Recognized as:
Virginia Polytechnic Institute (306-71-076)
Virginia Group 2007, 679251 (627-22-050)
Welcome!
To use the personalized features of this site, please log in or register.
If you have forgotten your username or password, we can help.
|
 |
The intuitions of higher dimensional algebra for the study of structured space
| |
|
Articles
The intuitions of higher dimensional algebra for the study of structured space
Ronald Brown1 and Timothy Porter1 
(1) |
Department of Mathematics, University of Wales, Bangor, Dean Street, LL57 1 UT Bangor, Gwynedd, U.K. |
Abstract Higher dimensional algebra frees mathematics from the restriction to a purely linear notation, in order to improve the modelling
of geometry and so obtain more understanding and more modes of computation. It gives new tools for noncommutative, higher
dimensional, local to global problems, through the notion of «algebraic inverse to subdivision». We explain the way these
ideas arose for the writters, in extending first the classical notion of abstract group to abstract groupoid, in which composition
is only partially defined, as in composing journeys, and which brings a spatial component to the usual group theory: An example
from knot theory is used to explain how such algebra can be used to describe some structure of a space. The extension to dimension
2 uses compositions of squares in two directions, and the richness of the resulting algebra is shown by some 2-dimensional
calculations. The difficulty of the jump from dimension 1 to dimension 2 is also illustrated by the comparison of the commutative
square with the commutative cube-discussion of the latter requires new ideas. The importance of category theory is explained,
and a range of current and potential applications of higher dimensional algebra indicated.
Keywords higher dimensional algebra - knot theory - groups - groupoids - category theory - connections - cubical methods
Résumé Les algèbres de dimensions supérieures libèrent les mathématiques de la restriction d'une notation purement linéaire. Elles
aident ainsi à la modélisation de la géométrie et procurent une meilleure compréhension et plus de possibilitiés pour les
calculs. Elles nous donnent de nouveaux outils pour l;étude de problèmes non-commotatifs., de dimension supérieure que assurent
le passage du local au global, en utilisant la notion d' «inverse algébrique de subdivision». Nous allons exposer comment
ces idées sont venues aux auteurs en prolongeant initialement la notion classique de groupe abstrait à celle de groupoïde
abstrait, dont la composition n'est que partiellement définie, et qui ajoute une composante spatiale à la théorie habituelle
des groupes. La théorie des noeuds nous fournit un exemple en indiquant comment une telle algèbre peut être utilisée pour
décrire la structure d'un espace. Le prolongement à la dimension 2 utilise des compositions de carrés dans deux directions
et la richesse de l'algèbre qui en résulte est montrée par certains calculs de dimension 2. La difficulté de la transition
de la dimension 1 à la dimension 2 est également illustrée par la comparaison de la notion de carré commutatif à celle de
cube commutatif — le traitement de cette derniére nécessitant de nouvelles notions. L'importance de la théorie des caté gories
est expliquée, de même que les possibilités de l'application d'algèbres de dimensions supérieures.
Mots-Clés algébres de dimensions supérieures - théorie des nœuds - groupes - groupoïdes - théorie des catégories - connections - méthodes cubiques
Zusammenfassung Die mehrdimensionale Algebra befreit die Mathematik von einer rein linearen Notation. Sie ermöglicht eine Modellierung der
Geometrie, erleichtert das Verständnis von Rechnungen und stellt dafür eine größere Zahl von Hilfsmitteln zur Verfügung. Sie
liefert uns auch neue Werkzeuge für die Untersuchung «lokal-globaler» nichtkommutativer Probleme, indem der Begriff einer
algebraischen Umkehrung der Subdivision eingeführt wird. Wir werden zeigen, wie diese Vorstellungen entstanden sind. Der klassische,
abstrakte Grupenbegriff wurde zu einem abstrakten «Gruppoid» weiterentwickelt, dessen Zusammensetzung nur teilweise definiert
ist und bei dem der herkömmlichen Gruppentheorie eine räumliche Komponente hinzugefügt wird. Die Knotentheorie liefert dafür
ein Beispiel, denn sie zeigt den Nutzen einer solchen Algebra für die Beschreibung einer Raumstruktur. Bei der Ausweitung
auf die zweite Dimension werden in zwei Richtungen Zusammensetzungen von Quadraten benutzt, und der Reichtum der daraus hervorgehenden
Algebra wird durch einige Rechnungen in der zweiten Dimension erläutert. Die Schwierigkeit des Übergangs von der ersten zur
zweiten Dimension wird durch den Vergleich des Begriffs «kommutatives Quadrat» mit dem Begriff «kommutativer Würfel» erläutert.
