.6 The map Ψ preserves the thin structures.

Thus we can conclude that an element u ∈ G2 is uniquely determined by its boundary and its image under
the folding map.

Proposition 6.6.7 Given elements (a, b, c, d) ∈ G2 and m ∈ γG2, there is an element u ∈ G2 with boundary
(a, b, c, d) and Φu = m if and only if ∂0

1m = b−1a−1cd. Moreover, in this case u is unique.

Proof As before, we can solve the equation for u getting

u = Φu

thus giving the construction of such element u. Uniqueness follows from the result before. 2

Corollary 6.6.8 The map Ψ : G2 → (λγG)2 is bijective and determines a natural equivalence of functors
1 ' λγ.

Thus we have completed the proof that the functors γ and λ give an equivalence of categories.

Corollary 6.6.9 The functor γ preserves pushouts and, more generally, colimits.

This allows us to prove first a van Kampen Theorem for the fundamental double groupoid and then deduce
a corresponding theorem for the fundamental crossed module.
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Remark 6.6.10 This equivalence also gives another way of checking some equalities on double groupoids. To
see that two elements are equal we just need to know that they have the same boundary and that they fold to
the same element. Alternatively, we can just check the equations in a double groupoid of the form λ(M → P ).
This is how properties of rotations were verified in [61]. The direct proofs are due to Philip Higgins.

Another aspect of the equivalence of categories is that it gives us a large source of double groupoids. Indeed
one motivation of the equivalence in the work of [61, 60] was simply to find new examples of double groupoids
and these were found since there is a large source of crossed modules.

Work on the double category case, proving the equivalence with 2-categories, was done by Spencer in [165]
and additional work by Brown and Mosa [56]. This work has been extended to all dimensions in [4].

6.7 Homotopy commutativity lemma

As we saw in Chapter 1, the desire for the generalisation of the concept of commutative square was one of the
motivations behind the search for higher dimensional group theory.

Recall that when proving the van Kampen Theorem 1.6.1, the main idea in the second part was to divide
a homotopy into smaller squares and change each one to give a commutative square in π1. Then we applied
the morphisms and got composable commutative 2-shells in K; the fact that in a groupoid any composition of
commutative 2-shells is commutative gave the result.

To generalise this to a van Kampen Theorem in dimension 2, we need several points:

- a concept of commutative 3-shell;

- to prove that the composition of 3-shells is commutative; and

- to relate commutative 3-shells with homotopy.

Those are the objectives of this section.

Before getting down to business, let us point out that there is a further generalisation to commutative n-
shells for all n which will be explained in Part II (Chapter 15). Nevertheless, in the 3-dimensional case this
can be done using connections with some careful handling. In fact, as has already been pointed out, one of the
reasons for introducing connections in the paper [61] was to be able to discuss the notion of commutative 3-shell
in a double groupoid.

The process generalises the construction of the double categories of 2-shells and commutative 2-shells seen
in Example 6.1.8. In the 3-dimensional case we get what could be labelled a “triple category” but we are not
formalising this concept at this stage because is not necessary now and can be done in a more natural way in a
more general setting (see Chapter 15).

First we consider 3-shells, the definition of which does not use the thin structure. Let us start with the
picture of a 3-cube (where we have drawn the directions to make things a bit easier to follow)

©©©
©©©

©©©

©©© 2

3

1

v0 v1

u0

u1

Figure 6.4: cube
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Definition 6.7.1 Let D be a double category. A cube or (3-shell) in D,

α = (u0, u1, v0, v1, w0, w1)

consists of squares in D2 which fit together, i.e. such that

∂σ
1 uτ = ∂τ

1 vσ; ∂σ
2 uτ = ∂τ

1 wσ; ∂σ
2 vτ = ∂τ

2 wσ

for σ, τ = 0, 1. We also define ∂σ
1 α = uσ, ∂σ

2 α = vσ, and ∂σ
3 α = wσ for σ = 0, 1.

Now we make these 3-shells into a triple category by defining three partial compositions of 3-shells as follows.

Definition 6.7.2 Let α = (u0, u1, v0, v1, w0, w1) and β = (x0, x1, y0, y1, z0, z1) be cubes in D.

(i) If u1 = x0 we define

(u0, u1, v0, v1, w0, w1) +1 (u1, u2, y0, y1, z0, z1) = (u0, u2, v0 +1 y0, v1 +1 y1, w0 +1 z0, w1 +1 z1).

