\documentclass[a4paper,10pt]{article}

\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{graphicx}

\parindent=0in

\begin{document}

\section{Matlab's Bessel Tools}
First let's see if we can get some plots of the Bessel Function. Matlab provides several functions that solve Bessel's differential equation. A list from the help yields \\

BESSELJ(NU,Z) - Bessel function of the first kind \\
BESSELY(NU,Z) - Bessel function of the second kind \\
BESSELI(NU,Z) - Modified Bessel function of the first kind \\
BESSELK(NU,Z) - Modified Bessel function of the second kind \\
BESSELH(NU,K,Z) - Hankel function \\
AIRY(K,Z) - Airy function \\

\subsection{Bessel function of the first kind}

The NU argument is the order of the Bessel function and is a real number. The domain of the function is the argument Z and is a complex number. This makes plotting with BESSELJ quite simple, for $J_{\nu}(Z)$ where $\nu = -2,-1,0,1,2$

\end{document}