Um diesen zu behandeln, sind neue Ideen erforderlich. Ferner wird die Bedeutung der Theorie der Kategorien erklärt, und es
wird eine Reihe von bereits existierenden und potentiellen Anwendungen der mehrdimensionalen Algebra angegeben.
Stichwörter mehrdimensionale Algebra - Knotentheorie - Gruppe - Gruppoide - Theorie der Kategorien - Verknüpfungen - kubische Methoden
Riassunto L'algebra di dimensioni superiori libera la matematica dai limiti delle notazioni puramente lineari, al fine di migliorare
la modellizzazione della geometria ed ottenere una migliore comprensione e migliori strumenti di calcolo. Fornisce inoltre
nuovi strumenti per strutture non-commutative, dimensioni superiori e passaggi dal locale al globale, grazie alla nozione
di «inverso algebrico della suddivisione». Spieghiamo il modo in cui gli autori sono pervenuti a queste idee, estendendo in
primo luogo la nozione classica di gruppo astratto a quella di gruppoide astratto, nel quale la composizione è definita solo
parzialmente, come nei «percorsi di composizione» in cui si aggiunge una componenente spaziale alla usuale teoria dei gruppi.
Viene usato un esempio della teoria dei nodi al fine di spiegare come una tale algebra possa essere usata al fine di descrivere
alcune strutture spaziali. L'estensione a due dimensioni usa la composizione dei quadrati in due direzioni e la ricchezza
dell'algebra corrispondente è dimostrata da alcuni conti in due dimensioni. La difficoltà del passare da una a due dimensioni
è anche illustrata dal raffronto del quadrato commutativo con il cubo commutativo, la cui discussione richiede concetti nuovi.
Si spiega infine l'importanza della teoria delle categorie e lo spazio delle applicazioni attuali e possibili dell'algebra
di dimensioni superiori.
Parole Chiave algebra di dimensioni superiori - teoria dei nodi - gruppi - gruppoidi - teoria delle categorie - connessione - metodi cubici
RonaldBrown, born in 1935, is emeritus professor, «Leverhulme Emeritus Fellow» in the Department of Mathematics, at the University of
Wales, Bangor. His research concerns topology, the theory of categories and their application.
TimothyPorter, born in 1947, is professor of mathematics in the Department of Mathematics, University of Wales Bangor. His research concerns
topology, logic, the theory of categories and their application.
This is a development of a talk by Ronald Brown at the École normale supérieure on 30 May 2001, in the seminar series «Géométrie
et Cognition» of Giuseppe Longo, Jean Petitot, Bernard Teissier.
We would like to thank: Giuseppe Longo for the invitation to lecture to his seminar; Posina Venkata Rayudu of the National
Brain Research Centre, Gurgaon, India, for helpful comments; and Andree Ehresmann for helpful comments and additional references
—readers interested in applications of category theory in biology should explore the web site perso.wanadoo.fr/vbm-ehr. The
works of Charles Ehresmann in category theory and of John Henry Constantine White head in topology have been a strong influence
in the development of this theory. We are grateful also to Laurie Catteeuw for her help in preparing the paper for this publication.