(ii) If v1 = y0 we define

(u0, u1, v0, v1, w0, w1) +2 (x0, x1, v1, v2, z0, z1) = (u0 +1 x0, u0 +1 x0, v0, v2, w0 +2 z0, w1 +2 z1).

(iii) If w1 = z0 we define

(u0, u1, v0, v1, w0, w1) +3 (x0, x1, y0, y1, w1, w2) = (u0 +1 x0, u0 +1 x0, v0 +2 y0, v1 +2 y1, w0, w2).

It is easy to check that this yields a triple category, in the obvious sense. (This construction will be extended
to all dimensions in a later chapter using a notation more suitable for the general case.)

Now we have to formulate the notion of commutative 3-shell. From the square case it seems that the proper
generalisation would be to have that the composition of some faces equals the composition of the remaining
faces.

We shall see that this is not so obvious in this dimension. Moreover, we have to work in a double category
with connections. In fact, for our purposes, we can restrict to the double groupoid case, only sketching the
category case and refer to [36] for more details.

Let us try to give some meaning to one face of a cube being the composition of the remaining five. We can
start by thinking in the picture we get by folding flat those five faces of the cube.

w0 v1

u1

u0

v0

3

3

33

2

2
2

1 1 1

Figure 6.5: Five faces of a cube folded flat
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First, notice that already in this figure we need that the double category we are using has all structures
groupoids since we are using the inverse of some faces. Also, this is not a composable array in any obvious
sense, thus we have to make clear the meaning of its composition. If the double category also has connections,
i.e. it is a double groupoid G, we can fill the gaps in the diagram with connections giving a composable array

−1u0

−2v0 w0 v1

u1

We shall say that the above 3-shell α in a double groupoid commutes if the face w1 = ∂1
3α is the composition

of the previous array involving the other five faces.

Remark 6.7.3 In the case where D is a double category with thin structure, we cannot get a formula of the
above type, because of the lack of inverses. What we can expect as commuting boundary is a formula expressing
some of the faces of the cube in terms of the other ones. Let us investigate this case.

If we fold flat the faces of the 3-cube, the six faces look like,

1 1

1 1

3

3

3

3

2

2
2

2

v0 w1

u0

w0 v1

u1

Figure 6.6: Cube boundary folded in a plane

This diagram can be nicely cut in two pieces such that each one can be transformed into a composable array
using connections as follows:
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1 1

1 1

2

2

2

2

3

3

3

3

w0 v1

u1

u0

w1v0

Figure 6.7: Cube boundary decomposed in two

It seems that we could say that a 3-shell is commutative if both compositions are the same, but this does not
work because the two squares have different boundary. We expand both squares to get the same boundaries,

w0 v1

u1

u0

v0 w1

Therefore, we say that a 3-shell α in a double category commutes if both compositions are equal.

Remark 6.7.4 For a corresponding theory in higher dimensions one has at present to take the connections as
basic, since their properties in all dimensions are easily expressed in terms of a finite number of axioms, each
of which expresses simple geometric features of mappings of cubes. This was done in the groupoid case in [44]
and it is developed in Chapter 15. It is then a main feature of the algebra to develop the related notion of thin
structure. The chief advantage of the latter is that complicated arguments involving multiple compositions of
commuting shells of cubes are reduced to simple arguments on the composition of thin elements.

Now we get two results on commuting cubes which are key to the proof of Theorem 6.8.2, in particular in
Lemma 6.8.4. The first one, about ‘degenerate’ commutative 3-shells, shows that the two non-degenerate faces
are equal.

Theorem 6.7.5 Let α be a commutative 3-shell in a double groupoid G. Suppose that all the faces of α not
involving direction 3 are degenerate. Then ∂0

3α = ∂1
3α.

Proof In this case the array containing the five faces is

∂1
3α

whose composition is clearly ∂1
3α.



154 6. Double groupoids and the 2-dimensional van Kampen theorem.

Thus the commutativity of the 3-shell implies that ∂0
3α = ∂1

3α. 2

Here is a second result about commutativity of 3-shells being preserved by composition.

Theorem 6.7.6 In a double groupoid with connections, any composition of commutative 3-shells is commuta-
tive.

Proof It is enough to prove that any composition of two commutative 3-shells is commutative.

So, let us consider α = (u0, u1, v0, v1, w0, w1) and β = (x0, x1, y0, y1, z0, z1) two commutative 3-shells in a
double groupoid G. This means that w1 and z1 are respectively given by

−1u0 −1x0

w1 = −2v0 w0 v1 z1 = −2y0 z0 y1

u1 x1

We are going to check that composing in any of the three possible directions gives a commutative 3-shell.

If v1 = y0, the face ∂1
3(α +2 β) = w1 +2 z1 of α +2 β is given by

−1u0 −1x0

w1 +2 z1 = −2v0 w0 v1 −2v1 z0 y1

u1 x1

Adding first the central two columns of this array and then the central three columns of the resulting array, we
get

−1u0 −1x0 −1(u0 +2 x0)

w1 +2 z1 = −2v0 w0 z0 y1 = −2v0 w0 +2 z0 y1

u1 x1 u1 +2 x1

Thus α +2 β is a commutative 3-shell.

Working vertically in the same way we can prove that α +1 β, when it is defined, is commutative if both α

and β are commutative.
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The case α +3 β is a bit different. In this case w1 = z0, thus we have

−1u0 −1x0

w1 = −2v0 w0 v1 w2 = −2y0 w1 y1

u1 x1

Substituting w1 in the second array for the first array and subdividing the other blocks to get a composable
array, we get that

−1u0

−1x0

w2 = −2v0 −2y0 z0 y1 v1

x1

u1

Now, we can compose by blocks and, using the transport law, we get

−1(u0 +1 x0)

w2 = −2(v0 +2 y0) w0 v1 +2 y1

u1 +1 x1

Thus α +3 β is also a commutative 3-shell. 2

Let us go now to the case of the fundamental double groupoid of a triple (X, A, C). In particular, we will
see that some 3-cubes h : I3 → X produce a commutative 3-shell in ρ(X, A,C). This we call a ‘homotopy
commutativity lemma’ reserving the term homotopy addition lemma which we give later for a result expressing
the boundary of a cube or simplex in terms of a ‘sum’ of the faces.

For the statement of the lemma we introduce some notation that represents the changes of coordinates
suggested by Figure 6.5. So, if h : I3 → X is a cube in X, then the faces of h are given by restriction to the
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corresponding faces of the cube, i.e.
∂α

i h = h ◦ ηα
i ,

where ηα
i (x1, x2) = (y1, y2, y3), the yj being defined by yj = xj for j < i, yi = α, and yj = xj−1 for j > i.

Also in some of the cases we are going to need some switching of coordinates, so let us consider η̃α
1 (x1, x2) =

(α, x2, x1).

Proposition 6.7.7 (the homotopy commutativity lemma). Let (X, A,C), ρ be as in section 6.3. Let h be a
cube in X with edges in A and vertices in C, and let the elements uα, vα, wα of ρ2 represented by its faces be
respectively the classes of h ◦ η̃α

1 , h ◦ ηα
2 , h ◦ ηα

3 (α = 0, 1). Then

w1 =




−1u0

−2v0 w0 v1

u1




in ρ2 where the corner elements are thin elements as above, i.e. the 3-cube in ρ(X, A, C) given by the boundary
of h commutes.

Proof Consider the maps ϕ0, ϕ1 : I2 → I3 defined by

ϕ0 =



−2 −1 Γ −1(η̃0

1) −1Γ
−2η

0
2 η0

3 η1
2

−2Γ η̃1
1 Γ


 , ϕ1 =



−2 −1 Γ 1 −1Γ

0 η1
3 0

−2Γ 1 Γ


 .

where Γ is the map induced by γ : I2 → I given by γ(x1, x2) = max(x1, x2).

They are the two compositions given in the next Figure.

w0 v1−2v0

u1

−1u0

w1

Figure 6.8: Two arrays with the same boundary

Notice that ϕ0, ϕ1 agree on ∂I2 and so, since I3 is convex, the linear homotopy

F : I2 × I → I3

(x1, x2), t 7→ tϕ0(x1, x2) + (1− t)ϕ1(x1, x2)

gives an homotopy rel ∂I2 between ϕ0 and ϕ1.

Hence 〈〈hϕ0〉〉 = 〈〈hϕ1〉〉 in ρ2. But 〈〈hϕ0〉〉 is the composite matrix given in the proposition, and 〈〈hϕ1〉〉 = w1.