List of references
Abbott (Edwin A.), 1976,Flatland. A romance of many dimensions, 1st ed. London, 1884, here Cutchogue, NY, Buccaneer Books. The text is also available at <http://www.alcyone.com/max/lit/flatland/>.
|
|
Al-Agl (Fahd),Brown (Ronald) andSteiner (Richard), 2002, «Multiple categories. The equivalence between a globular and cubical approach»,Advances in Mathematics, 170, p. 71–118.
|
|
Arzi-Gonczarowski (Zippora) andLehmann (Daniel), 1998, «The category of artificial perceptions»,Annals of Mathematics and Artificial Intelligence, 23, p. 267–298. (The site http://users.actcom.co.il/typographics/zippie/ contains other relevant
0129 0159 V work by the same authors.)
|
|
Atiyah (Michael), 2001, «Mathematics in the xxth century. Geometryversus Algebra»,Mathematics today, ser. 2,37, p. 47–49.
|
|
Baez (John), 1995, «This week's finds in mathematical physics»,Week 53, 18 May (this text is also available at 〈http://math.ucr.edu/home/baez/twf.html〉).
|
|
Baez (J.), 2001, «Higher-dimensional algebra and Planck-scale physics», inCallender (Craig) andHuggett (Nick), eds.,Physics meets philosophy at the Planck scale, Cambridge, Cambridge University Press, p. 177–195.
|
|
Baez (J.), 2003*, 〈http://math.ucr.edu/home/baez/papers.html〉 (date of consultation).
|
|
Brown (Ronald), 1967, «Groupoids and Van Kampen's theorem»,Proceedings of the London Mathematical Society, ser. 3,17, p. 385–401.
|
|
Brown (R.), 1968,Elements of modern topology, Maidstone, McGraw Hill.
|
|
Brown (R.), 1982, «Higher dimensional group theory», inBrown (Ronald) andThickstun (Tom L.), eds.,Low dimensional topology, Cambridge, Cambridge University Press (London Mathematical Society Lecture Note Series, 48), p. 215–238.
|
|
Brown (R.), 1987, «From groups to groupoids. A brief survey»,Bulletin London Mathematical Society, 19, p. 113–134.
|
|
Brown (R.), 1988,Topology. A geometric account of general topology, homotopy types and the fundamental groupoid, Chichester, Ellis Horwood.
|
|
Brown (R.), 1992, «Out of line»,Royal Institution Proceedings, 64, p. 207–243.
|
|
Brown (R.), 1996, «Higher dimensional group theory», web article available at 〈http://www.bangor.ac.uk/∼mas010/hdweb2.html〉
|
|
Brown (Ronald),Hardie (Keith),Kamps (Heiner) andPorter (Timothy), 2002, «A homotopy double groupoid of a Hausdorff space»,Theory and Application of Categories, 10, p. 71–93.
|
|
Brown (Ronald) andHiggins (Philip John), 1978, «On the connection between the second relative homotopy groups of some related spaces»,Proceedings of the London Mathematical Society, ser. 3,36, p. 193–212.
|
|
Brown (R.) andHiggins (P.J.), 1981a, «The algebra of cubes»,Journal of Pure and Applied Algebra, 21, p. 233–260.
|
|
Brown (R.) andHiggins (P.J.), 1981b, «Colimits of relative homotopy groups»,Journal of Pure and Applied Algebra, 22, p. 11–41.
|
|
Brown (Ronald) andLoday (Jean-Louis), 1987, «Van Kampen theorems for diagrams of spaces»,Topology, 26, p. 311–335.
|
|
Brown (Ronald) andMosa (Ghafar H.), 1999, «Double categories, 2-categories, thin structures and connections»,Theory and Applications of Categories, 5, p. 163–175.
|
|
Brown (Ronald) andSpencer (Christopher B.), 1976, “Double groupoids and crossed modules»,Cathier de topologie et géométrie differentielle catégorique, 17, p. 343–362.
|
|
Čech (Eduard), 1932, «Höherdimensionale homotopiegruppen»,Verhandlungen des Internationalen Mathematiker-Kongresses Zurich, Zurich-Leipzig, O. Füssli Verlag, vol. II, p. 203.
|
|
Gonnes (Alain), 1994,Non-commutative geometry, transl. SterlingK. Berberian, San Diego (CA)-London, Academic Press.