2
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6.8 Proof of the 2-dimensional van Kampen Theorem

In this last section of Part I we shall prove a generalised van Kampen Theorem (6.8.2) which includes as a
particular case Theorem 2.3.1 some of whose algebraic consequences have been studied in Chapters 4 and 5.

Theorem 6.8.2 is true for triples of spaces (X, A,C) satisfying some connectivity conditions which can be
expressed as algebraic conditions on the π0 and π1 functors.

Definition 6.8.1 We say that the triple (X, A, C) is connected if the following conditions hold:

(‡)0. The maps π0(C) → π0(A) and π0(C) → π0(X) are surjective.

(‡)1. The morphism of groupoids π1(A,C) → π1(X,C) is piecewise surjective.

Notice that condition (‡)0 is equivalent to saying that C intersects all path components of X and all of A.
Also condition (‡)1 just says that the function π1(A)(x, y) → π1(X)(x, y) induced by inclusion is surjective for
all x, y ∈ C. It may be shown that given (‡)0, condition (‡)1 may be replaced by

(‡′)1. For each x ∈ C, the homotopy fibre over x of the inclusion A → X is path connected.

That both conditions can be stated in terms of connectivity, explains the origin of the term ‘connected’ (see
[53]).

Let us introduce some notation which will be helpful in both the statement and the proof of Theorem 6.8.2.
Suppose we are given a cover U = {Uλ}λ∈Λ of X such that the interiors of the sets of U cover X. For each
ν = (λ1, · · · , λn) ∈ Λn we write

Uν = Uλ1 ∩ . . . ∩ Uλn .

An important property of this situation is that a continuous function f on X is entirely determined by
a family of continuous functions fλ : Uλ → X which agree on all pairwise intersections Uλ1 ∩ Uλ2 . This is
expressed by saying that the following diagram

⊔
λ1,λ2∈Λ Uλ1 ∩ Uλ2

i1 //

i2
//

⊔
λ∈Λ Uλ i // X

is a coequaliser in the category of topological spaces. The functions i1, i2 are determined by the inclusions
Uν = Uλ1 ∩ Uλ2 → Uλ1 , and Uν → Uλ2 for each ν = (λ1, λ2) ∈ Λ2, and i is determined by the inclusions
Uλ → X for each λ ∈ Λ.

It is not difficult to extend this to the case of a triple (X, A,C). If we define Aν = Uν ∩A, and Cν = Uν ∩C,
we get a similar coequaliser diagram in the category of triples of spaces:

⊔
ν∈Λ2(Uν , Aν , Cν)

i1 //

i2
//

⊔
λ∈Λ(Uλ, Aλ, Cλ) i // (X,A, C).

Now we move from this to the homotopical situation, by applying ρ to the coequaliser diagram of triples.
So the homotopy double groupoids in the following ρ-sequence of the cover are well-defined:

(6.8.1)
⊔

ν∈Λ2 ρ(Uν , Aν , Cν)
i1 //

i2
//

⊔
λ∈Λ ρ(Uλ, Aλ, Cλ) i // ρ(X, A,C).

Here
⊔

denotes disjoint union, which is the coproduct in the category of double groupoids. It is an advantage
of the approach using a set of base points that the coproduct in this category is so simple to describe. The
morphisms i1, i2 are determined by the inclusions Uν = Uλ1 ∩ Uλ2 → Uλ1 , and Uν → Uλ2 for each ν =
(λ1, λ2) ∈ Λ2, and i is determined by the inclusions Uλ → X for each λ ∈ Λ.
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Theorem 6.8.2 [39, Theorem B] Assume that for every finite intersection Uν of elements of U the triple
(Uν , Aν , Cν) is connected. Then

(Con) the triple (X, A, C) is connected, and

(Iso) in the above ρ-sequence of the cover, i is the coequaliser of i1, i2 in the category of double groupoids.

Proof The proof follows the pattern of the 1-dimensional case (Theorem 1.6.1) and it will take several stages.

We shall be aiming for the coequaliser result (Iso) because the connectivity part (Con) is obtained along the
way. So we start with a double groupoid G and a morphism of double groupoids

f ′ :
⊔

λ∈Λ

ρ(Uλ, Aλ, Cλ) → G

such that f ′i1 = f ′i2. We have to show that there is a unique morphism of double groupoids

f : ρ(X, A,C) → G

such that fi = f ′.

Recall that by the structure of coproduct in the category of double groupoids, the map f ′ is just the disjoint
union of maps fλ : ρ(Uλ, Aλ, Cλ) → G and the condition f ′i1 = f ′i2 translates to fλ1 and fλ2 being the same
when restricted to ρ(Uν , Aν , Cν) for ν = (λ1, λ2).

To define f on ρ(X,A, C) we shall describe how to construct an F (α) ∈ G2 for all α ∈ R2(X, A, C). Then
we define f(〈〈α〉〉) = F (α) and prove independence of all choices.

Stage 1.- Define F (α) ∈ G2 when α = [αij ] such that each αij lies in some R2(Uλ, Aλ, Cλ).

The easiest case is when the image of α lies in some Uλ of U . Then α determines uniquely an element
αλ ∈ R2(Uλ, Aλ, Cλ). The only way to have fi = f ′ is by defining

F (α) = fλ(〈〈αλ〉〉).

This definition does not depend on the choice of λ, because of the condition f ′i1 = f ′i2.

Next, suppose that the element α ∈ R2(X, A,C) may be expressed as the composition of an array

α = [αij ]

such that each αij belongs to R2(X,A, C), and also the image of αij lies in some Uλ of U which we shall denote
by U ij .

α = [αij ]

where αijAij

Cij
Aij Cij

Aij

CijAij
Cij

Figure 6.9: Case α = [αij ] with αij ∈ R2(U ij , Aij , Cij)
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We can define F (αij) for each ij as before. Since the composite [αij ] is defined, it is easy to check using
f ′i1 = f ′i2, that the elements F (αij) compose in G2. We define F (α) to be the composite of these elements of
G2, i.e.

F (α) = F ([αij ]) = [F (αij)],

although a priori this definition could depend on the subdivision chosen.

Stage 2.- Define F (α) ∈ G2 by changing α by an f-homotopy to a map of the type used in Stage 1.

This is done analogously to the 1-dimensional case (Theorem 1.6.1). So, first we apply the Lebesgue covering
lemma to get a subdivision α = [αij ] such that for each i, j, αij lies in some element U ij of the covering. In
general, we will not have αij ∈ R2(U ij , Aij , Cij), so we have to deform α to another β satisfying this condition.
The homotopy for this is given by the next lemma. In this we use the cell-structure on I2 determined by a
subdivision of α as in Remark 6.3.2, and also refer to the ‘domain’ of αij as defined there.

Lemma 6.8.3 Let α ∈ R2(X, A,C) and let α = [αij ] be a subdivision of α such that each αij lies in some U ij

of U . Then there is an f-homotopy h : α ≡ α′, with α′ ∈ R2(X, A,C), such that, in the subdivision h = [hij ]
determined by that of α, each homotopy hij : αij ' α′ij satisfies:

(i) hij lies in U ij ;

(ii) α′ij belongs to R2(X, A,C), and so can be considered an element of R2(U ij , Aij , Cij);

(iii) if a vertex v of the domain of αij is mapped into C, then h is constant on v;

(iv) if a cell e of the domain of αij is mapped by α into A(resp. C), then e × I is mapped by h into A(resp.
C), and hence α′(e) is contained in A(resp. C).

Proof Let K be the cell-structure on I2 determined by the subdivision α = [αij ], as in Remark 6.3.2. We
define h inductively on Kn × I ∪K × {0} ⊆ K × I using the connectivity conditions of the statement, where
Kn is the n-skeleton of K for n = 0, 1, 2.

Step 1.- Extend α|K0×{0} to h0 : K0 × I → C.

Since the triples (Uν , Aν , Cν) are connected for all finite sets ν ⊆ Λ, the map π0(Cν) → π0(Uν) is surjective.
For each vertex v ∈ K we can choose a path lying in the intersection of all the Uλ corresponding to all the
2-cells of K containing v (one to four according to the situation of v) and going from α(v) to a point of C.

In particular, when α(v) ∈ C we choose the constant path and if α(v) ∈ A, using that π0(Cν) → π0(Aν) is
also surjective, we choose the path lying in A . These paths give a map h0 : K0 × I → C.

Step 2.- Extend α|K1×{0} ∪ h0 to h1 : K1 × I → A.