|
|
Cordier (Jean-Marc) andPorter (Timothy), 1989,Shape theory: Categorical methods of approximation, Chichester, Ellis Horwood (Mathematics and its Applications).
|
|
Dobzhansky (Theodosius), 1973, «Nothing in biology makes sense except in the light of evolution»,The American Biology Teacher, 35, march, p. 125–129.
|
|
Ehresmann (Charles), 1965,Catégories et structure, Paris, Dunod.
|
|
Ehresmann (Andree) andVanbremeersch (Jean-Paul), 2001, «Emergence processes up to consciousness using the multiplicity principle and quantum physics»,American Institute of Physics Conference Proceedings, August. (See also other papers on <http://perso.wanadoo.fr/vbm-ehr/>.)
|
|
Ferris (Timothy) andFadiman (Clifton), eds., 1991,The World Treasury of physics, astronomy and mathematics, Boston (MA)/London, Little/Brown and Co.
|
|
Gadducci (Fabio) andMontanari (Ugo), 2000, «The tile model», inPlotkin (Gordon),Stirling (Colin) andTofte (Mads), eds.,Proof, language and interaction. Essays in honour of Robin Milner, Cambridge (MA)-London, MIT Press.
|
|
Gaucher (Philippe), 2000, «Homotopy invariants of higher dimensional categories and concurrency in computer science»,Mathematical Structures in Computer Science, 10, p. 481–524.
|
|
Goubault (Éric), 2000, «Geometry and concurrency. A user's guide»,Mathematical Structures in Computer Science, 10, p. 411–425.
|
|
Hurewicz (Witold), 1935 and 1936, «Beiträge zur Topologie des Deformationen»,Nederlanden Akademie von Wetenschaften, ser. A,38, p. 112–119, 521–528, and39, p. 117–126, 213–224.
|
|
Lakoff (George) andNúñez (Rafael), 2000,Where mathematics comes from. How the embodied mind brings mathematics into being, New York, NY, Basic Books.
|
|
Lawvere (Friedrich William), 1992, «The space of mathematics. Philosophical, epistemological and historical explorations» inCategories of space and of quantily, International Symposium on structures in mathematical theories, San Sebastian, Spain, 1990, Berlin, De Gruyter, p. 14–30.
|
|
Leinster (Tom), 2002, «A survey of definitions ofn-category»,Theory and Applications of Categories, 10, p. 1–70.
|
|
Longo (Giuseppe), 1998, «Mathematics and the biological phenomena», inProceedings of the International Symposium on Foundations in Mathematics and Biology-Problems, prosects and interactions, invited lecture, Pontifical Lateran University, Vatican City, to appear.
|
|
Longo (G.), 2001, «The reasonable effectiveness of mathematics and its cognitive roots», inBoi (Luciano), ed.,New interactions of mathematics with natural sciences and the humanities, Berlin-New York, Springer, to appear.
|
|
Montanari (Ugo), 2003*, Publications web page, <http://www.di.unipi.it/ugo/ugo.html>.
|
|
Petri (Carl Adam), 1973, «Concepts of net theory», inMathematical Foundations of Computer Science, Proceedings of Symposium and Summer School, Mathematical Institute of the Slovak Academy of Sciences, 3–8 Sept. 1973, High
Tatras, Czechoslovakia, p. 137–146.
|
|
Porter (Timothy), 1994, «Categorical shape theory as a formal language for pattern recognition»,Annals of Mathematics and Artificial Intelligence, 10, p. 25–54.
|
|
Pratt (Vaughan), 2003*, Guide to Papers on Chu Spaces, <http://chu.stanford.edu/guide.html>.
|
|
Street (Ross), 1996, «Categorical structures» inHazewinkel (Michiel), ed.,Handbook of algebra, Amsterdam-Oxford, Elsevier, vol. I, p. 529–577.
|
|
Wigner (Eugene Paul), 1991, «The unreasonable effectiveness of mathematics in the natural sciences», 1st ed. 1960,Communications in Pure and Applied Mathematics, 13, p. 1–14, here repr. inFerris andFadiman, 1991, p. 526–540.
|
|
|
|
|
|
|