For each 1-cell e ∈ K with vertices v1 and v2, we have the following diagram

h0|v1×I h0|v2×I

α|e

where on the three sides of e× I the definition of h1 is given as indicated. We proceed to extend to e× I with
some care.
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If α(e) ⊆ A we consider two cases. When v1, v2 are mapped into C, we extend to e × I using α at each
level e × {t}. If α(e) ⊆ A, and v1, v2 are not both mapped into C, since all edges go to A, then we can use a
retraction to extend the homotopy.

Otherwise, the product of these three paths defines an element of π1(Uν , Cν) where Uν is the intersection of
the Uλ corresponding to all the 2-cells containing e (1 or 2 according to the situation of e). Using the condition
on the surjectivity of the π1, we have a homotopy rel {0, 1} to a path in (Aν , Cν). This homotopy gives h1|e×{1}.

Step 3.- Extend α|K×{0} ∪ h1 to h : K × I → X.

This is done using for each 2-cell e the retraction of e× I to ∂e× I ∪ e× 0

Figure 6.10: Projecting from above in a 3-cube

given by projecting from a point above the centre of the top face. 2

The three steps in the construction of h in this Lemma are indicated in Figure 6.11 where the third and
fourth diagrams look the same from this direction but from the back the third one looks like a hive with square
cells while the fourth diagram is solid.

α h0 ∪ α h1 ∪ α h

Figure 6.11: Steps in constructing h in Lemma 6.8.3

Notice that the connectivity result (Con) follows immediately from this lemma, particularly (iv), applied to
doubly degenerate or to degenerate squares representing elements of an appropriate π0 or π1.

We can now define F for an arbitrary element α ∈ R2(X, A, C) as follows. First we choose a subdivision
[αij ] of α such that for each i, j, αij lies in some U ij . Then we apply Lemma 6.8.3 to get an element α′ = [α′ij ]
and an f-homotopy h : α ≡ α′ decomposing as h = [hij ], the image of each hij lying in some U ij .

We define
F (α) = F (α′) = [F (α′ij)],
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i.e the composition of the array in G got by applying the appropriate fλ to the decomposition resulting on
the back face of the last diagram in Figure 6.11. Since this in principle depends on the subdivision and the
homotopy h we will sometimes write this element as F (α, (hij)).

Stage 3.- Key lemmas

The tools for our independence of choices are going to be proved at this stage. They are two lemmas
considering a homotopy H of maps in α, β ∈ R2(X, A,C) with a given subdivision H = [Hijk]. They are
represented in the Figure 6.12.

¡¡ ¡¡

¡¡

H
Hijk

Figure 6.12: Decomposition of a homotopy H = [Hijk]

The first lemma is a rather short application of previous results on commutative cubes and states that
F (α) = F (β) gives particular conditions on α, β and on an f-homotopy H : α ≡ β.

Lemma 6.8.4 Let H : I3 → X be an f-homotopy of maps α, β : (I2, ∂I2, ∂2I2) → (X, A,C). Suppose given a
subdivision H = [Hijk] of H such that each Hijk maps its domain Dijk of I3 into a set U ijk of the cover and
maps the vertices and edges of Dijk into C and A respectively, i.e. all its faces lie in R2(U ijk, Aijk, Cijk). Then
for the induced subdivisions α = [αij ], β = [βij ] we have in G that

(*) F (α) = F (β).

Proof The assumptions imply that each Hijk satisfy the conditions of the homotopy commutativity lemma
(6.7.7) and thus defines a commutative 3-shell in ρ(U ijk, Aijk, Cijk)). This is mapped by f ijk to give a com-
mutative 3-shell in G. The condition f ′i1 = f ′i2 implies that these 3-shells are composable in G, and so, by
Theorem 6.7.6, their composition is a commutative cube in G. The assumption that H is an f-homotopy allows
us to apply Theorem 6.7.5, and to deduce (*), as required. 2

Now we have to prove that we can always obtain from a general f-homotopy between two maps an f-homotopy
between associated maps that satisfies the conditions of the previous Lemma. This is where our connectivity
assumptions are used again.

Lemma 6.8.5 Let H : I3 → X be an f-homotopy of maps α, β : (I2, ∂I2, ∂2I2) → (X, A,C). Suppose given a
subdivision H = [Hijk] of H such that each Hijk maps its domain Dijk of I3 into a set U ijk of the cover. Then
there is a homotopy Φ of H to a homotopy H ′ such that such that in the cell structure K determined by the
subdivision of H,
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(i) H ′ maps the 0-cells of K into C and the 1-cells into A;

(ii) if a 0-cell v of K is mapped by H into C, then Φ is constant on v, and if v is mapped into A by H, then
so also is v × I by Φ;

(iii) if a 1-cell e of K is mapped by H into C, then Φ is constant on e, and if e is mapped into A by H, then
so also is e× I by Φ.

Proof As in Remark 6.3.2, but now in dimension 3, there is a cell structure K on I3 appropriate to the
subdivision of H. We define a homotopy Φ : K × I → X of H by induction on Kn× I ∪ k×{0} ⊆ K. The first
two steps are as in Lemma 6.8.3. This takes us up to K1 × I ∪K × {0}. Finally, we extend Φ over the 2- and
3-skeleta of K by using retractions, i.e. by a careful use of the Homotopy Extension Property. 2

Remark 6.8.6 The map H ′ constructed in the Lemma gives an f -homotopy from α′ = H ′
0 to β′ = H ′

1. Also
there is a decomposition of α′ = [α′ij ] and β′ = [β′ij ] which has each element lying in some R2(Uλ, Aλ, Cλ).
Moreover, the homotopy Φ induces homotopies h : α ≡ α′ and h′ : β ≡ β′ of the type described in Lemma 6.8.3
and later used to define F (〈〈α〉〉).

In particular, if all the maps in the induced subdivisions α = [αij ] and β = [βij ] lie in some R2(Uλ, Aλ, Cλ),
the map H ′ constructed in the lemma gives an f-homotopy H ′ : α ≡ β.

Stage 4.- Independence of choices inside the same f-homotopy class.

Now we can prove that f is well defined, proving independence of two choices.

1.- Independence of the subdivision and the homotopy h of Lemma 6.8.3.

Let us consider two subdivisions of the same map α ∈ R2(X,A, C). As there is a common refinement we
can assume that one is a refinement of the other. We shall write them α = [αij ] and α = [αij

kl] where for a fixed
ij we have αij = [αij

kl].

Using Lemma 6.8.3, we get f -homotopies h : α ≡ α′, with α′ ∈ R2(X, A,C), such that, in the subdivision
h = [hij ] determined by that of α, each homotopy hij : αij ' α′ij and h′ : α ≡ α′′, with α′′ ∈ R2(X,A, C),
such that, in the subdivision h′ = [h′ijkl] determined by that of α, each homotopy h′ijkl : αij

kl ' α′′ijkl. We want to
prove that

[F (α′ij)] = [F (α′′ijkl)].

¡
¡
¡

¡
¡
¡

¡
¡
¡

,,,,

,,
α′′ijkl

Figure 6.13: Independence of subdivision

The situation for a fixed ij is described in Figure 6.13 where the smaller cube at the front represents h′ijkl

and the larger cube at the back is hij .
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If we denote by h′ij the composition of the array h′ij = [h′ijkl] and by α′ij the composition of the array
α′ij = [α′ijkl], we have h′ij : αij ' α′′ij .

Now hh′ gives an f -homotopy satisfying the conditions of Lemma 6.8.5 if we denote by h the homotopy
given by h(x, y, t) = h(x, y, 1−t). First, we change this homotopy using Lemma 6.8.5 and we then apply Lemma
6.8.4, to get

[F (α′ij)]) = [F (α′′ij)].

On the other hand since the second is a refinement of the first, we have

[F (α′′ij)]) = [F (α′′ijkl)].

As a consequence to define the element F (α) we can choose whatever subdivision and homotopy we want
insofar as the conditions of Lemma 6.8.3 are met.

2.- Independence of the choice inside the same f -homotopy class.

Let H : α ≡ β be an f-homotopy of elements of R2(X, A,C). We choose a subdivision H = [Hijk] of H so
that each Hijk maps into a set of U . On both extremes there are induced subdivisions α = [αij ], β = [βij ]. We
apply Lemma 6.8.3 to H, getting H ′ : α′ ≡ β′.

As indicated in the Remark 6.8.6, these α′, β′ satisfy the conditions to be used when defining F (α) and
F (β). Also H ′ satisfies the conditions of Lemma 6.8.4. Thus

F (α) = [F (α′ij)] = [F (β′ij)] = F (β).

Stage 5.- End of proof

Now we have proved that there is a well-defined map f : ρ(X, A, C)2 → G2, given by f(〈〈α〉〉) = F (α, (hij)),
which satisfies fi = f ′ at least on the 2-dimensional elements of ρ.

The remainder of the proof of (Iso), that is the verification that f is a morphism, and is the only such
morphism, is straightforward. It is easy to check that f preserves addition and composition of squares, and it
follows from (iii) of Lemma 6.8.3 that f preserves thin elements.

It is now easy to extend f to a morphism f : ρ(X, A, C) → G of double groupoids, since the 1- and
0-dimensional parts of a double groupoid determine degenerate 2-dimensional parts. Clearly this f satisfies
fi = f ′ and is the only such morphism.

This completes the proof of Theorem 6.8.2. 2

Of especial interest (but not essentially easier to prove) is the case of the Theorem in which the cover U
has only two elements; in this case Theorem 6.8.2 gives a push-out of double groupoids. In the applications
in previous chapters we have considered only path-connected spaces and assumed that C = {x} is a singleton.
Taking x as base point, the double groupoids can then be interpreted as crossed modules of groups to give the
2-dimensional analogue of the Seifert-van Kampen theorem given as Theorem 2.3.1 earlier. We do not know
how to prove that theorem without using groupoids in some form. A higher dimensional form of this proof and
theorem is given in the second part of this book.

Proof of Theorem 2.3.1 In the case where (X, A) is a based pair with base point x, ρ(X,A, x) is abbreviated
to ρ(X,A). That we obtain a pushout of crossed modules under the hypothesis of Theorem 2.3.1 is simply
a special case of Theorem 6.8.2, together with Proposition 6.3.7, which gives the equivalence between double
groupoids and crossed modules.
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The corresponding result of Theorem 2.3.3 follows from Theorem 2.3.1 by standard techniques using mapping
cylinders. For analogues of these techniques for the fundamental groupoid, see Chapter 8 of [30]. 2

Remark 6.8.7 An examination of the proof of Theorem 6.8.2 shows that conditions (‡)0 and (‡)1 are required
only for 8-fold intersections of elements of U . However, it has been shown by Razak-Salleh [161] that in fact
one need only assume (‡)0 for 4-fold intersections and (‡)1 for 3-fold intersections. Further, these conditions
are best possible. The reader may like to try to recover these results using using the tool of Lebesgue covering
dimension as in the paper [58].

Remark 6.8.8 Theorem 6.8.2 contains 1-dimensional information which includes most known results express-
ing the fundamental group of a space in terms of an open cover, but it does not assume that the spaces of the
cover or their intersections are path-connected. That is, it contains the van Kampen theorem on π1(X, A) given
in Chapter 1.

Thus we have completed the aims of Part I, to give a reasonably full and we hope comprehensible account
of what we understand as 2-dimensional nonabelian algebraic topology, which is essentially the theory and
application to algebraic topology of crossed modules, double groupoids and related structures.

Now in Part II we move on to the higher dimensional theory. The situation is more complicated because there
are several generalisations of crossed modules and double groupoids, with applications to algebraic topology,
basically in terms of crossed complexes, or in terms of crossed n-cubes of groups. The theory of crossed complexes
is limited in its applications, because it starts as being a purely ‘linear’ theory. However, even this theory has
advantages, in the range of applications, its relation to well known theories, such as chain complexes with a
group of operators, its use of groupoids, and its intuitive basis as a development of the methods of Part I. So
this is the account we give, in the space we have here.
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Différentielle 18 (1977), no. 4, 409–429.

[166] M. Steinberger and J. West, Covering homotopy properties of maps between CW-complexes or ANRs,
Proc. Amer. Math. Soc. 92 (1984), no. 4, 573–577.

[167] J. Taylor, Group actions on ω-groupoids and crossed complexes, and the homotopy groups of orbit spaces.,
Ph.D. thesis, University of Durham, 1982.

[168] R. L. Taylor, Compound group extensions. I. Continuations of normal homomorphisms, Trans. Amer.
Math. Soc. 75 (1953), 106–135.

[169] , Covering groups of nonconnected topological groups, Proc. Amer. Math. Soc. 5 (1954), 753–768.

[170] R. Thom, L’homologie des espaces fonctionnels, Colloque de topologie algébrique, Louvain, 1956, Georges
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